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The lift and drag forces acting on a small spherical particle in a single wall-bounded
linear shear flow are examined via numerical computation. The effects of shear rate are
isolated from those of slip by setting the particle velocity equal to the local fluid velocity
(zero slip), and examining the resulting hydrodynamic forces as a function of separation
distance. In contrast to much of the previous numerical literature, low shear Reynolds
numbers are considered (107 < Re, < 107'). This shear rate range is relevant when
dealing with particulate flows within small channels, for example particle migration in
microfluidic devices being used or developed for the biotech industry. We demonstrate
a strong dependence of both the lift and drag forces on shear rate. Building on previous
theoretical Re,, < 1 studies, a wall-shear-based zero-slip lift correlation is proposed that
is applicable when the wall lies both within the inner and outer regions of the disturbed
flow. Similarly, we validate an improved wall-shear-based zero-slip drag correlation that
more accurately captures the drag force when the particle is close to, but not touching, the
wall. Application of the new correlations to predict the movement of a force-free particle
shows that the examined shear-based lift force is as important as the previously examined
slip-based lift force, highlighting the need to accurately account for shear when predicting
the near-wall movement of force-free particles.

Key words: particle/fluid flow, microfluidics, suspensions

1. Introduction

Particles moving in a sheared flow exhibit cross-stream migration and cluster at different
equilibrium distances across channels (Segre & Silberberg 1962). In the absence of
inter-particle collisions (i.e. a dilute suspension), this clustering is primarily a result of
hydrodynamic lift forces that cause particles to migrate in a direction normal to the flow.
Lift forces can be important in (for example) cancer-detecting and cell-sorting applications
used in novel microfluidic devices and for flow cytometry (Di Carlo et al. 2009). In the
context of blood flow, lift forces may aid in the separation of platelets from red blood
cells, causing the formation of a cell-free layer (CFL) adjacent to blood vessel walls. CFL
development is crucial for blood clot formation, as the platelet concentration is increased in
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the CFL, enhancing the haemostatic coagulation mechanisms required to repair damaged
vessel walls (Leiderman & Fogelson 2011).

Hydrodynamic lift forces are inertial in origin, and hence reduce to zero for rigid
particles in the Stokes (low Reynolds number) limit (Bretherton 1962). At finite Reynolds
numbers and in unbounded linear flows, rigid particles experience lift when moving
relative to the undisturbed fluid velocity (i.e. at a finite slip velocity) either when there
is finite shear within the fluid, or particle rotation relative to the fluid (Rubinow &
Keller 1961; Saffman 1965). In bounded flows (i.e. near a wall), particles moving at
finite Reynolds numbers experience an additional lift force even in the absence of slip.
Additionally, the drag force, which is often much higher in magnitude than the lift force,
is also affected by the presence of a wall, causing neutrally buoyant particles moving at
small but finite Reynolds numbers tangential to a wall to lag the fluid (Goldman, Cox &
Brenner 1967b). Few studies have analysed the lift and drag forces acting on a particle due
to shear and/or rotation near a wall when there is no particle slip, however, knowledge of
these forces is required to model the cross-stream migration of neutrally buoyant particles,
relevant to applications including those described above. Hence the motivation for this
study.

The lift force acting on a rigid sphere was first examined by Saffman (1965), who
considered a buoyant particle moving at a finite slip velocity in an unbounded linear shear
flow. The model considered the inertial effects of the far field disturbed flow on the lift
force, at low slip and shear Reynolds numbers (Rey;, < 1, Re, < 1), where

2
Ugip | A a
Reyy = | ;”' . Re, = VT (1.1a,b)

Vv

and u;,, a, v and y are the particle slip velocity, particle radius, fluid kinematic viscosity
and fluid shear rate, respectively. These Reynolds numbers are defined based on slip and
shear magnitudes. Unlike shear-free flows, in which the Stokes length scale (Ls = v/|ug;,|)
is used to separate the inner and outer regions, an additional length scale known as
the Saffman length scale (Lg = +/v/|y|) is considered for linear shear flows. Generally,
the boundary of the inner and outer regions in a linear shear flow field is located at
min(Lg, Lg). Saffman’s lift is an ‘outer region’ model that solves the velocity field in the
region far away from the particle where both viscous and inertial effects are significant.
Specifically, an Oseen-type equation is solved via a matched asymptotic expansion method
and the flow disturbance due to the particle is determined by treating the particle as a
point force. This model neglects the significance of viscous effects in the ‘inner region’
closer to the particle. In addition to the low Reynolds number condition, Saffman’s lift
model is valid only when the inertial effects due to shear rate are much higher than the
inertial effects generated by slip velocity (e = ,/|Re, |/Reg;, > 1 or equivalently Ls <
Lg). Asmolov (1990) and McLaughlin (1991) independently relaxed this constraint on €
by presenting an unbounded lift model for comparable inertial effects (,/|Re, | ~ Rey;,)
that reduces to Saffman’s result when € — oo. The above unbounded lift models reduce
to zero if either Reg;, or Re,, is zero.

Particle rotation also affects the forces experienced by a particle. A force-free particle
in an unbounded shear flow rotates at a rate corresponding to a zero torque condition
and hence, experiences a rotational lift force (Rubinow & Keller 1961). However, in a
linear shear flow, Saffman (1965) illustrated that the lift force due to rotation is less by an
order of magnitude than that due to the slip-shear of a freely rotating sphere translating
with a small slip. Thus, most unbounded lift models only consider a non-rotating particle
(Asmolov 1990; McLaughlin 1991).
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Present study

- Slip or no-slip - Slip - No-slip

FIGURE 1. Analytical lift force models available for linear shear flows illustrating the range of
applicability based on dimensionless wall distance (//a) and on ‘slip’ and ‘no-slip’ conditions.
The lift coefficient of ‘slip” models scales with Reg;, and Re,, whereas the lift coefficient of

‘no-slip” models scales only with Re,, . "Models bounded by two walls.

In addition to the slip-shear and rotation effects, the presence of a wall near a particle
also affects the hydrodynamic forces experienced by that particle. These wall-induced
inertial forces have been discussed in a number of ‘bounded flow’ studies. Figure 1
summarises the available analytical lift models for both these bounded and unbounded
flows. As illustrated, in bounded flow models the walls can reside in either the inner or
outer regions of the disturbed flow surrounding the particle.

Most theoretical wall-bounded lift models require the wall to lie within the inner
region, [ < min(Lg, Lg), where [ is the distance between the particle centre and the wall.
Additionally, these models require Rey;,, Re,, < 1. Inner region models are applicable for
particles with either zero or finite slip velocities. Most early inner region studies use the
term ‘neutrally buoyant’ to refer to particles moving with zero slip and ‘buoyant’ to refer
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to particles moving with a finite slip. However, in reality, neutrally buoyant particles in
a linear shear flow experience a finite slip very close to a wall (//a ~ 1), caused by the
wall-shear-induced drag acting on the particle (a subject of the present study). Hence, the
terms ‘neutrally buoyant’ and ‘zero slip’ (or ‘buoyant’ and ‘finite slip’) are not strictly
equivalent. Nevertheless, for the conditions considered in these early inner region studies,
the slip decays rapidly to zero as the distance between the particle and the wall increases
(Goldman et al. 1967b). Given that these early models are deduced for the condition
[/a > 1, their interchangeable use of the terms ‘zero slip’ and ‘neutrally buoyant’ is
justified. More generally, however, a neutrally buoyant particle is not necessarily moving
at precisely the fluid velocity, and the terms ‘zero slip” and ‘neutrally buoyant’ are not
equivalent. In the remainder of the study we avoid using the terms ‘neutrally buoyant’” and
‘buoyant’ to describe particle slip.

Cox & Brenner (1968) were the first to obtain an implicit expression for the forces
induced on arbitrary shaped particles by a wall lying in the inner region. This model
considered zero-slip and finite-slip particles. Simplifying this model, Cox & Hsu (1977)
derived a closure expression for the migration velocity (u,,;,) of rigid spherical particles
in single wall-bounded flow. The equivalent lift force was also calculated using Stokes
law. The model is valid only when the separation distance is large compared to the sphere
radius (//a > 1), with the equation for the force having a leading-order term proportional
to //a. Using the method of reflections, Ho & Leal (1974) explicitly calculated the lift force
acting on a freely rotating, zero-slip particle bounded by two flat walls for both Couette and
Poiseuille flows at low Reynolds numbers. This inner region study accounted for the effects
of both walls and the flow curvature present in Poiseuille flow. For Couette flow the model
predicted that particles migrate towards the channel centre due to a wall-shear lift force that
is greatest near the walls but zero at the channel centre. The predicted particle migration
in Couette flow agrees substantially with the experimental observations of Halow & Wills
(1970). Later, Vasseur & Cox (1976) extended the theoretical work of Cox & Hsu (1977)
to analyse the migration velocity of spherical particles in linear flows bounded by two flat
plates, with both plates residing in the inner region of the particle. The predicted migration
velocities of Vasseur & Cox (1976) for zero-slip particles agreed well with the results of
Ho & Leal (1974) in the channel centre, but deviated significantly in the vicinity of the
wall. As explained in Vasseur & Cox (1976), this deviation is due to poor convergence of
the numerical computation in the Ho & Leal (1974) solution, particularly when the sphere
is close to a wall. The same model predictions of Vasseur & Cox (1976) agreed well with
the asymptotic behaviour suggested by the single wall Cox & Hsu (1977) model when the
particle is near one of the walls.

Several other inner region studies (Leighton & Acrivos 1985; Cherukat & McLaughlin
1994; Krishnan & Leighton 1995) have performed lift force analyses when the particle
is almost in contact with the wall (//a = 1). In contrast to other inner region studies
where the particle is usually treated as a point force, these studies consider higher-order
contributions to the flow disturbances induced by the particle, accounting for the finite
size of the particle. The limiting case of a stationary particle touching the wall (Leighton
& Acrivos 1985) and a force-free and freely rotating particle almost in contact with a wall
(Krishnan & Leighton 1995) in a linear shear flow were studied using lubrication analysis
to predict asymptotic lift coefficient values. Accounting for the finite size of the particle,
the lift force variation with wall distance was analysed by Cherukat & McLaughlin
(1994), down to a minimum separation distance of //a = 1.1. The extrapolated results
for a particle touching the wall agreed well with latter studies (Leighton & Acrivos 1985;
Krishnan & Leighton 1995) for both fixed and force-free cases. More recently, Magnaudet,
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Takagi & Legendre (2003) derived inner region solutions for a spherical bubble and a rigid
particle moving freely near a wall and proposed lift correlations valid for I/a 2 1.

In all the inner region studies, the lift force on both freely rotating and non-rotating
particles is obtained by coupling the two flow disturbances that originate from particle
slip and fluid shear, the stokeslet and stresslet, respectively, in a nonlinear manner. These
inner region lift models, strictly valid for Reg;,, Re, < 1, present the force as

F
F; = e = CL,IRe2 + sgn(y*)CroRe, Rey;, + CL.3R€2 (1.2)
e y

slip?

where y* = ya/uy;,, and the three lift coefficients (Cy i, C; 2, Cy 3) are functions of a/I.
A positive (negative) sign for y* indicates a leading (lagging) particle in a positive shear
flow or a lagging (leading) particle in a negative shear flow. Here, C; ; is associated with
the force in the absence of slip (Rey;, = 0), and the first term on the right-hand side of
(1.2) originates from the disturbance induced by the presence of the wall in a shear flow
field. Similarly, C, 5 is associated with the force in the absence of shear (Re, = 0), and
the last term in the same equation is due to the stokeslet generated from slip velocities
in a quiescent fluid next to a wall. The remaining coefficient, C; ,, captures remaining
variations in the presence of both the slip and shear, particularly when slip and shear are
of the same order of magnitude. Therefore the force given by the second term depends
on both slip velocity and shear rate. The first and last terms in (1.2) produce forces that
are directed into the fluid, resulting in positive lift. The lift force due to the second term
depends on both the slip and shear rate directions, with the direction of this force captured
by the sign of y*.

As the inner region models require a particle to be close to a wall, they cannot be
used to predict unbounded results as //a becomes large. Instead, a few authors have
investigated the effect of walls lying in outer region of the disturbed flow, that is,
under conditions where Re,,, Rey;, < 1. These outer region wall-bounded models use the
method of matched asymptotic expansions to solve the singular perturbation problem by
treating the particle as a point force. Unlike inner region models, outer region models
correctly predict the unbounded results as [/L; — oco. Outer region studies analysing
a particle sedimenting in a stagnant fluid (Re, = 0) have presented lift correlations as
functions of //Lg (Vasseur & Cox 1977; Takemura & Magnaudet 2003; Takemura 2004;
Shi & Rzehak 2020). Similarly, linear shear flows bounded by a single wall were examined
by Drew (1988) and Asmolov (1989) for the condition € >> 1. Later, Asmolov (1990) and
McLaughlin (1993) extended their previous analysis to single wall-bounded linear flows
valid for all €. The latter two studies considered a non-rotating, buoyant spherical particle
with a finite slip velocity and the calculated lift coefficients were tabulated/plotted as a
function of //Ls and €. Using a similar approach, Asmolov (1999) evaluated the lift force
coefficient for a freely rotating zero-slip particle in a linear shear flow bounded by a single
wall located in the outer region. Recently, Takemura, Magnaudet & Dimitrakopoulos
(2009) obtained a semi-empirical lift coefficient model based on the McLaughlin results
which recovers the correct asymptotic behaviours when the particle is located both near
and far from the wall, for € > 1 and € <« 1 conditions. However, as this correlation only
captures slip-shear-based lift, it predicts zero lift for a zero-slip particle.

In this study we are particularly interested in the lift force on a zero-slip particle.
When the wall is located close to the particle (in the inner region of the disturbed flow
field), the lift force can be evaluated from (1.2) by using Rey;, = 0. Noting that F; is
non-dimensionalised by pa‘y?(= Re,*11>/p), we see that the net lift force is determined
by the first lift coefficient (C; ;). The available formulations for C;; are summarised
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Cherukat & McLaughlin (1995)
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Cr1
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a a\?2 a\3
2.0069 + 1.0575 (7) —2.4007 (7) +13174 (?)
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Comments

Non-rotating, I/a > 1
Freely rotating, //a > 1
Non-rotating, [/a 2 1

Freely rotating, [/a 2 1

Non-rotating, //a = 1

Freely rotating, [/a = 1

Freely rotating, [/a 2 1

TABLE 1. Wall-shear lift coefficients (Cz, 1) of inner region studies.
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in table 1. The listed inner region models are valid only for low shear and slip Reynolds
numbers (Re,, Rey;, < 1), with the lift coefficients (C, ;) asymptoting to a finite value
of ~1.9 for a non-rotating sphere and ~1.8 for a freely rotating sphere as the particle
approaches the wall (Cox & Hsu 1977; Cherukat & McLaughlin 1994; Krishnan &
Leighton 1995). Conversely, when [/a becomes large, although the inner region models
predict a finite lift coefficient (C. ;) with increasing separation distance (for finite but
low Re, ), as the wall moves from the inner to outer region the results become invalid.
Conversely, most models that are valid when the wall resides in the outer region (Asmolov
1989, 1990; McLaughlin 1993; Takemura et al. 2009) predict a zero lift force for a no-slip
particle as the force scales with Re;, in addition to Re,, . As an exception, Asmolov (1999)
derived an outer region wall-bounded lift model for zero-slip particles that gives a lift force
that scales with Re, and varies as a function of //L. Nevertheless, no analytical model is
able to predict the lift force on a zero-slip particle across both the inner and outer regions
of the flow, as a function of the shear rate within the fluid.

Drag, a force present in both Stokes and inertial flows, is equally as important as the lift
force in predicting the migration of particles, as drag can induce slip, and in the presence of
wall slip alone (or slip plus shear) can induce a lift force. In unbounded fluid flow, drag is
only a function of the slip velocity of the particle, however, the presence of a wall increases
this slip-induced drag such that it is highest when the particle is in contact with the wall,
and decays rapidly to the unbounded value as the separation distance increases. Analyses
of wall-bounded slip-induced drag have been conducted for both Stokes (Goldman, Cox
& Brenner 1967a; Goldman et al. 1967b; Happel & Brenner 1981; Magnaudet et al. 2003)
and inertial flows (Vasseur & Cox 1977). For Stokes flows, Faxen (1922) and Happel &
Brenner (1981) deduced a wall correction for the slip-based drag resulting in higher-order
terms (in separation distance, O((a/l)°)) being included in the force expansion. Using a
method of matched asymptotic expansion, Vasseur & Cox (1977) suggested a slip-based
inertial correction term for Faxen’s inner region drag model, as well as an outer region
slip-based drag model that gives the force as a function of //Lg for zero-shear flows.

For linear shear flows, Magnaudet e al. (2003) presented an additional contribution
to the drag force due to wall shear (independent of slip) giving the net drag force on a
translating spherical particle with a wall in the inner region as

. _ Fop
Fiy = 22 = —sgn(y)Cp, Re, — sgn(uy;,)Cp 2 Reyp- (1.10)

e
Here, Cp, is a function of only (a/l) and Cp, is a function of both (a/l) and Reg;,.
The first term in (1.10) represents the drag force due to shear (independent of slip), and is
relevant for zero-slip particles in linear shear flows. Again note that (1.10) is given for a
flow parallel to a flat wall. For low shear rates Magnaudet et al. (2003) gives Cp; as

Cpi = gn (‘7’)2 [1 n % (%)} . (1.11)

This Cp,; reduces rapidly to zero away from the wall (Magnaudet et al. 2003). The second
term Cp, in (1.10) accounts for the drag acting on the particle due to slip and asymptotes
to the low Reynolds number Stokes drag value far from the wall. In comparison to the
slip-based drag coefficient Cp,, only a few studies have examined the behaviour of the
inertial shear-based coefficient Cp ;. Note that a force-free (F}, = 0) particle in a linear
shear flow lags the fluid flow near the wall due to the negative slip generated by the wall
shear drag, as explained by Goldman et al. (1967b) under Stokes flow conditions and by
Magnaudet et al. (2003) for finite inertial flow conditions.
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In contrast to the above theoretical works, most numerical studies that calculate
the forces acting on a wall-bounded particle are for intermediate Reynolds numbers
Re,, Rey;, ~ 0.5—3 x 10%. Among these, simulations on translating particles performed
in quiescent flows are used to evaluate the effect of separation distance on both slip-based
lift and drag correlations (Zeng, Balachandar & Fischer 2005). Several other direct
numerical studies examining hydrodynamic forces acting on a particle in a linear shear
flow and with finite slip closer to the wall propose inertial corrections that are functions
of both shear rate and slip velocity (Zeng et al. 2009; Lee & Balachandar 2010). To
perform inner region simulations, satisfying Re,, Rey;, < 1 conditions, one must employ
large computational domains with high mesh refinement near the particle surface in
order to capture the small inertial forces. These simulations require high computational
power. To our knowledge no numerical results have been presented for small but finite
inertial conditions Re, or Regy;, < O(1), possibly due to these computational limitations,
particularly for wall-bounded flows under zero-slip conditions.

The main objective of this work is to extend the aforementioned zero-slip Re, < 1
results for the lift and drag on a particle to low but finite Reynolds numbers using results
from a large number of well resolved numerical simulations. A rigid spherical particle
moving at the same velocity as the fluid (u,;, = 0) in a linear shear flow tangential to
a flat wall is considered. We study non-rotating as well as freely rotating spheres, for
shear Reynolds numbers in the range of 1073-~10~!. We express our numerical results
as new zero-slip lift and drag coefficient correlations, expressed as per (1.2) and (1.11)
respectively, but now defined across the inner, outer and unbounded regions. In § 4, we
apply the new zero-slip drag and lift correlations together with existing slip-based drag
and lift correlations to analyse the motion of force-free and freely rotating particles near a
wall in a linear shear flow.

2. Numerical simulations
2.1. Problem specification

A rigid sphere of radius a is suspended in a linear shear flow with the origin of the
Cartesian coordinate system located at the centre of the sphere (figure 2a). The coordinate
unit vectors are e,, e, and e,. A no-slip wall is placed at distance (0, —/, 0) away from
sphere centre. Outer boundaries are located at large distances L(>> [) away from the sphere
centre to minimise any secondary boundary effects. For this study //a is varied from 1.2
to 9.5 to obtain the lift and drag force variation as a function of particle distance from the
wall.

To obtain the forces generated due to wall and shear effects in the absence of relative
motion between the particle and the fluid, the particle slip velocity u,;, is explicitly set to
zero: That is,

Ugip = Up — u)‘(y = 0) = 0’ (21)

where u, = u,e, is the particle velocity and u; is the undisturbed fluid velocity defined as
up =y (y+De. 22)

Note that under this formulation the particle is constrained to translate only in the x
direction with particle velocity u, = y|.

To determine the forces acting on the particle, we solve the steady-state Navier—Stokes
equations in a frame of reference that moves with the particle (Batchelor 1967).
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(a) it (b)

FIGURE 2. (a) Schematic of a translating sphere of radius @ moving at velocity u, in a
wall-bounded linear shear flow. (b) The domain mesh for a particle located at [/a = 4.

Specifically, we solve

V.pu =0, (2.3)
V.(ov'u +0)=0, (2.4)

where ¥’ = u — u, and u is the local fluid velocity. The boundary conditions used in the
moving frame of reference are

y(y+De, —u, y=-+o00; y=—1I x,z==200,
u = (2.5)
® X F, |r| = a,

where r is a radial displacement vector pointing from the sphere centre to the particle
surface and w is the angular rotation of the particle.

The fluid is assumed to be Newtonian with a dynamic viscosity u and density p. The
total stress tensor (o6 = pI + t) (Bird, Stewart & Lightfoot (2002) sign convention), is
computed using the fluid pressure, p and viscous stress tensor, T = —u (V' + Vu'™).
The forces acting on the particle are evaluated by integrating the total stress contributions
around the particle surface S

ﬂ:—/maw. (2.6)
S

Here, n(= 7) is a unit normal vector directed out of the particle. The drag (Fp = F, - e,)
and lift (F;, = F, - e,) are defined as the fluid forces acting on the sphere in +x and +y
directions, respectively. Similarly the net torque T, acting on the particle is evaluated using

T,,=—/rxa-ndS. 2.7)
s

In this study, two cases are considered: in the first, the particle is constrained from rotating,
whereas, in the second, the particle is allowed to freely rotate about the z axis, at an angular
velocity w,. For the non-rotating (first) case all components of the rotation  are explicitly
set to zero, whereas for the (second) freely rotating case the z component of the net torque
T, is explicitly set to zero and the z component of w (@ - e, = w),) is solved for as an
unknown (with other components of @ set to zero).
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Unless stated otherwise, the results in the remainder of this study are presented in
non-dimensional form (indicated by an asterisk) using a length scale a, velocity scale
ya and force scale u?/p.

2.2. Numerical approach

The system of equations is solved using the finite volume package arb (Harvie 2010)
over a non-uniform body-fitted structured mesh that is generated with gmsh (Geuzaine
& Remacle 2009) (figure 2b). The sphere surface is resolved with N, mesh points on each
curved side length of a cubed sphere. This results in 6(N, — 1)* cells on the sphere surface;
An (N, — 1) number of inflation layers with an o geometric progression ratio around the
sphere are used to capture gradients in velocity occurring near the particle wall. Outer
boundaries, except the bottom wall located at y* = —[*, are placed at a distance L* from
the sphere centre in all directions. To resolve the far field of the domain (excluding the
inflation layers), N, points are used with a geometric progression 8 expanding towards
the domain boundaries. For larger separation distances, [* > 1.2, (N,, — 1) layers are
introduced in the gap between the bounding box and the bottom wall, with a non-uniform
progression of 8 producing more refinement near the sphere and the bottom wall. The total
cell count in the mesh is N,.

The non-dimensional lift force magnitudes measured in this study are significantly
low, |Fj| ~ 107°—10"", and hence require a high resolution mesh around the sphere to
accurately determine the lift coefficient. Further, the lift force is highly sensitive to the
cell distribution around the particle, requiring perfect symmetry of the mesh in the y
direction to correctly ensure that the lift reduces to zero as inertial effects are reduced.
For this reason the symmetry of the sphere surface mesh and its surrounding cells in
the bounding box are enforced by employing a ‘Lego’-type construction (figure 9 in the
appendix) whereby groups of mesh ‘blocks’ are copied, translated, rotated and joined to
construct the full computational domain. For example, a single block mesh (B1) is copied
and then rotated about the x = 0 and y = 0 axes to create identically discretised blocks
that surround the sphere (B1,, B1, and B1,,). Similarly, the upper and lower mesh domain
blocks are built using two separate block mesh entities, B2 and B3 as illustrated in figure 9,
which are later rotated about x = 0 axis. This mesh configuration ensures that we compute
the zero lift force on a slip free particle under Stokes conditions down to F; ~ 1075, The
shear and slip Reynolds numbers considered in this study are sufficiently small to assume
flow symmetry about the z = 0 plane. Hence a final domain size of [—L, L], [L, —!] and
[L, 0] is used for simulations.

2.2.1. Domain size dependency

The domain size is first tested to determine a suitable choice of L* such that the lift and
drag forces are negligibly affected by this parameter. We perform a series of simulations
where L* is increased from 20 to 100. Simulations are performed for seven selected shear
Reynolds numbers; Re, = (1,2,4,6,8) x 1073, 107 and 10~'; and five selected wall
distances; I* = 1.2, 2,4, 6 and 9.5; at Rey;, = 0. The number of mesh points in the domain
(N,) is systematically increased with L* while maintaining a constant progression ratio (8)
and a constant minimum cell thickness in the outer domain.

Results for the lift and drag coefficients, C;; and Cp; (formerly defined in §3.1)
respectively, for the minimum and maximum separation distances (/* = 1.2 and 9.5,
respectively) and minimum and maximum shear Reynolds numbers (Re, = 10~* and
10~!) are shown in table 2. Also shown are the percentage differences (§) for these
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coefficients relative to the corresponding values obtained using the maximum domain
size (L*). We use & as an indicator of the coefficient accuracy, noting the limitations of
this measure as we approach the maximum domain size.

For Re, > 102, a domain size of L* = 50 is sufficient to capture all the inertial effects
responsible for the lift forces, with é less than 1 % for all separation distances (1.2 <
I* <9.5) under both non-rotating and freely rotating conditions (additional supporting
data not shown). In contrast, for low shear Reynolds numbers, for example the conditions
of Re, = 1072, non-rotating (freely rotating) particles and a domain size of L* = 50, an
increase of § from ~0.96 % (0.64 %) to ~12 % (9.15 %) is observed as the separation
distance increases from [* = 1.2 to 9.5. For smaller separation distances (i.e. [* = 1.2),
even at low Re, , smaller values for § are expected as wall effects dominate outer boundary
effects in this near-to-wall regime (Ekanayake er al. 2018). However, when the distance
to the wall is large and Re, low, the lift force is quite sensitive to the location of the
outer boundary. Noting that the boundary layer thickness around a translating sphere in
an unbounded environment is inversely proportional to ,/Re,;, (Dandy & Dwyer 1990),
it follows that larger domain sizes are required to minimise outer boundary effects when
Re, is small (Dandy & Dwyer 1990). Therefore, for the simulations where Re, < 1072,
a larger domain size of L* = 100 is used in this study, compared to the domain size of
L* = 50 used for the higher Re, situations. Using this strategy we believe the accuracy of
all presented lift coefficients to be better than 1 %, with the possible exception of values
calculated using the combination of the lowest Re,, and highest /* values considered.

For drag, the accuracy of the drag coefficient calculation is largely a function of wall
separation distance. With the selected domain size of L* = 50 that is used for the Re, >
1072 results, § < 1% only for I* < 4 (additional data not shown). Further away from the
wall, a notable dependency on domain size is found, with a § variation of ~5 % (2 %) to
24 % (12 %) for non-rotating (freely rotating) conditions as /* increases from 6 to 9.5 for
Re, = 107", Results for Re, = 10~ are similar. Also at these larger separation distances,
specifically at /* = 8 and 9.5, small positive drag coefficients are observed for —Cp ; when
Re, = 107" (noting that results for /* = 4, 6, 8 are not presented in the table). The small
positive drag coefficients and larger § values found at large separation distances are caused
by small errors in F7}, | which are amplified when expressed as a relative drag coefficient
error, because as the separation distance increases, both the coefficients and the force
approach zero. Note, however, that while the drag coefficient errors are higher at the largest
separation distances, an 11 % change in domain size from L* = 90 to 100 results in less
than a 1% change in drag coefficient (for Re, = 107%), suggesting that the results are
close to independent of domain size. In summary, while the errors in the calculated drag
coefficients are larger than for lift, the largest errors occur under conditions in which the
drag force is low. Under conditions in which the drag force is appreciable, the error in the
drag force coefficient is similar to that reported for the lift force coefficient.

2.2.2. Mesh dependency

The effect of mesh resolution within the boundary layers surrounding the sphere is
examined in this section. The number of inflation layers around the sphere and the number
of cells on the sphere surface were adjusted by varying N, while maintaining the same
progression rate « in the bounding box. Concurrently, N, was also changed, maintaining
Ny = N, for all cases.

Figure 3 shows the resulting lift coefficients and non-dimensionalised lift forces for four
mesh refinement levels around the sphere and for the conditions of [* = 1.2, a domain
size of L* = 50 and a range of shear Reynolds numbers. As Fj ; reduces to zero, Cyp
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Domain Non-rotating Freely rotating
Lift Drag Lift Drag
I* Re,, L* Ny Cri 8% —Cp.1 8% Cra 8% —Cp.1 5%

1.2 0.001 20 124 672 1.8644 6.46 —8.4178 0.54 1.7101 4.33 —7.9135 0.35
40 149710 1.9597 1.68 —8.4576 0.07 1.7674 1.12 —7.9373 0.05
50 158976 1.9740 0.96  —8.4608 0.04 1.7759 0.64  —7.9392 0.02
80 178 960 1.9901 0.16 —8.4634 0.00 1.7866 0.11 —7.9407 0.00
100 189702 1.9933 — —8.4638 — 1.7874 — —7.9409 —
0.1 20 124672 1.6215 0.23 —8.3313 0.36 1.5453 0.16 —7.8553 0.22
40 149710 1.6188 0.06  —8.3570 0.05 1.5435 0.04 —7.8703 0.03
50 158976 1.6183 0.04  —8.3591 0.03 1.5432 0.02 —7.8715 0.02
80 178 960 1.6179 0.01 —8.3610 0.00 1.5429 0.00 —7.8726 0.00
100 189702 1.6178 — —8.3614 — 1.5429 — —7.8728 —
9.5 0.001 20 186112  0.8483 5599  —-0.0223 66.42 08752 50.86 —0.0396  41.27
40 223210 1.5593 19.12 —0.0513 22.74 1.5107 15.18 —0.0580 14.02
50 236736 1.6964 12.00  —0.0577 13.15 1.6180 9.15 —0.0620 8.08
80 265600 1.8814 2.41 —0.0649 2.27 1.7503 1.73 —0.0665 1.39
90 265 600 1.9091 097  —0.0658 0.94 1.7690 0.68  —0.0670 0.60
100 280962 1.9278 — —0.0664 — 1.7810 — —0.0674 —
0.1 20 186 112 0.2091 18.88 0.0159 4233 0.2600 14.79 —0.0101 21.84
40 223210  0.2542 1.39 0.0154 37.30  0.3026 0.83 —0.0107 17.35
50 236736 0.2569 0.33 0.0139 24.06  0.3045 0.20 —0.0114 11.56
80 265600  0.2579 0.05 0.0118 497  0.3052 0.03 —0.0126 2.50
90 265600  0.2578 0.02 0.0115 225  0.3053 0.05 —0.0128 1.28
100 280962  0.2578 — 0.0112 — 0.3051 — —0.0129 —

TABLE 2. Effect of domain size on drag and lift coefficients for maximum and minimum separation distances (/* = 1.2 and 9.5) and shear Reynolds
number (Re, = 1073 and 107!) at Regjp = 0. § is the percentage error in coefficient, relative to results calculated using the largest domain size
(L* = 100).
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FIGURE 3. Effect of mesh resolution around the sphere on Cy, | for a non-rotating particle at
I* =1.2.N,, Ng =15 (—8-); 20 (=—); 25 (——); 30 (-e-).

asymptotes to different finite values as Re, approaches zero. A considerable variation
of C;,, with mesh refinement is observed, particularly at low Re, , however, the relative
change in C; | decreases as N, and N, increase. Indeed, increasing N, and N, from 25 to
30 only changes C; by a small amount, but concurrently increases the total cell count
N, from 158 976 to 310 500, significantly increasing computational memory requirements
(~ 1.2 Tb). Noting that for low Re, the force will be negligible anyway, and that across the
entire Re, range the difference between the N,, N; = 25 and N,,, N; = 30 results is small
anyway, we employed the mesh with N,,, N; = 25 for the remainder of the study.

3. Zero-slip force correlations

In this section, we present results for the lift force (§3.2), and then for the drag force
(§ 3.3), using the force definitions given in § 3.1.

3.1. New lift and drag model definitions

We define the lift force on a particle experiencing both slip and shear within a linear shear
flow as

F; =Cy, lRe + sgn(y*)CraRe, Reg;, + Cy, 3Remp, 3.1a)
which may also be written in the alternative form
Fi=F ,+F,+F ;. (3.1b)

The form chosen for our model is the same as used in the discussed previous inner region
studies (Cox & Hsu 1977; Cherukat & McLaughlin 1994), but we now apply this model
over the entire inner, outer and unbounded regions. Further, we provide unambiguous
definitions for the three coefficients that allow the (3.1) to be a valid representation of the
lift force at any separation distance. Namely, the force term F} | = C;, lRe is defined by
the force in a linear shear flow in the absence of slip. The corresponding force coefficient
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C..; (the main focus of this study) depends only on shear rate and wall distance. The last
term Fy 5 = CL,3Reflip provides the lift in a quiescent flow in the absence of shear, and the
force coefficient C; 5 is only a function of slip velocity and wall distance. The remaining
term Fy , = sgn(y*)Cp2Re, Reg;, captures the remaining lift contributions in the presence
of both slip and shear. Hence, the corresponding force coefficient, C;, , depends upon slip,
shear and wall distance.

In the same spirit, the net drag acting on a particle with a finite slip in a linear shear
flow, is defined as

F}, = —sgn(y)Cp,1Re, — sgn(uy;,)CpRey;p, (3.2a)
which may also be written in the alternative form
Fp=Fp, +Fp,. (3.2b)

Again, while the form of this equation comes from previous work (Magnaudet et al. 2003),
our definition of the coefficients ensures that it provides an exact expression for the drag
force across all separation distances. Specifically, the force term F}, | = —sgn(y)Cy 1 Re,
in (3.2) is defined as the drag force in a linear shear flow in the absence of slip. The
corresponding force coefficient Cp 4, valid for all separation distances, is only a function
of shear and wall distance. The term F},, = —sgn(ug;,)Cp 2Rey;, in (3.2) captures the
remaining drag contributions in the presence of both the slip and shear. The force
coefficient Cp ,, is a function of slip, shear and wall distance.

In the present study, our primary aim is to investigate forces on a particle under zero-slip
conditions, and hence provide correlations for the lift and drag force coefficients, C; ; and
Cp. respectively. However, in § 4 we do use the full form of (3.1) and (3.2) when applying
our new correlations to analyse the movement of force-free particles translating near a
wall.

3.2. Lift force

In figure 4, lift coefficients C;; computed for both non-rotating and a freely rotating
particles are plotted as a function of separation distance (/*). The numerical results are
compared with the available inner region correlations listed in table 1 that are valid
for Re, <1 and Reg;, = 0. For Re, < 102, the numerically computed lift forces in
the region close to the wall (/* < 2) agree reasonably well with the asymptotic values
predicted by the analytical solutions derived for low Reynolds numbers (Cherukat &
McLaughlin 1994; Krishnan & Leighton 1995). Specifically, the lowest shear Reynolds
number simulation conducted at the smallest distance to the wall (I* = 1.2) gives a Cp;
of 1.993 (1.787) for a non-rotating (freely rotating) particle, which is only ~1.3 % (5.2 %)
higher than the asymptotic value of 1.9680 (1.6988) predicted for a non-rotating (freely
rotating) particle at [* = 1 (Krishnan & Leighton 1995). The computed lift coefficients
also agree very well with the low Reynolds number theoretical values of 1.9834 (1.7854)
for non-rotating (freely rotating) particles at [* = 1.2, as predicted by Cherukat &
McLaughlin (1994). However, as illustrated in figure 4(b), for a freely rotating particle
the Magnaudet et al. (2003) lift correlation predicts a larger coefficient of 2.81 at [* = 1
which is inconsistent with the numerical data and the available theories in this region. As
explained in Shi & Rzehak (2020), this over-prediction of the lift coefficient near the wall
is due to the neglect of the higher-order separation distance terms (O(1//*) > 2) that are
significant when representing lift in the vicinity of the wall. At large /* the Magnaudet
et al. (2003) lift correlation gives C; ; = 1.8, a result that is consistent with the large [*
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FIGURE 4. Lift coefficient (Cr ;) for different shear Reynolds number as a function of
non-dimensional separation distance (I*) for (a) non-rotating and (b) freely rotating spheres.
Simulations: inner region (-o), outer region (-e-). Analytical (1.3), (1.4) (green) from Cox
& Hsu (1977), (1.5), (1.6) (red) from Cherukat & McLaughlin (1994), (1.7), (1.8) (blue) from
Krishnan & Leighton (1995), (1.9) (pink) from Magnaudet er al. (2003). Present numerical
fit: (3.3) (grey). Present correlation results for Re,, = 0 are coincident with the Cherukat &
McLaughlin (1994, 1995) results and not shown on this figure.

value from the Cox & Hsu (1977) lift correlation. However, like all inner region-based
models, this large separation limit only has practical relevance for very small Reynolds
numbers.

As Re, increases and inertial effects become more significant, the computed lift
coefficients deviate significantly from the available theoretical values. Even when the
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particle is far away from the wall but still within the inner region (e.g. results for
Re, < 1072), the computed lift force coefficient decreases with shear rate, in contrast to
the available inner region models which give coefficients that are independent of Re, . For
example, the Cherukat & McLaughlin (1994) model gives a C; ; of 2.0069 (1.8065) for
a non-rotating (freely rotating) particle as [* — oo. Eventually, with increasing shear rate
and increasing separation distance, the walls move to the outer region (I*/Ls* > 1) and,
unsurprisingly, the inner region-based models do not capture the lift coefficient variation
well at all. Hence the available inner region-based theoretical lift models overestimate the
lift coefficient for all but the lowest shear Reynolds numbers, for particles both near and
(especially) further away from the wall.

The discrepancy between simulation and theory arises for the inner region-based models
because they use a first-order expansion for the disturbance velocity that cannot satisfy the
boundary conditions at infinity (Cherukat & McLaughlin 1994). For many applications
relevant to cell sorting in microfluidics, or to understand mechanical phenomena like
particle deposition and fouling at Re,, S O(1), this is problematic, and a single equation
for the wall-induced lift force valid across both the inner and outer regions would
be beneficial. Therefore, as well as providing a shear-based inertial correction for the
analytical inner region model of Cherukat & McLaughlin (1994), we here propose a model
that simultaneously captures the outer region behaviour.

In this vein, we first plot the computed lift force coefficients against the separation
distance, now normalised using Saffman’s length scale (L;). Recall that this length scale
defines the boundary between the inner and outer regions in this problem. These results,
shown in figure 5, indicate that the outer region data (I*/L} > 1) collapse to a single
curve for the selected range of shear Reynolds numbers, similar to the results given for a
freely rotating particle at Re,, < 1 presented by Asmolov (1999). The difference between a
non-rotating and freely rotating lift coefficient value is less significant in the outer region,
particularly at [* /L, > 1. Utilising this outer region behaviour, together with the existing
low Re,, inner region Cherukat & McLaughlin (1994) results, the following lift correlation
is proposed for particles moving near a wall under zero-slip conditions:

Cr1 = fi(Rey) Couer(I" /L") + f2(Rey,) Cinner(1/1), (3.3)
where
fiRe,) = Ay exp (LuRe,) + Ay exp (AiRe, ); (3.4)
Couer(F/ L) = A5 exp [46 (/L) + A, (I /Lg)] : (3.5)
f(Rey) = 1+ /Rey; (3.6)
Cinner(1/1) = As(1/T°) + A9 (1/1)* + Ayo(1/1F)°. (3.7)

Coefficients for the above functions are listed in table 3 for both non-rotating and freely
rotating particles.

The functions used in (3.3) represent different limits. Within the inner region, the first
term of (3.3) rapidly reduces to zero as both Re, — 0 and [* — 1, leaving the second
part of the equation to be dominant. The function Cj,,., consists of the non-zero degree
polynomial terms of the Cherukat & McLaughlin (1994) model. Here, f,(Re, ), which is
independent of wall distance, captures inertial effects when the particle is close to the wall.
Atl* =1 and Re, = 0, the product of f; (Re, ) C,.r reduces to the constant value of 2.0069
(1.8065), consistent with the Cherukat & McLaughlin (1994) result for a non-rotating
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FIGURE 5. Lift coefficient (Cr 1) for shear Reynolds number values of 1, 2, 4, 6, 8, 10, 20,
40, 60, 80 and 100; x 1073 (the arrow indicates the direction of increasing Re,, ) as a function
of separation distance non-dimensionalised by the Saffman length scale (I*/Lg*) for a (a)
non-rotating and (b) freely rotating particle. Simulations: inner region (--o-), outer region (--®-).
Present numerical fit: (3.5) (blue). Asmolov (1999) results for outer region (pink).

(freely rotating) particle. With increasing shear rate and wall distance, the first term of the
(3.3) becomes dominant and captures the outer region variation. This term gives zero Cy, ;
as [* — oo.

Figure 4 shows that the proposed model captures the simulated lift coefficients
accurately over most of the Re, range and separation distances considered in this study.
For low shear rates (Re, ~ 107%), the model performs well, slightly underestimating the
simulated results with a maximum deviation of 1.6 % (3.2 %) for a non-rotating (freely
rotating) particle at distances far from the wall. For high shear rates (Re, ~ 107"), the
model generally overestimates the simulated results, with a maximum deviation of 41 %
(21 %) for a non-rotating particle (freely rotating particle) occurring when the particle
is furthest from the wall, that is at /* =9.5. This deviation rapidly reduces down to
4.5% (5.6 %) for a non-rotating (freely rotating) particle when the separation distance


https://doi.org/10.1017/jfm.2020.662

https://doi.org/10.1017/jfm.2020.662 Published online by Cambridge University Press

904 A6-18 N. I. K. Ekanayake and others

Coefficient Non-rotating Freely rotating

A 0.9300 0.9250
A2 —0.8800 —0.3500
A3 —0.0300 —0.0135
A4 —1000 —7000
As 2.231 1.982
As —0.1054 —0.1150
A7 —0.3859 —0.2771
Ag? 1.0575 0.89934
A9? —2.4007 —1.9610
A10¢ 1.3174 1.0216

TaBLE 3. Coefficients for (3.3) for a non-rotating and freely rotating particle.
“Coefficients from Cherukat & McLaughlin (1994) and Cherukat & McLaughlin (1995).

decreases to [* = 6, showing that even for the relatively high Re, = 10!, the proposed
model still accurately captures the lift force variation provided that the particle is within
a few diameters of the wall. Note that as discussed in §2.2.1, we expect the numerical
data to have the highest errors under the same high Re, and [* conditions that generate
the largest deviations between correlation and simulation — conditions that also result in
low lift forces. Hence, the proposed model captures the variation of lift coefficient with
Re,, and separation distance reasonably well across all conditions considered, but is most
accurate when the resulting lift force is most significant.

3.3. Drag force

The drag force on a spherical particle moving parallel to a wall and in the absence of slip is
considered in this section. Under these conditions the presence of the wall (combined with
the positive shear rate) produces a force on the particle that is in the opposite direction to
the flow, and which rapidly decays as the separation distance between the sphere and wall
increases. Note that this wall-shear drag causes force-free particles to lag the flow when
moving in close proximity to a wall.

Figure 6 shows the variation in drag coefficient Cp; for shear Reynolds numbers in
the range Re, = 10°—10~" as a function of wall separation distance. Results for both
non-rotating and freely rotating conditions are shown.

Figure 6(a) is specific to non-rotating particles. The highest drag coefficient magnitudes
are observed close to the wall, with a rapid decrease occurring with increasing wall
distance or increasing Re,, . For the largest separation considered (/* = 9.5), small positive
—Cp, values of O(107%)—0(1072) are reported for Re, = 107!, 8 x 1072 as illustrated in
the inset of figure 6(a). As discussed in § 2.2.1, these small positive drag coefficients are
more likely to be due to the limited domain size employed in the simulations (numerical
accuracy), rather than being physically meaningful.

Figure 6(b) shows the drag coefficient for a freely rotating particle as a function of wall
distance. The highest negative values for —Cp | are obtained when the particle is close
to the wall, reducing to zero with increasing wall distance, in a manner similar to that
observed for a non-rotating particle. The highest reported —Cp ; values are ~6 % less than
the values reported for a non-rotating particle. The simulated drag coefficient results are
also compared with the inner region analytical drag correlation of Magnaudet et al. (2003)
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FIGURE 6. Magnitude of drag force coefficient in the absence of slip (Cp.1) (a) for a
non-rotating (b) freely rotating particle. The arrow indicates the direction of increasing Re,, .
Simulations: inner region (--o--), outer region (- ). Analytical prediction of Magnaudet et al.
(2003) (1.11) (pink). Present numerical fits for Re,, < 1: (3.8) (blue) and finite Re,, (3.9) (grey).

for a freely rotating particle at low Re,, < 1. The computed drag coefficients are in good
agreement with the correlation values for Reynolds numbers Re, < 1072 and for wall
distances [* > 1.6. However, as the separation distance decreases (I* — 1), the theoretical
predictions of (1.11) underestimate the drag, resulting in a difference of ~32 % at [* = 1.2.
This could again be due to the neglect of higher-order terms in the analytical solution,
(1.11). In support of this, in the same study by Magnaudet ez al. (2003), but for zero-shear
flows (Re, = 0), the effect of higher-order /* terms on Cp, was examined in the context
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of small separation distances (I* < 3), and it was found that a ~ 60 % difference in this
drag coefficient occurred when using O((1/1*)?) over O((1/I*)°) terms in their analysis,
for I* — 1. Similar higher-order terms for the Cp ; drag coefficient examined in our study
are not available in the literature, however.

The freely rotating drag coefficients shown in figure 6(b) also display a dependence
on shear rate, as well as separation distance. Generally studies of force-free particles and
fixed particles give inertial corrections for Cp; and Cp , in terms of the slip velocity (Rey;,)
(Kurose & Komori 1999; Magnaudet et al. 2003). However, in the present zero-slip context
these inertial corrections are not relevant, and instead an inertial correction based on Re,,
is required.

Hence, to accurately predict the variation of Cp; in (3.2) over the shear rates and
separation distances considered in this study, we propose a new correlation that is
partially based on existing inner region results (Magnaudet et al. 2003), but includes two
modifications.

Firstly, to capture the drag force variation close to the wall at Re,, < 1, (1.11) is modified
as

c bl 2 12 (1Y o501 (2 ’ 334 ( 3+415 Ly’
bir— g \ [ 16 \ I+ ' I ’ I ’ I ’

(3.8)

where Cb,1 consists of the terms given by Magnaudet ez al. (2003) in (1.11), combined
with three new higher-order terms in separation distance derived through a numerical
fitting to our simulation results for Re,, < 1. The proposed correlation accurately captures
the computed drag coefficient down to a minimum separation distance of /* = 1.2. When
the particle is in contact with the wall (I* = 1), the current model predicts a finite drag
coefficient —Cp | of —17.392 (compared to a value of —9.204 from (1.11)). Whilst the
proposed model performs better than the Magnaudet et al. (2003) correlation at [* = 1.2,
for the limiting case of [* = 1 there is no asymptotic value available for Cp ; upon which
to validate the new expression.

Secondly, we present an inertial correction to the proposed low Re, equation (3.2), based
on fits to our data, that predicts the variation of Cp; with finite Re, . The final wall-shear
drag correlation can be written

Cp.1 = C},, + (3.001Re; — 1.025Re,)), (3.9)

where Cj, | is given via (3.8). Although, the new inertial correction accurately captures
the shear dependence of Cp | across all considered separations at low Re,, far away from
the wall (I* > 8) the coefficient is underestimated for Re,, > 6 x 10~2. Note, however, that
these are the same conditions that result in the poorest accuracy of the computed Cp ;, as
previously discussed.

4. Application of force correlations

In this section, we analyse the movement of a force-free particle in a linear shear flow
using the proposed force correlations. This is accomplished in two parts. First, we use the
new drag correlation to find the slip velocity of a particle moving near a wall. Second, this
is combined with the new lift correlation to find the lift force acting on the particle and
migration velocity of the particle, accounting for both shear and slip effects.
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In order to validate these analytical predictions, a small number of additional
simulations were performed for force-free (zero-drag) and torque-free particles. For these
simulations the net drag acting on the particle in the flow direction F), - e, was explicitly
set to zero and the slip velocity ug;, - e, in the flow direction was solved as an unknown.

4.1. Slip velocity

The slip velocity of a force-free particle is first calculated by setting the net drag force
(Fp*) in (3.2) to zero. The resulting non-dimensional velocity u;‘,l.p(: Regi,/Re,) is

. Cp,i
Ugy = ——CD2. 4.1)

The present numerical drag correlation for Cp ; provided by (3.9) is used to evaluate the
slip velocity for three finite shear Reynolds numbers (Re, = 107", 1072, 107?) as well
as Re, = 0. In these calculations the Faxen drag correlation given by Happel & Brenner
(1981) (with higher-order terms up to O((1/1*)°)) is used to evaluate Cp». Note that this
correlation has been derived for the inner region of quiescent flows (Re,, = 0) at low slip
Reynolds numbers (Rey;, < 1), and yet we are applying it in this section for finite slip
Reynolds number in the presence of shear, and across all three regions (inner, outer and
unbounded regions). However, although this Faxen drag model is derived for Reg;, < 1,
Ambari, Gauthier & Guyon (1984) and Takemura (2004) experimentally showed that this
correlation is valid for Rey;, < 0.1 in quiescent flows, partly justifying the use of this
correlation for the slip Reynolds numbers considered here. Further, in unbounded linear
shear flows, Kurose & Komori (1999) showed that Cp, is nearly independent of shear
rate for Rey;,, < 5 and O(Re, /Rey;,) < 1. It is also worth mentioning that in quiescent
flows, Lg has been used to define the boundary of the inner and outer regions. However, for
non-zero-shear flows (as in this case), the inner and outer region boundary is defined based
on the min(Lg, L;) condition. For this specific case, Lg decays rapidly with separation
distance, resulting Lg > L for all the separation distances and all Re,, values considered
in this study. Hence, L is chosen to define the inner and outer regions. However, with
respect to Lg (as defined for quiescent flows), the walls are well within the inner region,
which may again partly justify the use of Cp, when L; < [ < Ls. Hence, while we are
applying this Cp , correlation outside its range of validity (i.e. across all three regions and
for Re, #0and Rey;, # 0), evidence suggests that the associated error should not be large.

The calculated ug,, values are plotted as a function of separation distance in figure 7(a).

The velocities are compared with: (i) our numerical predictions; (ii) numerical predictions
by Fischer & Rosenberger (1987) based on a boundary element method that included
small inertial effects (Re, < 1); (iii) theoretical/numerical predictions by Goldman et al.
(1967D) applicable to Stokes flow; (iv) slip velocities again calculated using (4.1), but with
Cp.1 evaluated using the Magnaudet et al. (2003) correlation of (1.11).

Consistent with earlier studies (Goldman et al. 1967b; Takemura & Magnaudet 2009),
the negative slip velocities obtained confirm that a force-free particle translating in a linear
shear flow lags the fluid when in close proximity to a wall. The present correlation, (3.9),
used for evaluating Cp; predicts a slip velocity that is consistent with the all available
numerical results down to reasonably small separation distances (* ~ 1.1). In comparison
the results obtained using the Magnaudet et al. (2003) correlation ((1.11)) diverge from the
numerical results at [* ~ 1.5. At small separation distances (/* < 1.1) the two numerical
results diverge. The predicted Stokes flow velocities from Goldman et al. (1967b) exhibit
large negative values when the particle is almost in contact with the wall (I* ~ 1), whereas
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FIGURE 7. Analysis of a force-free particle translating in a linear shear flow near a wall. (a)
Non-dimensional slip velocity when Cp 1 is evaluated using the present numerical correlation,
(3.9) for Re, = 0 (black), Re,, = 1072 (pink), Re, = 102 (green), Re,, = 107! (red). Dashed
lines indicate results evaluated outside the strict range in which the new correlation has been
validated. Slip velocity when Cp ; is evaluated using the Magnaudet et al. (2003) correlation,
(1.11) for Re, = 0 (blue); Fischer & Rosenberger (1987) numerical results for Re,, < 1 (0);
Goldman et al. (1967b) numerical results for Stokes flow (e); present force-free numerical results
(coloured hollow circles). (b—d) Different contributions to the net lift force acting on the particle,
F ’L 0 F /L,2 and F ’L’3 representing shear, slip-shear and slip effects, respectively. (e) Net lift force
non-dimensionalised by shear Reynolds number when F ’L 1or 18 €valuated using (4.3) for Re), = 0
(black), Re, = 1073 (pink), Re, = 10=2 (green), Re,, = 10! (red); Fischer & Rosenberger
(1987) numerical results for Re,, < 1 (x); present force-free numerical results (coloured hollow
circles).


https://doi.org/10.1017/jfm.2020.662

https://doi.org/10.1017/jfm.2020.662 Published online by Cambridge University Press

Lift and drag near a wall 904 A6-23

the few results of Fischer & Rosenberger (1987) in this region, that are valid for small
but finite inertial effects, show smaller slip velocities. The difference between Fischer
& Rosenberger (1987) and Goldman et al. (1967b) may be due to insufficient numerical
accuracy of a Gauss—Legendre product formula used by Fischer & Rosenberger (1987), as
suggested by Shi & Rzehak (2020). We make no further comment on this difference, but
note that the extrapolation of our correlation (indicted by the dashed lines in figure 7a)
appears to be more consistent with the Fischer & Rosenberger (1987) results at [* = 1.05
than those of Goldman et al. (1967b).

Slip velocity curves for the selected range of Reynolds numbers suggest that the shear
rate has only a small effect (~ O(1072)) on uflip for all separation distances. As expected,
predicted slip velocities reduce to small values with increasing separation distance for the
low Re, = 1073, 107 cases. However, for Re, = 107" the effect of inertia is relatively
more important and the slip velocity further reduces, becoming approximately zero. In
fact, small positive slip velocities are predicted under the conditions Re, = 10" and
I* > 9.2. However, as mentioned in § 3.3, numerical inaccuracy of the fitted correlation,
(3.9), at large separation distances for high Re,, is more likely to be the main reason
that such positive slip velocities are obtained, rather than being physically meaningful.
Significantly, the slip velocities are very small in this high separation distance region for
all Re, considered.

4.2. Lift force and migration velocity

By using the slip velocity calculated via (4.1) and the lift formulation given in (3.1), the
lift force on a force-free particle experiencing both slip and shear within a linear shear
flow can be written

Fi—c + Cpou®, + Cpsu®, 2 4.2)
Re2 — VL1 L2%1ip L3%0ip » .
Y

which may also be written in the alternative form

F/L,mr = F/L,l + F,L.Z + F/Lﬁs' 4.3)

Again, note that the form of (4.3) is valid for all three regions (inner, outer, unbounded),
provided that the lift coefficients used are valid in all three regions. Here, however, lift
force coefficients for C; , and C; 5 are evaluated using the Cherukat & McLaughlin (1995)
inner region-based correlations as there are no correlations available for these coefficients
which span all three regions. C;,; is evaluated using our freely rotating particle correlation,
as given by (3.3), which is valid across all three regions. Here F; (= F} /Re)z,) is the net
lift force non-dimensionalised by shear Reynolds number.

The lift contributions, as well as the net lift force, are plotted in figure 7 for Re, < 1
and Re, = 107%, 1072, 10~". The numerical lift results obtained from our force-free and
torque-free particles simulations are also given in figure 7(e). For separation distances
I* Z 2, the force contributions illustrate that F; | > F; , > F, ; for a force-free particle.
This indicates that the wall-shear lift contribution, C; , either dominates or is similar to
the other forces in this high force region, with the consequence that an accurate inertial
correction for Cy | is required to accurately predict the net lift force acting on a force-free
particle. Figure 7(e) also shows that the estimated Fj ,, using our correlations agrees
well with the low Re, results of Fischer & Rosenberger (1987) (using Re, = 0 in our
correlation), but deviates significantly from these results as the shear Reynolds number
and separation distance increase. Most of our numerical results agree reasonably well with
(4.3) predictions for the selected separation distances and shear Reynolds number ranges.
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The present numerical results clearly exhibit the inertial dependence predicted by new lift
model, and thus reinforces the importance of the Reynolds number correction to Cy ;.

Interestingly, the inset of figure 7(e) illustrates that the net lift force, F;, while increasing
with shear rate, is relatively independent of separation distance, except at the highest Re,,
considered. When Re,, is low, the net lift (and the lift coefficient) does not reduce to zero
until well into the outer region, which for low Re, is a large distance from the wall: for
Re, = 102 and 103, the transition from the inner to the outer region (LE;) occurs at I* =
10 and 31.62, respectively. Therefore, a clear lift dependence on the separation distance
is not visible in figure 7(e) as the maximum /* indicated is 10. Nevertheless, a strong lift
dependence on the separation distance is visible for the largest particle shear Reynolds
number (Re,, = 10~!) as the transition from the inner to outer region occurs at [* = 3.16,
well within the region of analysis.

The minor deviations between numerical and correlation results observed in the
predicted lift force for the highest Re, could be a result of two factors. Firstly, as discussed
in § 3.2, at high Re, our freely rotating C; ; correlation slightly overestimates the lift force,
particularly far from the wall. Secondly, there are errors in using the inner region-based
correlations for C; ; and Cy 5 in our analysis. The main draw back is the overestimation of
the slip-based lift forces when the particle is far from the wall. This happens as a result of
C,., and C; 5 reducing to the outer boundary values of the inner region, instead of reducing
to the unbounded values as I — oo. Additionally, the inertial dependence of F; , and F ;
is weakly captured with the current coupling, as the inner region models for C; , and C 3
are derived for Re,, Rey;,, < 1 and Reg;, < 1 conditions, respectively. However, for the
present case of a force-free particle, these two limitations are not that significant because
Uy, rapidly reduces with increasing /* (figure 7a). Therefore the slip-based lift forces, F ,
and F; ; contribute only a small amount to the overall lift force for [* > 2. Whenever slip
becomes significant for the case of a force-free particle, the walls are well within the inner
region (/* < 2), and therefore the net lift correlation reduces to the original Cherukat &
McLaughlin (1995) inner region correlation. However, for relatively large slip velocities
(e.g. buoyant particles near walls), where F} , and F} ; are more significant, predictions
of (4.3) with inner region-based slip lift coefficients will be not necessarily be accurate.
This is a limitation which needs to be addressed in future studies in order to completely
generalise the net lift model given by (3.1).

Dimensionless migration velocities u:“.g(: Ui/ v a) obtained by balancing the lift force
and the wall-normal drag force,

Fi

- 44
Hnis = 6rRe, (1 + Cpy) 9

are presented in figure 8(a) for the same set of shear Reynolds numbers. Here, Cp, , the
wall-bounded drag coefficient of a particle translating normal to a wall, is evaluated via
the analytical inner region correlation of Faxen (1922) and Happel & Brenner (1981).
The migration velocities obtained by balancing the lift with Stokes unbounded drag
(Cp. =0 in (4.4)) are also shown in the same figure using dashed lines. It is evident
that the wall-normal correction to the Stokes drag greatly decreases the migration velocity
close to the wall. Noting that Cp, is an inner region model which rapidly decays to
zero we assume that Cp; can be used for all the separation distances to predict the
migration velocity of a particle. Based on the migration velocity normal to the wall
and the particle velocity parallel to the wall, we can calculate the lateral displacement
in the wall-normal direction (/) and longitudinal displacement in the flow direction (d)
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FIGURE 8. (a) Dimensionless migration velocity and (b) Lateral displacement per unit

movement in the flow direction of a force-free particle for Re, < 1, Re, = 1073, Re,, = 1072

and Re, = 10~!. Dashed lines show the values obtained when Cp; = 0 in (4.4). Here, h= h/d,
I* =1/a and ufnig = Upmig/Ya.

as illustrated in figure 8(a). The calculated lateral displacement per unit longitudinal

displacement h(= h/d) of a particle located at [* is also given in figure 8(b). For all shear
Reynolds numbers the lateral displacement of a force-free particle closer to the wall is
much higher than that of a particle travelling further away from the wall. The maximum

lateral displacement h ~ 0.035 that occurs when the particle is closer to the wall (I* ~ 1.5)
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would quite quickly push a free particle away from the wall. The lateral displacement also
displays a weak dependence on the shear rate close to the wall (I* ~ 1), however, when

a particle is away from the wall h decreases significantly as the shear Reynolds number
increases.

Although the present study focuses on linear shear flows, it is interesting to briefly
discuss the behaviour of lift coefficients of force-free particles in Poiseuille flows at
Re, < 1. Direct numerical studies on planar Poiseuille flows have shown that the net
lift coefficient (F} ,,) of force-free particles is relatively independent of Re, even when
Re, ~ O(107") (Hood, Lee & Roper 2015; Asmolov er al. 2018). This discrepancy is
possibly due to the weak inertial dependency of the double wall-bounded shear gradient
lift force (Schonberg & Hinch 1989; Asmolov 1999) which is not relevant for linear flows.
However, as shown in the present linear shear flow study which has a uniform local Re,
throughout the separation distance, the net lift is clearly dependent on Re,,, particularly
away from the wall.

5. Conclusion

The lift and drag forces acting on a spherical particle in a single wall-bounded
linear shear flow field are examined via numerical computation. Forces are obtained
under a zero-slip condition, by setting the particle to translate at the same velocity
as fluid. The Navier—Stokes equations are solved using a finite volume solver to find
the fluid flow around the particle. The effect of shear rate and wall presence are
investigated by varying the shear Reynolds number over the range Re, = 10°—10"",
and the wall separation distance over [* = 1.2—9.5. Sensitivity analyses show that large
computational flow domains, combined with careful mesh construction, are required to
accurately predict these forces at these low shear rates and wall separations. Computed lift
and drag coefficients at Re, ~ O(1) are compared against theoretical values, predicted
by asymptotic models mainly derived for Re, <« 1. Accounting for the variations,
slip independent inertial corrections are suggested for both the lift and drag force
coefficients.

The computed lift force coefficients at the lowest Reynolds numbers are in good
agreement with the previous theoretical results when the particle is close to the wall
(Cox & Hsu 1977; Cherukat & McLaughlin 1994; Krishnan & Leighton 1995). With
increasing shear rate, a significant decrease of the computed lift coefficient is observed for
both non-rotating and freely rotating particles. This decrease of lift coefficient is further
enhanced when the wall is away from the particle and is located in the outer region.
Numerical lift correlations for non-rotating and freely rotating conditions are presented,
accounting for both the inner and outer region behaviour in the limit of finite (Re, ). These
expressions reduce to theoretical values predicted in the three limits of Re — 0, [* — 1
and I* — oo.

Drag force coefficients computed for the freely rotating sphere agree reasonably
well with low (Re,) results from a previous analytical study over most of the wall
separation range (Magnaudet et al. 2003), however, considerable deviation is seen
when the particle is within one radius of the wall. Consequently a drag coefficient
model is proposed that includes higher-order terms in separation distance (up to
O((1/1*)®)) that more accurately captures this near-wall drag behaviour. A shear-based
inertial correction, independent of slip velocity, is also provided for the modified drag
coefficient.

The behaviour of a force-free particle suspended in a linear shear flow is analysed
using the new drag and lift correlations. Slip velocities calculated within the range of
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validity of our correlations compare favourably with previously presented results that
are valid for low (Re,). The negative slip velocities indicate that force-free particles
lag the fluid near walls for low (Re,). Noting the limitations associated with existing
slip-based lift coefficients, the lift force on a force-free particle at finite (Re,, ), accounting
for both shear-induced slip and slip-induced lift, is also analysed. A rapid decrease of
the lift force is observed as both the shear Reynolds number and separation distance
increase. This behaviour is not captured via existing analytical lift correlations that are
limited to Re < 1. Interestingly, a maximum lateral displacement per distance travelled
of ~0.035 occurs when the particle is separated from the wall by approximately half its
radius.

Overall, the suggested zero-slip correlations will aid in providing accurate constitutive
equations for interphase forces to predict the behaviour of particles moving near
walls.
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FIGURE 9. A detailed two-dimensional frame at z=0 of a ‘Lego’ mesh showing how
individual blocks are duplicated to form the complete mesh. Ny, N, and N,, indicate number
of points, while L*, [* are dimensionless domain sizes.


https://doi.org/10.1017/jfm.2020.662

https://doi.org/10.1017/jfm.2020.662 Published online by Cambridge University Press

904 A6-28 N. I. K. Ekanayake and others

REFERENCES

AMBARI, A., GAUTHIER, M. B. & GUYON, E. A. 1984 Wall effects on a sphere translating at constant
velocity. J. Fluid Mech. 149 (1), 235-253.

AsMoLOV, E. S. 1989 Lift force exerted on a spherical particle in a laminar boundary layer. Fluid Dyn. 24
(5), 710-714.

AsMoOLOV, E. S. 1990 Dynamics of a spherical particle in a laminar boundary layer. Fluid Dyn. 25 (6),
886-890.

AsMoLov, E. S. 1999 The inertial lift on a spherical particle in a plane poiseuille flow at large channel
Reynolds number. J. Fluid Mech. 381, 63.

AsMOLOV, E. S., DUBOV, A. L., NIZKAYA, T. V., HARTING, J. & VINOGRADOVA, O. 1. 2018 Inertial
focusing of finite-size particles in microchannels. J. Fluid Mech. 840, 613—630.

BATCHELOR, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.

BIRD, R. B., STEWART, W. E. & LIGHTFOOT, E. N. 2002 Transport Phenomena, 2nd edn. John Wiley
& Sons.

BRETHERTON, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid
Mech. 14 (2), 284-304.

CHERUKAT, P. & MCLAUGHLIN, J. B. 1994 The inertial lift on a rigid sphere in a linear shear flow field
near a flat wall. J. Fluid Mech. 263 (1), 1-18.

CHERUKAT, P. & MCLAUGHLIN, J. B. 1995 The inertial lift on a rigid sphere in a linear shear flow field
near a flat wall. J. Fluid Mech. 285, 407.

Cox, R. G. & BRENNER, H. 1968 The lateral migration of solid particles in poiseuille flow — I theory.
Chem. Engng Sci. 23 (2), 147-173.

Cox, R. G. & Hsu, S. K. 1977 The lateral migration of solid particles in a laminar flow near a plane. Intl
J. Multiphase Flow 3 (3), 201-222.

DANDY, D. S. & DWYER, H. A. 1990 A sphere in shear flow at finite Reynolds number: effect of shear on
particle lift, drag, and heat transfer. J. Fluid Mech. 216, 381-410.

Di CArLO, D., EDD, J. F., HUMPHRY, K. J., STONE, H. A. & TONER, M. 2009 Particle segregation and
dynamics in confined flows. Phys. Rev. Lett. 102 (9), 094503.

DREW, D. A. 1988 The lift force on a small sphere in the presence of a wall. Chem. Engng Sci. 43 (4),
769-773.

EKANAYAKE, N. 1., BERRY, J. D., STICKLAND, A. D., MUIR, I. L., DOWER, S. K. & HARVIE, D. J.
2018 Lift and drag forces on a particle near a wall at low Reynolds numbers. In 21st Australasian
Fluid Mechanics Conference, Adelaide, Australia.

FAXEN, H. 1922 Der widerstand gegen die bewegung einer starren kugel in einer zéhen fliissigkeit, die
zwischen zwei parallelen ebenen winden eingeschlossen ist. Ann. Phys. 373 (10), 89-119.

FISCHER, T. M. & ROSENBERGER, R. 1987 A boundary integral method for the numerical computation
of the forces exerted on a sphere in viscous incompressible flows near a plane wall. Z. Angew. Math.
Phys. 38 (3), 339-365.

GEUZAINE, C. & REMACLE, J. 2009 Gmsh: A 3-D finite element mesh generator with built-in pre- nd
post-processing facilities. Intl J. Numer. Meth. Engng 79 (11), 1309-1331.

GOLDMAN, A.J., Cox, R. G. & BRENNER, H. 1967a Slow viscous motion of a sphere parallel to a plane
wall—I motion through a quiescent fluid. Chem. Engng Sci. 22 (4), 637-651.

GOLDMAN, A.J., Cox, R. G. & BRENNER, H. 1967b Slow viscous motion of a sphere parallel to a plane
wall—II. Couette flow. Chem. Engng Sci. 22 (4), 653-660.

HALow, J. S. & WILLS, G. B. 1970 Experimental observations of sphere migration in Couette systems.
Ind. Engng Chem. Fundam. 9 (4), 603—607.

HAPPEL, J. & BRENNER, H. 1981 Low Reynolds Number Hydrodynamics. [Electronic Resource]: With
Special Applications to Particulate Media. Springer.

HARVIE, D. J. E. 2010 An implicit finite volume method for arbitrary transport equations. ANZIAM J. 52,
Cl1126.

Ho, B. P. & LEAL, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows.
J. Fluid Mech. 65 (02), 365.

Hoob, K., LEE, S. & ROPER, M. 2015 Inertial migration of a rigid sphere in three-dimensional poiseuille
flow. J. Fluid Mech. 765, 452-479.



https://doi.org/10.1017/jfm.2020.662

https://doi.org/10.1017/jfm.2020.662 Published online by Cambridge University Press

Lift and drag near a wall 904 A6-29

KRISHNAN, G. & LEIGHTON, D. 1995 Inertial lift on a moving sphere in contact with a plane wall in a
shear flow. Phys. Fluids 7 (11), 2538-2545.

KUROSE, R. & KOMORI, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid
Mech. 384, 183-206.

LEE, H. & BALACHANDAR, S. 2010 Drag and lift forces on a spherical particle moving on a wall in a
shear flow at finite Re. J. Fluid Mech. 657, 89-125.

LEIDERMAN, K. & FOGELSON, A. L. 2011 Grow with the flow: a spatial-temporal model of platelet
deposition and blood coagulation under flow. Math. Med. Biol. 28 (1), 47-84.

LEIGHTON, D. & ACRIVOS, A. 1985 The lift on a small sphere touching a plane in the presence of a
simple shear flow. Z. Angew. Math. Phys. 36 (1), 174-178.

MAGNAUDET, J., TAKAGI, S. H. U. & LEGENDRE, D. 2003 Drag, deformation and lateral migration of
a buoyant drop moving near a wall. J. Fluid Mech. 476, 115-154.

MCLAUGHLIN, J. B. 1991 Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224,
261-274.

MCLAUGHLIN, J. B. 1993 The lift on a small sphere in wall-bounded linear shear flows. J. Fluid Mech.
246, 249-265.

RUBINOW, S. I. & KELLER, J. B. 1961 The transverse force on a spinning sphere moving in a viscous
fluid. J. Fluid Mech. 11 (3), 447-459.

SAFFMAN, P. G. T. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22 (02), 385-400.

SCHONBERG, J. A. & HINCH, E. J. 1989 Inertial migration of a sphere in poiseuille flow. J. Fluid Mech.
203, 517-524.

SEGRE, G. & SILBERBERG, A. 1962 Behaviour of macroscopic rigid spheres in poiseuille flow. Part 2.
Experimental results and interpretation. J. Fluid Mech. 14 (1), 136-157.

SHI, P. & RZEHAK, R. 2020 Lift forces on solid spherical particles in wall-bounded flows. Chem. Engng
Sci. 211, 115264.

TAKEMURA, F. 2004 Migration velocities of spherical solid particles near a vertical wall for Reynolds
number from 0.1 to 5. Phys. Fluids 16 (1), 204.

TAKEMURA, F. & MAGNAUDET, J. 2003 The transverse force on clean and contaminated bubbles rising
near a vertical wall at moderate Reynolds number. J. Fluid Mech. 495, 235-253.

TAKEMURA, F. & MAGNAUDET, J. 2009 Lateral migration of a small spherical buoyant particle in a
wall-bounded linear shear flow. Phys. Fluids 21 (8), 083303.
TAKEMURA, F., MAGNAUDET, J. & DIMITRAKOPOULOS, P. 2009 Migration and deformation of bubbles
rising in a wall-bounded shear flow at finite Reynolds number. J. Fluid Mech. 634, 463-486.
VASSEUR, P. & Cox, R. G. 1976 The lateral migration of a spherical particle in two-dimensional shear
flows. J. Fluid Mech. 78 (02), 385.

VASSEUR, P. & Cox, R. G. 1977 The lateral migration of spherical particles sedimenting in a stagnant
bounded fluid. J. Fluid Mech. 80 (3), 561-591.

ZENG, L., BALACHANDAR, S. & FISCHER, P. 2005 Wall-induced forces on a rigid sphere at finite
Reynolds number. J. Fluid Mech. 536 (1), 1.

ZENG, L., FADY, N., BALACHANDAR, S. & FISCHER, P. 2009 Forces on a finite-sized particle located
close to a wall in a linear shear flow. Phys. Fluids 21 (3), 033302.


https://doi.org/10.1017/jfm.2020.662

	1 Introduction
	2 Numerical simulations
	2.1. Problem specification
	2.2. Numerical approach
	2.2.1. Domain size dependency
	2.2.2. Mesh dependency


	3 Zero-slip force correlations
	3.1. New lift and drag model definitions
	3.2. Lift force
	3.3. Drag force

	4 Application of force correlations
	4.1. Slip velocity
	4.2. Lift force and migration velocity

	5 Conclusion
	Appendix
	References

