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Nonlinear resonant interactions of interfacial
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We consider the problem of nonlinear resonant interactions of interfacial waves with
the presence of a linear interfacial instability in an inviscid two-fluid stratified flow
through a horizontal channel. The resonant triad consists of a (linearly) unstable wave
and two stable waves, one of which has a wavelength that can be much longer than
that of the unstable component. Of special interest is the development of the long
wave by energy transfer from the base flow due to the coupled effect of nonlinear
resonance and interfacial instability. By use of the method of multiple scales, we
derive the interaction equations which govern the time evolution of the amplitudes
of the interacting waves including the effect of interfacial instability. The solution
of the evolution equations shows that depending on the flow conditions, the (stable)
long wave can achieve a bi-exponential growth rate through the resonant interaction
with the unstable wave. Moreover, the unstable wave can grow unboundedly even
when the nonlinear self-interaction effect is included, as do the stable waves in
the associated resonant triad. For the verification of the theoretical analysis and the
practical application involving a broadbanded spectrum of waves, we develop an
effective direct simulation method, based on a high-order pseudo-spectral approach,
which accounts for nonlinear interactions of interfacial waves up to an arbitrary high
order. The direct numerical simulations compare well with the theoretical analysis for
all of the characteristic flows considered, and agree qualitatively with the experimental
observation of slug development near the entrance of two-phase flow into a pipe.
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1. Introduction
In this work, we investigate a nonlinear mechanism for the generation and evolution

of long waves on the interface in a two-layer density-stratified flow through a
horizontal channel under the influence of a linear interfacial instability and nonlinear
resonant wave interactions. This work is motivated by the observations of a unique
class of large wave disturbances which can occur in horizontal channels and pipes.
Under certain flow conditions, it is possible for short waves to form at the interface
and grow into large-amplitude long waves which bridge the channel and touch the
top trapping long bubbles of one fluid within the other. This phenomena, known as
slug flow, has been well documented experimentally, but theoretically understanding
the underlying mechanisms and properly defining the critical flow conditions for slug
formation remains an active area of research.
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

59
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:yuming@mit.edu
https://doi.org/10.1017/jfm.2012.598


Resonant interactions of interfacial waves 613

Early theoretical work on slug prediction was based on the classical
Kelvin–Helmholtz instability criteria for infinitesimal waves at the interface of a
stratified flow. Experimental trials found that this criteria made poor predictions of
the upper fluid velocity at which the slug transition occurs. Numerous works were
dedicated to modifying that criteria by including additional physical effects such as
the interfacial and wall friction (e.g. Lin & Hanratty 1986; Barnea & Taitel 1993)
and normal viscous stresses at the interface (e.g. Funada & Joseph 2001). The work
by Taitel & Dukler (1976) attempted to improve the predictions by examining the
effects of finite-amplitude waves. However, that work simply assumed the existence
of a finite-amplitude state within the channel and did not examine the mechanism(s)
leading to the wave’s formation. The results of these previous efforts have been a wide
range of stability predictions as demonstrated in the survey by Mata et al. (2002).

One commonality with these methods was that the transition criteria which
were developed were used to determine whether long-wavelength disturbances were
unstable in the stratified flow. Experimental observation has shown that slugs form
through either the evolution of short waves into large-amplitude long waves or wave
coalescence. Fan, Lusseyran & Hanratty (1993) studied the formation of slugs in
horizontal pipes and used power spectra from the wave heights along the pipe to
demonstrate the presence of a mechanism which was creating a cascade of energy
from short to long-wavelength components. Jurman, Deutsch & McCready (1992),
carried out experiments for two-fluid stratified flows through a horizontal channel
and used the bicoherence spectrum to examine the spectral evolution of the interface.
Strong energy transfer from short to long waves was observed and in some cases
there was a strong subharmonic energy transfer. These characteristic behaviours are
impossible to see from linear theory because it does not permit wave interactions. This
suggests that nonlinear interactions, which have been neglected from the majority of
the previous studies, may play a dominant role in the interfacial evolution and must be
accounted for in predicting the development of large-amplitude long interfacial waves
in stratified flows.

Nayfeh & Saric (1972) used the method of multiple scales to develop a third-order
amplitude equation which governed the nonlinear evolution of a finite-amplitude wave
on the interface of a two-fluid density stratified flow of infinite depth. Their analysis
considered a single linearly unstable mode and found that depending on the flow
conditions it was possible for the nonlinear solution to grow unboundedly. Similar
work was also carried out by Drazin (1970) and Maslowe & Kelly (1970). Pedlosky
(1975) also studied the nonlinear evolution of an interface in the presence of a linear
instability within the context of baroclinic waves. These methods provided a basis for
understanding the nonlinear effects upon the growth of linearly unstable waves.

While the results of Nayfeh & Saric (1972) provided the methods necessary
to examine the nonlinear evolution of linearly unstable waves, the results lacked
the means to generate large-amplitude long waves from unstable short waves. The
observations of energy transfer across the wave spectrum is similar to the effects
observed in ocean surface wave environments. Phillips (1960) was the first to consider
the effects of weak, nonlinear resonant wave–wave interactions in an ocean wave
field. His work determined that these nonlinear interactions were responsible for
transferring significant amounts of energy across the wavenumber spectrum and
provided significant insight into the mechanics of the evolution of surface-gravity
waves.

Phillips’ work, and a large number of follow-up papers, such as the work of
Longuet-Higgins (1962), apply a regular perturbation scheme to determine modal
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growth rates and quantify the rate of energy transfer among interacting waves.
However, the time range over which this scheme is applicable is steepness limited.
Subsequent work by Benney (1962) and McGoldrick (1965) applied the method
of multiple scales to extend the theory of resonant wave–wave interactions by
developing coupled nonlinear interaction equations for a discrete set of resonant wave
modes. McGoldrick derived closed-form solutions in terms of Jacobi elliptic functions,
which described the interfacial elevation of these discrete modes and demonstrated
energy conservation (for non-dissipative conditions). This multiscale expansion was
demonstrated to be accurate for times up to an order of magnitude longer than the
traditional regular perturbation scheme. Since Phillips’ (1960) paper, the theory of
resonant wave–wave interactions among surface gravity waves has been a subject of
active research and has reached maturity.

Janssen (1986) and Janssen (1987) considered the effects of resonant interactions
between a primary wave and its second harmonic (referred to as a second harmonic
resonance or an overtone resonance). His work found that this class of resonant
interactions is responsible for the observed period doubling behaviour seen in spectral
measurements. More recently, Bontozoglou & Hanratty (1990) speculated that finite-
amplitude Kelvin–Helmholtz waves undergo an internal second harmonic resonance
which would result in the doubling of the wavelength of the unstable wave. It was
believed that this could be part of the initial mechanism which would lead to the
formation of slugs.

Recently Romanova & Annenkov (2005) studied three-wave resonant interactions
in a multilayer stratified flow using a Hamiltonian formulation. They derived a set
of coupled nonlinear interaction equations for the evolution of a resonant triad with
one interacting wave component being linearly unstable. They found that the resonant
interaction with stable waves can stabilize the growth of the linearly unstable wave.
Similar work was also carried out in the study of baroclinic wave dynamics based on a
quasi-geostrophic two-layer model by Loesch (1974), Pedlosky (1975) and Mansbridge
& Smith (1983). All of these studies did not focus on the growth of stable waves
in the resonance. In addition, the influence of the zeroth harmonic (resulted from
quadratic self-interactions in finite depth) on the evolution of the interacting waves was
not accounted for.

In this work, we study theoretically and computationally the effects of nonlinear
resonant wave interactions coupled with interfacial instability upon the development
of long waves on the interface of a two-fluid stratified flow. We consider a
two-dimensional canonical problem of triad interfacial wave resonance involving
one unstable short wave, which is linearly unstable due to the Kelvin–Helmholtz
mechanism, and two stable waves in a two-layer stratified horizontal channel flow.
Based on the observation of slug flow experiments, it is of interest to have one of
the stable waves in the resonant triad with a wavelength much larger than that of the
unstable wave. Since our focus is on the understanding of the nonlinear mechanism
for energy transfer from short unstable waves to long stable waves, we assume simple
uniform base flows for the two fluids and formulate the problem in the context of
potential flow (§ 2.1). We derive the evolution equations for the amplitudes of the
interacting waves, including both interfacial instability and resonant wave interaction
effects, by the use of the method of multiple scales (§ 2.4). Based on the evolution
equations, we analyse the characteristic features of triad resonance and nonlinear
interfacial instability. Of particular interest is that under certain flow conditions, there
exists a strong mechanism for effectively transferring energy from (unstable) short
waves to (stable) long waves (§ 2.5). For validation of the theory and application
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FIGURE 1. Definition sketch of a two-layer stratified flow in a horizontal channel.

to realistic situations involving multiple resonances, an effective numerical method
based on the high-order pseudo-spectral approach is developed (§ 3). The theory
and numerical simulation are cross-validated for the characteristic cases presented.
Moreover, the trends observed in the direct simulation agree qualitatively with the
experimental measurement of initial slug time/length for a two-layer flow entering
into a horizontal pipe (§ 4). This work provides an insight into the basic nonlinear
physics that may play a significant role in the initial development of slugs in stratified
channel/pipe flows.

2. Theoretical analysis
This analysis considers the nonlinear evolution of interfacial waves propagating

through a stratified two-fluid horizontal channel. It is of fundamental interest to
understand the characteristic features of wave energy transfer associated with triad
resonant interaction, particularly when one of the wave components in the triad is
linearly unstable to the Kelvin–Helmholtz mechanism.

2.1. Fully nonlinear governing equations
A fixed Cartesian coordinate system is established with the origin located at the
undisturbed interface between the two fluids with the x-axis extending horizontally to
the right and the y-axis being directed vertically upwards. The fluids have equilibrium
depths of hu and hl with the upper and lower fluids being denoted by the subscripts
u and l, respectively. The vertical displacement of the interface away from its
undisturbed position is defined by the function y = η (x, t). The two fluids, which
are assumed to be immiscible, are of density ρu and ρl, with ρu < ρl. The effects of
gravity g and surface tension γ are also taken into account. A sketch of the problem is
illustrated in figure 1.

The flow in each domain is decomposed into a constant uniform current (Uu and
Ul) and a disturbance flow. It is assumed that both flows are incompressible and
irrotational such that the velocity of each fluid is defined by the gradient of its
potential function, ϕu (x, y, t) = Uux + φu(x, y, t) and ϕl (x, y, t) = Ulx + φl(x, y, t). The
disturbance potentials (φu and φl) must satisfy Laplace’s equation in the fluid domain:

∇2φu = 0, η < y< hu (2.1)

∇2φl = 0, −hl < y< η. (2.2)

At the channel walls, the no flux conditions are enforced as

φu,y = 0, y= hu (2.3)

φl,y = 0, y=−hl. (2.4)
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616 B. K. Campbell and Y. Liu

Requiring that the interface remain material produces

η,t + (Uu + φu,x)η,x = φu,y, y= η (2.5)

η,t + (Ul + φl,x)η,x = φl,y, y= η (2.6)

while the balance of normal stresses at the interface between the two fluids gives

R

[
φu,t + 1

2
(∇φu)

2+Uuφu,x + η
]
−
[
φl,t + 1

2
(∇φl)

2+Ulφl,x + η
]

=−η,xx

W
(1+ η2

,x)
−3/2

, y= η (2.7)

where R ≡ ρu/ρl is the density ratio and W ≡L 2gρl/γ is the Weber number. In the
above equations, the quantities are non-dimensionalized in terms of the characteristic
length L and time T = (L /g)1/2. This problem is complete with the specification of
an appropriate set of initial conditions for φu, φl and η.

2.2. Linear theory and the Kelvin–Helmholtz instability

For the purpose of better understanding the nonlinear analysis in the following
sections, it is beneficial to review the key findings from the classical linear theory.
The linearization of (2.1)–(2.7) in terms of the small interfacial wave steepness ε
produces

∇2φu = 0, 0< y< hu (2.8a)

∇2φl = 0, −hl < y< 0 (2.8b)

φu,y = 0, y= hu (2.8c)

φl,y = 0, y=−hl (2.8d)

η,t + Uuη,x − φu,y = 0, y= 0 (2.8e)

η,t + Ulη,x − φl,y = 0, y= 0 (2.8f )

R(φu,t + Uuφu,x + η)− (φl,t + Ulφl,x + η)+ η,xx

W
= 0, y= 0. (2.8g)

A travelling wave solution of (2.8) takes the form

η = ηo

2
ei(kx−ωt) + c.c. (2.9a)

φu = ηo
−i(Uuk − ω)
2k tanh khu

cosh k(y− hu)

cosh khu
ei(kx−ωt) + c.c. (2.9b)

φl = ηo
i(Ulk − ω)
2k tanh khl

cosh k(y+ hl)

cosh khl
ei(kx−ωt) + c.c. (2.9c)

where ηo is the amplitude of the (initial) wave disturbance, k is the wavenumber and ω
is the frequency. The symbol ‘c.c.’ represents the complex conjugate of the preceding
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Resonant interactions of interfacial waves 617

term(s). The frequency ω is related to the wavenumber k by the dispersion relation:

ω = k(UuRTl + UlTu)

RTl + Tu
± k

[
1
k

(
TuTl

RTl + Tu

)

×
(

1−R + k2

W

)
− R (Uu − Ul)

2 TuTl

(RTl + Tu)
2

]1/2

(2.10)

where Tu/l ≡ tanh khu/l. From (2.10), it is clear that ω is a complex number if
|Uu − Ul|> Uc with the critical velocity Uc defined as

Uc(k)≡
[
(RTl + Tu)

Rk

(
1−R + k2

W

)]1/2

. (2.11)

Under this condition, the wave (of wavenumber k) is unstable with its amplitude
growing exponentially with time by drawing energy from base flows.

Without loss of generality, we assume that Uu > Ul in the following analysis and we
consider the case with Uu − Ul slightly exceeding Uc, i.e. Uu − Ul = Uc(1+∆) where
0<∆� 1. In this case, the frequency can be written as

ω ≡ ωR + iωI

= k(UuRTl + UlTu)

RTl + Tu
± i
[

2kTuTl

RTl + Tu

(
1−R + k2

W

)]1/2

∆1/2 + O(∆3/2). (2.12)

Clearly, the growth rate ωI = O(∆1/2) while Uu − Ul − Uc = O(∆).

2.3. Triad resonant wave–wave interaction
In the context of linear theory, waves of different wavelengths (or frequencies) travel
independently in time/space. When nonlinear interactions among them are accounted
for, locked waves are generated. The amplitudes of the locked waves are generally
of higher-order compared with the primary waves. If the frequency and wavenumber
of the locked wave satisfy the dispersion relation (2.10), the locked wave becomes a
free wave. In this case, the interaction becomes resonant. As a result, the generated
free wave can grow significantly with its amplitude being comparable to that of the
primary waves. Resonant interactions are known to play a critical role in the evolution
of nonlinear ocean surface waves as they cause energy transfer among different wave
components in the wave spectrum (e.g. Phillips 1960).

In this study, we consider a triad resonant interaction in which one of the primary
waves is unstable due to the Kelvin–Helmholtz effect. The focus is on the mechanism
of energy transfer from the unstable wave to the stable waves in the triad. For
definiteness, we consider a triad consisting of three free waves with wavenumbers k1,
k2 and k3. Without loss of generality, we let k3 < k1 < k2 with the k2 wave being
unstable (and k1 and k3 waves being stable). Unlike in the conservative wave system
in which the frequencies of interacting waves involved are all real, the frequency
of the unstable k2 wave is complex in the present case. The multiple-scale analysis
commonly used in the conservative wave system cannot be directly applied here. The
evolution of the amplitudes of interacting waves in the triad is now affected not only
by the resonant interaction but also by the interfacial instability. The time scales of
these two processes need to be properly considered in the analysis. To obtain a basic
understanding of the interaction mechanism of these two processes, we consider the k2

wave to be slightly unstable with Uu − Ul = Uc(1+∆), ∆� 1. In the present analysis,
we choose to expand the interaction problem at Uu − Ul = Uc(1 + ∆) with respect to
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FIGURE 2. (a) Sketch of the neutral stability curve (——) and wavenumbers of the primary
waves forming a resonant triad (k1, k2, k3) along with the second harmonic (2k2) of the k2
wave. (b) Normalized wavenumbers k1/k2 (· · ·) and k3/k2 (— · —) in a resonant triad as a
function of the critical velocity Uc(k2). The curve (——) in (b) represents the subharmonic
resonance with k1/k2 = k3/k2 = 0.5. The results are obtained with R = 1.23 × 10−3,
W ∼= 845.5, H = 1.25, α ≡ hu/H = 0.5 and Ul = 1.13. (With L ∼= 0.08 m and T ∼= 0.09
s, as an example, these parameters correspond to an air–water flow in a horizontal channel
with fixed hu = hl = 0.05 m, Ul = 1.0 m s−1 and γ = 0.073 N m−1.)

the marginally stable state at Uu − Ul = Uc in terms of ∆ (Loesch 1974). A sketch
of the interacting waves in the plane formed by wavenumber and velocity jump is
illustrated in figure 2(a).

At the marginally stable state, the k2 wave is neutrally stable. Following the analysis
of Phillips (1960) for conservative resonances, a resonant triad involving k1, k2 and k3

waves are formed under the condition: k2 − k1 = k3 and ω2 − ω1 = ω3, where ω1(k1)

and ω3(k3) are given by (2.10) while for a given k2, the frequency, ω2(k2), is given
by the real part of (2.12). Figure 2(b) shows a typical result of k1 and k3 (normalized
by k2) as a function of Uc(k2). The result shown corresponds to the left branch of
the neutral stability curve in figure 2(a). For lower Uc, the triad resonance involving
long and short waves exist. There also exists a subharmonic resonance between k2 and
its subharmonic k1 = k3 = 1/2k2. For larger Uc, the triad resonance converges to its

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

59
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.598


Resonant interactions of interfacial waves 619

special case of subharmonic resonance. In this work, the analysis is focused on the
case of general triad resonance with k1 6= k3 (at relatively lower Uc). The subharmonic
resonance is to be analysed in a separate study.

In the following analysis, for generality, we consider a near-resonance triad in which
the wavenumbers and frequencies of the interacting waves have the relations{

k2 − k1 = k3

ω2 − ω1 = ω3 + σ (2.13)

where σ (with σ � ωj, j = 1, 2, 3) represents the frequency detuning. Note that
the triad resonance condition is satisfied exactly when σ = 0. In addition, for
both simplicity and clarity, the second harmonic of the k2 wave is assumed to
be stable. When this constraint is relived, the analysis procedure is similar, but a
different combination in the order of magnitudes of the interacting waves needs to be
considered.

2.4. Multiple-scale analysis
In this section we shall derive the analytic equations governing the time evolution
of the amplitudes of the interacting waves in the triad by use of the method of
multiple scales which captures the combined effect of the nonlinear Kelvin–Helmholtz
instability and resonant wave–wave interaction.

2.4.1. Perturbation expansions
As (2.12) indicates, the growth rate of the k2 wave is of O(∆1/2). Thus, there exists

two distinct time scales. One is the fast time t associated with the rapid change of the
phases of the waves. The other is the slow time τ associated with the time variation of
the amplitudes of the waves. Clearly, we have τ = ∆1/2t for the present problem. For
the perturbation analysis, we assume that the steepness of the interface is small with
O(ε) = O(∆1/2). For convenience, we expand the velocity potentials (φu and φl) as
well as the interfacial displacement η in a regular perturbation expansion of the form

φu(x, y, t, τ )=
5∑

m=1

∆(m+1)/4φ(m)u (x, y, t, τ )+ O(∆7/4) (2.14a)

φl(x, y, t, τ )=
5∑

m=1

∆(m+1)/4φ
(m)
l (x, y, t, τ )+ O(∆7/4) (2.14b)

η(x, t, τ )=
5∑

m=1

∆(m+1)/4η(m)(x, t, τ )+ O(∆7/4) (2.14c)

where φ(m)u , φ(m)l and η(m), m = 1, . . . , 5, are O(1). This expansion is established under
the assumption that the amplitude of the unstable wave (k2) is O(∆1/2) while that of
the other two stable waves (k1, k3) are O(∆3/4). With this order arrangement, the effect
of the cubic self-interaction on the evolution of the k2 wave could be comparable to
that of the quadratic (resonant) interactions of the k1 and k3 waves. Following the
standard procedure of the multiple-scale perturbation analysis, the nonlinear boundary-
value problem for φu and φl is decomposed into a sequence of linearized boundary-
value problems for φ(m)u and φ

(m)
l , m = 1, 2, . . . , 5, which are presented in Appendix.

These problems are then solved sequentially starting from m= 1.
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2.4.2. The O(∆1/2) solution
At this order, the boundary-value problem is identical to that outlined in § 2.2. The

solution for the linearly unstable k2 wave is

φ(1)u =
cosh k2(y− hu)

cosh k2hu
[P2(τ )eiψ2 + c.c.] + φ(1)u0 (τ ) (2.15a)

φ
(1)
l =

cosh k2(y+ hl)

cosh k2hl
[Q2(τ )eiψ2 + c.c.] + φ(1)l0 (τ ) (2.15b)

η(1) = A2(τ )

2
eiψ2 + c.c. (2.15c)

where P2, Q2 and ψ2 are given from the general expressions:

Pj(τ )= −iDujAj(τ )

2kj tanh kjhu
, Qj(τ )= iDljAj(τ )

2kj tanh kjhl
, ψj = kjx− ωjt (2.16)

and Duj ≡ (Ul + Uc)kj − ωj and Dlj ≡ Ulkj − ωj with the subscript j = 2. Note that
the boundary-value problem for φ(1)u and φ

(1)
l admits space-independent solutions

φ
(1)
u0 (τ ) and φ(1)l0 (τ ) which will be shown to be important in the higher-order solutions.

The slow-time dependent amplitude, A2(τ ), and potentials, φ(1)u0 (τ ) and φ
(1)
l0 (τ ), are

governed by the evolution equations to be developed below.

2.4.3. The O(∆3/4) solution
At this order, the solution represents the (stable) k1 and k3 waves:

φ(2)u =
cosh k1(y− hu)

cosh k1hu
[P1(τ )eiψ1 + c.c.]

+ cosh k3(y− hu)

cosh k3hu
[P3(τ )eiψ3 + c.c.] + φ(2)u0 (τ ) (2.17a)

φ
(2)
l =

cosh k1(y+ hl)

cosh k1hl
[Q1(τ )eiψ1

+ c.c.] + cosh k3(y+ hl)

cosh k3hl
[Q3(τ )eiψ3 + c.c.] + φ(2)l0 (τ ) (2.17b)

η(2) = A1(τ )

2
eiψ1 + A3(τ )

2
eiψ3 + c.c. (2.17c)

where P1,3, Q1,3 and ψ1,3 are given from the general expressions (2.16) with the
subscript j = 1 and 3, respectively. Like the m = 1 problem, the boundary-value
problem at m = 2 also admits space-independent potentials, φ(2)u0 (τ ) and φ(2)l0 (τ ), which
are functions of slow time. The slow-time-dependent amplitudes, A1(τ ) and A3(τ ), are
governed by the evolution equations to be developed below.

2.4.4. The O(∆) solution
The inhomogeneous forcing terms at this order are

f (3)1 =− 1
2 Ȧ2eiψ2 + p4A2

2e2iψ2 + c.c. (2.18a)

f (3)2 =− 1
2 Ȧ2eiψ2 + d4A2

2e2iψ2 + c.c. (2.18b)

f (3)3 = f2Ȧ2eiψ2 + f7A2
2e2iψ2 + c.c.+ f8 |A2|2+ φ̇(1)l0 −Rφ̇(1)u0 (2.18c)
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Resonant interactions of interfacial waves 621

with the coefficients given by

p4 =−1
2

ik2Du2Cu2, d4 = 1
2

ik2Dl2Cl2, (2.19a)

f2 = i
2k2

(Dl2Cl2 +RDu2Cu2), f7 =−1
8
[(3− C2

l2)D
2
l2 −R(3− C2

u2)D
2
u2], (2.19b)

f8 = 1
4
[(C2

l2 − 1)D2
l2 −R(C2

u2 − 1)D2
u2] (2.19c)

where Cu/lj ≡ coth(kjhu/l) and the symbol ‘·’ denotes the derivative with respect to
slow time τ . There are zeroth, first and second harmonics in the forcing terms.
The boundary-value solution associated with the zeroth and second harmonic forcing
can be obtained directly. Since the first harmonic is the homogeneous solution of
the boundary-value problem, the first harmonic forcing must satisfy the solvability
condition, specified by the Fredholm alternative, in order to obtain a non-trivial
inhomogeneous solution. By applying Green’s theorem between the O(∆1/2) and O(∆)
solutions (for the first harmonic), the solvability condition is found to take the form

iȦ2

k2

[
RDu2

Tu2
+ Dl2

Tl2

]
= G2

[
RD2

u2

k2Tu2
+ D2

l2

k2Tl2
− 1+R − k2

2

W

]
(2.20)

where Tu/lj ≡ tanh(kjhu/l) and G2 denotes the half amplitude of the first harmonic
(propagating wave) of η(3). Since k2 and ω2 satisfy the dispersion relation, it is
straightforward to show that the terms in the brackets on both sides of (2.20) are
identically zero. Since all of the structure of the propagating k2 wave is contained in
the O(∆1/2) solution, G2 can be set to zero without any loss of generality. The total
solution for φ(3)u , φ(3)l , and η(3) are then written as

φ(3)u =
cosh k2(y− hu)

cosh k2hu
(α2Ȧ2eiψ2 + c.c.)+ cosh 2k2(y− hu)

cosh 2k2hu
(α22A2

2e2iψ2 + c.c.) (2.21a)

φ
(3)
l =

cosh k2(y+ hl)

cosh k2hl
(β2Ȧ2eiψ2 + c.c.)+ cosh 2k2(y+ hl)

cosh 2k2hl
(β22A2

2e2iψ2 + c.c.) (2.21b)

η(3) = ν22(A
2
2ei2ψ2 + c.c.)+ ν0 |A2|2+ φ̇l0 −Rφ̇u0

R − 1
(2.21c)

where

ν22 = k2
D2

l2

[
2Cl4Cl2 − 1

2(3− C2
l2)
]−RD2

u2

[
2Cu4Cu2 − 1

2(3− C2
u2)
]

8RCu4D2
u2 + 8Cl4D2

l2 + 4k2(R − 1− (4k2
2/W ))

(2.22a)

ν0 = (C
2
l2 − 1)D2

l2 −R(C2
u2 − 1)D2

u2

4(R − 1)
(2.22b)

α2 =− 1
2k2Tu2

, α22 =−iDu2

(
k2Cu2 + 4ν22

4k2Tu4

)
(2.22c)

β2 = 1
2k2Tl2

, β22 =−iDl2

(
k2Cl2 − 4ν22

4k2Tl4

)
(2.22d)

with Cu/l4 = coth(2k2hu/l) and Tu/l4 = tanh(2k2hu/l).
One notes that if the two stable waves (k1 and k3) are set to be of O(∆1/2) like the

unstable wave (k2), an unbalanced resonant interaction term would be present in (2.20).
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622 B. K. Campbell and Y. Liu

By letting the two stable waves be O(∆1/4) smaller than the unstable k2 wave,
the effects of triad resonant interaction and nonlinear Kelvin–Helmholtz instability
will converge together correctly in the O(∆3/2) problem without the presence of
singularities in the lower-order solution.

2.4.5. The O(∆5/4) solution
At this order, the only terms in f (4)j (j = 1, 2, 3) which produce secular terms are

those with phase ψ1 and ψ3. Upon neglecting the non-secular terms, f (4)j , j = 1, 2 and
3, takes the form

f (4)1 =− 1
2 Ȧ1eiψ1 − 1

2 Ȧ3eiψ3 + p1A∗1A2ei(ψ2−ψ1) + p3A2A∗3ei(ψ2−ψ3) + c.c. (2.23a)

f (4)2 =− 1
2 Ȧ1eiψ1 − 1

2 Ȧ3eiψ3 + d1A∗1A2ei(ψ2−ψ1) + d3A2A∗3ei(ψ2−ψ3) + c.c. (2.23b)

f (4)3 = f1Ȧ1eiψ1 + f3Ȧ3eiψ3 + f4A∗1A2ei(ψ2−ψ1)

+ f6A2A∗3ei(ψ2−ψ3) + c.c.+ φ̇(2)l0 −Rφ̇(2)u0 (2.23c)

where ψ2 − ψ1 = ψ3 − $τ and ψ2 − ψ3 = ψ1 − $τ with $ = σ∆−1/2, and the
coefficients are given by

p1 =−1
4

ik3(Du1Cu1 + Du2Cu2), p3 =−1
4

ik1(Du2Cu2 + Du3Cu3) (2.24a)

d1 = 1
4

ik3(Dl1Cl1 + Dl2Cl2), d3 = 1
4

ik1(Dl2Cl2 + Dl3Cl3) (2.24b)

f1 = i
2k1

(Dl1Cl1 +RDu1Cu1), f3 = i
2k3

(Dl3Cl3 +RDu3Cu3) (2.24c)

f4 = 1
4
{R[D2

u1 + D2
u2 − (1+ Cu1Cu2)Du1Du2] − D2

l1 − D2
l2 + (1+ Cl1Cl2)Dl1Dl2} (2.24d)

f6 = 1
4
{R[D2

u2 + D2
u3 − (1+ Cu2Cu3)Du2Du3] − D2

l2 − D2
l3 + (1+ Cl2Cl3)Dl2Dl3}. (2.24e)

Upon the use of the solvability conditions which can be realized by applying Green’s
theorem to the O(∆3/4) and O(∆5/4) solutions, we obtain the evolution equations for
A1 and A3:

Ȧ1 = iB23A2A∗3e−i$τ (2.25a)

Ȧ3 = iB12A∗1A2e−i$τ (2.25b)

where

B23 = k1

4

[
Dl1Cl1(Dl2Cl2 + Dl3Cl3)− D2

l2 − D2
l3 + (1+ Cl2Cl3)Dl2Dl3

RDu1Cu1 + Dl1Cl1

]
− Rk1

4

[
Du1Cu1(Du2Cu2 + Du3Cu3)− D2

u2 − D2
u3 + (1+ Cu2Cu3)Du2Du3

RDu1Cu1 + Dl1Cl1

]
(2.26a)

B12 = k3

4

[
Dl3Cl3(Dl1Cl1 + Dl2Cl2)− D2

l1 − D2
l2 + (1+ Cl1Cl2)Dl1Dl2

RDu3Cu3 + Dl3Cl3

]
− Rk3

4

[
Du3Cu3(Du1Cu1 + Du2Cu2)− D2

u1 − D2
u2 + (1+ Cu1Cu2)Du1Du2

RDu3Cu3 + Dl3Cl3

]
. (2.26b)
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Resonant interactions of interfacial waves 623

These two interaction coefficients, B23 and B12, are the same as those in the case where
all three waves in the resonant triad are linearly stable to the Kelvin–Helmholtz effect,
as shown by Campbell (2009).

2.4.6. The O(∆3/2) solution
The forcing terms f (5)j , j= 1, 2 and 3, are

f (5)1 = (p2A1A3ei$τ + p5 |A2|2 A2 + p6A2(Rφ̇
(1)
u0 − φ̇(1)l0 )+ p7A2 + c.c.)eiψ2

+ Rφ̈(1)u0 − φ̈(1)l0

R − 1
− ν0

d
dτ
(|A2|2) (2.27a)

f (5)2 = (d2A1A3ei$τ + d5 |A2|2 A2 + d6A2(Rφ̇
(1)
u0 − φ̇(1)l0 )+ c.c.)eiψ2

+ Rφ̈(1)u0 − φ̈(1)l0

R − 1
− ν0

d
dτ
(|A2|2) (2.27b)

f (5)3 = [f5A1A3 + f9Ä2 + f10A2 + f11 |A2|2 A2 + f13A2(Rφ̇
(1)
u0 − φ̇(1)l0 )+ c.c.]eiψ2

+ f12Ȧ2A∗2 + f ∗12Ȧ∗2A2 + f14 |A1|2+f15 |A3|2 (2.27c)

where ∗ denotes the complex conjugate and the coefficients are given by

p2 =−1
4

ik2 (Du1Cu1 + Du3Cu3) (2.28a)

p5 = α22k2
2 +

1
2

ik2Du2

[
3
8

k2 − Cu2 (ν22 + ν0)

]
(2.28b)

p6 =− ik2Du2Cu2

2 (R − 1)
(2.28c)

p7 =− iUck2

2
(2.28d)

d2 = 1
4

ik2 (Dl1Cl1 + Dl3Cl3) (2.28e)

d5 = β22k2
2 +

1
2

ik2Dl2

[
3
8

k2 + Cl2 (ν22 + ν0)

]
(2.28f )

d6 = ik2Dl2Cl2

2 (R − 1)
(2.28g)

f5 = 1
4

{
(Cl1Cl3 − 1)Dl1Dl3 − D2

l1 − D2
l3 −R

[
(Cu1Cu3 − 1)Du1Du3 − D2

u1 − D2
u3

]}
(2.28h)

f9 = β2 −Rα2 (2.28i)

f10 =−1
2
RUcDu2Cu2 (2.28j)

f11 = R

(
ik2Du2α22 [Tu4 − Cu2]+ 1

2
Du2

[
ν0 + ν22 + 5

8
k2Cu2

])
− 3k4

2

16W

+ 1
2

D2
l2

[
5
8

k2Cl2 − ν0 − ν22

]
+ ik2Dl2β22 [Tl4 − Cl2] (2.28k)

f12 = i
4

Dl2 − i
2

k2β2Dl2Cl2 −R

[
i
4

Du2 + i
2

k2α2Du2Cu2

]
(2.28l)
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f13 = D2
l2 −RD2

u2

2(R − 1)
(2.28m)

f14 = 1
4

[
D2

l1(C
2
l1 − 1)−RD2

u1(C
2
u1 − 1)

]
(2.28n)

f15 = 1
4

[
D2

l3(C
2
l3 − 1)−RD2

u3(C
2
u3 − 1)

]
. (2.28o)

In (2.27), the non-relevant terms are not included for clarity.
Imposing the solvability condition for the forcing with phase ψ2, we obtain the

evolution equation for A2:

Ä2 =ΩA2 +N |A2|2 A2 +M A2

(
Rφ̇(1)u0 − φ̇(1)l0

)
+ B13A1A3ei$τ (2.29)

with

Ω = −RUcDu2Cu2

Rα2 − β2
(2.30)

N = ik2
Rα22Du2[Tu4 − 2Cu2] + β22Dl2[Tl4 − 2Cl2]

Rα2 − β2

+ RD2
u2[(ν0 + ν22)(1− C2

u2)+ k2Cu2] + D2
l2[(ν0 + ν22)(C2

l2 − 1)+ k2Cl2]
2(Rα2 − β2)

− 3k4
2

16W (Rα2 − β2)
(2.31)

M = D2
l2(1− C2

l2)+RD2
u2(C

2
u2 − 1)

2(R − 1)(Rα2 − β2)
(2.32)

B13 = (Cl1Cl3 − 1)Dl1Dl3 − D2
l1 − D2

l3 −R[(Cu1Cu3 − 1)Du1Du3 − D2
u1 − D2

u3]
4(Rα2 − β2)

− RDu2Cu2(Du1Cu1 + Du3Cu3)− Dl2Cl2(Dl1Cl1 + Dl3Cl3)

4(Rα2 − β2)
. (2.33)

Equation (2.29) requires that Rφ̇(1)u0 − φ̇(1)l0 be solved for. For the zeroth harmonic, the
boundary-value problem for φ(m)u and φ(m)l in (A 2a)–(A 2f ) allows for a solution that
can be a function of slow time τ only. Thus, the zeroth harmonic forcing in f (5)1 and
f (5)2 must vanish, which leads to

Rφ̈(1)u0 − φ̈(1)l0 = (R − 1)ν0
d

dτ
|A2|2 . (2.34)

Integration of this equation with respect to τ gives

Rφ̇(1)u0 − φ̇(1)l0 = (R − 1)ν0 |A2|2+C (2.35)

where the integration constant is determined by the initial condition, C = Rφ̇(1)u0 −
φ̇
(1)
l0 − (R − 1)ν0 |A2|2 evaluated at τ = 0.
The leading-order solution of the mean interface elevation in (2.21c) then becomes

η̄(3) = ν0 |A2|2−Rφ̇(1)u0 − φ̇(1)l0

R − 1
= C

1−R
. (2.36)
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Resonant interactions of interfacial waves 625

The zeroth harmonic forcing in f (4)3 and f (5)3 gives the higher-order solution:
η̄(4) + η̄(5) = [φ̇(2)l0 −Rφ̇(2)u0 + f12Ȧ2A∗2 + f ∗12Ȧ∗2A2 + f14 |A1|2+ f15 |A3|2]/(R − 1) where the
quantity φ̇(2)l0 −Rφ̇(2)u0 needs to be determined in the O(∆7/4) boundary-value problem.

Upon substitution of t = ∆−1/2τ , a2 = ∆1/2A2, a1 = ∆3/4A1, a3 = ∆3/4A3, and
σ =$∆−1/2, we rewrite the evolution equations for the amplitudes of the interacting
waves in the triad in the form

d2a2

dt2
= Ω̂a2 + ˆN |a2|2 a2 + B13a1a3eiσ t (2.37a)

da1

dt
= iB23a2a∗3e−iσ t (2.37b)

da3

dt
= iB12a2a∗1e−iσ t (2.37c)

where Ω̂ = (Ω +M C)∆ and ˆN = N +M (R − 1)ν0. In the right-hand side of
(2.37a), the first term represents the linear Kelvin–Helmholtz instability effect, the
second-term the nonlinear correction (associated with cubic self-interactions) to the
Kelvin–Helmholtz instability effect and the third term the triad resonant interaction
effect. The effect of the mean interface elevation upon the Kelvin–Helmholtz
instability is also considered with the inclusion of C in Ω̂ .

2.5. Properties of the nonlinear interaction equations
The analytic solution to (2.37) is, in general, not known and can only be found
through numerical integration. In the case of a perfect resonance (σ = 0) or for small
time, analytical solutions or integral properties can be derived.

2.5.1. Resonant interactions with σ = 0
For the perfect resonance case, σ = 0. With the decomposition aj(t) = Rj(t)eiθj(t),

j= 1, 2 and 3, (2.37b) and (2.37c) are separated into real and imaginary parts:

Ṙ1 =−B23R2R3 sinΦ (2.38a)

R1θ̇1 = B23R2R3 cosΦ (2.38b)

Ṙ3 =−B12R1R2 sinΦ (2.38c)

R3θ̇3 = B12R1R2 cosΦ (2.38d)

where Φ = θ2 − θ1 − θ3. Using (2.38a) and (2.38c) and integrating with respect to time,
we obtain

B[R2
1(τ )− R2

1(0)] = [R2
3(τ )− R2

3(0)] (2.39)

where B = B12/B23. For B < 0, we have from (2.39) that |B|R2
1(t) + R2

3(t) =|B|R2
1(0) + R2

3(0). This indicates that for B < 0, the growth of R1 and R3 remains
bounded with their maximum amplitudes being limited by their initial conditions. For
B > 0, (2.39) shows that there is no restriction on how large the two waves can grow
due to the resonant interaction with the unstable k2 wave.

2.5.2. Solution at small time
When the amplitudes of the interacting modes are small (with k2a2 � 1 and

a1/a2, a3/a2 � 1), the nonlinear terms in (2.37a) have a weak secondary effect. This
leaves the evolution equation of a2 to be dominated by the linear instability. With
this simplification, the coupled evolution (2.37) can be solved for the (initial) growth
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rates of a2, a1 and a3 due to the linear instability and the triad resonant interaction.
Evolution at small initial time (with a1/a2, a3/a2� 1) is an example of this situation.

In this case, it is straightforward to obtain a2(t) = â2 exp{Ω̂1/2t} where â2 is the
initial value of a2 at t = 0. By taking the time derivative of (2.37c), we have

ä3 = iB12

(
a∗1ȧ2 + ȧ∗1a2 − iσa∗1a2

)
e−iσ t. (2.40)

Upon substitution of a2(t) and use of (2.37b), we rewrite the above equation as

ä3 =
(√

Ω̂ − iσ
)

ȧ3 + |â2|2 e2
√
Ω̂tB12B23a3. (2.41)

Introducing the change of variable ξ = |â2| (B12B23)
1/2 exp{Ω̂1/2t}, we write (2.41) in

the form

ξ 2 d2a3

dξ 2
+ iσ√

Ω̂
ξ

da3

dξ
− ξ

2

Ω̂
a3 = 0 (2.42)

which is a transformed version of the Bessel differential equation. The general solution
of (2.42) takes the form

a3(ξ)= ξ−ν
[
C(3)

1 Jν

(
−iξ√
Ω̂

)
+ C(3)

2 Yν

(
−iξ√
Ω̂

)]
(2.43)

where ν = (iσ −
√
Ω̂)/(2

√
Ω̂), and Jν and Yν represent the Bessel functions of the

first and second kinds, respectively. The constants C(3)
1 and C(3)

2 are determined from
the initial condition to be

C(3)
1 =

ξ ν0 [â3Yν+1(−iξ0/
√
Ω̂)+ i

√
Ω̂ â∗1â2B12Yν(−iξ0/

√
Ω̂)]

Jν(−iξ0/
√
Ω̂)Yν+1(−iξ0/

√
Ω̂)− Jν+1(−iξ0/

√
Ω̂)Yν(−iξ0/

√
Ω̂)

(2.44a)

C(3)
2 =−

ξ ν0 [â3Jν+1(−iξ0/
√
Ω̂)+ i

√
Ω̂ â∗1â2B12Jν(−iξ0/

√
Ω̂)]

Jν(−iξ0/
√
Ω̂)Yν+1(−iξ0/

√
Ω̂)− Jν+1(−iξ0/

√
Ω̂)Yν(−iξ0/

√
Ω̂)

(2.44b)

where ξ0 = ξ(t = 0) and â1,3 = a1,3(t = 0). Owing to the symmetry, the solution to a1

can be obtained from that of a3 by switching a3 with a1.
To assist in understanding the basic characteristics of the solution for the growth

of a3 (and a1), we consider the nearly perfect resonance case. With σ/ω3 � 1, the
middle term on the left-hand side of (2.42) can be ignored. The general solution of the
resulting equation is given as

a3(ξ)= D1eξ/
√
Ω̂ + D2e−ξ/

√
Ω̂ (2.45)

where the constants D1 and D2 are determined from the initial condition. Depending
on the signs of the interaction coefficients (B12 and B23), the solution in (2.45) shows
different characteristic behaviours. When B12 and B23 have the same sign (i.e. B > 0),
ξ is purely real and is proportional to exp(Ω̂1/2t). As a result, a3 ∼ exp[exp(Ω̂1/2t)]
which shows a bi-exponential growth with time. This suggests a highly efficient
mechanism for transferring energy to linearly stable wave modes from a linearly
unstable wave mode through triad resonant interaction. In the study of (wind) wave
generation by a sheared current, Janssen (1987) predicted a similar energy transfer
mechanism due to the nonlinear coupling between a linearly unstable mode and its
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Resonant interactions of interfacial waves 627

second harmonic. When B12 and B23 have different signs (i.e B < 0), ξ is purely
imaginary. In this case, a3 ∼ exp[i exp(Ω̂1/2t)] which shows an oscillatory feature in
time with a constant amplitude but an exponentially growing frequency. (Note that this
result is consistent with the finding in the preceding section for the perfect resonance
case with B < 0.)

3. Numerical method
The theoretical analysis § 2 provides valuable insights into the dynamics of resonant

triad wave interaction coupled with the Kelvin–Helmholtz instability effect for a two-
fluid flow in a horizontal channel. To verify the theoretical prediction and deal with
the practical situation involving multiple resonant interactions, we develop an effective
numerical method that enables direct time simulation of the nonlinear initial boundary-
value problem ((2.1)–(2.7)).

3.1. Mathematical formulation of a high-order spectral method

An efficient high-order pseudo-spectral (HOS) method, originally developed by
Dommermuth & Yue (1987) for the study of nonlinear surface gravity waves, is
modified to simulate the nonlinear interfacial evolution of stratified channel flows. The
extension to nonlinear interactions of internal waves and surface waves over variable
bottom topography was achieved by Alam, Liu & Yue (2009). This method solves the
primitive equations of the problem by following the evolution of a large number of
spectral interfacial wave modes and accounts for their interactions up to an arbitrarily
high order of nonlinearity using a pseudo-spectral approach.

3.1.1. Time evolution equations
This process begins with the definition of the potentials at the interface within each

fluid domain

φI
u(x, t)= φu(x, η(x, t), t) (3.1a)

φI
l (x, t)= φl(x, η(x, t), t). (3.1b)

Applying chain rule to (3.1) allows for the standard derivatives on the interface (y= η)
to be written as

∂φ

∂t
= ∂φ

I

∂t
− ∂φ
∂y

∂η

∂t
, y= η (3.2a)

∂φ

∂x
= ∂φ

I

∂x
− ∂φ
∂y

∂η

∂x
, y= η. (3.2b)

With these new definitions of the potential derivatives, the boundary conditions maybe
written as functions of the interface potentials. The kinematic boundary conditions
(2.5) and (2.6) take the form

∂η

∂t
=−

[
Uu + ∂φ

I
u

∂x

]
∂η

∂x
+
[

1+
(
∂η

∂x

)2
]
∂φu

∂y
, y= η (3.3)

∂η

∂t
=−

[
Ul + ∂φ

I
l

∂x

]
∂η

∂x
+
[

1+
(
∂η

∂x

)2
]
∂φl

∂y
, y= η (3.4)
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while the dynamic boundary condition, (2.7), is expressed as

∂Ψ I

∂t
= 1

2

[
1+

(
∂η

∂x

)2
][(

∂φl

∂y

)2

−R

(
∂φu

∂y

)2
]
+ 1

2

[
R

(
∂φI

u

∂x

)2

−
(
∂φI

l

∂x

)2
]

+RUu
∂φI

u

∂x
− Ul

∂φI
l

∂x
− (1−R)η + 1

W

ηxx(
1+ η2

x

)3/2 , y= η (3.5)

where Ψ I(x, t) ≡ φI
l (x, t) − RφI

u(x, t). Together, (3.3) (or (3.4)) and (3.5) form a
set of interfacial evolution equations that can be integrated in time to obtain the
dynamic behaviour of the interface between the two fluids, provided that the interface
velocities (∂φu/∂y and ∂φl/∂y on y= η) and potentials (φI

u and φI
l ) can be solved from

the boundary-value problem.

3.1.2. Perturbation expansions
If it is assumed that φu, φl and η are O(ε)� 1, where ε is a measure of the wave

steepness, then these terms can be expanded in a perturbation series up to order M in
terms of the small variable ε

φu/l(x, y, t)=
M∑

m=1

φ
(m)
u/l (x, y, t) (3.6)

where φ(m)u and φ(m)l are O (εm). Since this is a free boundary problem, with φu, φl and
η being unknown, we expand φu and φl on the interface (y= η) in Taylor series about
the mean interface (y= 0):

φu/l(x, η, t)=
M∑

m=1

φ
(m)
u/l (x, η, t)=

M∑
m=1

M−m∑
k=0

ηk

k!
∂k

∂yk
φ
(m)
u/l

∣∣∣∣
y=0

. (3.7)

It should be noted that the second summation is evaluated up to M − m in order to
maintain a consistent expansion up to O(εM).

Defining Ψ (x, y, t)≡ φl(x, y, t)−Rφu(x, y, t) and using (3.7) produces

Ψ I(x, t)=
M∑

m=1

Ψ (m)(x, η, t)=
M∑

m=1

M−m∑
k=0

ηk

k!
∂k

∂yk
Ψ (m)

∣∣∣∣
y=0

. (3.8)

If all terms of common order in (3.8) are collected, a set of Dirichlet boundary
conditions for each Ψ (m) (≡φ(m)l −Rφ(m)u ) on y= 0 can be obtained as

Ψ (1)(x, 0, t)= ψ I (3.9)

Ψ (m)(x, 0, t)=−
m−1∑
k=1

ηk

k!
∂k

∂yk
Ψ (m−k)

∣∣∣∣
y=0

, m= 2, 3, . . . ,M (3.10)

with Ψ I(x, t) being obtained from the evolution equation (3.5) at any time t.
Taking the difference between (2.5) and (2.6) gives a new form of the kinematic

interfacial boundary condition:

Φy = ηx[Φx + (Uu − Ul)], y= η (3.11)
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where Φ ≡ φu−φl. Applying the perturbation expansions for φu, φl and then expanding
them in Taylor series about y= 0 yields

Φ(x, η, t)=
M∑

m=1

Φ(m)(x, η, t)=
M∑

m=1

M−m∑
k=0

ηk

k!
∂k

∂yk
Φ(m)

∣∣∣∣
y=0

. (3.12)

Substituting this expansion into (3.11), a set of Neumann boundary conditions can be
obtained for each Φ(m)

y on y= 0:

Φ(1)
y (x, 0, t)= ηx(Uu − Ul) (3.13)

Φ(m)
y (x, 0, t)= ηx

m−1∑
k=1

η(k−1)

(k − 1)!
∂ (k−1)

∂y(k−1)
Φ(m−k)

x

∣∣∣∣
y=0

−
m−1∑
k=1

ηk

k!
∂ (k+1)

∂y(k+1)
Φ(m−k)

∣∣∣∣
y=0

(3.14)

for m= 2, 3, . . . ,M.
With these expansions, the nonlinear boundary-value problem for φu, φl is

decomposed into a sequence of linear boundary-value problems for the perturbed
potentials φ(m)u , φ(m)l , m = 1, 2, . . . ,M, which can be solved sequentially starting from
m= 1 up to an arbitrary order M.

3.1.3. Solution of φ(m)u and φ(m)l
Assuming a periodic boundary condition in the x direction and choosing a

normalization that makes the length of the computational domain L = 2π, the
boundary-value solution at each order m, which satisfies both Laplace’s equation and
the zero-flux condition at the walls, can be written as a truncated Fourier series of the
form

φ(m)u (x, y, t)=
N∑

n=−N

A(m)n (t)
cosh kn(y− hu)

cosh knhu
eiknx (3.15a)

φ
(m)
l (x, y, t)=

N∑
n=−N

B(m)n (t)
cosh kn(y+ hl)

cosh knhl
eiknx (3.15b)

where the wavenumber of the nth Fourier mode kn = n. From the Dirichlet boundary
condition for Ψ (m) and the Neumann boundary condition for Φ(m), the unknown
Fourier modal amplitudes (A(m)n and B(m)n ) are determined to be

A(m)n =−
Φ(m)

yn + Ψ (m)
n kn tanh knhl

kn(tanh knhu +R tanh knhl)
(3.16a)

B(m)n =
Ψ (m)

n kn tanh knhu −RΦ(m)
yn

kn(tanh knhu +R tanh knhl)
(3.16b)

for n = −N,−N + 1, . . . ,N but n 6= 0, where Ψ (m)
n and Φ(m)

yn are the Fourier modal
amplitudes of Ψ (m)(x, 0, t) and Φ(m)

y (x, 0, t), respectively. For the mode of n = 0, the

Dirichlet boundary condition requires that B(m)0 − RA(m)0 = Ψ (m)
0 while the Neumann

boundary condition is automatically satisfied. For the complete solution of the problem,
the specific values of A(m)0 and B(m)0 are not needed. For convenience in computation,
we let A(m)0 = 0 and B(m)0 = Ψ (m)

0 .
After the boundary-value solutions of φ(m)u and φ

(m)
l are determined up to order

M, the interface potentials φI
u and φI

l can be evaluated from (3.7). The interface
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velocities, ∂φu/∂y and ∂φl/∂y on y = η, can be evaluated similarly by making Taylor
series expansions about y= 0 and then substituting the solutions of φ(m)u and φ(m)l . The
evolution equations (3.3) (or (3.4)) and (3.5) can be integrated in time (with properly
defined initial conditions) by the use of any high-resolution integration method, such
as the fourth-order Runge–Kutta scheme.

One notes that owing to the use of perturbation expansion (3.6) and spectral
expansion (3.15), the boundary-value solution converges exponentially fast with
increasing the order M and the number of spectral modes N for moderately steep
interfaces. However, as the interface steepness increases, the convergence rate with M
becomes slower. For steep waves, the present method is invalid because (3.6) will no
longer converge with M. In this case, a fully nonlinear scheme needs to be applied.

This numerical method is designed for efficiently simulating the nonlinear evolution
of an interface composed of broadbanded wave components. It is also equally capable
of simulating the nonlinear evolution of a specific discrete set of wave modes. For
these problems, a simple bandpass filter is applied at each time step to remove all
non-relevant spectral components.

3.2. Validation of the numerical method

As a verification of the numerical method, a relatively simple case of a single triad
resonance is considered in which the three interacting waves are all linearly stable. For
this problem, a closed-form analytic solution is available. The evolution equations for
the amplitudes of the interacting waves take the form (Campbell 2009):

da1

dt
= iB23a2a∗3e−iσ t (3.17a)

da2

dt
= ib13a1a3eiσ t (3.17b)

da3

dt
= iB12a∗1a2e−iσ t (3.17c)

where the interaction coefficient b13 is

b13 = k2

4(RDu2Cu2 + Dl2Cl2)
[Dl2Cl2(Dl1Cl1 + Dl3Cl3)−RDu2Cu2(Du1Cu1 + Du3Cu3)

+R(D2
u1 + D2

u3)− (D2
l1 + D2

l3)− Dl1Dl3(1− Cl1Cl3)

+RDu1Du3(1− Cu1Cu3)] (3.18)

and B12 and B23 are given by (2.26) in § 2.4.5. For perfect resonance (σ = 0), (3.17)
can be solved analytically with the solution given in terms of Jacobian elliptic
functions (e.g. McGoldrick 1965). With initial amplitudes a1(0) = â1, a2(0) = 0 and
a3(0)= â3, as an example, the solution takes the form

a1 = â1dn(Ξ |m) (3.19a)

a2 = â3

√
b13

B12
sn(Ξ |m) (3.19b)

a3 = â3cn (Ξ |m) (3.19c)
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(× 103)

0.2

0.6

1.0

1.4

2 4 6 8 10 120 14

FIGURE 3. Time evolution of the amplitudes of primary waves in a resonant triad. The
plotted curves represent the direct numerical simulation result with M = 2 (◦) and the
theoretical prediction (——) by (3.19).

where dn, sn and cn are the Jacobian elliptic functions with arguments

Ξ = â1 (B13B12)
1/2 t, m= B23â2

3

B12â2
1

6 1. (3.20)

Figure 3 compares the numerical simulation result (with order M = 2) with the
analytic solution by (3.19) for the time variation of the amplitudes of interacting
waves that form a resonant triad. As a numerical example, we use R = 1.23 × 10−3,
W ∼= 845.5, H ≡ hu+hl

∼= 1.25, α ≡ hu/H = 0.5, Uu
∼= 7.94, Ul

∼= 1.1, â1
∼= 6.28×10−5,

â2 = 0, â3 = â1/2 and L = 2π. The interacting waves have wavenumbers k1 = 11,
k2 = 46 and k3 = 35. (With normalization length L ∼= 0.08 m and time T ∼= 0.09 s,
as an example, these dimensionless parameters correspond to an air–water flow in a
horizontal channel in a laboratory scale with H = 0.1 m, L = 0.5 m, Uu

∼= 7.0 m s−1,
Ul = 1.0 m s−1, γ = 0.0734 N m−1 and â1 = 10−6 m). Excellent agreements between
the numerical simulation result (of the leading order) and the analytic solution are
shown and thus validate the numerical method. The numerical simulation result with
M = 3 is graphically indistinguishable from that with M = 2. Thus, it is not shown
in the figure. Note that the fluid properties used in this example correspond to those
of air and water. They are chosen because these two fluids are commonly used in
laboratory experiments; however, the theory and direct computation are applicable to
general two-phase flows.

4. Results
In this section, we describe the characteristic features of triad resonant interfacial

wave interactions, which are influenced by the Kelvin–Helmholtz instability, in a
two-fluid channel flow. To assist in understanding the solution, the nonlinear self-
interaction effects on the Kelvin–Helmholtz instability are first investigated. Both
theoretical solutions, based on the analysis in § 2 and direct numerical simulation
results using the method outlined in § 3 are presented and discussed.
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(× 102)
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100
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FIGURE 4. Time evolution of the amplitudes of the primary wave (a2), second harmonic (a4)
and zeroth harmonic (a0). The plotted curves represent the theoretical solution (——) and
numerical simulations with order M = 2 (· · ·) and M = 3 (— ·—).

For numerical illustration, we use the same flow conditions as described in § 3.2
with the exception that Uu = Ul + Uc(1 + ∆), where Uc is given by (2.11) and ∆

is chosen to be 10−4. The initial condition for the primary waves is chosen to be
a2(0) = 1.25 × 10−5, a1(0) = 1/2a2(0), a3(0) = 0 and φu0(0) = φl0(0) = 0. The initial
amplitudes of the primary waves are intentionally chosen to be small so that the
associated velocity potentials at t = 0 are properly given by the linear solution. This
also allows for a longer period of nonlinear growth before the waves become too steep
for the perturbation-based analysis and simulation. The initial condition for the second
harmonic is given in terms of the primary wave by (2.21). This set of initial conditions
are sufficient for direct numerical simulation since the evolution equations ((3.3) or
(3.4)) and (3.5) only contain the first-order time derivatives. The theoretical model also
requires ȧ2(0) and φ̇l0(0) −Rφ̇u0(0) since the second-order time derivative is present
in (2.37a). We use ȧ2(0) = a2(0)

√
Ω based on the linear growth rate of k2 wave, and

let φ̇l0(0) −Rφ̇u0(0) be equal to the initial value obtained in the numerical simulation
(in order for direct comparison between the theoretical solution and the numerical
simulation to be consistent).

This set of flow properties and initial conditions are used for the results presented in
this section unless stated otherwise.

4.1. Self-interactions
By removing the term associated with the interaction of k1 and k3 waves in (2.37a),
we obtain an evolution equation for the amplitude a2 of the slightly unstable k2

wave including the effect of third-order self-interactions. The equation clearly indicates
that depending on the sign of the parameter ˆN , the inclusion of the third-order
self-interaction effect can accelerate or stabilize the growth of k2 wave as its amplitude
becomes larger due to the linear instability effect.

Figure 4 shows the time evolution of the amplitude a2 of an unstable wave with
wavenumber k2 = 25 for which ˆN ' 4 × 104. The results for the second and zeroth
harmonics are also shown. The evolution equation (cf. (2.37a)) clearly shows that
initially the growth of a2 is dominated by the linear instability. This growth of a2
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Resonant interactions of interfacial waves 633

continues according to linear theory until the third-order self-interaction term becomes
significant. Since ˆN > 0, the third-order self-interaction increases the growth rate of
a2 above that of the linear solution. This nonlinear effect is stronger as a2 becomes
larger in the evolution. As time increases, the growth rate continues to increase until
the amplitude of a2 rapidly becomes unbounded, as shown in figure 4. The second
harmonic is a locked wave that is stable in this case. Thus, it grows at twice the rate
of a2. For the zeroth harmonic, the leading-order theoretical solution is a near-zero
constant. The next order solution is not pursued in this study.

The direct numerical simulation results (M = 2, 3) compare excellently with the
theoretical prediction for both the primary wave and its second harmonic until the very
late stage of evolution when the solution quickly blows up. The numerical solution is
convergent with order M since the solution of M = 2 agrees well with that of M = 3
except at the late stage where the third-order effects become apparent. The numerical
simulation also provides a prediction for the zeroth harmonic that is generally about
one order smaller than the second harmonic except at the late stage of evolution
when the solution quickly becomes singular. One notes that as the wave amplitude
a2 becomes considerably large at late stage of evolution, higher-order effects are
important, which are not considered in the theoretical analysis. While the simulation
can include such higher-order effects, it will eventually fail to converge with M as
wave steepness continues to increase since the numerical simulation is based on a
perturbation approach.

A numerical search over a wide range of flow parameters suggests that the case of
ˆN < 0 occurs only when the second harmonic of the k2 wave is also linearly unstable.

The theoretical analysis in § 2 does not apply to this case since the analysis assumes a
linearly stable second harmonic. In this case, strong interactions between the primary
wave and its second harmonic, called an overtone resonance, can occur. This itself is
an interesting topic in nonlinear interfacial wave dynamics and is pursued in a separate
study.

4.2. Triad resonant interactions
We now turn to the study of triad resonant interaction that involves one unstable and
two stable interacting wave components. The discussion in § 2.5 indicates that different
characteristic solutions exist depending on the sign of the parameter B ≡ B12/B23.
Both cases are considered here.

4.2.1. B < 0
For this example the triad resonance consists of the interacting waves with

wavenumbers k1 = 24, k2 = 25 and k3 = 1 which produces ˆN ' 4 × 104 and
B ' −0.017. The k2 wave is slightly unstable. The resulting evolution of the
amplitudes of these waves, as well as the second harmonic of k2 wave and the
zeroth harmonic, is shown in figure 5.

The analytic solution demonstrates that the amplitudes of the k2 wave, its
second harmonic and the zeroth harmonic behave similarly to the case without the
involvement of the triad resonance interaction, discussed in § 4.1. The growth of a2

is dominated by the linear instability while the second harmonic, which is locked to
a2, grows with twice the linear growth rate of a2. As a2 becomes large, the positive
nonlinear self-interaction term causes the growth rate to continuously increase until
the solution becomes singular. This singularity causes the second harmonic to become
singular as well. The theoretical solution predicts that the zeroth harmonic maintains
a near-zero constant amplitude during the entire evolution. In this case, the amplitude
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FIGURE 5. Time evolution of the amplitudes of (a) primary waves (a2, a1 and a3) and
(b) second harmonic of k2 wave (a4) and zeroth harmonic (a0). The plotted curves represent
the theoretical solution (——) and numerical simulations with order M = 2 (· · ·) and M = 3
(— ·—).

of the k1 wave (ak1) remains almost unchanged. For the k3 wave, a3 grows rapidly
from its much smaller initial value by taking energy from the other two primary waves
through the triad resonance. During the later stage, as a3 becomes about two orders of
magnitude smaller than a1, the growth rate of a3 significantly decreases. Despite the
continuous growth, a3 remains about two orders of magnitude smaller than a1 until
the solution of the system becomes singular. During the entire evolution, the sum of
energy of the k1 and k3 wave remains unchanged as predicted by the analysis in § 2.5.1
(even though the k2 wave grows significantly).

The direct simulation results show good agreements with the analytic solution
except at the very late stage of evolution when the higher-order effects become
important and the unstable k2 wave is developed significantly. At this stage of
evolution, the numerical solution clearly indicates that the growth of a3 is obtained
due to the decrease of a1 as predicted by the theory with B < 0 in § 2.5.1.

One notes that in this case, the growth of the k3 wave is resulted with the energy
transfer from the stable k1 wave, but not from the unstable k2 wave. Thus, this type
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FIGURE 6. Time evolution of the amplitudes of (a) primary waves (a2, a1 and a3) and
(b) second harmonic of k2 wave (a4) and zeroth harmonic (a0). The plotted curves represent
the theoretical solution (——) and numerical simulations with order M = 2 (· · ·) and M = 3
(— ·—).

of triad resonance (with B < 0) does not provide a significant energy build up for
long waves.

4.2.2. B > 0
The analysis in § 2.5.1 indicates that for B > 0 it is possible for a1 and a3 to grow

without bound. Figure 6 shows such a sample solution. This solution is obtained with
the same air–water flow as before, but with α = 0.05, k1 = 11, k2 = 12, and k3 = 1,
which produces ˆN ' 1.414× 105 and B ' 0.053. At the initial stage of evolution, as
the analysis in § 2.5.2 shows, a2 is dominated by the linear instability effect, and the
initial growth rate of a3 is bi-exponential as shown in figure 7. During the later stage
of the evolution, the growth of a2 is accelerated by the third-order self-interactions. As
a result, both a1 and a3 obtain a growth rate even faster than bi-exponential as shown
in figure 8. The interacting wave system then quickly blows up. The prediction by
direct numerical simulations compares very well with the theoretical solution until the
late stage of evolution when the interacting waves grow rapidly and become singular.

For the second harmonic of the k2 wave, the analytical solution also agrees well
with the numerical solution. Both solutions predict that the second harmonic eventually
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FIGURE 7. Close-up of initial growth of the k3 wave mode in figure 6(a). The plotted curves
represent the theoretical solution (——) and the approximate solution (2.45) (- - -).
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FIGURE 8. Close-up of the later bi-exponential growth of the k3 wave mode in figure 6(a).
The plotted curves represent the theoretical solution (——) and numerical simulations with
order M = 2 (· · ·) and M = 3 (— ·—).

becomes unbounded like the primary waves. For the zeroth harmonic, the analytic
solution predicts a near-zero constant amplitude while the numerical solution shows
that the amplitude of the zeroth harmonic increases together with the other wave
modes and also becomes unbounded eventually.

We remark that in this case, stable waves are developed significantly by the energy
transfer from the unstable wave through triad resonant wave interactions. This type of
triad resonance (with B > 0) provides an effective mechanism for transferring energy
from unstable short waves to stable long waves, leading to a fast development of
large-amplitude long waves in a two-fluid channel flow.
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4.3. Multiple resonant interactions
Realistic two-fluid flow problems involve a broadbanded spectrum of interfacial
waves that can form multiple coupled triad resonant (and near-resonant) interactions.
Moreover, as the interface steepens, higher-order resonant interactions may also play a
role. Large-amplitude long waves can be developed due to the combined effects of the
linear instability and multiple resonant interactions. The extension of the theoretical
analysis in § 2 to include multiple coupled resonant interactions is in principle possible,
but not straightforward. The direct numerical simulation developed in § 3 is more
appropriate for these practical cases.

As a numerical example, we consider the growth and time evolution of a large-
amplitude long wave that is developed from a smooth interface in a two-phase channel
flow. The spectrum shall be broadbanded and contain multiple resonant triads. This
problem will approximate the spacial evolution of the first slug developed near the
inlet of the two-phase channel flow. While there is a rich collection of laboratory
experiments in the literature, the vast majority of these tests are carried out using
cylindrical pipe geometries (e.g. Fan et al. 1993). Ideally, comparisons between
numerical simulations and measurements should be made with identical geometry.
However, to obtain an initial estimate, the numerical simulations presented here are
performed using the same flow properties as those in pipe flow experiments.

We choose to compare the direct simulations against the results of Ujang (2003)
and Ujang et al. (2006) who carried out experiments of air–water flows through
a horizontal 78 mm pipe with different gas/liquid velocities and liquid holdups.
We specifically focus on the case of figure 5(c) of Ujang et al. (2006) or
figure 5.3(a) of Ujang (2003) for which the superficial gas and liquid velocities
USG ≡ UuAu/Apipe = 4.64 m s−1 and USL ≡ UlAl/Apipe = 0.61 m s−1 with Apipe, Au and
Al being the cross-sectional area of the pipe and the areas of the pipe occupied by
the upper and lower fluids, respectively. The gas fraction for the pipe is w 0.4 and
the surface tension coefficient is 0.037 N m−1. In the simulation, the channel depth is
set to be equal to the pipe diameter (H = 78 mm) and the void fraction is fixed as
α = 0.4. The uniform gas and liquid velocities are Uu = USGApipe/AG = 12.53 m s−1

and Ul = USLApipe/AL = 0.97 m s−1.
In the numerical computation, we use L = 0.318 m and T = 0.180 s for

length and time normalization. The length of the (periodic) computational domain
corresponds to a laboratory channel length of 2.0 m. The density ratio is R =
1.18× 10−3 and the Weber number is W = 2.67× 104. The simulations are performed
with N = 32 and different orders of nonlinearity (M = 1, 2 and 3). The initial
disturbance on the interface is given by the white noise with a near machine-zero
amplitude of 10−15. We note that in reality, the growth of very short waves are
limited by viscous damping and small-scale wave breaking which are not considered
in the simulation based on the potential flow formulation. Since our purpose is to
demonstrate the growth of long waves through multiple/coupled resonant interactions
with short waves, a spectral filtering is applied in the nonlinear simulations (with
M = 2 and 3) to limit the maximum steepness of each of the unstable short-wave
component (with k > 17) at 0.1 sech(0.05k). This approach was developed by Longuet-
Higgins & Cokelet (1976) and Dommermuth & Yue (1987) in the simulation of
nonlinear breaking waves in the ocean.

Figure 9(a,c,e) show the amplitude spectra of the interface at t = 0.844, 1.410 and
1.834 s during the evolution of the two-phase channel flow. The simulation results
obtained with M = 1, 2 and 3 are compared. The corresponding interfacial shape is
shown in figure 9(b,d,f ). The results in these figures indicate that the same energy
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FIGURE 9. The nonlinear simulation of the time evolution of broadbanded interfacial waves
in a air–water channel flow. (a,c,e) The distribution of spectral amplitude (normalized by L )
of interfacial wave components with M = 1 (- - -), M = 2 (—–), and M = 3 (· · ·). (b,d,f ) The
corresponding interface shape, (η + hl)/H.

transfer mechanism described in § 4.2 is observed in the presence of multiple resonant
and near-resonant interactions. The linearly unstable spectral modes (with k > 17)
initially grow due to the Kelvin–Helmholtz mechanism as shown in figure 9(a,b). As
their amplitudes increase and the nonlinearity becomes stronger, some of the energy
supplied by the linear instability is transferred to the long-wave components through
multiple resonant interactions, as evidenced by the presence of two apparent peaks
in the spectrum shown in figure 9(c). As this nonlinear process continues, the wave
spectrum of the interface becomes broadbanded, resulting in the formation of a large-
amplitude wave whose crest eventually touches the top boundary of the channel, as
depicted in figure 9(e,f ).
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For this case, the interface bridges the channel diameter after t ∼ 1.83 s of
evolution. The width of the large wave disturbance is ∼1.8H. By multiplying this time
by the group velocity of the wave with wavelength of ∼1.8H, where Cg

∼= 1.0 m s−1,
we obtain the slug-initiation distance of approximately 1.85 m from the inlet (Gaster
1962). The difference in the nonlinear solutions with M = 2 and 3 are small until
times just prior to the instant when the long-wave crest touches the top boundary. The
simulation with M = 1 bridges the channel at much earlier time than the M = 2 and 3
cases, thus it is not shown in figure 9(c,f ). This result compares qualitatively well with
the experimental observation of Ujang (2003) who reported that first slugging occurred
in the region of 1.46–2.86 m from the inlet. Even though this comparison is only a
first-order estimate, this method appears to consistently reproduce results which have
comparable length and times scales to the cases in figure 5 of Ujang (2003).

5. Conclusions

This paper has considered, both theoretically and computationally, the triad resonant
interactions of interfacial waves, which are influenced by the Kelvin–Helmholtz
interfacial instability, in an inviscid two-fluid incompressible flow through a horizontal
channel. The focus is on the mechanism of energy transfer from unstable short
waves to stable long waves through nonlinear resonant wave interactions. Based on
a multiple-scale analysis, in the context of a potential flow formulation, nonlinear
interaction equations are derived which govern the amplitude evolution of the
interacting waves in a resonant triad, including the effects of interfacial instability.
An effective numerical method for direct simulations of nonlinear interfacial wave
interactions is also developed based on a high-order pseudo-spectral approach. It
is used for verification of the theoretical analysis and the examination of practical
applications involving multiple resonances with a broadbanded spectrum of waves.
Cross-validations between the theoretical solutions and direct numerical simulations
are obtained for various characteristic flows considered.

It is found that depending on the flow conditions, there exists an extremely efficient
energy transfer from the base flow to the stable long wave due to the coupled effects
of nonlinear wave resonance and interfacial instability. The growth rate of the long
wave can reach up to bi-exponential (or faster). Moreover, in this case, the (linearly)
unstable wave can grow unboundedly even when the nonlinear self-interaction effects
are accounted for, as do the stable waves in the resonant triad.

This work shows that the nonlinear coupling of an interfacial instability and
nonlinear resonant wave interactions can cause a rapid development of long waves
(which are themselves linearly stable). Such a behaviour of long-wave growth bears
similarities to that of slug formation in stratified channel/pipe flows, as observed in
experiments. This suggests that the nonlinear mechanism found in this study may
play an important role in slug formation and may improve slug-transition criteria. As
a demonstration, we performed direct numerical simulations of nonlinear two-phase
channel flow evolution involving multiple resonant and near-resonant wave interactions.
The predicted slug-initiation length compares qualitatively well with the laboratory
measurement. The application of the present work to the general multi-phase flow
problem for development of improved slug flow transition criteria, prediction of slug
frequency/length and direct comparisons with experimental measurements is the focus
of ongoing research.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

59
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.598


640 B. K. Campbell and Y. Liu

Acknowledgements
This work was financially supported by Chevron Corporation. Their sponsorship is

greatly appreciated. We would also like to thank Dr R. Roberts and Dr K. Hendrickson
for their thoughtful discussions and feedback on the subject.

Appendix. Perturbation equations
Based on the definitions of the two time scales, the differential time operator in

(2.5)–(2.7), ∂/∂t, is replaced by ∂/∂t +∆1/2∂/∂τ , which leads to

∇2φu = 0 (A 1a)

∇2φl = 0 (A 1b)
φu,y = 0 (A 1c)

φl,y = 0 (A 1d)

η,t +∆1/2η,τ + [Ul + Uc(1+∆)+ φu,x]η,x − φu,y = 0 (A 1e)

η,t +∆1/2η,τ + (Ul + φl,x)η,x − φl,y = 0 (A 1f )

R

{
φu,t +∆1/2φu,τ + 1

2
φ2

u,x + [Ul + Uc(1+∆)]φu,x + 1
2
φ2

u,y + η
}

−
(
φl,t +∆1/2φl,τ + 1

2
φ2

u,x + Ulφl,x + 1
2
φ2

l,y + η
)
+ η,xx (1+ η2

x)
−3/2

W
= 0. (A 1g)

Expanding (A 1e), (A 1f ) and (A 1g) in Taylor series about the undisturbed interface
position and applying (2.14) gives rise to a sequence of governing equations for φ(m)u ,
φ
(m)
l , and η(m), m= 1, . . . , 5:

∇2φ(m)u = 0 (A 2a)

∇2φ
(m)
l = 0 (A 2b)

φ(m)u,y = 0 (A 2c)

φ
(m)
l,y = 0 (A 2d)

η(m),t + (Ul + Uc)η
(m)
,x − φ(m)u,y = f (m)1 (A 2e)

η(m),t + Ulη
(m)
,x − φ(m)l,y = f (m)2 (A 2f )

R[φ(m)u,t + (Ul + Uc)φ
(m)
u,x + η(m)] − [φ(m)l,t + Ulφ

(m)
l,x + η(m)] +

η(m),xx

W
= f (m)3 . (A 2g)

where f (1)j = 0 and f (2)j = 0, j= 1, 2, 3 and f (m)j for m= 3, 4 and 5 are functions of the
lower-order solutions.

The O(∆) problem:

f (3)1 =−η(1),τ − φ(1)u,xη
(1)
,x + η(1)φ(1)u,yy (A 3a)

f (3)2 =−η(1),τ − φ(1)l,x η
(1)
,x + η(1)φ(1)l,yy (A 3b)

f (3)3 = [η(1)φ(1)l,ty + φ(1)l,τ + 1
2 (φ

(1)
l,x )

2+Ulη
(1)φ

(1)
l,xy + 1

2 (φ
(1)
l,y )

2]
−R[η(1)φ(1)u,ty + φ(1)u,τ + 1

2 (φ
(1)
u,x)

2+(Ul + Uc)η
(1)φ(1)u,xy + 1

2 (φ
(1)
u,y)

2]. (A 3c)
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The O(∆5/4) problem:

f (4)1 =−η(2),τ − η(1),x φ(2)u,x − η(2),x φ(1)u,x + η(1)φ(2)u,yy + η(2)φ(1)u,yy (A 4a)

f (4)2 =−η(2),τ − η(1),x φ(2)l,x − η(2),x φ(1)l,x + η(1)φ(2)l,yy + η(2)φ(1)l,yy (A 4b)

f (4)3 = [η(1)φ(2)l,ty + η(2)φ(1)l,ty + φ(2)l,τ + φ(1)l,x φ
(2)
l,x + Ul(η

(1)φ
(2)
l,xy + η(2)φ(1)l,xy)

+φ(1)l,y φ
(2)
l,y ] −R[η(1)φ(2)u,ty + η(2)φ(1)u,ty + φ(2)u,τ + φ(1)u,xφ

(2)
u,x

+ (Ul + Uc)(η
(1)φ(2)u,xy + η(2)φ(1)u,xy)+ φ(1)u,yφ

(2)
u,y]. (A 4c)

The O(∆3/2) problem:

f (5)1 =−η(3),τ − Ucη
(1)
,x − η(1),x φ(3)u,x − η(3),x φ(1)u,x − η(1)φ(1)u,xyη

(1)
,x − η(2),x φ(2)u,x

+ η(1)φ(3)u,yy + η(3)φ(1)u,yy + η(2)φ(2)u,yy +
1
2
(η(1))

2
φ(1)u,yyy (A 5a)

f (5)2 =−η(3),τ − η(1),x φ(3)l,x − η(3),x φ(1)l,x − η(1)φ(1)l,xyη
(1)
,x − η(2),x φ(2)l,x + η(1)φ(3)l,yy

+ η(3)φ(1)l,yy + η(2)φ(2)l,yy +
1
2
(η(1))

2
φ
(1)
l,yyy (A 5b)

f (5)3 =
[
η(1)φ

(3)
l,ty + η(3)φ(1)l,ty + η(2)φ(2)l,ty +

1
2
(η(1))

2
φ
(1)
l,tyy + φ(3)l,τ + φ(1)l,x φ

(3)
l,x

+ η(1)φ(1)l,x φ
(1)
l,xy +

1
2
(φ

(2)
l,x )

2+Ul

(
η(1)φ

(3)
l,xy + η(2)φ(2)l,xy + η(3)φ(1)l,xy +

1
2
(η(1))

2
φ
(1)
l,xyy

)
+φ(1)l,y φ

(3)
l,y + η(1)φ(1)l,y φ

(1)
l,yy +

1
2
(φ

(2)
l,y )

2
]
−R

[
η(1)φ(3)u,ty + η(3)φ(1)u,ty + η(2)φ(2)u,ty

+ 1
2
(η(1))

2
φ(1)u,tyy + φ(3)u,τ + φ(1)u,xφ

(3)
u,x + η(1)φ(1)u,xφ

(1)
u,xy +

1
2
(φ(2)u,x)

2

+Ucφ
(1)
u,x(Ul + Uc)(η

(1)φ(3)u,xy + η(2)φ(2)u,xy + η(3)φ(1)u,xy +
1
2
(η(1))

2
φ(1)u,xyy)+ φ(1)u,yφ

(3)
u,y

+ η(1)φ(1)u,yφ
(1)
u,yy +

1
2
(φ(2)u,y)

2
]
+ 3

2

(η(1),x )
2
η(1),xx

W
. (A 5c)
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