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SECRECY COVERAGE IN TWO DIMENSIONS

AMITES SARKAR,∗ Western Washington University

Abstract

Working in the infinite plane R
2, consider a Poisson process of black points with

intensity 1, and an independent Poisson process of red points with intensity λ. We
grow a disc around each black point until it hits the nearest red point, resulting in a
random configuration Aλ, which is the union of discs centered at the black points. Next,
consider a fixed disc of area n in the plane. What is the probability pλ(n) that this
disc is covered by Aλ? We prove that if λ3n log n = y then, for sufficiently large n,
e−8π2y ≤ pλ(n) ≤ e−2π2y/3. The proofs reveal a new and surprising phenomenon,
namely, that the obstructions to coverage occur on a wide range of scales.

Keywords: Poisson process; coverage

2010 Mathematics Subject Classification: Primary 60D05
Secondary 05D40

1. Introduction

Place discs of radius r in R
2 so that their centers form a Poisson process of intensity 1, and

let Bn ⊂ R
2 be a disc of area n � r2. What is the probability that Bn is covered by the small

discs? This question, inspired by biology [9], has a long history, and many detailed results are
known about it; see [4] and [7]. For instance, writing

πr2 = log n + log log n + t,

Svante Janson proved in 1986 [7] that as n → ∞, coverage occurs with probability asymp-
totically exp(−e−t ). One approach to this result [2], [3] uses the fact that the obstructions to
coverage are small uncovered regions, which essentially form their own Poisson process, of
intensity e−t /n. Although these uncovered regions may be of different shapes, they are all
roughly the same size. Mathew Penrose proved an analogous result for connectivity of the
underlying graph [10], where the obstructions—isolated vertices—are again of the same size;
the generalized coverage process where the disc radii are independent and identically distributed
random variables (the so-called Boolean model) has also received much attention; see [6] and
[8]. Here we study a simple variant of the original problem, in which the disc radii are no
longer independent, and where there are many different obstructions of many different sizes.

To define the process, let P and P ′ be independent Poisson processes in R
2 of intensities 1

and λ, respectively. We call the points of P black points and the points of P ′ red points. Place
an open disc D(p, rp) of radius rp around each black point p ∈ P , where rp is maximal so that
D(p, rp) ∩ P ′ = ∅. In other words, rp is the distance from the black point p to the red point
p′ ∈ P ′ that is nearest to p. The point p′ is almost surely unique, and we will refer to it as the
stopping point of the disc centered at p, or of p itself. We thus obtain a random set Aλ ⊂ R
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2 A. SARKAR

which is the union of discs centered at the points of P . Now let Bn ⊂ R
2 be a fixed disc of

area n, write Bλ(n) for the event that Bn ⊂ Aλ ∪ P ′ (note that Aλ ∩ P ′ = ∅ since the discs
D(p, rp) are open), and set pλ(n) = P(Bλ(n)). Since adding red points makes coverage less
likely, pλ(n) is a nonincreasing function of λ for fixed n. In addition, pλ(n) is nonincreasing
in n, with λ fixed, because increasing n corresponds to examining the random set Aλ over a
larger area.

This model, based on the secrecy graph [5], was inspired by the issue of security in wireless
networks, and was studied in [11], where it was proved that if λ3n → ∞ then pλ(n) → 0,
while if λ3n(log n)3 → 0 then pλ(n) → 1. In this paper we prove that the correct indicator of
coverage is f (λ, n) = λ3n log n. Specifically, if λ3n log n = y then, for sufficiently large n,
e−8π2y ≤ pλ(n) ≤ e−2π2y/3. Interestingly, the proofs indicate that there are obstructions on
a range of scales; it seems that, close to the coverage threshold, there will be small uncovered
regions whose widths range from around 1 to just above n−1/6.

We note that the problem of determining the covered volume fraction of Aλ, which can be
defined as fλ = P(O ∈ Aλ) (where O is the origin), was solved in [11]. The result is that

fλ = 1 −
∫ ∞

0
f (t)e−t/λ dt,

where f (t) is the (currently unknown) probability density function for the volume of the cell
containing the origin O in the Voronoi tessellation formed from P ∪ {O}, where P is a unit
intensity Poisson process in R

2. This is a genuinely different problem from the present one –
it is entirely possible that the expected amount of uncovered area in Bn tends to 0, but that the
probability that not all of Bn is covered tends to 1. Indeed this does occur for certain values of
the parameters.

As motivation for our main results, let us briefly state the result for the one-dimensional
version of our problem and sketch its proof. In this setting, we wish to cover an interval In

of length n with small intervals centered at black points (a Poisson process with intensity 1),
which in turn are stopped by red points (a Poisson process with intensity λ). Denoting the
probability of such coverage by p1

λ(n), the result is as follows.

Theorem 1. If λ2n = x then p1
λ(n) → e−4x as n → ∞.

Proof. Let L be an interval of length � between two consecutive red points in In. We wish to
compute the probability that L is covered. With this in mind, let m be the midpoint of L, let x be
the distance of the closest black point to m lying on the left of m, and let y be the distance of the
closest black point to m lying on the right of m. Then coverage of L is determined solely by x

and y. Indeed, coverage occurs if and only if x+y < �/2. Consequently, the probability that L
is covered is just P{Po(�/2) ≥ 2} = 1 − e−�/2(1 + �/2). Next, the unconditional probability
that the interval between two consecutive red points is covered, obtained by integrating the
above probability against the density function of �, is (1 + 2λ)−2 ∼ 1 − 4λ. Finally, since
there are asymptotically nλ → ∞ intervals between consecutive red points, and coverage fails
independently in each one with probability asymptotically 4λ → 0, the number of failures is
approximately Poisson with mean 4nλ2 = 4x, and the result follows. �

The above argument reveals that the obstructions to coverage typically comprise two red
points, distance O(1) apart, without black points sufficiently close to their midpoint to ensure
coverage of the interval between them. The set of such intervals is roughly four times as large as
its subset consisting of consecutive red points with no black point between them. In other words,
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Secrecy coverage in two dimensions 3

choosing λ to prohibit such pairs of consecutive red points provides a necessary condition for
coverage, λ2n → 0, which is in fact also sufficient, although such an argument gives the wrong
constant in the exponent in Theorem 1. One might expect some similar situation to exist in two
dimensions, namely that if λ3n = x then pλ(n) tends to e−cx , or possibly some other function
of x. The likely obstructions might be triples {p, q, r} of red points forming a triangle T , whose
sides and area are O(1), and which contains no black points in its interior. We show that the
truth is in fact more complicated.

The somewhat unorthodox organization of the paper is as follows. Since the proof of the main
theorem is complicated, we begin by showing the weaker result that if λ3n log n =: f (λ, n) →
∞ then pλ(n) → 0, while if f (λ, n) → 0 then pλ(n) → 1. This will be accomplished in
the next section, using good configurations, which are the key to all that follows. The third
and final section contains the proof of our main result, Theorem 4. The proof of Theorem 4
proceeds along similar lines to those of Theorems 2 and 3, but with more careful estimates for
both the principal term and the error terms in our approximation of pλ(n).

In this paper, C, C′, and C′′ denote absolute constants which do not depend on n. We write
f (n) ∼ g(n) if f (n)/g(n) → 1 as n → ∞, f (n) = o(1) means that f (n) → 0 as n → ∞,
and f (n) = O(1) means that, for some finite constant C, f (n) ≤ C for all n. Sometimes we
will abuse this notation slightly, so that, for instance, ‘O(log n) triangles’means f (n) triangles,
where f (n) ≤ C log n for some absolute constant C, and o(1) + n2 means g(n) + n2 with
g(n) → 0 as n → ∞. The phrase ‘with high probability’ will mean ‘with probability tending
to 1 as n → ∞’; sometimes this is also written ‘asymptotically almost surely’. Also, for all
our results, λ = λ(n), though we always suppress the dependence on n.

2. Good configurations

We first show that, in two dimensions, the condition λ3n → 0 is not sufficient to ensure
coverage.

Theorem 2. If λ3n log n → ∞ then pλ(n) → 0.

Proof. Our strategy is to show that, under our hypotheses, the expected number of good
configurations (defined below) tends to ∞. A routine application of Chebyshev’s inequality
then shows that a good configuration occurs with high probability (i.e. probability tending to 1).
Finally, we show that a good configuration yields an uncovered region of Bn.

We start by defining a good configuration. Such a configuration, illustrated in Figure 1
(though not to scale), consists of an ordered triple (p, q, r) of red points in Bn. Then p and q

must lie at distance t , where n−1/12 < t < 1 and r must lie at distance between 50/t and
100/t of p, in such a way that the angle rpq is between π/4 and 3π/4. (The choice of these
angles is somewhat arbitrary: all we need is that the angle rpq should be bounded away from 0
and π .) Write �ij for the perpendicular bisector of ij , and S for the bi-infinite strip of width
||p − q|| centered on �pq . For ease of explanation, suppose that the segment pq is horizontal,
so that S is vertical, and that r lies above the line through p and q. Then �pr and �qr intersect
the boundary ∂S of S in four points, the highest of which lies at distance at most h = 110/t

from pq. Write R ⊂ S for the rectangle with base pq and height 2h (containing all four
intersections above), and R′ ⊂ S for its reflection in pq. A good configuration must also have
no black points in the rectangular region R ∪ R′. Note that the area of R ∪ R′ is 440, so that,
conditioned on the locations of p, q, and r , the condition on the black points is satisfied with
probability e−440. Now, in a good configuration, given the position of p, q is constrained to lie
in some annulus centered at p of area 2πt dt , with n−1/12 < t < 1, and then r must lie in a
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4 A. SARKAR

Figure 1: A good configuration. The dashed triangle is the Voronoi cell for the point s′ slightly above
the midpoint of pq.

region of area 7500π/4t2. Consequently, writing X for the number of good configurations in
the fixed disc Bn of area n, there exist absolute constants C and C′ such that

E(X) ≥ C

∫ 1

n−1/12
λnλt−2λt dt = C′λ3n log n → ∞.

Second, we show that we can apply the second moment method to prove that, with high
probability, X ≥ 1. To do this, we need an upper bound on λ; it will suffice to assume that
λ3n → 0. Since pλ(n) is decreasing in λ, if we can prove that pλ(n) → 0 under the more
restrictive hypotheses, the full result will follow. Tessellate Bn with squares of side length n1/6,
and color a square Si black if both of its ‘coordinates’ are even and if every point of Si lies at
distance at least n1/6 from ∂Bn. (Thus, away from the boundary, one out of every four squares
is black.) We consider only the black squares, which we label S1, S2, . . . , SN . Let the apex
of a good configuration be the point furthest from the opposite side (r , in the above notation),
and write Xi for the number of good configurations with apex in Si . With high probability,
each Xi is either 0 or 1. Moreover, since by construction the maximum diameter of a good
configuration is O(n1/12), the Xi are independent and identically distributed. Let X′ = ∑

Xi .
Then E(X′) → ∞ as above, and since, for each i,

P(Xi ≥ 1) = O

(
log n

n2/3

)
→ 0, E(X2

i ) ∼ E(Xi), E(Xi) → 0,
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it follows that

var(X′)
E(X′)

= var(X1)

E(X1)
= E(X2

1) − E(X1)
2

E(X1)
∼ E(X1) − E(X1)

2

E(X1)
→ 1 as n → ∞,

and so by Chebyshev’s inequality

P(X = 0) ≤ P(X′ = 0) ≤ var(X′)
E(X′)2 ∼ 1

E(X′)
→ 0.

Finally, we explain why the presence of a good configuration prohibits full coverage. As
above, suppose that pq is horizontal, and that r , and hence �pr and �qr , lie above pq. The
idea is that the part of �pq lying just above pq remains uncovered. Write m0 for the midpoint
of pq, and ms for the point of �pq at height s above pq. Any black points lying in S above
pq and outside R are much closer to r than to p or q, and so their corresponding discs cannot
cover m0 or ms , for s ∼ C/t . Write q ′ for the intersection of �pr with ∂S lying above p, p′
for the intersection of �qr with ∂S lying above q, and r ′ for the midpoint of the opposite side
of R′ from pq. The points p′, q ′, and r ′ are the best locations to place black points for the
purposes of covering points ms for small s. However, even their corresponding black discs fail
to cover ms′ for suitable s′. Specifically, write

Dp = D(p′, ||p′ − q||) = D(p′, ||p′ − r||),
Dq = D(q ′, ||q ′ − p||) = D(q ′, ||q ′ − r||),
Dr = D(r ′, ||r ′ − p||) = D(r ′, ||r ′ − q||).

If the distance of i′ from pq is ci/t then the heights of Dp and Dq above m0 are asymptotically
t3/8ci , and Dr covers ms only for s < t3/8cr (asymptotically). However, by construction,

cr ≥ 3
2 max{cp, cq},

so the point ms′ , for s′ = t3/7cr , will be uncovered by Dp ∪ Dq ∪ Dr . Having identified s′, it
is straightforward to check that the Voronoi cell V of {s′, p, q, r} (shown as the dashed triangle
in Figure 1) is entirely contained in R ∪ R′. Therefore, s′ will not be covered by Aλ, since, by
construction, V ⊂ R ∪ R′ is free of black points; all black discs will be stopped by p, q, r, or
another red point before they cover s′. �

Here is a rough intuitive explanation of the proof of Theorem 2. For i = 0, 1, 2, . . . , say
that a good configuration is of type i if the parameter t = ||p − q|| satisfies 2−(i+1) ≤ t < 2−i .
Close to the threshold, for each i, there will be O(λ3n) = o(1) good configurations of type i,
so that, for fixed i, the probability that a good configuration of type i exists in Bn tends to 0.
However, there are C log n possible types, and so, under the hypotheses of Theorem 2, some
good configuration will occur in Bn with high probability.

The next theorem shows that if the expected number of good configurations tends to 0 then
coverage does in fact occur.

Theorem 3. If λ3n log n → 0 then pλ(n) → 1.

Proof. Suppose that both n → ∞ and λ3n log n → 0. First, we show that we need worry
only about coverage of parts of Bn which are close to a red point (specifically, within a distance√

8 log n). To do this, we tessellate Bn with squares of side length r = √
log n. (Some of
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6 A. SARKAR

the squares will not lie entirely inside Bn, but this does not cause problems.) The probability
that any small square of the tessellation contains no black point is e− log n = n−1. Since
there are ∼ n/ log n such squares, the expected number of them containing no black points is
asymptotically 1/ log n → 0. Consequently, with high probability, every small square contains
a black point. Now fix a small square S. If no point of S is within distance

√
2 log n of a red

point, and if S contains a black point, then all of S will be covered by Aλ. Therefore, with high
probability, any point of Bn at distance more than

√
8 log n from all red points will be covered

by Aλ, and we may assume this from now on. (Note that we do not condition on the event
that every small square contains a black point, as this would affect our estimates. Instead, our
arguments below show that when certain conditions are met, coverage occurs, except possibly
when some small square contains no black point; however, this last event has probability o(1),
so coverage still occurs with high probability.)

It remains to show that the regions of Bn within distance
√

8 log n from a red point are
covered by Aλ. Color such regions yellow. In order to facilitate a division into cases, construct
a graph G = G(n, P ′) on the red points by joining two red points if they lie within distance
R = R(n) = 4

√
8 log n of each other. (Such a graph is usually called a random geometric

graph.) A routine calculation (see, for example, [10]) shows that, with high probability, the
connected components of G consist of o(n2/3(log n)−1/3) isolated vertices, o(n1/3(log n)1/3)

edges, o(log n) triangles, and o(log n) paths of length 2 (i.e. paths with two edges). This means
that each yellow region is associated with either an isolated red vertex, a red edge, a red triangle,
or a red path of length 2. We deal with each of these in turn; our argument for triangles will
also cover the case for paths of length 2, which we consider as triangles with one ‘long’ edge.

Isolated vertices. Consider the circles of radii
√

8 log n and 2
√

8 log n around each isolated
red point, and divide the annulus between these circles into 6 equal ‘sectors’, each of area
4π log n. With high probability, there is a black point inside each sector, and this black point is
closer to the isolated vertex than to any other red point. But then the yellow region surrounding
the isolated vertex is covered by Aλ.

Edges. For a fixed edge e = pq ∈ E(G), where we may assume p = (0, 0) and q = (t, 0),
consider the circles of radii

√
8 log n and 2

√
8 log n around p and q. Divide each half-annulus,

between two concentric circles and lying outside the ‘critical strip’ S = [0, t] × R, into three
equal sectors, each of area 4π log n. With high probability, there is a black point inside each
sector, and this black point is closer to p or q than to any other red point. Thus, the yellow
regions outside S are covered by Aλ. However, coverage of the yellow regions inside the
critical strip S is not guaranteed. Indeed, the proof of Theorem 2 shows that such coverage
is threatened by the presence of red points at distance ∼ C/t from e. Then G contains edges
almost as short as n−1/6, so such points may lie almost as far as n1/6 from e, almost as much
as the typical distance between red points.

We need to show that with high probability, the edge e = pq is covered both from above
and from below, so that the yellow regions inside S both above and below e are covered by Aλ.
It will be sufficient to show that e is covered from above with high probability; an analogous
argument will then deal with coverage from below. Let r be the closest point to p, under the
condition that the angle rpq is between 0 and π (thus, in this case, r is ‘above’ e), and write
s = ||r − p||. With notation as in the proof of Theorem 2, the lines �pr and �qr intersect at
height h ≥ (s/2

√
3) above e (see Figure 2 – the worst case is when points p, q, and r form an

equilateral triangle because the length of pr is always greater than that of pq). Now let � be
the line parallel to e, lying at height

√
2 log n above e, and let T be the rectangle with base of
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Figure 2: Covering the edge pq from above.

length 1
2 t lying on �, of height

h

2
− √

2 log n ≥ s

4
√

3
− √

2 log n ≥ s

60
,

and such that T is bisected by �pq . Every point of T lies below both �pr and �qr , and so is
closer to p and q than r . Denoting the left and right halves of T by L and R, respectively,
we see that if each of L and R contains a black point, then the entire yellow region inside S

and above e will be covered by the discs centered at these two points. But, with probability at
least 1 − 2e−st/240, each of L and R contains a black point. Therefore, there exist constants C

and C′ such that the expected number Y of edges not covered from above can be bounded by

E(Y ) ≤ o(1) + Cλn

∫ 4
√

8 log n

n−1/6
λt

∫ ∞

4
√

8 log n

λse−st/240 ds dt

≤ o(1) + Cλn

∫ 4
√

8 log n

n−1/6
λt

∫ ∞

0
λxt−2e−x/240 dx dt

= o(1) + Cλ3n

∫ 4
√

8 log n

n−1/6
t−1

∫ ∞

0
xe−x/240 dx dt

= o(1) + C′λ3n log n

→ 0.

Consequently, with high probability, the yellow regions close to all the edges in G are completely
covered by Aλ.

Triangles. We expect o(log n) triangles T in G; we classify them by the length x of their
smallest sides. In the first case, illustrated in the first two parts of Figure 3, no angle of T is
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8 A. SARKAR

Figure 3: Covering the interior of triangle pqr .

greater than 9
10π . Consider the disc D, centered at the circumcenter cT of T , of radius 1

4x.
If each of the three sectors of D formed from the perpendicular bisectors of the sides of T

contains a black point, then the entire interior of T is covered by Aλ. (For instance, suppose
that the sector corresponding to p contains a black point b; it then follows that the (closure of
the) disc centered at b covers p, cT , and both midpoints mpq and mpr of pq and pr , so that
the same closed disc covers the quadrilateral pmpqcT mpr , by convexity. The exterior of T

is easily seen to be covered with high probability.) But each of these sectors has area at least
1

20π 1
16x2 = 1

320πx2, so that the expected number T1 of such triangles which are not entirely
covered can be bounded by

E(T1) ≤ o(1) + Cλ2n log n

∫ 4
√

8 log n

n−1/6
λxe−πx2/320 dx

≤ o(1) + Cλ3n log n

∫ ∞

0
xe−πx2/320 dx

= o(1) + C′λ3n log n

→ 0,

for some constants C and C′. In the second case, where one angle of T , say the angle at p, is
greater than 9

10π , we consider the two rectangles whose centers lie on �pq and �pr , halfway
from pq (respectively pr) to the circumcenter of T , whose bases are parallel to the respective
sides pq and pr , and whose heights and widths are 1

10x and 1
3x, respectively (see the third part

of Figure 3). If each half of each of these rectangles contains a black point, the interior of T

is covered, and so the expected number T2 of such triangles which are not entirely covered can
be bounded by

E(T2) ≤ o(1) + Cλ2n log n

∫ 4
√

8 log n

n−1/6
λxe−πx2/60 dx

≤ o(1) + Cλ3n log n

∫ ∞

0
xe−πx2/60 dx

= o(1) + C′λ3n log n

→ 0,

for some constants C and C′. Therefore, with high probability, the interiors of all the triangles
in G are covered by Aλ, completing the proof of the theorem. �

https://doi.org/10.1017/apr.2015.3 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2015.3


Secrecy coverage in two dimensions 9

3. Proof of the main result

More careful estimates, combined with the Stein–Chen method [1], yield the following more
precise result; it also shows that good configurations are essentially the only obstructions to
coverage.

Theorem 4. If λ3n log n = y then, for sufficiently large n, e−8π2y ≤ pλ(n) ≤ e−2π2y/3.

Proof. Write λ3n log n = y. We follow the strategy of the proof of Theorem 3, with a few
modifications. Define the graph G = G(n, P ′) on the red points as in that proof. With high
probability, the yellow regions associated with isolated vertices are still covered by black discs,
even at this higher range of values of λ.

The first step is to show that the yellow regions inside and close to triangles in G are
also still covered, again at this higher range of values of λ, and with high probability. This
requires a different argument from before. This time, we overlay each triangle T in G with a
tessellation TT of side length (log n)1/5 in such a way that TT covers T and extends for at least
10 side lengths out from the perimeter of T . Since we only expect O(log n) triangles in G, and
each triangle has area O(log n), with high probability there are at most C(log n)8/5 squares in
the tessellations, each of which contains no black points with probability exp(−(log n)2/5), so,
with high probability, every square of every tessellation contains a black point. Therefore, as
in the proof of Theorem 3, all points inside any TT not within distance

√
8(log n)1/5 of a red

point are covered by Aλ. Accordingly, we color the regions within distance
√

8(log n)1/5 of
such a red point orange.

With this in mind, we now consider a new graph G′, whose vertex set consists of all vertices
of all the triangles of G. We join two red points if their distance is at most R′ = R′(n) =
4
√

8(log n)1/5. With high probability, G′ contains no triangles, since the expected number of
triangles in G′ is Cλn · λ(log n)2/5 · λ(log n)2/5 = Cλ3n(log n)4/5 → 0. Each triangle in G

splits in G′ into either three isolated vertices, or an edge and an isolated vertex. As in the proof
of Theorem 3, the orange regions associated with all the ‘new’ isolated vertices are all covered
by Aλ, with high probability; note that there are only O(log n) such vertices, and the associated
sectors are empty with probability exp(−C(log n)2/5). Thus, we have to deal only with the
orange regions associated with edges in G′, and indeed only those parts of these orange regions
‘above and below’ such edges, as before.

The expected number of triangles in G with one edge shorter than 1/
√

log n is Cλn ·
λ(log n)−1 · λ(log n) = Cλ3n → 0, so with high probability all edges in G′ have lengths
longer than 1/

√
log n. Consequently, the expected number Y ′ of edges of G′ whose orange

regions are not covered can by bounded, as in the proof of Theorem 3, by

E(Y ′) ≤ Cλn

∫ 4
√

8(log n)1/5

(log n)−1/2
λt

∫ ∞

4
√

8(log n)1/5
λse−st/240 ds dt

≤ C′λ3n log log n

→ 0.

Consequently, with high probability, all the orange regions are covered, so that all the uncovered
regions in Bn are associated with edges in G.

The detailed strategy for the remainder of the proof is as follows. First, we need to estimate
the frequency of uncovered edges (i.e. edges inGwhose associated yellow regions are uncovered
by black discs). Suppose that this frequency is such that we expect cy uncovered edges in Bn.
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10 A. SARKAR

Then these uncovered edges should be well-approximated by a Poisson process in Bn, and so
the probability that there will be no uncovered edges should tend to e−cy . But, following the
above remarks, this is also the probability of coverage.

Unfortunately, estimating c itself seems quite difficult since, in contrast to the one-dimen-
sional case, there is no simple necessary and sufficient condition for an edge of G to be covered
by Aλ. The best we can do is describe a simple necessary condition for coverage (edges
not satisfying this condition are termed type 2 edges), and a corresponding simple sufficient
condition for coverage (edges not satisfying such a condition are type 1 edges). Type 2 edges
provide a lower bound on c, and hence an upper bound on pλ(n), while type 1 edges provide
an upper bound on c, and a lower bound on pλ(n). To summarize, denoting the sets of type 1,
type 2 and uncovered edges in Bn by T1, T2 and U , we have T2 ⊂ U ⊂ T1. We now turn to the
precise descriptions of these types of edge.

Type 1 edges. With reference to Figures 1 and 2, let R be the rectangle whose base is parallel
to pq and lies at height

√
2 log n above pq, whose top is parallel to pq and just touches the

lowest of the four intersections of �pr and �qr with S, and whose sides are those of S itself. A
sufficient condition for coverage of pq is for pq to be covered from above; that is, there are
sufficiently many black points in R to cover the yellow region above pq; the yellow region
below pq is covered, for all such edges in Bn, with high probability. (This condition is not
necessary, since black points below pq might by themselves cover the yellow regions on both
sides.) We can estimate the number of type 1 configurations by ‘projecting’the black points in R

to the edge pq, resulting in a one-dimensional process on an interval of length 1 whose intensity
is just the area of R, and applying (the proof of) Theorem 1. We call a rectangle R whose black
points do not cover pq from above a blue rectangle; type 1 edges are those associated with blue
rectangles.

Type 2 edges. Again with reference to Figures 1 and 2, let V be the dotted Voronoi cell
corresponding to a point s′, where s′ has been chosen to minimize the area of V (and thus
maximize the probability that V is free of black points). A necessary condition for coverage
of the yellow region above pq is coverage of the point s′, and this occurs if and only if a black
point lies in V . (This condition is clearly not sufficient.) A rough calculation shows that s′, as
defined in the proof of Theorem 2, is already almost optimal; the point on �pq which minimizes
the area of V is at height asymptotically t2/8u above pq, where ||p − q|| = t , and where the
circumcenter of pqr is at height u above pq. For this choice of s′, V has area approximately tu,
and so is free of black points with probability about e−tu. Call a Voronoi cell V without black
points a green triangle; type 2 configurations are those associated with green triangles.

When estimating the frequencies of type 1 and type 2 edges, we may assume that

n−1/6 log n < t < (log n)−1

because edges that do not satisfy this restriction comprise an asymptotically negligible pro-
portion of both types of edge. Indeed, the expected number of edges of either type with
n−1/6 < t < n−1/6 log n can be bounded by

Cλn

∫ n−1/6 log n

n−1/6
λt

∫ ∞

4
√

8 log n

λse−st/240 ds dt = C′λ3n log log n → 0,

while the expected number of edges with (log n)−1 < t < 4
√

8 log n can be bounded by

Cλn

∫ 4
√

8 log n

(log n)−1
λt

∫ ∞

4
√

8 log n

λse−st/240 ds dt = C′′λ3n log log n → 0.
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The next step is to show that the edges of both types are well-approximated by Poisson processes,
so that, in particular, if we expect cj y edges of type j (j = 1, 2), e−c1y ≤ pλ(n) ≤ e−c2y . For
this we use the Stein–Chen method [1] in the following form (taken from [3]).

Proposition 1. Let ξ1, ξ2, . . . be a countable collection of independent random variables, and
Z1, Z2, . . . a countable collection of Bernoulli random variables, where Zi is a function of the
values of ξj for j ∈ Si . Suppose that E(Z) = μ, where Z = ∑

i Zi , and let

b1 =
∑

i,j : Si∩Sj �=∅

E(Zi)E(Zj ), b2 =
∑

i,j : Si∩Sj �=∅, i �=j

E(ZiZj ).

Then for all r , ∣∣∣∣P(Z = r) − e−μμr

r!
∣∣∣∣ ≤ 1 − e−μ

μ
(b1 + b2).

(Note that [1, Theorem 1] includes another term b3 that bounds dependency when Si ∩Sj = ∅,
but in our case, as in [3], b3 = 0.)

To make the collection of events countable, we proceed as in [3], dividing Bn up into a very
fine grid, and moving all points of P and P ′ to their nearest grid point. For fixed n and y, we
can make the number of both types of edge in this discrete version equal to the number in the
original with probability arbitrarily close to 1. The random variables ξi record whether or not
the ith grid point is occupied for each of P and P ′, and, for every grid point i, we introduce a
variable Zi indicating whether a type 1 (or type 2) edge exists with its midpoint at i. The set Si

can be taken to be the set of grid points within distance n1/6(log n)−1/2 of i.
The first thing to check is that, with high probability, the Zi really are Bernoulli random

variables. For a pair of, say, type 1 configurations to share a common edge, we require four
red points p, q, r , and s, such that q is within distance t of p, and then both r and s are
within distance 1/t of p, for t in the range specified above. But the expected number of such
configurations is certainly at most Cλ3n log n · λn1/3 → 0.

We are interested in the case where μ is a positive constant, so we must show that b1 and b2
tend to 0 as n → ∞. First, write b1 = ∑

i E(Zi)
∑

j : Si∩SJ �=∅
E(Zj ), and observe that the

inner sum here is bounded by μ times the proportion of those j for which Si ∩ Sj is nonempty.
This proportion equals the area of the region containing such j , which must be within a distance
2n1/6/

√
log n of i, divided by the total area, i.e. 4π(n1/6/

√
log n)2/n. Thus,

b1 =
∑

i

E(Zi)
∑

j : Si∩Sj �=∅

E(Zj ) ≤ μ · C′μ
n2/3 log n

→ 0.

Second, to have Zi = Zj = 1 for some pair Zi and Zj with Si∩Sj �= ∅, we require the presence
of five red points p, p′, q, q ′, and r , all within distance n1/6 of each other, such that p and q are
also within distance t , and r is within distance 1/t of p, for t in the range specified above. The
expected number of such configurations is certainly at most Cλ3n log n · λn1/3 · λn1/3 → 0,
so b2 → 0 also.

It remains to calculate c1 and c2. Suppose that the circumcenter of triangle pqr lies at height
between u and u + du above pq. This means that r must lie in an asymmetrical annulus of
area 2πu du. (Note that we have overcounted the number of edges pq by a factor of 2, which we
correct for by assuming that u is ‘above’ pq.) Under these circumstances, the rectangle R has
area (1 + o(1))ut , and will be blue with probability asymptotically (1 +ut/2)e−ut/2, while the
Voronoi cell V also has area (1+o(1))ut , and will be green with probability asymptotically e−ut .
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12 A. SARKAR

(All asymptotic statements and notation are as n → ∞.) Consequently, making the substitution
x = ut in both integrals, we have

E(|T1|) ∼ λn

∫ (log n)−1

n−1/6 log n

2πλt

∫ ∞

4
√

8 log n

2πλu

(
1 + ut

2

)
e−ut/2 du dt

= 4π2λ3n

∫ (log n)−1

n−1/6 log n

1

t
dt

∫ ∞

4t
√

8 log n

x

(
1 + x

2

)
e−x/2 dx

∼ 4π2λ3n

∫ (log n)−1

n−1/6 log n

1

t
dt

∫ ∞

0
x

(
1 + x

2

)
e−x/2 dx

∼ 8π2λ3n log n

= 8π2y

and

E(|T2|) ∼ λn

∫ (log n)−1

n−1/6 log n

2πλt

∫ ∞

4
√

8 log n

2πλue−ut du dt

= 4π2λ3n

∫ (log n)−1

n−1/6 log n

1

t
dt

∫ ∞

4t
√

8 log n

xe−x dx

∼ 4π2λ3n

∫ (log n)−1

n−1/6 log n

1

t
dt

∫ ∞

0
xe−x dx

∼ 2
3π2λ3n log n

= 2
3π2y,

completing the argument. �
The variable x in the above calculation can be interpreted as the amount by which a ‘generic’

configuration has been ‘stretched’; the frequencies of blue rectangles and green triangles
corresponding to a fixed value of t , with x ≤ ut ≤ x + dx, decrease exponentially in x.

As explained above, it does seem likely that there exists a single constant c such that if
λ3n log n = y then pλ(n) → e−cy . It might even be possible to provide an explicit expression
for c. Finally, it would be interesting to investigate the problem in higher dimensions.
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