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Laboratoire de Mathématiques UMR 6623,
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We compare various functional calculus properties of Ritt operators. We show the
existence of a Ritt operator T : X → X on some Banach space X with the following
property: T has a bounded H∞-functional calculus with respect to the unit disc D

(that is, T is polynomially bounded) but T does not have any bounded
H∞-functional calculus with respect to a Stolz domain of D with vertex at 1. Also we
show that for an R-Ritt operator the unconditional Ritt condition of Kalton and
Portal is equivalent to the existence of a bounded H∞-functional calculus with
respect to such a Stolz domain.

Keywords: Ritt operators; sectorial operators; functional calculus; R-boundedness

2010 Mathematics subject classification: Primary 47A60

1. Introduction

Ritt operators on Banach spaces have a specific H∞-functional calculus that was
formally introduced in [13]. This functional calculus is related to various classical
notions that play a role in the harmonic analysis of single operators, such as square
functions, maximal inequalities, multipliers and dilation properties (see, in particu-
lar, the above mentioned paper and [1,2,14]). The aim of the present paper is to com-
pare the H∞-functional calculus of Ritt operators with two closely related notions,
namely polynomial boundedness and the unconditional Ritt condition from [9].

Let D = {z ∈ C : |z| < 1} be the open unit disc of the complex field, let X be a
(complex) Banach space and recall that a bounded operator T : X → X is called
polynomially bounded if there exists a constant K � 0 such that

‖P (T )‖ � K sup{|P (z)| : z ∈ D}

for any polynomial P . We say that T is a Ritt operator provided that the spectrum
of T is included in D̄ and the set

{(λ − 1)R(λ, T ) : |λ| > 1} (1.1)

is bounded. (Here R(λ, T ) = (λ − T )−1 denotes the resolvent operator.) For any
γ ∈ (0, 1

2π), let Bγ be the open Stolz domain defined as the interior of the convex
hull of 1 and the disc D(0, sin γ) (see figure 1).
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Figure 1. The open Stolz domain.

It is well known that the spectrum of any Ritt operator T is included in the
closure B̄γ of one of these Stolz domains. Following [13], we say that T has a
bounded H∞(Bγ)-functional calculus if there is a constant K � 0 such that

‖P (T )‖ � K sup{|P (z)| : z ∈ Bγ} (1.2)

for any polynomial P . Since Bγ ⊂ D, it is plain that this property implies poly-
nomial boundedness. It was shown in [13] that the converse holds true on Hilbert
spaces. Our main result asserts that this does not remain true on all Banach spaces.
We shall exhibit a Banach space X and a Ritt operator T : X → X that is poly-
nomially bounded but has no bounded H∞(Bγ)-functional calculus. This will be
achieved in § 3 (see theorem 3.2). This example is obtained by first developing and
then exploiting a construction of Kalton concerning sectorial operators [8]. Section 2
is devoted to preliminary results and to the main features of Kalton’s example.

Following [9] we say that T satisfies the unconditional Ritt condition if there
exists a constant K � 0 such that∥∥∥∥ ∑

k�1

ak(T k − T k−1)
∥∥∥∥ � K sup{|ak| : k � 1} (1.3)

for any finite sequence (ak)k�1 of complex numbers. This property is stronger than
the Ritt condition [9, proposition 4.3] and it is easy to check that if T admits a
bounded H∞(Bγ)-functional calculus for some γ < 1

2π, then T satisfies the uncon-
ditional Ritt condition (see lemma 4.1). We do not know if the converse holds true.
However, we shall show in § 4 that if T is R-Ritt and satisfies the unconditional Ritt
condition, then it admits a bounded H∞(Bγ)-functional calculus for some γ < 1

2π.
As a consequence, we generalize [9, theorem 4.7] by showing that on a large class
of Banach spaces the unconditional Ritt condition is equivalent to certain square
function estimates for R-Ritt operators.

2. Sectorial operators and Kalton’s example

Let X be a Banach space and let A : D(A) → X be a closed operator with dense
domain D(A) ⊂ X. We let σ(A) denote the spectrum of A, and whenever λ belongs
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to the resolvent set C \ σ(A) we let R(λ, A) = (λ − A)−1 denote the corresponding
resolvent operator.

For any ω ∈ (0, π), we let Σω = {z ∈ C∗ : |arg(z)| < ω}. We also set Σ0 = (0,∞)
for convenience. We recall that, by definition, A is sectorial if there exists an angle
ω such that σ(A) ⊂ Σ̄ω and for any ν ∈ (ω, π) the set

{λR(λ, A) : λ ∈ C \ Σ̄ν} (2.1)

is bounded. The smallest ω ∈ [0, π) with this property is called the sectoriality
angle of A.

We shall need a few facts about H∞-functional calculus for sectorial operators,
which we now recall. For background and complements, we refer the reader to [5,
7, 11,15].

Let A be a sectorial operator with sectoriality angle ω � 0. One can naturally
define a bounded operator F (A) for any rational function F with nonpositive degree
and poles outside σ(A). Let φ � ω. The operator A is said to admit a bounded
H∞(Σφ)-functional calculus if there exists a constant K such that, for all functions
F as above,

‖F (A)‖ � K sup{|F (z)| : z ∈ Σφ}. (2.2)

In that case, if µ denotes the infimum of all angles φ for which such an estimate
holds, then A is said to admit a bounded H∞-functional calculus of type µ.

Note that the above definition makes sense even for φ = ω, which is important
for our purpose (see proposition 2.2). If φ > ω and A has dense range, it follows
from [11, proposition 2.10] that when the estimate (2.2) holds true on rational func-
tions the homomorphism F �→ F (A) naturally extends to a bounded operator on
H∞(Σφ), the Banach algebra of all bounded analytic functions on Σφ. In particular,
for s ∈ R, the image of the function z �→ zis under this homomorphism coincides
with the classical imaginary power Ais of A. These imaginary powers hence satisfy
the estimate

‖Ais‖ � Keφ|s|, s ∈ R,

when (2.2) holds true.
On a Hilbert space, a well-known result of McIntosh [15] asserts that if A is a

sectorial operator with sectoriality angle ω that admits bounded imaginary powers
or a bounded H∞(Σφ)-functional calculus for some φ > ω, then it has a bounded
H∞(Σφ)-functional calculus for any φ > ω. That is, its H∞-functional calculus
type coincides with its sectoriality angle.

However, on general Banach spaces, this property can fail. Indeed, in [8], Kalton
constructs, for any θ ∈ (0, π), a Banach space Xθ and a sectorial operator A on
Xθ with sectoriality angle 0, which admits a bounded H∞-functional calculus of
type θ.

The construction is as follows. On the classical space L2(R), consider the norms
‖ · ‖θ defined by

‖f‖2
θ =

∫
R

e−2θ|ξ||f̂(ξ)|2 dξ. (2.3)

Obviously, ‖·‖0 is the usual L2-norm and ‖·‖θ is a smaller norm. For any θ ∈ (0, π),
we let Hθ denote the completion of L2(R) for the norm ‖·‖θ; this is a Hilbert space.
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Let A be the multiplication operator on L2(R) defined by

Af(x) = e−xf(x).

In the following we shall keep the same notation to denote various extensions of A
on some spaces containing L2(R) as a dense subspace. Note that, for any φ > 0 and
any F ∈ H∞(Σφ), F (A) is the multiplication operator associated to x �→ F (e−x).

According to [8], A extends to a sectorial operator on Hθ with a bounded H∞-
functional calculus of type θ. This (non-trivial) fact follows from the following
observations. First, for any f ∈ L2(R), we have Aisf(x) = e−isxf(x). Hence,

Âisf(ξ) = f̂(ξ + s) (2.4)

for any s, ξ ∈ R. Second, using the definition of ‖ · ‖θ, this implies that

‖Ais‖Hθ→Hθ
= eθ|s|, s ∈ R. (2.5)

This equality implies, by the above mentioned result of McIntosh, that the operator
A on Hθ admits a bounded H∞(Σφ)-functional calculus for all φ > θ.

The next step is to construct a new completion Xθ of L2(R) on which A has
similar H∞-functional calculus properties but a ‘better’ sectoriality angle. We shall
point out some important elements of this construction. Consider a new norm on
L2(R) by letting

‖f‖Xθ
= sup

a∈R

‖fχ(−∞,a)‖θ. (2.6)

Then let Xθ be the completion of L2(R) for this norm. Clearly, for any f ∈ L2(R),
we have

‖f‖θ � ‖f‖Xθ
� ‖f‖0.

Thus, L2(R) ⊂ Xθ ⊂ Hθ with contractive embeddings. Note that, unlike Hθ, Xθ

is not a Hilbert space. Again A extends to a sectorial operator on Xθ. A key fact
is that, on this new space, the sectoriality angle of A is equal to 0. This is a
consequence of the following computation. For any f ∈ L2(R) and any λ ∈ C \ R+,

(λ − e−x)−1f(x) =
∫

R

λe−t

(λ − e−t)2
f(x)χ(−∞,t)(x) dt (2.7)

for any x ∈ R. If we let ψ = arg λ, this implies

‖λR(λ, A)f‖θ � ‖f‖Xθ

∫ ∞

0
|s − eiψ|−2 ds.

Applying this with fχ(−∞,a) instead of f , we deduce a uniform estimate

‖λR(λ, A)‖Xθ→Xθ
� Kψ,

which yields the desired sectoriality property.
If m ∈ L∞(R) is such that the multiplication operator f �→ mf is bounded on

Hθ with norm less than Cm, then the same holds true on Xθ, since

‖mf‖Xθ
= sup

a∈R

‖mfχ(−∞,a)‖θ � Cm‖f‖Xθ
.

Since F (A) is such a multiplication operator for any F ∈ H∞(Σφ), we derive the
following.
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Lemma 2.1. If A admits a bounded H∞(Σφ)-functional calculus on Hθ, then it
admits a bounded H∞(Σφ)-functional calculus on Xθ as well.

Finally, and this is the most difficult part of [8], it turns out that the imaginary
powers of A have the same norms on Xθ and on Hθ, namely

‖Ais‖Xθ→Xθ
= ‖Ais‖Hθ→Hθ

= eθ|s| (2.8)

for any s ∈ R. Combining this result with lemma 2.1, this implies that, on Xθ,
the operator A admits a bounded H∞(Σφ)-functional calculus for any φ > θ but
cannot have a bounded H∞(Σφ)-functional calculus for some φ < θ.

We finally consider the case φ = θ, which is not treated in [8] but is important
for our purpose. This requires a new ingredient, namely the next statement, which
is implicit in [12].

Proposition 2.2. Let A be a sectorial operator with dense range on some Hilbert
space H. Assume that A admits bounded imaginary powers and that, for some
θ ∈ (0, π), they satisfy an exact estimate ‖Ais‖ � eθ|s| for any s ∈ R. Then A has
a bounded H∞(Σθ)-functional calculus.

Proof. Let iU be the generator of the c0-semigroup (Ais)s�0. Our assumption
ensures that it satisfies both

‖es(iU−θ)‖ � 1 and ‖es(−iU−θ)‖ � 1

for any s � 0. This means that iU − θ and −iU − θ both generate contractive
semigroups on H. Thus, for all h ∈ D(U), one has

Re〈(θ + iU)h, h〉 � 0 and Re〈(θ − iU)h, h〉 � 0.

Hence, the numerical range of U lies in the closed band Ω = {z ∈ C : |Im z| � θ}.
By [6, theorem 1], this implies the existence of a constant K > 0 such that

‖G(U)‖ � K sup{|G(w)| : w ∈ Ω} (2.9)

for any rational function G bounded on Ω. The argument in [6] can be extended
to more general functions. It is observed in [12] that, in particular, it applies to
all functions G of the form G(w) = F (ew), where F is a rational function with
negative degree and poles off Σ̄θ, and in this case, G(U) = F (A). In this situation,
sup{|G(w)| : w ∈ Ω} coincides with sup{|F (z)| : z ∈ Σθ}. Hence, we deduce from
(2.9) that A admits a bounded H∞(Σθ)-functional calculus.

According to (2.5), the above proposition applies to Kalton’s operator A on
Hθ. Hence, the latter admits a bounded H∞(Σθ)-functional calculus. Applying
lemma 2.1, we deduce that the operator A constructed above on Xθ has a bounded
H∞(Σφ)-functional calculus for all φ � θ (not just for φ > θ).

3. Main result

Our main aim is to prove theorem 3.2. We first need to modify Kalton’s example
discussed in the previous section. Roughly speaking, we need a similar example with
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the additional property that the operator should be bounded in order to obtain a
more precise result.

We consider the restriction B of A on L2(R+). More explicitly, B : L2(R+) →
L2(R+) is the bounded operator defined by

Bf(x) = e−xf(x), f ∈ L2(R+).

Then we let H+
θ be the completion of L2(R+) for the norm ‖ · ‖θ defined by (2.3),

we let X+
θ be the completion of L2(R+) for the norm ‖ · ‖Xθ

defined by (2.6)
and we consider extensions of B to those spaces, as in § 2. Of course, X+

θ is a
closed subspace of Xθ and the operator B on X+

θ is the restriction of the operator
A on Xθ. Thus, for any φ ∈ (0, π) and any appropriate F ∈ H∞(Σφ), we have
F (B) = F (A)|X+

θ →X+
θ

, and hence

‖F (B)‖X+
θ →X+

θ
� ‖F (A)‖Xθ→Xθ

. (3.1)

Similar comments apply for Hθ and H+
θ .

Proposition 3.1. On the Banach space X+
θ , the operator B is sectorial, its sec-

toriality angle is equal to 0, its spectrum σ(B) lies in [0, 1], it admits a bounded
H∞(Σφ)-functional calculus for all φ � θ and

‖Bis‖X+
θ →X+

θ
= eθ|s|, s ∈ R. (3.2)

Proof. It is clear from (3.1) and the results established for A in § 2 that, on X+
θ , B

is sectorial with a sectoriality angle equal to 0, and it admits a bounded H∞(Σφ)-
functional calculus for all φ � θ.

To show the spectral inclusion σ(B) ⊂ [0, 1], consider λ ∈ C \ [0, 1]. As in (2.7),
we have

(λ − e−x)−1f(x) =
∫ ∞

0

e−t

(λ − e−t)2
f(x)χ(−∞,t)(x) dt

for any f ∈ L2(R+) and any x � 0. Note that, contrary to (2.7), integration is now
taken over (0,∞). We can therefore deduce that

‖(λ − B)−1f‖Xθ
� ‖f‖Xθ

∫ ∞

0

e−t

|λ − e−t|2 dt

for any f ∈ L2(R+), which ensures that λ − B is invertible on X+
θ .

It remains to prove (3.2). We shall establish it by appealing to (2.8) and by
showing that, for any s ∈ R,

‖Bis‖X+
θ →X+

θ
= ‖Ais‖Xθ→Xθ

.

Let us start with a simple observation. Let τa denote the translation operator
defined by τaf(x) = f(x − a). Then, for any f ∈ L2(R) and for any a ∈ R, we have

τ̂af(ξ) = e−iaξf̂(ξ) for any ξ ∈ R.

Looking at the definition (2.3), we deduce that

‖τaf‖θ = ‖f‖θ. (3.3)
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For any t ∈ R, we have χ(−∞,t)τaf = τa(χ(−∞,t−a)f). Hence, the above implies

‖τaf‖Xθ
= ‖f‖Xθ

. (3.4)

Now take a function f in L2(R) with bounded support included in some compact
interval [−M, M ]. Given any t ∈ R, we have

‖χ(−∞,t)A
isf‖θ = ‖τM (χ(−∞,t)A

isf)‖θ

= ‖χ(−∞,t+M)τM (Aisf)‖θ

� ‖τM (Aisf)‖Xθ

by (3.3). Furthermore, Aisf(x) = e−isxf(x); hence,

[τM (Aisf)](x) = eisMAis(τMf)(x) for any real x.

Thus,
‖τM (Aisf)‖Xθ

= ‖Ais(τMf)‖Xθ
.

Since τMf has support in R+, the above equality leads to

‖τM (Aisf)‖Xθ
� ‖Bis‖X+

θ →X+
θ

‖τMf‖Xθ
.

According to (3.4) and the preceding inequalities, we deduce that

‖χ(−∞,t)A
isf‖θ � ‖Bis‖X+

θ →X+
θ

‖f‖Xθ
.

Taking the supremum over t ∈ R, one obtains ‖Aisf‖Xθ
� ‖Bis‖X+

θ →X+
θ

‖f‖Xθ
.

Hence,
‖Ais‖Xθ→Xθ

� ‖Bis‖X+
θ →X+

θ
.

The reverse inequality is clear (see (3.1)).

We now turn to Ritt operators. Recall the definition of a bounded H∞(Bγ)-
functional calculus from § 1 (see also [13]).

Theorem 3.2. There exists a Ritt operator T on a Banach space X that is polyno-
mially bounded but does not admit a bounded H∞(Bγ)-functional calculus for any
γ < 1

2π.

Proof. We take for X the Banach space X+
π/2 considered above and we let B : X →

X be the operator considered in proposition 3.1. Then we let

T = (I − B)(I + B)−1.

We note that z �→ (1 − z)/(1 + z) maps Σπ/2 onto D and [0, 1] into itself. Thus,

σ(T ) ⊂ [0, 1].

To show that T is a Ritt operator, we consider λ ∈ C with |λ| > 1. One can write
λ = (1 − z)/(1 + z) with z /∈ Σ̄π/2. It is easy to check that

(λ − 1)(λ − T )−1 = z(z − B)−1(I + B).
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Since the sectoriality angle of B is 0, the set {z(z − B)−1 : z /∈ Σ̄π/2} is bounded.
Since B is bounded, we deduce that the set defined in (1.1) is bounded.

The fact that B has a bounded H∞(Σπ/2)-functional calculus on X implies that
T is polynomially bounded. Indeed, if P is a polynomial, then P (T ) = F (B) for
the rational function F defined by

F (z) = P

(
1 − z

1 + z

)
.

Hence, for some constant K, we have

‖P (T )‖ = ‖f(B)‖ � K sup{|F (z)| : z ∈ Σπ/2},

and, moreover,

sup{|F (z)| : z ∈ Σπ/2} = sup{|P (w)| : w ∈ D}.

Now assume that T has a bounded H∞(Bγ)-functional calculus for some γ < 1
2π.

Consider the auxiliary operator

C = I − T = 2B(I + B)−1.

By [13, proposition 4.1], C is a sectorial operator that admits a bounded H∞(Σθ)
for some θ ∈ (0, 1

2π). Thus, there exists a constant K > 0 such that

‖C is‖ � Keθ|s|, s ∈ R.

Furthermore, σ(I +B) ⊂ [1, 2]. Thus, I +B is bounded and invertible, and hence it
admits a bounded H∞-functional calculus of any type. Thus, for any θ′ > 0 there
exists K ′ > 0 such that

‖(I + B)is‖ � K ′eθ′|s|.

Since B and C commute, we have

Bis = 2−isC is(I + B)is.

Hence,
‖Bis‖ � KK ′e(θ+θ′)|s|

for any s ∈ R. Applying this with θ′ small enough so that θ + θ′ < 1
2π, this

contradicts (3.2) on X+
π/2.

Remark 3.3. A Ritt operator T on Banach space X is called R-Ritt if the bounded
set in (1.1) is actually R-bounded. This notion was introduced in [3], in relation to
the study of discrete maximal regularity (see also [4,9,13,16], in which background
and references on R-boundedness can also be found).

The existence of Ritt operators that are not R-Ritt goes back to Portal [16].
According to [13, proposition 7.6], a polynomially bounded R-Ritt operator has
a bounded H∞(Bγ)-functional calculus for some γ < 1

2π. Thus, the operator T
constructed in theorem 3.2 is a Ritt operator that is not R-Ritt. This example is
of a different nature to those in [16].
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4. Unconditional Ritt operators

We now investigate the links between the unconditional Ritt condition and the H∞-
functional calculus. It is observed in [9] that the unconditional Ritt condition (1.3)
is equivalent to the existence of a constant K > 0 such that∑

k�1

|〈(T k − T k−1)x, y〉| � K‖x‖‖y‖, x ∈ X, y ∈ X∗. (4.1)

Moreover, it is stronger than the Ritt property. Condition (4.1) should be regarded
as a discrete analogue of the weak quadratic estimate (or L1-condition) introduced
in [5, § 4]. We shall now show that the unconditional Ritt condition is weaker than
the existence of a bounded H∞(Bγ)-functional calculus for some γ < 1

2π.

Lemma 4.1. If T admits a bounded H∞(Bγ)-functional calculus for some γ < 1
2π,

then T satisfies the unconditional Ritt condition.

Proof. Assume that T admits a bounded H∞(Bγ)-functional calculus for some
γ < 1

2π. Consider a finite sequence (ak)k�1. Since∑
k�1

ak(T k − T k−1) = P (T )

for the polynomial P defined by

P (z) =
∑
k�1

ak(zk − zk−1),

(1.2) implies that∥∥∥∥ ∑
k�1

ak(T k − T k−1)
∥∥∥∥ � K sup{|P (z)| : z ∈ Bγ}.

Now we have

|P (z)| � sup
k�1

|ak|
∑
k�1

|zk − zk−1|

= sup
k�1

|ak|
(

|z − 1|
1 − |z|

)
.

Since z �→ |z − 1|/(1 − |z|) is bounded on Bγ , this implies the unconditional Ritt
condition (1.3).

We now show a partial converse. See remark 3.3 for the notion of the R-Ritt
operator. We shall use the companion notion of the R-sectorial operator. We recall
that a sectorial operator A on Banach space is called R-sectorial if there exists an
angle ω such that σ(A) ⊂ Σ̄ω and for any ν ∈ (ω, π) the set (2.1) is R-bounded. In
accordance with terminology in § 2, the smallest ω ∈ [0, π) with this property will
be called the R-sectoriality angle of A. We refer the reader to [3, 4, 10, 13] and the
references therein for information on R-sectoriality.
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Theorem 4.2. Let T be an R-Ritt operator that satisfies the unconditional Ritt
condition. It then admits a bounded H∞(Bγ)-functional calculus for some γ < 1

2π.

Proof. We consider the operator

C = I − T.

According to [3, theorem 1.1] and its proof, the assumption that T is R-Ritt implies
that C is R-sectorial, with an R-sectoriality angle less than 1

2π. On the other hand,
the unconditional Ritt condition (1.3) for T implies the so-called L1-condition for C:∫ ∞

0
|〈Ce−tCx, y〉|dt

t
� K‖x‖‖y‖, x ∈ X, y ∈ X∗.

Indeed, for any t > 0,

Ce−tC = (I − T )e−tetT =
∑
n�0

(I − T )e−t t
nTn

n!
.

Thus, for any x ∈ X and y ∈ X∗, we have

〈Ce−tCx, y〉 =
∑
n�0

e−t t
n

n!
〈(I − T )Tnx, y〉.

This implies, using (4.1), that∫ ∞

0
|〈Ce−tCx, y〉|dt

t
�

∑
n�0

1
n!

∫ ∞

0
|〈(I − T )Tnx, y〉|e−ttn−1 dt

=
∑
n�0

|〈(I − T )Tnx, y〉|

� K‖x‖‖y‖.

Now, by the results of [5, § 4], the L1-condition implies that C admits a bounded
H∞(Σθ)-functional calculus for all θ > 1

2π. Since C is R-sectorial with an R-
sectoriality angle less than 1

2π, it follows from [10, proposition 5.1] that C actually
admits a bounded H∞(Σθ)-functional calculus for some θ < 1

2π. By [13, proposi-
tion 4.1], this is equivalent to the fact that T has a bounded H∞(Bγ)-functional
calculus for some γ < 1

2π.

It is shown in [9, theorem 4.7] that when X is a Hilbert space the unconditional
Ritt condition is equivalent to certain square function estimates. We can now extend
that result to Lp-spaces. In the next statement, we let p′ = p/(p − 1) denote the
conjugate number of p.

Corollary 4.3. Let Ω be a measure space, let 1 < p < ∞ and let T : Lp(Ω) →
Lp(Ω) be a power-bounded operator. The following assertions are equivalent.

(i) T is R-Ritt and satisfies the unconditional Ritt condition.
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(ii) There exists a constant C > 0 such that∥∥∥∥
( ∞∑

k=1

k|T k(x) − T k−1(x)|2
)1/2∥∥∥∥

p

� C‖x‖ (4.2)

for any x ∈ Lp(Ω) and∥∥∥∥
( ∞∑

k=1

k|T ∗k(y) − T ∗(k−1)(y)|2
)1/2∥∥∥∥

p′
� C‖y‖ (4.3)

for any y ∈ Lp′
(Ω).

Proof. If the square function estimates in (ii) hold true, then T is an R-Ritt operator
by [13, theorem 5.3]. Furthermore, T has a bounded H∞(Bγ)-functional calculus
for some γ < 1

2π by [13, theorem 1.1]. Hence, lemma 4.1 ensures that T satisfies the
unconditional Ritt condition. The converse assertion that (i) implies (ii) is obtained
by combining theorem 4.2 and [13, theorem 1.1].

It is clear from [13] that corollary 4.3 also holds on reflexive Banach lattices with
finite cotype. Further generalizations hold true on more Banach spaces, using the
abstract square functions introduced and discussed in [13], to which we refer the
reader for more information. Combining the results from [13] with theorem 4.2,
one obtains that, when X has finite cotype and T : X → X is an R-Ritt operator,
T satisfies the unconditional Ritt condition if and only if T and T ∗ admit square
function estimates.
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