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It has long been known from linear stability theory that heating a surface immersed in
water flow tends to stabilize the boundary layer on the surface, suggesting that there
may be a corresponding delay in transition. Experiments confirm the suggestion, but
based on intermittency data on a heated body of revolution (Lauchle & Gurney 1984)
it has been inferred that incremental changes in transition Reynolds number diminish
as the overheat increases. The parameter chosen to locate transition in the analysis
leading to this conclusion corresponds to the point where the intermittency is 0.5.
However, intermittency distributions in the transition zone on an axisymmetric body
may contain what have been called ‘subtransitions’ (Narasimha 1984). Taking this
possibility into account, we formulate here a model for the variation of intermittency
with flow Reynolds number at a fixed station on the body, as in the experiments. The
rate at which turbulent spots merge with each other is shown to determine the location
of subtransition. The transition onset Reynolds number (corresponding to the location
where intermittency begins to depart from zero), inferred from the data on the basis
of this model, shows a continuing increase with the temperature overheat, a trend in
closer agreement with stability theory; but the axisymmetric body geometry results
in a very short transition zone, countering in part the benefits of transition delay.

1. Introduction
It has long been realized that surface heating and cooling can exert a significant

influence on the stability characteristics of the boundary layer, and hence also on
transition location. The sign of the effect depends on the nature of the variation of
viscosity with temperature. Thus heating destabilizes the boundary layer in air and
stabilizes it in water. Since the viscosity of water is lower when water is hotter the
boundary layer has a fuller velocity profile when the surface is heated, which leads
to greater stability in a heated water boundary layer. In the case of air, viscosity
increases with temperature and heating the wall results in destabilizing the boundary
layer. The effect in air was demonstrated in the early experiments of Liepmann & Fila
(1947) on a flat plate. The effects are more pronounced in water due to good thermal
coupling (higher Prandtl number, ' 7) and the stronger dependence of viscosity on
temperature. The stability calculations of Wazzan, Okamura & Smith (1968) showed
that wall heating in water boundary layers could delay transition appreciably. The
strong dependence of stability on temperature-dependent variations in viscosity is
also evident in the work of Wall & Wilson (1997). The experiments of Barker & Gile
(1981), in the entry region of a pipe, confirmed that transition could be delayed but
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only up to overheats of 8◦C: beyond that there was no effect, in contradiction with the
calculations of Wazzan et al. Lauchle & Gurney (1984, referred to as LG hereinafter)
reported experiments on a heated axisymmetric body in a high-speed water tunnel,
and inferred that transition Reynolds numbers had gone up from 4.5×106 to 3.6×107

for an average overheat of 25◦C, but there appeared to be a tendency to saturate at
large overheats, again contrary to the indications of stability theory.

The use of heating to delay transition can be an attractive option on high-speed
under-water vehicles, as waste heat from the propulsion unit that powers the vehicle
is usually available at no extra cost. It therefore seems worthwhile to investigate the
phenomenon from different points of view.

The LG experiments are particularly interesting as they present intermittency
measurements; however, the streamwise distribution was not measured, but only the
value of the intermittency γ at a fixed station as the free-stream velocity was varied.
The condition at which γ = 0.5 was taken as an indication of occurrence of transition
at the station.

In their analysis of the burst-rate results LG used the model for the transition zone
proposed by Dhawan & Narasimha (1958) for flow past a flat plate. However, the
transition zone on axisymmetric bodies differs in some important respects from that
on two-dimensional bodies. A major reason for this is that, as Rao (1974) pointed out,
a turbulent spot will eventually wrap around the axisymmetric body (unless its radius
increases too rapidly downstream). This leads to certain peculiarities in the transition
zone that have been analysed by Narasimha (1984). Making a specific hypothesis
about the shape of the spot as it wraps into a sleeve, this analysis introduced the
concept of a ‘subtransition’ in the transition zone: the intermittency distribution with
a subtransition can be very different from that in flat plate flow. In the present work,
we show that the location of subtransition can be determined from the transition
Reynolds number and the rate of breakdown at the onset of transition.

Our chief objective in this paper is to present a re-analysis of the LG data based
on a more appropriate model for intermittency variation with flow Reynolds number
at a fixed station on an axisymmetric body, and thence to derive conclusions on the
effect of heating on transition delay in water boundary layers. Before we do this, it is
necessary to review briefly the basis for the present model for the transition zone in
the heated body experiments.

2. The transition zone: a brief review
The transition zone in a boundary layer may be characterized by the intermittency

γ, defined as the fraction of time that the flow is turbulent. The intermittency is zero
in laminar flow, increases with downstream distance in the transition zone, and tends
asymptotically to unity in the fully turbulent zone. This variation is typically due to
the formation of turbulent spots (Emmons 1951) and their subsequent growth as they
move downstream until they cover the entire boundary layer. In a plane parallel to the
surface, spots are typically heart-shaped. Unless there are rapid changes in the external
pressure gradient, it is well-established (see e.g. Seifert & Wygnanski 1995) that the
spot propagates linearly and that the angle subtended by it at its origin is constant.
The head and base of the spot move at constant fractions of the free-stream velocity,
so that its length as well as its width at the base grow linearly in time. Narasimha
(1957) and Dhawan & Narasimha (1958) showed that the intermittency distribution
in two-dimensional flow can be explained by the hypothesis of concentrated break-
down, according to which all turbulent spots originate at nearly the same streamwise
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Figure 1. Propagation of turbulent spots on an axisymmetric body.

location. The distribution so calculated has received wide experimental support (see
e.g. Gostelow & Blunden 1988); there is some indication that at the foot of the inter-
mittency curve, i.e. at very low values of γ, there are slight departures (see e.g. Johnson
1998), but over the bulk of the transition zone the results are entirely adequate.

Comparatively little work, however, has been done on transition zone modelling
in axisymmetric boundary layers, in spite of the many possible applications such as
in drag estimates for missiles, torpedoes and other underwater bodies. In flow past a
flat plate the propagation of the spot is linear, but spot growth characteristics in the
axisymmetric case are somewhat different. Consider the flow past an axisymmetric
body consisting of a cylinder with a smooth blunt nose whose axis is aligned with
the flow (Fig. 1). As pointed out by Rao (1974), a spot that forms at any point on
the surface in this flow grows laterally as it moves downstream until it wraps itself
around the body. Beyond this point, the spot becomes a ‘sleeve’, and can grow only
in the streamwise direction. Now the primary cause for the growth of the spot is
thought to be the destabilization of the laminar boundary layer close to the edges
of the spot (Wygnanski, Haritonidis & Kaplan 1979; Glezer, Katz & Wygnanski
1989). For an axisymmetric body, further destabilization is of course not possible in
the lateral direction downstream of the location where the spot wraps itself around
the body. In the axial direction, however, the spot can continue to destabilize its
neighbourhood, and grow as before. If the spot is fully developed and the pressure
gradients are not strong, then the propagation velocity of the spot shows no strong
variation downstream.

Based on these considerations, Narasimha (1984) proposed the specific hypothesis
that the spot, when it forms a sleeve around the body, is best seen as consisting of
two parts. The first is a head that extends from the tip of the spot to the first point of
contact of the ‘wings’ as the spot wraps around the body; this part retains its shape
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and size downstream, and so does not grow. The second is a ‘base’ extending from the
point of contact mentioned above to the trailing edge of the spot; the length of this
base grows linearly in time. This idea is illustrated in figure 1. Based on this hypothesis
he showed that near the upstream end of the transition zone (hereafter referred to
as the U zone), where the spot width is much smaller than the circumference of
the body, the intermittency follows a (two-dimensional) law exactly like in flow
past a flat plate, and that, downstream of where the spot wraps around (in the D
region), the intermittency distribution follows a one-dimensional law. He saw this as
a ‘subtransition’ within the transition zone, as the intermittency distribution changes
rapidly from a two- to a one-dimensional law. Evidence for such subtransitions was
presented through an analysis of the experimental data of Rao (1974), who measured
the streamwise variation of intermittency on a circular cylinder with axis aligned to
the flow. It is relevant to emphasize here that the turbulence wrapping itself around
the body may follow one of two scenarios: it may be either a single spot (if the
spot formation rate at onset is low), or a combination of merged spots or a ‘spot
cluster’ as we shall call it (if the rate is high); in either case there results a continuous
patch of turbulence all around the body. Once the circumference is entirely covered
by turbulence, the patch of turbulence can grow only in the streamwise coordinate,
and subtransition may be said to have taken place.

LG have reported extensive data on intermittency on an axisymmetric body, with
and without surface heating. Their data however refer to the variation of intermittency
at a fixed station on the body as the free-stream velocity is varied. To interpret
these data, we need to supplement the available theory for streamwise intermittency
distributions to take into account the changes in onset location and transition zone
length that will inevitably accompany changes in free-stream velocity. Fortunately
there is in fact now a body of results (Narasimha 1985) that enable us to do this, as
we shall show here. Once this is done, the theory is found to predict very well the nature
of the observed intermittency distributions in the LG experiments. It is demonstrated
that in all the experimental runs reported there is strong evidence for the existence of
a two-dimensional to one-dimensional subtransition in the transition zone.

The basic transition zone model is described in § 3. The LG experiments are
described in § 4. In the same section, the transition zone model is supplemented to
apply to an experiment where the measuring location is fixed and data are obtained at
different free-stream velocities. The model is compared to the LG experiments in § 5,
where the data of Rao (1974) are also briefly discussed. Apart from direct comparisons
between observations and the model, some information on spot propagation speeds
and angles, the expected location of subtransition, as well as the implied effect of
heating on these parameters, can be gleaned from the analysis. These results are
presented in § 6 along with some inferences on the effect of heating on the transition
characteristics of the flow.

3. The subtransition model
We first review here the derivation of the expression for intermittency in axisym-

metric flow.

3.1. Intermittency in the upstream region

In the upstream or U region, transition proceeds as in two-dimensional flow, as
shown in the upstream part of figure 1. The base of the spot subtends an angle 2αs
at its origin, where the subscript s stands for a single spot. In the absence of large
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Figure 2. Dependence area Adep at xt within which a spot must originate in order to cause a
two-dimensional spot of turbulence at (x, z, t).

pressure gradients or of strong lateral convergence/divergence of the streamlines, αs
remains constant, which means that the lateral dimension of the spot grows linearly
with its distance from the point of its origin. At high rates of spot formation, several
spots merge to form a spot cluster. At a certain streamwise distance x = x∗, the
rear of a single spot (for low rates of spot formation), or the width of the spot
cluster, becomes equal to the circumference of the body. Thus, if xt is the streamwise
location of transition onset (where the spots are formed), the U region is defined by
xt 6 x 6 x∗. We denote the coordinate along the body circumference as z and time
as t, and define a function I(x, z, t) which is 1 if the flow is turbulent at (x, z, t) and
0 otherwise. According to the hypothesis of concentrated breakdown, all turbulent
spots originate close to a particular streamwise location xt. They may be assumed
to appear randomly along the circumference and in time, in accordance with a
Poisson distribution (Narasimha 1985). With this hypothesis, the dependence volume
described by Emmons (1951) shrinks to a ‘dependence area’ Adep(zo, to) at xt (where
the subscript o stands for spot origin). This is an area swept out in the plane of
time and spanwise coordinate, with a shape similar to that of the spot, possessing the
property that I(x, z, t) is unaffected by spots forming outside the area, and I(x, z, t) = 1
if at least one spot originates within it. A typical dependence area is shown in figure
2. For the purpose of illustration, the shape of the spot in the U regime has been
approximated by an isosceles triangle in this diagram (no such specific assumption on
spot shape is necessary for the model). A little consideration reveals that the base of
the triangle is the same as the lateral spread of a turbulent spot at x, while the extent
in the time axis is equal to the difference tr− tf in the time of arrival at x of the front
and the rear of a spot (tf and tr respectively). It has been widely observed that, in the
absence of strong pressure gradients and at sufficiently high Reynolds numbers, the
front and the rear of a spot travel at different (constant) fractions of the free-stream
velocity, U. We may therefore write the proportionality relation

tr − tf ∝ x− xt
U

. (3.1)
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For a given monitoring location (x, z), the residence time of a spot is highest for a
spot originating at zo = z, and decreases as zo moves away from z on either side, in
a roughly linear fashion if the spot shape is taken as a triangle (making Adep also
roughly triangular).

The intermittency γ is given by the joint probability of one or more spots originating
in any of the elements of area ∆z∆t within Adep shown in figure 2. This is the
complement of the probability that no spot occurs within Adep, which itself is the
product over all area elements of the probability that no spot originates in each
element. Let n2 be the mean number of spots forming per unit time within a unit
distance along the circumference at xt. Then γ may be expressed in a form typical of
a Poisson process as

γ = 1− exp

[−n2σ2(x− xt)2

U

]
, xt 6 x 6 x

∗, (3.2)

where σ2 is a non-dimensional spot propagation parameter. This is the two-
dimensional law for intermittency distribution as a function of downstream distance,
as derived by Narasimha (1957).

3.2. Intermittency in the downstream region

At x = x∗, the corners of the base of the spot or spot cluster (as the case may be)
touch each other for the first time, so there can be no further lateral growth. As the
associated patch of turbulence continues to grow in the axial or streamwise direction,
transition enters the downstream (D) stage. In the case of a single spot wrapping
around, the patch of turbulence now takes the shape of a tube with a chamfered
(oblique) cut at the leading end. If several spots merge before the cluster wraps itself
around, the ‘base’ of the spot is a sleeve as before (possibly with a rather ragged
trailing edge), while the ‘head’ is irregular in shape, as shown in figure 1.

Narasimha (1984) showed that the intermittency in the D zone follows a one-
dimensional law; his argument is briefly as follows. Downstream of x∗, the spot may be
taken to consist of two distinct parts: a ‘head’ whose shape may be a rough triangle or
a possibly irregular union of triangles (depending on the spot merging scenario), and
a ‘base’ that keeps growing (in one dimension) at the rear. The change over from two-
dimensional to one-dimensional spot growth marks the subtransition within the tran-
sition zone. If γ∗ is the intermittency at the location x∗ where the spot just wraps itself
around the body, the intermittency in the D stage may be expected to have the form

γ = γ∗ + (1− γ∗)γ1, x > x∗, (3.3)

where the factor γ1 varies from zero at x = x∗ to unity at x� x∗; γ∗ is the (constant)
probability that the flow is turbulent at x due to the presence of the head of the spot
cluster, and the term (1− γ∗)γ1 is the contribution from the base.

To estimate γ1, we note that the geometry of the dependence area at x for the base
of the spot is a ‘tube’ Tdep(to), constructed by evolving over a certain period of time a
ring corresponding to the circumference of the body at xt (Fig. 3). As in the case of
Adep in two-dimensional flow, the axial extent of Tdep is given by the difference in the
times of arrival at x of the front and the rear of the base of the spot, given by tf and
tr respectively. Again, γ1 is given by the joint probability of a spot occurring in any
of the elements of area ∆z∆t shown in figure 3, and leads (by the same arguments as
before) to the expression

γ1 = 1− exp
[−n2(2πat)(tr − tf)] , (3.4)
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Figure 3. Dependence tube Tdep at xt within which a spot must originate in order to cause the
passage of a sleeve of turbulence at (x, t).

where at is the body radius at the onset of transition. In the D regime, the one-
dimensional breakdown rate n1 (i.e. the number of spots formed per unit time
anywhere on the circle at xt) is related to n2 by

n1 = 2πatn2. (3.5)

The propagation velocity of the turbulent spot in one-dimensional growth is found
(Rao 1974) to be similar to that in the two-dimensional regime, i.e. at sufficiently
high Reynolds numbers the velocities of the front and the rear of the head are
constant fractions of the free-stream velocity. Since the sleeve begins to form at x∗,
the difference in time of arrival of the front and rear (on average) of the base is

tr − tf ∝ x− x∗
U

. (3.6)

Using (3.4), (3.5) and (3.6), equation (3.3) may now be written as

γ = 1− (1− γ∗) exp

[−n1σ1(x− x∗)
U

]
, x > x∗, (3.7)

which is the one-dimensional law for the D regime proposed by Narasimha (1984).
The non-dimensional spot propagation parameter σ1 is similar to σ2 in the U region,
the two being related as follows.

Let kfU and krU be the propagation velocities of the front and the rear of the spot
respectively. Equation (3.2) has been obtained by defining

σ2 = G tan αs

[
1

kr2
− 1

kf2

]
, (3.8)

where G is a proportionality factor which depends on the spot geometry (for an
analysis of how σ2 and hence G can be obtained from experimental data on spots, see
Narasimha 1985). In general, both σ2 and G vary with height in the boundary layer.
If we select a reference height (e.g. the one at which the spot is largest) so that all
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Figure 4. Schematic of variation with Reynolds number of the velocities of the front (kf) and the
base (kr) of a turbulent spot.

parameters on the right of (3.8) correspond to this height, then the factor G would be
1 if the spot were perfectly triangular. In the one-dimensional regime, it is seen from
equations (3.6) and (3.7) that

σ1 ≡ 1

kr1
− 1

kf1

. (3.9)

It is observed in the experiments of Rao (1974) that the factors kf and kr vary with
Reynolds number as shown schematically in figure 4. The spot therefore grows more
slowly at lower Reynolds numbers. At sufficiently high Reynolds numbers, kf1 and
kr1 tend to become asymptotically constant, reaching values of about 0.9 and 0.5
respectively, the same as in two-dimensional flow. If, therefore, an axisymmetric flow
experiment were to be conducted entirely in the asymptotic Reynolds number range,
we could take kf1 = kf2 and kr1 = kr2.

A subtransition from two-dimensional to one-dimensional spot propagation on an
infinitely long body may definitely be expected to occur if the circumference of the
body does not increase at a rate greater than the lateral spread of one turbulent spot
(Narasimha 1984). The streamwise growth of the base 2b of the spot is given by

db

dx
= tan αs. (3.10)

A sufficient condition for subtransition to occur and for the one-dimensional regime
to be maintained downstream is that this lateral growth must be greater than or equal
to the growth in the body circumference 2πa, i.e.

π
da

dx
6 tan αs. (3.11)

It is shown in Appendix A that the radius of the body used in the LG experiment
is slender enough for subtransition to be expected to occur on the surface, and that
the streamwise increase in the radius is slow enough to be able to support a region
of one-dimensional spot growth downstream of the location of subtransition. Note
that relation (3.11) is not a necessary condition for subtransition to occur. If several
spots merge with each other and the resulting cluster can wrap itself around the
body, subtransition to one-dimensional spot growth may occur even when (3.11) is
not satisfied, as discussed in § 6. It is shown in that section that the expected location
of subtransition may be determined from the transition onset Reynolds number and
the breakdown rate.
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4. Intermittency variation with Reynolds number at fixed station
LG performed transition experiments in a water tunnel on a heated axisymmetric

body whose axis is aligned with the flow direction. The body shape is described mathe-
matically by a modified ellipse function defined in detail by LG. The pressure gradient
over the body is mildly favourable. The pressure gradient parameter β, given by

β =
2m

m+ 1 + ma
(4.1)

where

m =
x

ue

due
dx

and ma =
2x

a

da

dx
, (4.2)

and ue is the velocity at the edge of the boundary layer, has been shown by LG to
have a practically constant value around 0.04 except at the nose. The intensity of free-
stream turbulence is constant at around 0.1% of the free-stream velocity throughout
most of the velocity range used in the heated-body experiments. Measurements of
intermittency and burst rate are made at a fixed station on the body corresponding
to an arclength s = 2.12 m from the nose of the body. Different Reynolds numbers
are achieved by varying the free-stream velocity, and the intermittency is obtained as
a function of the Reynolds number

R ≡ Us/ν, (4.3)

where U is the free-stream velocity at a reference location and ν is the kinematic
viscosity.

There is a fundamental difference between this method of measuring intermittency
and the more common procedure of maintaining a constant reference free-stream
velocity and measuring the intermittency as a function of the downstream distance.
Equations (3.2) and (3.7) are valid only for the latter kind of experiment. When the
external velocity is not maintained constant, the location of transition onset xt, the
factors n2σ2 in equation (3.2) and n1σ1 in equation (3.7), the location of subtransition
(x∗), and the intermittency γ∗ at subtransition cannot be taken as constant. The
equations therefore require careful recasting before the model can be tested against
the LG experiments. (The data of Rao 1974, on the other hand, can be used directly
to check the model as shown by Narasimha 1984.)

We first examine the U zone of transition in the LG experiments. In the flow over
an unheated two-dimensional body, for a given pressure gradient and free-stream
turbulence level, the transition onset Reynolds number is approximately constant
and can be obtained, for example, from an empirical correlation of the type given
by Govindarajan & Narasimha (1991). In the LG experiment, we have already seen
that both the free-stream turbulence and the pressure gradient are for all practical
purposes constant in the region of interest. Furthermore, since the heating level is
maintained constant during the course of any one experiment, the transition Reynolds
number may be assumed to take on a constant value for each level of heating, i.e. for
each set of intermittency data.

Next we consider the transition zone length λ. In the U (or two-dimensional) zone,
this length is defined as the distance between the (possibly hypothetical) stations
where γ would equal 0.25 and 0.75 respectively if the spot growth were to continue
to be two-dimensional throughout. Using (3.2), the length λ may be expressed as

λ2 = 0.411
U

n2σ2

, (4.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

00
00

10
4X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200000104X


86 R. Govindarajan and R. Narasimha

so a specification of λ may more fundamentally be seen as a substitute for the spot
parameter product n2σ2.

Now it has been shown (Abu-Ghannam & Shaw 1980; Narasimha 1985) that, for
a given pressure gradient and free-stream turbulence level, the value of Rλ depends
only on Rt to a first approximation. Thus, if Rt is taken as constant it is logical to take
Rλ also as a constant for each heating level. This is consistent with the correlation

Rλ = 9R
3/4
t (4.5)

proposed by Narasimha (1984) on the basis of a compilation of all available data on a
flat plate. The validity of (4.5) for two-dimensional spot growth has been established
by Dey & Narasimha (1991) who showed that a non-dimensional spot formation
parameter based on (4.5) is practically constant across a wide range of experiments at
a given pressure gradient and free-stream disturbance level. The transition zone length
predicted by the above correlation is compared to that of Chen & Thyson (1971) in
Appendix B. The concept of a constant spot formation parameter for a given pressure
gradient has been since used by several workers (e.g. Walker 1998; Johnson 1998) and
found to give reasonable transition predictions. Correlations for the dependence of
the spot propagation parameter on pressure gradient and on free-stream turbulence
may be found in Gostelow, Melwani & Walker (1995).

Using (4.4) and (4.5), it is easily seen that n2σ2 scales with the cube of the Reynolds
number, as given by

n2σ2

R3
∝ ν

s3R
3/2
t

. (4.6)

The non-dimensional quantity N2, defined (in analogy with the parameter N in
Narasimha 1985) as

N2 ≡ n2σ2s
3

R3ν
, (4.7)

may thus be expected to be constant for a given heating level.
Equation (3.2) may now be rewritten in terms of R as follows:

γ = 1− exp
[−N2(R − Rt)2

]
, (4.8)

or

F2 ≡ [− ln(1− γ)]1/2 =
√
N2(R − Rt). (4.9)

A plot of F2 versus R should therefore yield a straight line in the U regime.
The constancy of Rt may be used to formulate an intermittency model in the D

regime as well. Equation (3.7) may first be rewritten in terms of Reynolds numbers as

γ = 1− (1− γ∗) exp

[−n1σ1(R − R∗)s2
R2ν

]
, x > x∗. (4.10)

Here, from equation (3.5), and using the fact that σ1 is related to σ2 by the geometry
of spot propagation as described by equations (3.8) and (3.9), it is immediately evident
that n1σ1 too scales with R3. Analogously with the definition (4.7) of N2 in the U
zone, a non-dimensional spot formation parameter is defined for the D zone as

N1 ≡ n1σ1s
3

R3νat
, (4.11)

which again may be assumed to remain constant for a given heating level.
The Reynolds number of subtransition R∗ will be shown in § 6 to be constant for a
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F2
F1

2

1

0
1.8 2.8 3.8 (×107)

R

F2

F1

Figure 5. Functions F2 and F1 given by equations (4.9) and (4.13) respectively, for the data set
LG4. The point of subtransition may clearly be observed. Dashed lines: best fits.

given heating level. We make use of this result here, and write equation (4.10) in the
form

γ = 1− (1− γ∗) exp

[
−N1at

s
(R − R∗)R

]
(4.12)

or

F1 ≡ − 1

R
ln

[
(1− γ)
(1− γ∗)

]
=

[
N1at

s
(R − R∗)

]
, (4.13)

which again shows a linear relationship between F1 and R.
The expressions (4.9) and (4.13) are analogues of the straight line relationships for

experiments where the free-stream velocity is maintained constant, derived respectively
for the two-dimensional and one-dimensional spot growth regimes by Narasimha
(1957, 1984). These relations are devised to enable quick checks of the expressions
against experimental data and to obtain estimates of transition-zone parameters.

5. Comparison with experiment
The quantities F2 and F1 defined in equations (4.9) and (4.13) can be computed for

the intermittency data of LG and plotted against R; an example is shown in figure
5. It is observed that the experimental points fall on the respective straight lines in
the two-dimensional and one-dimensional regimes (low and high γ respectively). In
addition, the Reynolds number at which the switch-over from two-dimensional to one-
dimensional spot growth occurs can be obtained with good accuracy from these plots.

The data at each heating level have been analysed by this method, and the slopes
and intercepts of the best fitting straight lines in the F1, R and F2, R plots are obtained.
The intermittency distributions calculated using equations (4.8) and (4.12) are shown
plotted along with the experimental data in figure 6. From all the plots in figure 6, it is
clear that the variation of the intermittency with streamwise distance is qualitatively
very different in the downstream part of the transition zone from that in the upstream
region. In addition, the increase in γ is gradual in the U region and rapid in the D
region. These are the ‘footprints’ of the subtransition discussed earlier. The excellent
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Figure 6. Comparison of present model with the experiments of LG. Solid line: modified
two-dimensional law; dashed line: modified one-dimensional law; symbols: experiment. The data
sets are (a) LG1; (b) LG2; (c) LG3; (d) LG4, as tabulated in table 1.

agreement between experiment and model seen in these diagrams gives us confidence
in drawing conclusions on the effect of heating on the transition zone.

The experiments of Rao (1974) have been conducted in the more traditional manner,
i.e. intermittency is measured as a function of downstream distance for a given free-
stream velocity. While he recognized that spot propagation on an axisymmetric
body is two-dimensional upstream and one-dimensional downstream, he did not
propose a model for spot propagation that could explain his observations in the
one-dimensional regime. As shown by Narasimha (1984) the original equations (3.3)
and (3.9) can be used to predict the intermittency distributions in his experiments.
The desired parameters at the onset of transition and subtransition respectively can
be obtained from the following straight-line relationships corresponding to (3.3) and
(3.9) respectively (Narasimha 1984):

G2 ≡ [− ln(1− γ)]1/2 =

√
n2σ2

U
(x− xt), (5.1)

and

G1 ≡ ln

[
1− γ
1− γ∗

]
= −n1σ1

U
(x− x∗). (5.2)

The intermittency data of Rao (1974) for two cylinders of different radii, each at two
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Figure 7. Comparison of present model with the experiments of Rao. Solid line: two-dimensional
law; dashed line: one-dimensional law; symbols: experiment. (a) R1; (b) R2; (c) R3; (d) R4, as
tabulated in table 2.

Reynolds numbers (Ra based on the radius of the body) are compared with present
calculations in figure 7. Again, the model is seen to perform well.

6. Discussion
With the very satisfactory agreement of the experimental data with the subtransition

model for intermittency on an axisymmetric body, we are now in a position to examine
the implications of the present analysis for the effect of heating on transition.

6.1. Transition onset

Now LG use the Reynolds number at which the intermittency is 0.5, say R0.5, as
a measure of the location of transition. They show that at low levels of heating,
transition is delayed by heating, i.e. R0.5 increases with heat input, while at high
heating there is little further increase. They present a qualitative comparison between
the instability Reynolds number Rcr and R0.5 in this range, and conclude that the
latter saturates while the former does not. They attribute the saturation in R0.5 to
such factors as free-stream disturbances, surface flaws, flow asymmetries and system
idiosyncracies which may be driving transition at the higher heating levels. As we have
already pointed out, the free-stream turbulence is approximately constant for the entire
range of the LG experiments on the heated body, and, from the extensive evidence
available on the effect of free-stream turbulence, is unlikely to be a factor in accounting
for the observed changes in onset Reynolds numbers at different heating levels.

We propose here that the quantity more suited for comparison with the trends of
the instability Reynolds number Rcr is Rt, the Reynolds number at which the flow
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Figure 8. Variation of the transition onset Reynolds number with level of heat.

3.9

2.9

1.9
20 40 60 80 100

R*

R0.5

Total heating power, Q (kW)

R0.5

R*

(×107)

Figure 9. Variation of the two-dimensional to one-dimensional subtransition Reynolds number
R∗, and the LG Reynolds number R0.5 with level of heat.

breaks down and the first turbulent spots appear. The Reynolds number at 50%
intermittency, being downstream of subtransition, is less directly related to Rcr as
discussed in detail below.

The four heated flow experiments of LG are denoted by LG1 to LG4 in increasing
order of heating. The Reynolds numbers Rt at transition may be estimated from the
intercept of the best-fit line for F2 according to (4.9), while the Reynolds number
R∗ at subtransition in each experiment is the location at which the two-dimensional
and one-dimensional curves intersect in figure 6. The transition Reynolds number Rt
is plotted against heating level in figure 8, while the subtransition Reynolds number
and the LG measure R0.5 are similarly plotted in figure 9.

Before discussing the heated cases at length, it is relevant to examine the experi-
mental result for transition over the cold body. The range of R across the transition
zone over the cold body is approximately 0.2 × 107 to 0.5 × 107, which corresponds
to free-stream velocities of 1 to 2.5 m s−1 in the water tunnel. The lowest velocity
of operation in the heated case, however, is about 7.5 m s−1. The large difference in
tunnel operation velocity has a significant impact on the transition onset, since the
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free-stream disturbance level, q, is very different in the cold and in the heated flow
experiments. From figure 1 of LG it is observed that above a free-stream velocity
of about 6.5 m s−1, q settles down to a value of about 0.1% nearly independently of
tunnel speed. At low speeds, however, q is much higher – the value corresponding
to the estimated Rt for the cold body, though not shown explicitly in the LG paper,
appears to be of the order of 0.5%. This large increase in q would cause a significant
decrease in the transition onset Reynolds number. This is evident upon examining
the empirical correlation for transition onset (Govindarajan & Narasimha 1991) in
the absence of pressure gradient:

Rθt = 110 +
340

(q2 + q2
0)1/2

. (6.1)

Here, the onset Reynolds number is based on the momentum thickness θ of the
boundary layer, and q0 stands for the residual non-turbulent disturbances in the
tunnel.

The relation (6.1) may be used to obtain a corrected value of Rt for the cold body.
This corrected value R′t is the Reynolds number at which transition onset would be
expected to occur on the cold body if the free-stream turbulence had been maintained
at the same value (0.1%) as in the heated flow experiments. Since experimental data
on noise levels in the LG tunnel are not available, we use here a typical value of 0.1%.
With q = 0.47%, transition onset according to (6.1) occurs at the value reported by
LG. For q = 0.1%, on the other hand, we get R′t ' 1.4× 107. This corrected value for
the cold body must be taken as very tentative, but, when plotted in figure 8, it is seen
to be consistent with the trend followed by Rt in the heated flow experiments. Since
the intermittency data on the cold body are very sparse (only three points within the
transition zone), the corresponding intermittency distribution has not been modelled.

It is immediately apparent from figures 8 and 9 that the behaviour of the transition
Reynolds number Rt is different qualitatively from that of R0.5, in that it actually
increases at a faster rate at higher heating levels than at lower. From the values
of instability Reynolds number Rcr computed by Wazzan et al. (1968) we find that,
for the range of overheat in which the LG experiments have been conducted (below
30◦C), the critical Reynolds number based on the boundary layer thickness goes up
linearly with level of overheat. This means that the critical Reynolds number based
on the streamwise coordinate scales roughly as the square of the overheat level, i.e.
goes up faster at higher levels of heating. The behaviour of Rt shown in figure 8 is
consistent with this result.

The Reynolds number R∗ at which spot-wrapping occurs depends on several other
parameters besides Rt, such as the ratio of the lateral spread to the axial extent of the
spot. It is seen from figure 9 that the variation of R0.5 is similar to that of R∗, which
is to be expected, since it lies in the one-dimensional spot growth regime.

From the viewpoint of stability theory, it is more meaningful to plot the variation of
transition Reynolds number with the wall overheat temperature ∆T rather than with
the total heat input. The overheat has been measured by LG for only one velocity
per heating level. The variation of Rt, R

∗ and R0.5 with this ∆T is shown in figure 10.
The transition-onset Reynolds number still goes up more rapidly at higher levels of
heat. It is interesting to note, however, that the LG measure of R0.5 does not appear
to saturate any more, although it still does not increase as rapidly as Rcr.

A detailed study of the relationship between transition and stability in a heated
underwater body will be presented elsewhere. However, it is relevant to mention here
that in the work of Wazzan et al. (1968) the instability critical Reynolds number
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Figure 10. Variation of Rt, R
∗ and R0.5 with estimated degree of overheat.

Rcr for a heated flat plate goes up much more rapidly than the transition Reynolds
number in the LG experiment seems to do. This is similar to the behaviour of Rcr

and Rt for two-dimensional accelerated flow. In the case of highly accelerated flow,
at moderate levels of free-stream turbulence, Rt can often be much lower than Rcr (as
is evident from the data available in Abu-Ghannam & Shaw 1980, for example). A
comparison of estimated Rt in the LG experiments with the heated flat-plate results
(Rcr) of Wazzan et al. shows them to be qualitatively the same.

6.2. Spot propagation parameters

The streamwise location x∗ of subtransition and the relative magnitudes of σ1 and
σ2 have implications for the geometry of spot growth in the two-dimensional regime,
and the speed of spot propagation in the two regimes, which are discussed below.

From the experimental data, we can surmise whether subtransition occurs due to
a single spot wrapping itself around the body or a cluster of spots doing so. The
first scenario is likely to occur when the time Ts taken by a single spot to wrap
itself around the body is much less than the average time interval Tm between the
formation of two successive spots anywhere around the circumference of the body at
xt. The two times are given respectively by

Ts =
x∗ − xt
krU

, Tm =
1

2πatn2

. (6.2)

We now define a non-dimensional ‘merge’ parameter

M ≡ Ts

Tm
=

2π2

kr tan αs

n2a
2
t

U
, (6.3)

which provides a criterion for the single (low M) or cluster (high M) scenario. If
the boundary layer is close to Blasius, the above expression may be rewritten (see
Appendix C) as

M ' 3R
1/2
t

a2
t

x2
t

. (6.4)

As M increases beyond 1, it is more probable that one spot will merge with another
before either (singly) wraps around the body. The combined width of the spots is
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Exp. Heat (kW) Rt(×10−7) R∗(×10−7) M αeff (deg.) K ≡ (G tan αs)σ1/σ2

LG1 26.6 1.407 2.037 124 37.2 1.7
LG2 53.4 1.450 3.002 262 24.4 6.2
LG3 75.4 1.547 3.322 292 23.7 7.8
LG4 93.3 1.819 3.503 247 26.0 4.7

Table 1. Parameters derived from the LG experiment.

Exp. Radius Ra xt x∗ γ∗ M αs K ≡ (G tan αs)σ1/σ2

(m) (m) (m) (deg.)

R1 0.0095 13000 0.480 0.775 0.227 0.95 5.8 3.8
R2 0.0095 6450 0.547 0.870 0.242 0.55 5.3 3.3
R3 0.025 22000 0.357 0.670 0.246 8.24 14.1 1.9
R4 0.025 6300 0.686 1.126 0.469 1.66 10.1 2.3

Table 2. Parameters derived from the Rao experiment.

given by the union of the widths occupied by each spot. If a spot merges just before
it wraps, i.e. if M is just slightly greater than 1, the contribution of the second spot is
small, and subtransition is basically the same as that achieved by a single spot. For
wrapping to occur with a cluster of spots, we must have M � 1. The two-dimensional
regime may therefore be expected to shrink as M increases.

For each LG experiment, the intermittency data may be used along with equation
(6.4) to obtain the merge parameter M. The values so obtained are listed in table
1. The corresponding values for the experiments of Rao are listed in table 2. It is
immediately obvious that the wrapped spot must be single in Rao’s experiments and
clustered in the LG experiments. Subtransition may therefore be expected to occur
at a much shorter distance in the LG experiments than in the Rao experiments. To
verify this prediction, we examine the effective half-angle αeff subtended by the patch
of turbulence at its origin, defined by

tan αeff =
x∗ − xt
πa

. (6.5)

It is seen that while αeff for Rao’s data is not far from 10◦, the value in the
LG experiments is always substantially higher, suggesting that the wrap scenario
corresponds to a spot cluster. The data set R3 shows a somewhat larger M as well
as a larger αeff than the other three sets of Rao’s data, which is consistent with the
ideas proposed here.

We now look at the ratio of spot propagation parameters in the two-dimensional
and one-dimensional regimes, obtained from equations (4.7), (4.11) and (3.5):

σ1

σ2

=
N1

2πN2

. (6.6)

On comparing the expressions for σ2 and σ1 given by (3.8) and (3.9) respectively,
it may be seen that for a quantitative comparison, it is convenient to examine the
parameter K ≡ (G tan αs)σ1/σ2. (As mentioned before, αs is the half-angle subtended
by a single spot at its origin.) In view of the above arguments, in the Rao experiment
we may directly use the αs estimated from the data; while for the LG data, in the
absence of direct measurements of αs, we use the value of 10◦ which has been observed
in a variety of experiments to be the half-angle subtended by a single spot. The factor
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G depends to some extent on the deviation of the two-dimensional spot from an
exactly triangular shape, but this effect is much smaller than that of the height at
which measurements are made. In the two-dimensional regime, the spot exhibits a
long overhang, and appears very different at different heights away from the wall
(Gad-el-Hak, Blackwelder & Riley 1981); from the available data we estimate that,
at the wall, the streamwise extent of the spot is half of its maximum value. If it is
assumed (in the absence of quantitative information about the variation of the lateral
extent) that the spot width at the wall is again about half the maximum width, G
at the wall will be about 1/4 of the value at its maximum. Far downstream in the
one-dimensional growth regime the overhang effect (accounted for in the ‘head’ of
the spot) is negligible, so G varies little.

In Rao’s experiments, the measurements (using a hot wire) were made close to the
maximum extent of the spot, so G may be taken to be about 1; whereas in the LG
experiments (where the probes are flush-mounted hot films, and measure intermittency
at the wall), G may be taken to be 1/4. The ratio K for the two experiments is shown
in tables 1 and 2. The values are all of comparable order of magnitude, confirming
the general validity of the present discussion. However, except for the data set LG1,
the value of K for the LG results is noticeably higher than for Rao’s results. It is
possible that heating the wall has the effect of making the spot smaller (as would be
expected for a stabilizing influence), in which case the factor G would be reduced,
and the ratio K would become closer to the Rao results.

Since spot merging and wrapping occur in the two-dimensional growth regime, we
may expect that the only quantities which determine the merging process will be the
transition onset Reynolds number and the spot formation parameter. This is shown
to be the case by detailed statistical arguments in Appendix D. In fact, the location
of subtransition may be determined from these arguments. The intermittency γ∗ has
been shown (according to equation (D 10)) to be constant for a given heating level.
For the LG experiment, this expression gives

R∗ = Rt +

(
G

N2

)1/2

, (6.7)

i.e. for a given heating level, R∗ is constant and depends only on the transition onset
Reynolds number and the spot formation rate. The effective spread angle αeff may
now be estimated, since equation (6.7) may be written as

tan αeff =
πa

s

[
N

1/2
2 Rt

G1/2
+ 1

]
. (6.8)

It is shown in figure 11 that, with G = 1/4, the spread angle predicted by equation (6.8)
is close to that obtained in the analysis of the LG results. Only the first experiment,
LG1, does not fit in as well with the other results – in this case a value G = 0.16
agrees better with observations. The reasons for this are not clear.

It must however be remembered that the values of spread angle and spot propa-
gation ratio shown in the tables have been deduced indirectly from the experimental
data. It is therefore desirable that the present deductions on the effect of surface
heating on spot propagation characteristics are checked with detailed experiments
in which measurements are preferably made at successive streamwise locations while
maintaining the tunnel speed constant. This approach has the advantage that the mod-
elling is more direct and that streamwise variations in temperature do not change
transition onset.
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Figure 11. Comparison of estimated spread-angle with that derived from the LG experiment.

7. Conclusions
The subtransition model of Narasimha (1984) has been extended to the case

where intermittency measurements are made at a fixed station at varying velocities
over an axisymmetric body. Strong evidence for two-dimensional to one-dimensional
subtransition within the transition region is found in the experimental results of LG.
The assumptions of constant Rt and Rλ for a given level of free-stream turbulence,
pressure gradient, tunnel disturbance and heating level are borne out by the close
agreement of the model with experiment.

It is inferred from the present work that the Reynolds number R0.5 used by LG
to indicate transition onset lies in the one-dimensional spot propagation regime.
This Reynolds number increases with heat at low levels of heating, but appears to
saturate beyond some heating level. The present work however enables us to examine
the effect of heat on the true transition onset Reynolds number Rt. As Rt is the
Reynolds number at which the first breakdowns occur, it may be expected to be
more directly related to the instability critical Reynolds number and is therefore a
better indicator of the effect of heat on delay in onset. In the intermittency model
presented here, Rt may be obtained in a straightforward manner, and is shown to
increase approximately quadratically with the heating, which is consistent with the
prediction of linear stability computations.

Spot growth characteristics have been indirectly obtained from the intermittency
distributions. It is inferred that the spot wrapping scenario is different in the LG and
Rao experiments. In the former, several spots merge into a cluster which wraps itself
around the circumference well upstream of the location where a single spot would,
resulting in earlier subtransition. In Rao’s experiments, the scenario is of a single spot
wrap–around. Direct measurements of propagation rates and spread angles on heated
axisymmetric bodies (with carefully controlled temperature) are needed to confirm
these predictions.

The derived spot propagation ratio K for the LG experiment is somewhat higher
than in the Rao experiments, suggesting that heating reduces the two-dimensional
spot size at the wall, as may be expected from a stabilizing agency.

On the whole, a remarkably consistent picture of the effect of heating on transition
delay has emerged from the present work. It is paradoxical that, according to the
present work, the delay in transition onset with heating is appreciable, as suggested
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by stability theory, but the anticipated gains are likely to be reduced because of the
shrinking of the transition zone, which should be particularly severe at high Reynolds
numbers because the wrapping scenario on axisymmetric bodies is then dominated
by spot clusters, not single spots.

We are studying the effect of curvature and heat on streamwise and crossflow
instabilities on spatially developing axially symmetric boundary layers, which will be
presented elsewhere.

This project is supported by the Naval Research Board, Government of India.

Appendix A. Check for occurrence of subtransition on LG body
The LG body shape is described by a modified ellipse function, with the surface

obeying the equation

â = [x̂(2− x̂)]1/2 − ln

Dmax

C0x̂

2p2
exp

{
− x̂2

2p2
− k ln

Dmax

}
+ x̂2εL, (A 1)

where

x̂ =
x

ln
, â =

a
1
2
Dmax

, and εL =
lnC0

2p2Dmax
exp

{
− 1

2p2
− kln

Dmax

}
. (A 2)

Here x is the axial coordinate and a is the body radius. For the body under consid-
eration, ln = 2.44 m, Dmax = 0.32 m, p = 0.3, C0 = 0.0303 and k = 0.45227.

The quantity πda/dx may be computed as a function of x using (A 1) and (A 2),
and the angle δ = tan−1(πda/dx) is plotted in degrees as a function of x in figure
12. It is seen that at the location of subtransition and everywhere downstream,
δ < αs and the condition (3.11) is satisfied for all the experiments. The body is
thus cylinder-like in the characteristics of its transition zone, for our purposes, i.e.
we may expect the spot growth to undergo a subtransition from two-dimensional to
one-dimensional, and downstream of this subtransition the spot growth will continue
to be one-dimensional.

Appendix B
Using equation (4.4), we may rewrite equation (3.2) as

γ = 1− exp
[−0.411(x− xt)2

]
, xt 6 x 6 x

∗. (B 1)

Chen & Thyson (1971, CT) prescribe the following correlation for the transition
zone length λCT :

RCT = 60R
2/3
t . (B 2)

Here, RCT = λCTU/ν, where λCT is the distance between the onset xt of transition
and the location where the intermittency is 0.95. If the spot growth is always two-
dimensional, the relationship between λCT and λ may be obtained from equation (B 1)
for a constant-velocity experiment as

log(1− 0.95) = 0.411
λ2
CT

λ2
, or RCT = 2.7Rλ. (B 3)

The correlation of CT may now be rewritten as

Rλ = 22.2R
2/3
t . (B 4)
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Figure 12. Downstream growth in the body radius. It is possible for a one-dimensional growth
regime to be supported on the body if the solid line is below the dashed line.

The transition zone length predicted by the above correlation is about 5% smaller
than that obtained from equation (4.5). Since the locations corresponding to γ = 0.25
and γ = 0.75 can be measured far more accurately than the locations at which γ = 0
and γ = 0.95, a correlation employing λ rather than λCT is likely to be the more
reliable.

The CT transition model does not take into account any possible subtransition to
one-dimensional spot growth, and is therefore valid only when spot-wrapping does
not occur.

Appendix C
The spot formation rate n2 may be deduced from the non-dimensional spot prop-

agation parameter N (Narasimha 1985) given by

N ≡ n2σ2θ
3
t

ν
, (C 1)

where θt is the momentum thickness at transition. For a Blasius boundary layer,

θ3
t

ν
=

(0.664)3x2
t

UR
1/2
t

. (C 2)

In a variety of flow situations at zero pressure gradient, at not too small free-stream
turbulence levels, N has been shown to have a numerical value of about 0.7 × 10−3.
Using this number, and the relation (3.8) with αs = 10◦, kr = 0.5, kf = 0.9 and G = 1,
we get

M ∼ R1/2
t

a2
t

x2
t

, (C 3)

with a proportionality constant close to 3.
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Appendix D. Estimate of location of subtransition
Consider a single turbulent spot whose base is located at x. We label this spot So.

If there were no other spots around the circumference at x, the width of the patch of
turbulence at x would be equal to the base of the spot So, denoted by 2b. The object
of the discussion below is to estimate the total extra width W occupied by other
spots at x. When the sum 2b+W equals the circumference of the body, the patch of
turbulence would have wrapped itself around the body and the growth downstream
would be one-dimensional.

It is necessary, therefore, to find the average additional portion of the circumference
at x being occupied by turbulence, given that 2b is already occupied by the first spot,
So. If the present time is taken to be t, the spot So was formed at time t−(x−xt)/kr2U.
Any other spot forming during the time interval ∆t = (x− xt)/kr2U − (x− xt)/kf2U
will also occupy some part of the circumference at x at time t.

At the location xt where spots form, consider the circumference of the body to be
divided into infinitesimal elements, each of length ∆C . The probability that a new
spot Sn has originated during the time interval ∆t in a particular element located l
elements away from the centre of the original spot is given by

p = n2∆C∆t, (D 1)

which can be rewritten using equation (3.8) as

p =
n2σ2(x− xt)
G tan αsU

∆C ≡ Z∆C, (D 2)

which defines the quantity Z . If l∆C < 2b, the new width contributed by spot Sn will
be between 0 and l∆C , depending on its time of formation. The average new width
contributed by such a spot may therefore be taken as

w =
l∆C

2
. (D 3)

The quantity w constitutes the new width of turbulence contributed by Sn provided
no other spot originates in the same time interval between So and Sn. For small p, the
probability q of no other spot forming in between is approximately

q = 1− (l − 1)p∆C. (D 4)

A spot originating at a distance greater than 2b will contribute an average new width
covered by turbulence of b. The total new width W given one spot may now be
written as

W = 2

2b/∆C∑
l=1

pwq +

(2πa−2b)/∆C∑
l=2b/∆C

pbq, (D 5)

where the factor 2 in the first term is present to account for both sides of So. Since
2b is already covered by So, the second sum in the above expression should be set to
zero if 2πa 6 4b. Substituting (D 2) to (D 4) in (D 5), and summing the series, we get

W = 2Z [πa− b] b, 2b 6 πa, (D 6)

= 2Zb2, 2b > πa. (D 7)

The patch of turbulence will wrap itself around the body if

2b+W > 2πa. (D 8)
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In all the LG experiments, 2b 6 πa at subtransition. For this case, condition (D 8)
simplifies to

Zb > 1, 2b 6 πa. (D 9)

Using equation (3.2), it is seen that subtransition may be expected to occur if

γ > 1− e−G while 2b 6 πa. (D 10)

At low rates of spot formation, the width 2b of a single spot may exceed half the
circumference before condition (D 10) is satisfied.
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