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Abstract
In r-neighbour bootstrap percolation on the vertex set of a graph G, a set A of initially infected vertices
spreads by infecting, at each time step, all uninfected vertices with at least r previously infected neighbours.
When the elements ofA are chosen independently with some probability p, it is natural to study the critical
probability pc(G, r) at which it becomes likely that all ofV(G) will eventually become infected. Improving a
result of Balogh, Bollobás and Morris, we give a bound on the second term in the expansion of the critical
probability whenG= [n]d and d� r� 2.We show that for all d� r� 2 there exists a constant cd,r > 0 such
that if n is sufficiently large, then

pc([n]d, r)�
(

λ(d, r)
log(r−1) (n)

− cd,r
( log(r−1) (n))3/2

)d−r+1

,

where λ(d, r) is an exact constant and log(k) (n) denotes the k-times iterated natural logarithm of n.
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1. Introduction
Bootstrap percolation on the vertex set of a graph is a cellular automaton in which vertices have
two possible states, ‘infected’ and ‘uninfected’. Let r ∈N and let G be a graph. In r-neighbour boot-
strap percolation, a set A⊆V(G) is infected at time 0. At each subsequent time step, all infected
vertices remain infected and all uninfected vertices that have at least r infected neighbours become
infected. In symbols, letting A0 =A, we have

At+1 =At ∪ {v : |N(v)∩At|� r}
for all t� 0. We define the closure of A to be [A] := ⋃∞

t=0 At , the set of vertices that eventually
become infected. If [A]=V(G), we say that A percolates G, or simply that G percolates.

Bootstrap percolation was introduced by Chalupa, Leath and Reich [12] in connection with the
Blume–Capel model of ferromagnetism.
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In our context, elements of A are chosen independently with some probability p. Given
p ∈ [0, 1], we define P(G, r, p) to be the probability that A percolates G under the r-neighbour
rule if the elements of A are chosen in this way. We define pα(G, r)= inf{p:P(G, r, p)� α} and let

pc:= pc(G, r):= p1/2(G, r)
denote the critical probability.

Van Enter [25] and Schonmann [24] showed that for all d� 2, pc(Zd, r)= 0 when r� d
and pc(Zd, r)= 1 when r� d + 1. Since then, much work has focused on pc([n]d, r) (where
[n]= {1, . . . , n}) for 2� r� d. Aizenman and Lebowitz [2] determined that for all d� 2,
pc([n]d, 2)= �((1/ log n)d−1). (Later, Balogh and Pete [6] independently proved this result for
d = 2.) Cerf and Cirillo [10] and Cerf and Manzo [11] showed that for all d� r� 2, pc([n]d, r)=
�((1/ log(r−1) (n))d−r+1), where log(k) (n) denotes the k-times iterated natural logarithm of n, so
that log(k) (n)= log ( log(k−1) (n)) and log(1) (n)= log n.

The next breakthrough in the field was due to Holroyd [21], who proved the following sharp
threshold result for bootstrap percolation on the two-dimensional grid.

Theorem 1.1. As n→ ∞,

pc([n]2, 2)= π2

18 log n
+ o

(
1

log n

)
.

Later, Gravner and Holroyd [17], Gravner, Holroyd andMorris [18] and Hartarsky andMorris
[20] sharpened Holroyd’s result. Collectively, they proved the following.

Theorem 1.2. There exist constants C� c> 0 such that
π2

18 log n
− C

( log n)3/2
� pc([n]2, 2)�

π2

18 log n
− c

( log n)3/2

for all n sufficiently large.

Turning to higher dimensions, Balogh, Bollobás andMorris [5] proved a sharp threshold result
for pc([n]3, 3) and proved an upper bound on pc([n]d, r) for all constant d� r� 2. Later, Balogh,
Bollobás, Duminil-Copin and Morris [4] proved the corresponding lower bound and so estab-
lished a sharp threshold result for pc([n]d, r) for all constant d� r� 2. The proofs of these results
are substantially more difficult than the proof of Theorem 1.1.

Before we state the results of [4, 5], we need to introduce more notation. Given k� 1, define
the function βk:[0, 1]→ [0, 1] by

βk(u)= 1
2
(
1− (1− u)k +

√
1+ (4u− 2)(1− u)k + (1− u)2k

)
(1.1)

and let
gk(z)= − log (βk(1− e−z)). (1.2)

For d� r� 2, define

λ(d, r)=
∫ ∞

0
gr−1(zd−r+1) dz. (1.3)

Holroyd [21] showed that λ(2, 2)= π2/18. At present, (2, 2) is the only ordered pair (d, r) for
which an exact expression for λ(d, r) is known. However, it is shown in [5] that λ(d, r)< ∞ for all
d� r� 2.

Here is the sharp threshold result of Balogh, Bollobás, Duminil-Copin and Morris [4, 5].
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Theorem 1.3. Let d� r� 2. With λ(d, r) as defined in (1.3),

pc([n]d, r)=
(

λ(d, r)+ o(1)
log(r−1) (n)

)d−r+1
.

A number of variations of the bootstrap process described above have been considered.
Holroyd [21, 22] proved, for all d� 2, a sharp threshold result for a modified d-neighbour boot-
strap rule on [n]d: in order to become infected, a vertex must have at least one infected neighbour
in each dimension. Sharp threshold results have also been proved for other update rules onZd and
[n]d [8, 13, 14, 15, 26]. Similar but weaker results about the threshold behaviour of a very general
class of update rules on Z

2 were proved in [3, 7, 9].
Bootstrap percolation has been applied to other fields, especially physics. In particular, there is

a strong connection between bootstrap percolation and the Glauber dynamics of the Ising model
of ferromagnetism at zero temperature [2, 16, 23]. For other applications in physics, see [1] and
the references therein.

In [4], Balogh, Bollobás, Duminil-Copin andMorris suggested that the techniques of [18] could
be used to prove an analogue of Theorem 1.2 for pc([n]d, 2). We carry out this programme in part.
We combine the techniques of [17] and [5] to improve the upper bound on pc([n]d, r) given in
Theorem 1.3 for all d� r� 2.

Theorem 1.4. For all d� r� 2, there exists a constant cd,r > 0 such that

pc([n]d, r)�
(

λ(d, r)
log(r−1) (n)

− cd,r
( log(r−1) (n))3/2

)d−r+1
(1.4)

for all n sufficiently large.

We note that when d = r = 2, (1.4) reduces to the upper bound in Theorem 1.2, which was
proved by Gravner and Holroyd [17].

The rest of the paper is organized as follows. In Section 2, we give an outline of the proof of
Theorem 1.4. In Section 3, we introduce additional notation and some preliminary results. In
Section 4, we state an important auxiliary result, Theorem 4.1, and also state and prove other
auxiliary results. In Section 5, we prove Theorem 4.1 in the case r = 2. In Section 6, we complete
the proof of Theorem 4.1 and use it to deduce Theorem 1.4. Finally, in Section 7, we conjecture
an improved lower bound on pc([n]d, r).

2. Outline of the proof of Theorem 1.4
Here we will sketch the proof of Theorem 1.4. Our argument builds on a large body of previous
work (in particular, [2], [21], [17], [11] and [5]). We hope that discussing the relevant ideas from
these papers at some length will serve to make our proof clearer to the reader.

We begin with a few definitions. In the literature of percolation theory, vertices of a graph are
often called sites, and we will almost always use this term hereafter. We say that a set S⊆ [n]d is
internally spanned if [A∩ S]= S. We say that a set of vertices is empty or unoccupied if it contains
no infected sites and occupied otherwise. We say that a sequence of events E1, . . . , En has a double
gap if some pair of consecutive events (Ei, Ei+1) does not occur. Finally, given r� 3, let 1r−2 denote
the vector (1, . . . , 1) ∈R

r−2 and, for each i ∈ [r − 2], let ei denote the ith standard basis vector
for Rr−2.
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2.1 Two dimensions
One might suppose that if [n]d percolates, then the infected set spreads to all parts of the grid in
a fairly uniform manner. In [2], Aizenman and Lebowitz showed that in fact, when the infection
probability p is on the order of (1/ log n)d−1, whether percolation occurs under the 2-neighbour
rule is governed by a more local phenomenon: the existence of a fairly small internally spanned
set, called a critical droplet. For example, it turns out that for 2-neighbour percolation in [n]2, a
good candidate for a critical droplet is a rectangle whose diameter (in the L∞-norm) is on the
order of log n. (A heuristic explanation for this is given in Section 2.2.)

So, in [21], Holroyd proved the upper bound on pc([n]2, 2) in Theorem 1.1 by estimating the
probability that a square R of side length B :≈ log n is internally spanned in a certain way.

Let a	 B and let S denote the copy of [a]2 in the lower left corner of R. If S is fully infected,
what conditions imply that the infected set will grow from S to fill R? If the rows [a]× {a+ 1},
[a]× {a+ 2}, . . . , [a]× {B} are all occupied, then these rows will iteratively become infected. If
the same holds for the columns {a+ 1} × [a], {a+ 2} × [a], . . . , {B} × [a], then all of [B]2 will
become infected.

Holroyd observed that we can get away with asking for a bit less. Note that if either of
the rows [a]× {a+ 1} and [a]× {a+ 2} contains an infected site, then all sites in the row
[a]× {a+ 1}will become fully infected. (Much the same is true for the columns {a+ 1} × [a] and
{a+ 2} × [a].) Motivated by this observation, we let Ri denote the event that [i− 1]× {i} is occu-
pied, let Ci denote the event that {i} × [i− 1] is occupied and let D denote the event that the
sequences (Ri)B+1

i=a+1 and (Ci)B+1
i=a+1 each contain no double gaps. Observe that if D occurs, then

the infected set will grow from S to fill R. We think of D as ‘diagonal growth’ of the infected set,
because the infected set iteratively fills the sets [t]2 for t = a+ 1, . . . , B (see Figure 1).

As the reader might guess, the probability that D occurs is fairly small. However, it is large
enough that if [n]2 is partitioned into squares of side length B, then with high probabilityD occurs
in some such square. Furthermore, if such a square is fully infected, then with high probability the
infected set will fill the entire grid.

How might one prove a stronger upper bound on pc([n]2, 2)? Instead of considering a single
event that implies that the square R is internally spanned, one might try to find a set of pairwise
disjoint events E1, . . . , EN , for someN =N(p), each of which implies that R is internally spanned.
If, for each i, we had P(Ei)� (c1p)p

−1/2
P(D), and if N = (c2/p)p

−1/2 (where c1 and c2 are constants
such that c1c2 > 1), then a union bound would give

P

( N∨
i=1

Ei
)
� (c2/p)p

−1/2
(c1p)p

−1/2
P(D)= ecp

−1/2
P(D), (2.1)

where c:= log (c1c2)> 0. It turns out that the factor ecp−1/2 on the right-hand side of (2.1)
is enough to make a difference in the value of pc([n]2, 2) and to prove the upper bound in
Theorem 1.2.

Figure 1. If no two consecutive rows and no two consecutive columns
are unoccupied, then the infected set will grow diagonally.
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Figure 2. An alternative way of filling a rectangle. The light grey region is unoccupied and
the dark grey square represents a single infected site. The arrows depict the growth of the
infected set across regions with no double gaps.

Gravner and Holroyd [17] did precisely this. They considered the event that R is internally
spanned, but that at some point, a double gap in either (Ri) or (Ci) creates a small ‘detour’ in the
diagonal growth of the infected set. Once again, consider the fully infected square S= [a]2, and
suppose that for some b> a, the rows [b− 1]× {a+ 1} and [b− 1]× {a+ 2} are both empty.
Clearly, this double gap blocks the infected set from growing vertically. However, if the columns
to the right of S contain no double gaps until at least column b+ 1, then the infected set can
grow horizontally until it fills the rectangle [b]× [a]. If the infected set eventually encounters an
infected site above [b]× [a] (for example (b, a+ 2)), then it can overcome the double gap and fill
the rows [b]× {a+ 1} and [b]× {a+ 2}. Finally, if there are no further double gaps in the rows
above [b]× [a+ 2], then the infected set can grow vertically until it fills [b]2 (see Figure 2).

It is not hard to show that such a ‘detour’ is less probable than the event D defined above.
However, Gravner and Holroyd showed that if a and b are both on the order of 1/p and b− a=
O(p−1/2), then these detours (or, more precisely, sequences of such detours) are both probable
and numerous enough that (2.1) holds.

2.2 Higher dimensions
Now we will describe the proof of the upper bound on pc([n]d, r) given in [5] and discuss how we
will adapt it to prove Theorem 1.4.

In order to prove the upper bound in Theorem 1.3, Balogh, Bollobás and Morris [5] also
used the notion of a critical droplet. They observed that it follows from the results in [11] that
a critical droplet for r-neighbour percolation in [n]d is a d-dimensional box whose diameter is
about log n. As a heuristic justification for this, let XL denote the number of internally spanned
cubes of diameter L in [n]d. It is shown in [11] that if L is in a certain range, then the proba-
bility that a cube of diameter L is internally spanned is (very roughly) e−L. Thus, if L≈ d log n,
then EXL ≈ nd+o(1)e−L = �(1), which suggests that the ‘critical diameter’ is indeed on the order
of log n.

Suppose, then, that a cube T0 ∼= [log n]d is internally spanned. Under what circumstances is
it likely that the infected set can grow from T0? In particular, when will the infected set grow to
fill the (d − 1)-dimensional ‘layer’ that is adjacent to T0 in a given direction? Choose a direction
and let S1 denote the two layers adjacent to T0 in this direction. Observe that S1 ∼= [log n]d−1 ×
[2]. Crucially, because each site in the layer of S1 adjacent to T0, [log n]d−1 × {1}, already has an
infected neighbour in T0, each such site requires only r − 1 additional infected neighbours in S1
in order to become infected. In contrast, sites in the other layer of S1, [log n]d−1 × {2}, still require
r infected neighbours.

Therefore, it makes sense to consider percolation inside S1, where each site in the first layer has
infection threshold r − 1 and each site in the second layer has threshold r. When is it likely that
the first layer of S1 will percolate? By applying the same heuristic argument as above to S1, we see
that a good candidate for a critical droplet in S1 is a set of the form [log log n]d−1 × [2]. (Here,
the term ‘critical droplet’ has a slightly different meaning: it refers to a set whose first layer, if fully
infected, will with high probability infect the rest of the first layer of S1.)
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Suppose, then, that S1 contains a set T1 ∼= [log log n]d−1 × [2] whose first layer is fully infected.
What is required for the infected sites in T1 to fully infect the first layer of S1? As before, percola-
tion must occur in the first layer of each copy of [log log n]d−2 × [2]2 that is adjacent to T1 (and
contained in S1). Let S2 be such a copy of [log log n]d−2 × [2]2. Observe that sites in the first layer
of S2, [log log n]d−2 × {(1, 1)}, need only r − 2 infected neighbours in S2, because each such site
has one infected neighbour in T0 and another in T1. In contrast, sites in the other layers of S2 still
require r infected neighbours in S2 in order to become infected.1

Iterating this argument leads us to consider the probability of percolation in a set of the form
[log(r−2) (n)]d−r+2 × [2]r−2, where all sites in [log(r−2) (n)]d−r+2 × {(1, . . . , 1)} have threshold 2
and all other sites have threshold r. By induction, if it is likely that all sites in [log(r−2) (n)]d−r+2 ×
{(1, . . . , 1)} become infected, then percolation is likely to occur in [n]d.

Balogh, Bollobás and Morris bounded the probability of percolation in [log(r−2) (n)]d−r+2 ×
[2]r−2 in much the same way that Holroyd bounded the probability of 2-neighbour percolation in
[n]2. Let B� a and suppose that a cube K ∼= [a]d−r+2 × 1r−2 is fully infected. In order to estimate
the probability that [B]d−r+2 × 1r−2 becomes infected, we would like a fairly simple sufficient
condition for all of the sites in a layer adjacent to K (for example [a]d−r+1 × {a+ 1} × 1r−2) to
become infected. Let Ui denote the event that [a]d−r+1 × {i} × 1r−2 is occupied and, for each
j ∈ [r − 2], let V(j)

i denote the event that [a]d−r+1 × {i} × (1r−2 + ej) is occupied. Observe that
because each site in [a]d−r+1 × {a+ 1} × 1r−2 has threshold 2 and already has an infected neigh-
bour in [a]d−r+2 × 1r−2, all of the sites in this layer will become infected if one of the eventsUa+1,
Ua+2, V(1)

a+1, . . . ,V
(r−2)
a+1 occurs. The situation in which none of these events occur – or, more

generally, in which the event

¬(Ui ∨Ui+1 ∨V(1)
i ∨ · · · ∨V(r−2)

i )

occurs for any i ∈ [B] – is called an L-gap.2 (Note that when d = r = 2, an L-gap is simply a double
gap.) If the sequence

Ed−r+2 := (Ui)a+1�i�B+1 ∪ (V(j)
i )a+1�i�B,j∈[r−2]

contains no L-gaps, then the infected set will grow in direction d − r + 2 until it reaches one face
of [B]d−r+2 × 1r−2. We may similarly define a sequence Et for each direction t ∈ [d − r + 2]. If
none of the Et contains an L-gap, then the infected set will fill [B]d−r+2 × 1r−2.

To bound the probability of percolation from below, it suffices to show that if B≈ log(r−1) (n)
and we partition [log(r−2) (n)]d−r+2 × 1r−2 into cubes of the form [B]d−r+2 × 1r−2, then with
high probability, some cube of side length B is spanned. If so, then with high probability, the rest
of [log(r−2) (n)]d−r+2 × 1r−2 will become infected.

This yields the upper bound in Theorem 1.3 for r = 2. The upper bound for larger r follows
from an inductive argument that shows that the full infection of the first layer of

[log(r−2) (n)]
d−r+2 × [2]r−2

indeed implies r-neighbour percolation in [n]d.
As mentioned above, in order to prove Theorem 1.4, we unite the techniques of [5] and [17].

Again, we consider a fully infected cube K ∼= [a]d−r+2 × 1r−2. Let D′ denote the event that the
infected set grows from K without encountering L-gaps until it fills [B]d−r+2 × 1r−2. Much as

1Sites in [log log n]d−2 × {(2, 1)} actually only need r − 1 infected neighbours in S2, because each one has an infected
neighbour in T0, but it turns out that we lose almost nothing by assuming that these sites also have infection threshold r.

2When d = r = 3, the sets in question are [a]× {(i, 1)}, [a]× {(i+ 1, 1)} and [a]× {(i, 2)}. An L-gap is so called because
these sets form an L-shape when viewed from the side.
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in the two-dimensional case, we seek a large class of pairwise disjoint events E′
1, . . . , E

′
N′ , each

of which implies that [B]d−r+2 × 1r−2 becomes fully infected. Suppose that there exist positive
constants c1 and c2 such that P(E′

i)� (c1p)p
−1/2(d−r+1)

P(D′) for all i and such that N′ =N′(p)=
(c2/p)p

−1/2(d−r+1) . Then, similarly to (2.1), we will be able to conclude that

P

( N′∨
i=1

E′
i

)
� ecp

−1/2(d−r+1)
P(D′) (2.2)

for some constant c> 0.
Much as in [17], we consider events E′

i that involve small detours in the growth of the infected
set. Suppose that an L-gap – for example ¬(Ua+1 ∨Ua+2 ∨V(1)

a+1 ∨ · · · ∨V(r−2)
a+1 ) – blocks the

infected set from growing from the cube K in direction d − r + 2. If no L-gaps occur in the
other sequences Et , then the infected set can grow in the other d − r + 1 directions until it
fills a set of the form [b]d−r+1 × [a]× 1r−2, for some b> a. If there is an infected site x with
x1, . . . , xd−r+1 ∈ [b] and xd−r+2 ∈ {a+ 1, a+ 2}, then the infected set can overcome the L-gap and
fill [b]d−r+1 × [a+ 2]× 1r−2. If no further L-gaps occur in direction d − r + 2, then the infected
set will grow in that direction until it fills the cube [b]d−r+2 × 1r−2.

We show that when a and b are both on the order of p−1/(d−r+1) and b− a=O(p−1/2(d−r+1)),
then the number and probability of these detours (or, rather, of sequences of such detours) are
both large enough that P(

∨N′
i=1 E′

i) satisfies (2.2). This yields the claimed improvement in the
upper bound on pc([n]d, 2).

The rest of the proof of Theorem 1.4 consists of an inductive argument that is very similar to
the inductive argument of [5] mentioned above, albeit with additional technical complications.

3. Notation and preliminaries
In this section we will introduce further notation and definitions, state a useful correlation
inequality and make preliminary observations.

For the most part, our notation and terminology follow that of [5]. In order to reduce clutter,
we will omit floor signs throughout the paper. All logarithms are taken with base e.

We say that a set S is occupied if it contains at least one infected site, and empty or unoccupied
otherwise. If all of the sites in S are infected, we say that S is full.

We will denote the vector (1, . . . , 1) ∈R
� by 1�. For each j ∈ [�], we let ej denote the jth

standard basis vector for R�.
Given a set S, we write A∼ Bin (S, p) to denote that the elements of A are chosen from S

independently with probability p.
Harris’s lemma [19] will play an important role in the proof. We define a partial order � on

{0, 1}n by writing x� y if, for all i ∈ [n], xi � yi. We say that an event E⊆ {0, 1}n is increasing if, for
x, y ∈ {0, 1}n, x ∈ E and x� y imply that y ∈ E. Given p ∈ [0, 1], let Pp denote the product measure
on {0, 1}n with Pp(i= 1)= p for all i ∈ [n]. (We will almost always suppress the dependence on p
and simply write P( · ).)

Theorem 3.1. (Harris’s lemma). If E and F are increasing events in {0, 1}n and p ∈ [0, 1], then
Pp(E∩ F)� Pp(E)Pp(F).

We conclude this section by discussing properties of the functions βk and gk defined in (1.1)
and (1.2), respectively. Given p ∈ (0, 1), we let

q= − log (1− p). (3.1)
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Note that for p sufficiently small, we have

p� q� p+ p2 � 2p.
Equation (3.1) allows us to write

βk(1− (1− p)n)= e−gk(nq). (3.2)
We also observe that (1.1) implies that

βk(u)2 = (1− (1− u)k)βk(u)+ u(1− u)k. (3.3)
Straightforward calculations show that for all k, βk is positive, continuous, increasing and

differentiable on (0, 1), and gk is positive, continuous, decreasing and differentiable on (0,∞).
We will need a further result about the behaviour of gk.

Proposition 3.2. For all k� 1 and all z� 1,

|g′
k(z)|�

1
2
. (3.4)

The proof of Proposition 3.2 is given in the Appendix.

4. Percolation in an auxiliary bootstrap structure
In this section we will state the key result, Theorem 4.1, that we will use to prove Theorem 1.4. We
will also define the important notion of an L-gap and prove a lower bound on the probability that
no L-gaps occur in a sequence of independent events.

In Section 2.2, we related the probability of r-neighbour percolation in [n]d to the probability
of percolation in a set of the form [log(r−2) (n)]d−r+2 × [2]r−2 in which not all vertices have the
same infection threshold. A bootstrap structure is an ordered pair (G, (r(v))v∈V(G)), where G is a
graph and r :V(G)→N. Given a vertex v, the value r(v) is called the threshold of v. This means
that if we consider bootstrap percolation in (G, (r(v))v∈V(G)) and let A0 =A as before, then

At+1 =At ∪ {v :|N(v)∩At|� r(v)}
for each t� 0.

Let B([n]d, r) denote the usual r-neighbour bootstrap structure on [n]d. In order to prove
Theorem 1.4, we will also consider an auxiliary bootstrap structure that was defined in [5]. Let
C∗([n]d × [2]�, r) be the subgraph of Zd+� induced by [n]d × [2]� in which all vertices of the form
(a1, . . . , ad)× 1� have threshold r and all other vertices have threshold r + �. Note that if � = 0,
then C∗([n]d × [2]�, r) is identical to B([n]d, r).

Recall that A denotes the set of initially infected vertices and that [A] denotes the closure of
A, the set of vertices that ultimately become infected. We say that A semi-percolates in C∗([n]d ×
[2]�, r) if [A]⊇ [n]d × 1� and that a set S is internally semi-spanned if [S∩A]⊇ S∩ ([n]d × 1�).
Letting A∼ Bin ([n]d × [2]�, p), we set

P(n, d, �, r, p):= P(A semi-percolates in C∗([n]d × [2]�, r)). (4.1)
(The quantity P(n, d, �, r, p) was originally defined in [5]. The definition given here is slightly
simpler.)

Theorem 4.1 is a lower bound on P(n, d, �, r, p). Before we state the theorem, we need to define
several constants.

For all d� 2 and �� 0, let

ζ (d, �)= e−(�+2)22d−1
(1− e−1)2d (4.2)
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and let

γ (d, �)= ζ (d, �)e−d(d−1)22d−4
. (4.3)

Observe that for all d� 2 and �� 0,

γ (d, �)� γ (2, 0)= e−18(1− e−1)4 < 10−8. (4.4)

Finally, given d� r� 2 and �� 0, let

cd,�,r =
{

γ (d, �) r = 2,
γ (d − r + 2, � + r − 2)

(
1− ∑r−3

s=0 2−r+s+1) r� 3.
(4.5)

We observe for use in Section 6 that (4.5) implies that if r� 3, then

cd,�,r = cd−1,�+1,r−1 − 2−r+1γ (d − r + 2, � + r − 2). (4.6)

We are at last ready to state our key result about semi-percolation in C∗([n]d × [2]�, r).

Theorem 4.1. Let d� r� 2, let �� 0 and let cd,�,r be as in (4.5). If

p�
(

λ(d + �, � + r)
log(r−1) (n)

− cd,�,r
( log(r−1) (n))3/2

)d−r+1
(4.7)

for all n sufficiently large, then

P(n, d, �, r, p)→ 1

as n→ ∞.

Let us say a few words about how we will use this result to prove Theorem 1.4. In Section 6, we
will show that if p is such that (4.7) holds for d, �, r and n, then (4.7) also holds for d − 1, � + 1,
r − 1 and (roughly) log n. It will follow by induction that for all j� r − 2, (4.7) holds for d − j,
� + j, r − j and log(j) (n). Turning this around, we see that if the bound on p in (4.7) is sufficient
for semi-percolation in

C∗([log(r−2) (n)]
d−r+2 × [2]r−2, 2),

then it is also sufficient for semi-percolation in

C∗([log(r−2−i) (n)]
d−r+2+i × [2]r−2−i, i+ 2) for all i� r − 2.

In particular, when i= r − 2, this is the same as saying that the bound on p implies that, with high
probability, percolation occurs in B([n]d, r).

Observe also that in order to prove Theorem 1.4, it is enough to apply Theorem 4.1 in the case
when � = 0 (see (1.4)).

Now let us turn to the notion of an L-gap. Form�−1 and �� 0, let

E = (Ui)i∈[m+1] ∪ (V(j)
i )i∈[m],j∈[�]

be a sequence of events. (Whenm= −1, E = ∅.) An L-gap in E is an event of the form

¬(Ui ∨Ui+1 ∨V(1)
i ∨ · · · ∨V(�)

i )

for some i ∈ [m]. (As mentioned in Section 2.2, L is not a variable, but rather refers to the shape of
an L-gap when d = 2 and � = 1.) In this paper, the events in the sequence E will all be of the form
‘a certain set of sites is occupied’. Thus, an L-gap in E will mean that a certain collection of sets are
all unoccupied. In particular, as was the case in Section 2.2, an L-gap will block the set of infected
sites from growing in a specific direction.
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We will need a lower bound on the probability that no L-gaps occur in a sequence of inde-
pendent events. We can express this bound in terms of the function βk defined in (1.1). (Similar
results were proved in [5, Lemma 6] and [17, Proposition 10].)

Lemma 4.2. Let m�−1 and �� 0 be integers and let u1, . . . , um+1 ∈ (0, 1). Let

Em+1 := (Ui)i∈[m+1] ∪ (V(j)
i )i∈[m],j∈[�]

be a sequence of independent events such that for each i, the events Ui,V(1)
i , . . . ,V(�)

i each occur
with probability ui. Let u= (ui)m+1

i=1 and let L�(m, u) denote the probability that no L-gap occurs in
Em+1. If the sequence (ui)m+1

i=1 is increasing in i, then

L�(m, u)�
m+1∏
i=1

β�+1(ui).

In order to prove Lemma 4.2, we need another result about βk.

Lemma 4.3. If 0< u� v� 1, then

(1− (1− u)k)βk(v)+ (1− u)kv� βk(u)βk(v).

Proof. For 0< u� v� 1, define
h(u, v)= (1− (1− u)k)βk(v)+ (1− u)kv− βk(u)βk(v).

and observe that we are done if we can show that h(u, v)� 0 for 0< u� v� 1.
Observe that by (3.3),

βk(u)h(u, v)= (1− u)k(vβk(u)− uβk(v)).
Equivalently,

βk(u)
uv

h(u, v)= (1− u)k
(

βk(u)
u

− βk(v)
v

)
,

so it is enough to show that βk(u)/u is decreasing on (0, 1). Let B= (1− (1− u)k)/u and let
C = (1− u)k/u. By (3.3), βk(u)/u is the positive root of X2 − BX − C = 0. Observe that both B
and C are decreasing in u. It follows that

βk(u)
u

= B+ √
B2 + 4C
2

is also decreasing, as claimed.

Proof of Lemma 4.2. We prove the result by induction on m. Observe that E0 = ∅ and that an
L-gap is undefined for E1. So, for all u ∈ (0, 1), we may take L�(− 1, u)= L�(0, u)= 1. Then,
because β�+1:[0, 1]→ [0, 1], the result holds form ∈ {−1, 0}.

Let m� 0 and suppose that the result holds for values smaller than m+ 1. Observe that
Em+1 has no L-gaps if (i) at least one of the events U1,V(1)

1 , . . . ,V(�)
1 occurs and (Ui)2�i�m+1 ∪

(V(j)
i )2�i�m,j∈[�] has no L-gaps, or (ii) none of the events U1,V(1)

1 , . . . ,V(�)
1 occur, but the event

U2 occurs and (Ui)3�i�m+1 ∪ (V(j)
i )3�i�m,j∈[�] has no L-gaps. Hence, by induction,

L�(m, u)� (1− (1− u1)�+1)
m+1∏
i=2

β�+1(ui)+ (1− u1)�+1u2
m+1∏
i=3

β�+1(ui). (4.8)
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Because u1 � u2, Lemma 4.3 implies that

(1− (1− u1)�+1)β�+1(u2)+ (1− u1)�+1u2 � β�+1(u1)β�+1(u2).
Combining this with the right-hand side of (4.8) yields the claimed inequality.

5. Proof of Theorem 4.1 for r = 2
Our aim in this section is to prove a result that implies Theorem 4.1 in the case r = 2.

Lemma 5.1. Let d� 2, let �� 0 and let γ (d, �) be as in (4.3). If, for some constant c with

0< c<
3
2
γ (d, �), (5.1)

we have

p�
(

λ(d + �, � + 2)
log n

− c
( log n)3/2

)d−1
(5.2)

for all n sufficiently large, then
P(n, d, �, 2, p)→ 1

as n→ ∞.

Remark 5.2. By (4.5), cd,�,2 certainly satisfies (5.1) for all d� 2 and �� 0.

Here is a sketch of the proof of Lemma 5.1. Below, we will define an event Db
a that implies that

if [a]d × 1� is internally spanned, then the infected set grows to fill [b− 1]d × 1� ‘diagonally’, i.e.
by iteratively filling sets of the form [i]d × 1�. The main step in the proof of the upper bound on
pc([n]d, 2) given in [5] amounts to a lower bound on P(Db

a). In order to prove a stronger bound
on pc([n]d, 2), we will define an event T b

a (the vector superscript is explained below) that implies
that the infected set grows from [a]d × 1� to [b]d × 1� not diagonally but via a ‘detour’.

We will show that T b
a is not too much less probable than Db

a (Lemma 5.6). As the infected set
grows, it may make a detour and then resume diagonal growth several times. So, we think of the
growth of the infected set as diagonal growth interrupted by a sequence of detours. We will show
that different ‘growth sequences’ of this sort are disjoint events (Lemma 5.7) and that the number
of growth sequences is fairly large (Lemma 5.8). Furthermore, we will use these results to show that
if p satisfies (5.2), then with high probability some cube of the form [B]d × [2]�, where B= B(p) is
sufficiently large, is internally semi-spanned. Finally, we will show that with high probability, the
fact that such a cube is internally semi-spanned leads to semi-percolation in C∗([n]d × [2]�, 2),
which will complete the proof of Lemma 5.1.

Recall the definition of an L-gap from Section 4 and recall that for j ∈ [�], ej denotes the jth
standard basis vector of R�. For all i, s ∈N and t ∈ [d], let

Ui(t, s)= {[s]t−1 × {i} × [s]d−t × 1� is occupied}, (5.3)
and for all j ∈ [�], let

V(j)
i (t, s)= {[s]t−1 × {i} × [s]d−t × (1� + ej) is occupied}. (5.4)

Let Db
a be the event that for each t ∈ [d], the sequence

(Ui(t, i− 1))a+1�i�b ∪ (V(j)
i (t, i− 1))a+1�i�b−1, j∈[�] (5.5)

has no L-gaps.
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The next result shows that, as mentioned above, the eventDb
a means that the infected set grows

‘diagonally’ from [a]d × 1� to [b− 1]d × 1�. Recall that we say that a set S is internally semi-
spanned if [S∩A]⊇ S∩ ([n]d × 1�).

Lemma 5.3. If [a]d × [2]� is internally semi-spanned and Db
a occurs, then [b− 1]d × [2]� is

internally semi-spanned.

Proof. We will show by induction on i that if [a]d × 1� is internally spanned and Db
a occurs,

then for each i with a+ 1� i� b− 1, the set [i]d × 1� is internally spanned. Let i� a+ 1 and
suppose that [i− 1]d × 1� is internally spanned. By hypothesis, for each t ∈ [d], the sequence in
(5.5) does not have an L-gap at i, which means that for each t, all of the sites in [i− 1]t−1 × {i} ×
[i− 1]d−t × 1� become infected. (Note that each such site already has one infected neighbour in
[i− 1]d × 1�.) Therefore, all of [i]d × 1� becomes infected. The claim follows by induction.

Let

Gb
a = exp

[
−

b−1∑
i=a

g�+1(id−1q)
]
, (5.6)

where q is as defined in (3.1). Observe that if a< b< c, then

Gc
a =Gb

aG
c
b. (5.7)

Lemma 5.4. For all d� 2 and all b> a� 2,
P(Db

a)� (Gb
a)

d.

Proof. Observe from (5.3) and (5.4) that, for each i and t, the events Ui(t, i− 1), Ui+1(t, i),
V(1)
i (t, i− 1), . . . ,V(�)

i (t, i− 1) concern pairwise disjoint sets of sites and are therefore indepen-
dent. Furthermore, the probability that these events occur is increasing in i. Hence, the sequence
(5.5) satisfies the hypotheses of Lemma 4.2. The lemma and (3.2) imply that

P(Db
a)�

( b∏
i=a+1

β�+1(1− (1− p)(i−1)d−1
)
)d

= exp
[
−d

b∑
i=a+1

g�+1((i− 1)d−1q)
]

= (Gb
a)

d,

as claimed.

Now we will define the ‘detour’ mentioned above. In [17], Gravner and Holroyd defined an
event T b

a that describes another way for the infected set to grow from [a]2 to [b]2. (A simplified
version of T b

a is shown in Figure 2.) If the rows [b− 1]× {a+ 2} and [b− 1]× {a+ 3} are empty,
then the infected set is prevented from growing vertically. However, if there are no double gaps in
the columns to the right of [a]2, then the infected set grows horizontally until it fills the rectangle
[b]× [a+ 1]. If the site (b, a+ 3) is infected, then the infected set overcomes the double gap and
resumes vertical growth, ultimately filling [b]2.

We will define a similar event T b
a , where b:= {b1, . . . , bd−1}. In this event, an L-gap prevents

the fully infected cube [a+ 1]d × 1� from growing in direction d (parts (ii), (iii) and (v) of the
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Figure 3. The event T b
a for d= 2 and � = 1. The grey regions are occupied

(parts (i), (vii) and (ix) of the definition) and the light grey regions are unoccu-
pied (parts (ii), (iii) and (v)). The dark grey cube is an infected site (part (iv)).
The arrows depict the growth of the infected set across regions with no
L-gaps (parts (vi) and (viii)).

definition below). However, the infected set continues to grow in the other d − 1 directions (parts
(vi) and (vii)) until it meets the infected site {b1, . . . , bd−1, a+ 3} × 1� (part (iv)). This site allows
the infected set to overcome the L-gap. Finally, letting b=max{bi : i ∈ [d − 1]}, the infected set
continues to grow in direction d until it fills a cube of side length b (parts (viii) and (ix)).

Recall the definitions of the events Ui(t, s) and V(j)
i (t, s) from (5.3) and (5.4), respectively. Let

a, b1, . . . , bd−1 be such that b:=max{bi : i ∈ [d − 1]} satisfies b� a+ 4 and let b= {b1, . . . , bd−1}.
We define T b

a to be the event that all of the following hold (see Figure 3, which depicts the case
d = 2, � = 1).

(i) For all t ∈ [d], the cuboid [a− 1]t−1 × {a+ 1} × [a− 1]d−t × 1� is occupied.
(ii) The cuboid [b]d−1 × {a+ 2} × 1� is empty.
(iii) For all j ∈ [�], the cuboid [b]d−1 × {a+ 2} × (1� + ej) is empty.
(iv) The site {b1, . . . , bd−1, a+ 3} × 1� is infected.
(v) The cuboid [b]d−1 × {a+ 3} × 1� contains no other infected sites.
(vi) For all t �= d, the sequence

(Ui(t, a+ 1))a+2�i�b−1 ∪ (V(j)
i (t, a+ 1))a+2�i�b−2, j∈[�]

has no L-gaps.
(vii) For all t �= d, the cuboid [a+ 1]t−1 × {b} × [a+ 1]d−t × 1� is occupied.
(viii) The sequence

(Ui(d, b))a+4�i�b−1 ∪ (V(j)
i (d, b))a+4�i�b−2, j∈[�]

has no L-gaps.
(ix) The cuboid [b]d−1 × {b} × 1� is occupied.

Lemma 5.5.

(i) Events (i)–(ix) in the definition of T b
a are independent.

(ii) If [a− 1]d × [2]� is internally semi-spanned and T b
a occurs, then [b]d × [2]� is also inter-

nally semi-spanned.

Proof. (i) This follows from the fact that events (i)–(ix) in the definition of T b
a concern pairwise

disjoint sets of sites. Indeed, all of the sites in the sets described in parts (i), (vi) and (vii) have dth
coordinate at most a+ 1. Moreover, all of the sites in the sets described by the events Ui(t, a+ 1)
and V(j)

i (t, a+ 1) have ith coordinate t. Similarly, all of the sites in the sets described in parts (ii),
(iii), (iv) and (v) have dth coordinate in {a+ 2, a+ 3}, and it is easy to see that these four sets are
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pairwise disjoint. Finally, all of the sites in parts (viii) and (ix) have dth coordinate at least a+ 4,
and it is again easy to see that the sets mentioned in these parts are pairwise disjoint.

(ii) If [a− 1]d × [2]� is internally semi-spanned, then part (i) implies that each set of the form
[a− 1]t−1 × {a} × [a− 1]d−t × 1� becomes fully infected. This in turn guarantees that all of
[a]d × 1�, and then all of [a+ 1]d × 1�, becomes infected. Parts (vi) and (vii) then guarantee that
[b]d−1 × [a+ 1]× [2]� is internally semi-spanned. Finally, parts (iv), (viii) and (ix) imply that
[b]d × [2]� is internally semi-spanned.

Now we will show that if b=max{bi:i ∈ [d − 1]}, then T b
a is not too much less probable than

Db
a . It will be convenient to compare P(T b

a ) not to P(Db
a) but to Gb

a.

Lemma 5.6. Let d� 2, let �� 0 and let ζ = ζ (d, �) be the constant defined in (4.2). If p> 0 is
sufficiently small, if a, b1, . . . , bd−1 are integers in the interval [p−1/(d−1) + 1, 4p−1/(d−1)] such that
b:=max{bi:i ∈ [d − 1]} satisfies b� a+ 4, and if b= {b1, . . . , bd−1}, then

P(T b
a )� ζp exp [− pd(b− a)(bd−1 − ad−1)](Gb

a)
d.

The key to the proof of Lemma 5.6 is that if p is sufficiently small and s is on the order of
p−1/(d−1), then (1− p)sd−1 is bounded away from both 0 and 1.

Proof of Lemma 5.6. By Lemmas 4.2 and 5.5(i) and the definition of T b
a ,

P(T b
a )� (1− (1− p)(a−1)d−1

)d(1− p)b
d−1

(1− p)�b
d−1

p(1− p)b
d−1−1

× β�+1(1− (1− p)(a+1)d−1
)(d−1)(b−a−2)(1− (1− p)(a+1)d−1

)d−1

× β�+1(1− (1− p)b
d−1

)b−a−4(1− (1− p)b
d−1

).
Because b> a, we have

P(T b
a )� p(1− p)(�+2)bd−1−1(1− (1− p)(a−1)d−1

)2d

× β�+1(1− (1− p)(a+1)d−1
)(d−1)(b−a)β�+1(1− (1− p)b

d−1
)b−a. (5.8)

If x is sufficiently small, then e−x � 1− x� e−2x. So, because b� 4p−1/(d−1) and a− 1�
p−1/(d−1), if p is sufficiently small, then

(1− p)(�+2)bd−1−1(1− (1− p)(a−1)d−1
)2d � e−(�+2)22d−1

(1− e−1)2d = ζ .
When we plug this into (5.8) and use (3.2), we see that

P(T b
a )� ζpβ�+1(1− (1− p)(a+1)d−1

)(d−1)(b−a)β�+1(1− (1− p)b
d−1

)b−a

= ζp exp [− (d − 1)(b− a)g�+1((a+ 1)d−1q)− (b− a)g�+1(bd−1q)].
Finally, since g�+1 is decreasing, we have

P(T b
a )� ζp exp [− d(b− a)g�+1(ad−1q)]. (5.9)

Observe from (5.6) that

Gb
a = exp

[
−

b−1∑
i=a

g�+1(id−1q)
]
� exp [− (b− a)g�+1(bd−1q)].

Thus, we may rewrite (5.9) as

P(T b
a )� ζp exp [− d(b− a)(g�+1(ad−1q)− g�+1(bd−1q))](Gb

a)
d. (5.10)
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Now
g�+1(ad−1q)− g�+1(bd−1q)� (bd−1q− ad−1q) max

x∈[ad−1q,bd−1q]
|g′

�+1(x)|.

Recall that p� q, which, by our assumptions on a and b, means that 1� ad−1q< bd−1q. So,
Proposition 3.2 and the fact that q� 2p for p sufficiently small imply that

g�+1(ad−1q)− g�+1(bd−1q)� (bd−1 − ad−1)q · 1
2
� p(bd−1 − ad−1).

Combining this with (5.10) gives the desired result.

If semi-percolation occurs in C∗([n]d × [2]�, 2), then, as the infected set grows, it may
encounter and overcome several L-gaps. We order the L-gaps by the associated values of a and,
for each i, define bi to be the vector associated with the ith L-gap.

Now we will define the event that the infected set grows from [2]d × 1� to [B]d × 1� (where
B= B(p) is a large value to be chosen later) with periods of diagonal growth interrupted by a
specified sequence of events of the form T b

a .
For each t ∈ [d], let x(t) = {1}t−1 × {2} × {1}d−t × 1� and let y(t) = {B}t−1 × {1} × {B}d−t × 1�.

Letm ∈N and let 2� a1 < b1 � · · ·� am < bm be such that for all i ∈ [m], we have bi − ai � 4, and
such that B> bm. For each i ∈ [m], let bi = {bi,1, . . . , bi,d−1} be such that bi =max{bi,t :t ∈ [d − 1]}.
Define

G(a1, b1, . . . , am, bm)= ({1}d × 1� is infected)∩
( d⋂
t=1

(x(t) is infected)
)

∩Da1
2 ∩ T b1

a1 ∩ · · · ∩Dam
bm−1

∩ T bm
am ∩DB−1

bm

∩
( d⋂
t=1

(y(t) is infected)
)
.

Lemma 5.7.

(i) The events in the definition of G((ai, bi)mi=1) are independent.
(ii) If G((ai, bi)mi=1) occurs then C∗([B]d × [2]�, 2) is internally semi-spanned.
(iii) Events of the form G((ai, bi)mi=1) are pairwise disjoint, that is, they correspond to pairwise

disjoint subsets of {0, 1}Bd2� .

Proof. (i) It follows from the definition of Db
a and from Lemma 5.5(i) that the events in the

definition of G((ai, bi)mi=1) involve pairwise disjoint sets of sites. Thus, they are independent.

(ii) First, if all of the sites {1}d × 1�, x(1), . . . , x(d) are infected, then [2]d+� is internally semi-
spanned. Next, observe that by Lemmas 5.3 and 5.5(ii), if the events Da1

2 , T b1
a1 , . . . ,D

am
bm−1

, T bm
am

and DB−1
bm all occur, then [B− 2]d × [2]� is internally semi-spanned. Finally, if all of the sites

y(1), . . . , y(d) are infected, then [B]d × [2]� is internally semi-spanned.
(iii) Consider two sequences (ai, bi)mi=1 and (a′

i, b′
i)
m
i=1 and the associated events G((ai, bi)mi=1)

and G((a′
i, b′

i)
m
i=1). Recall the definitions of the events Ui(t, s) and V(j)

i (t, s) from (5.3) and (5.4),
respectively. Given i� 1, it follows from the definition of Db

a and parts (ii), (iii) and (v) of the
definition of T b

a that ai + 2 is the least s� bi−1 such that the events Us(d, s− 1), Us+1(d, s),
V(1)
s (d, s− 1), . . . ,V(�)

s (d, s− 1) all do not occur. (Here, we set b0 = 2.) This means that if ai �= a′
i,
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then G((ai, bi)mi=1) and G((a′
i, b′

i)
m
i=1) are disjoint. Similarly, parts (iv) and (v) of the definition of

T b
a imply that if bi �= b′

i, then G((ai, bi)mi=1) and G((a′
i, b′

i)
m
i=1) are disjoint. Thus, the two events are

disjoint unless they are identical, as claimed.

Parts (ii) and (iii) of Lemma 5.7 indicate that if we can bound from below the probability that
an event of the form G((ai, bi)mi=1) occurs, then a union bound will give us a lower bound on the
probability of semi-percolation. To this end, we wish to enumerate those sequences (ai, bi)mi=1 that
satisfy certain conditions. We will be interested in sequences such that

p−1/(d−1) + 1� a1 < b1 � · · ·� am < bm � 4p−1/(d−1) (5.11)
and

4� bi − ai � p−1/(2d−2) for all i ∈ [m]. (5.12)
Let us explain these conditions. First, the lower bound on the probability of T b

a in Lemma 5.6
requires that a and b both be on the order of p−1/(d−1), which corresponds to (5.11).

Second, we wish to show that there are many sequences (ai, bi)mi=1 such that for all i, we
have bi − ai �K =K(p). What, then, should K and m be? Observe that (5.11) implies that
Km=O(p−1/(d−1)). Moreover, we will show that, given K andm, the number of sequences of the
desired form is roughly (K/mp)m, which is maximized whenK andm have the same order of mag-
nitude. Thus, we will take both K andm to be on the order of p−1/(2d−2); the former requirement
is the second inequality in (5.12). Finally, T b

a is defined only if b� a+ 4.

Lemma 5.8. Let d� 2, let �� 0 and let p> 0. Let γ = γ (d, �) be as in (4.3), let

m= γ p−1/(2d−2),
and let S denote the set of sequences (ai, bi)mi=1 that satisfy (5.11) and (5.12). If p is sufficiently small,
then

|S|�
(

8
γ p

)m
.

Proof. We construct sequences (ai, bi)mi=1 satisfying (5.11) and (5.12) as follows: we start by choos-
ing a1, . . . , am such that a1 � p−1/(d−1) + 1, such that ai+1 � ai + p−1/(2d−2) for all i ∈ [m− 1],
and such that am � 4p−1/(d−1) − p−1/(2d−2). Then, for each i, we choose bi as follows. First, we
choose an element of {ai + 4, . . . , ai + p−1/(2d−2)} and call it bi. Then, to complete the vector bi,
we choose d − 2 elements of [bi] with replacement. Observe that a sequence chosen in this way
indeed satisfies (5.11) and (5.12) and so is an element of S .

Let S ′ denote the set of sequences chosen above and observe that by Stirling’s approximation,
if p is sufficiently small, then

|S ′|�
(
3p−1/(d−1) − 1−mp−1/(2d−2)

m

)
(p−1/(2d−2) − 3)m

m∏
i=1

bd−2
i

�
(
e(3− 2γ )p−1/(d−1)

m

)m(
(1− γ )p−1/(2d−2))m m∏

i=1
bd−2
i .

For each i ∈ [m], we have bi � p−1/(d−1). It follows from (4.4) that

|S|� |S ′|�
(
e(3− 5γ )p−1/(2d−2)

m

)m
(p−1/(d−1))m(p−(d−2)/(d−1))m �

(
8

γ p

)m
.

This completes the proof.
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Remark 5.9. We make two further remarks regarding Lemma 5.8. First, one might also count
sequences of fewer thanm L-gaps, but it turns out that this would not significantly affect the total.
This is because ifM �m, then

∑m
j=1 (M/j)j �m(M/m)m; for our purposes, the extra factor ofm

represents a negligible increase.
Second, recall that in part (iv) of the definition of T b

a we required that the site (b1, . . . , bd−1,
a+ 3)× 1� be infected. One might be tempted to define T b

a so that the site (b, . . . , b, a+ 3)× 1�

is infected. However, with this alternative definition, there does not exist a constant c> 0 such
that the number of sequences (ai, bi)mi=1 satisfying (5.11) and (5.12) is at least (c/p)m – and, as the
proof of Lemma 5.10 will show, this bound is exactly what we need.

Recall the definition of P(n, d, �, r, p) from (4.1). Nowwe will combine the results of this section
to prove a lower bound on P(B, d, �, 2, p) for B> 4p−1/(d−1). Once we have done so, we will be
ready to prove Lemma 5.1.

Lemma 5.10. Let d� 2, let �� 0 and let γ = γ (d, �) be as in (4.3). If p> 0 is sufficiently small and
B> 4p−1/(d−1), then

P(B, d, �, 2, p)� exp
[

2γ
p1/(2d−2) − dλ(d + �, � + 2)

p1/(d−1)

]
. (5.13)

Proof. We begin by bounding from below the probability that a single event of the form
G((ai, bi)mi=1) occurs. Let m be as in the statement of Lemma 5.8 and let (ai, bi)mi=1 be a sequence
that satisfies (5.11) and (5.12). (It follows from (5.11) and our assumption on B that B> bm.) By
Lemma 5.7(i), we have

P(G((ai, bi)mi=1))= p2d+1
P(Da1

2 )P(T b1
a1 ) · · · P(Dam

bm−1
)P(T bm

am )P(DB−1
bm ).

Recall that in Lemmas 5.4 and 5.6, we bounded P(Db
a) and P(T b

a ), respectively, in terms of Gb
a. It

follows from these results and (5.7) that

P(G((ai, bi)mi=1))� p2d+1(GB−1
2 )d

m∏
i=1

(ζpe−pd(bi−ai)(bd−1
i −ad−1

i )). (5.14)

By the Mean Value Theorem, for each i, there exists αi ∈ [ai, bi] such that

bd−1
i − ad−1

i = (bi − ai)(d − 1)αd−2
i .

It then follows from (5.11) and (5.12) that

(bi − ai)(bd−1
i − ad−1

i )� (d − 1)(bi − ai)2bd−2
i � (d − 1)22d−4p−1.

Plugging this into (5.14) and recalling the definition of γ from (4.3) shows that

P(G((ai, bi)mi=1))� p2d+1(GB−1
2 )d

m∏
i=1

(ζpe−d(d−1)22d−4
)

= p2d+1(GB−1
2 )d(γ p)m. (5.15)
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Now let λ = λ(d + �, � + 2) be as in (1.3). Observe that (5.6), the fact that g�+1 is decreasing
and the fact that p� q imply that

GB−1
2 = exp

[
−

B−2∑
i=2

g�+1(id−1q)
]

� exp
[
− 1
p1/(d−1)

∫ ∞

0
g�+1(zd−1) dz

]

= exp
[
− λ

p1/(d−1)

]
.

Plugging this into (5.15), we see that

P(G((ai, bi)mi=1))� p2d+1(γ p)m exp
[
− dλ
p1/(d−1)

]
. (5.16)

Nowwe are ready to prove our lower bound on P(B, d, �, 2, p). Let S denote the set of sequences
(ai, bi)mi=1 that satisfy (5.11) and (5.12) and recall from Lemma 5.8 that

|S|�
(

8
γ p

)m
.

It then follows from Lemma 5.7(ii), (iii) and from (5.16) that

P(B, d, �, 2, p)�
∑

(ai,bi)mi=1∈S
P(G((ai, bi)mi=1))� p2d+18m exp

[
− dλ
p1/(d−1)

]
.

Recall from Lemma 5.8 that m= γ p−1/(2d−2). Since p1/(2d−2) log (1/p)→ 0 as p→ 0, it follows
that

P(B, d, �, 2, p)� p2d+1 exp
[

γ log 8
p1/(2d−2) − dλ

p1/(d−1)

]

� exp
[

2γ
p1/(2d−2) − dλ

p1/(d−1)

]
,

as claimed.

Now we will show that the right-hand side of (5.13) is large enough that it is very likely that
some fairly large cube in [n]d × [2]� is internally semi-spanned. In particular, the 2γ p−1/(2d−2)

term in the exponent on the right-hand side of (5.13) will allow us to prove Lemma 5.1.

Proof of Lemma 5.1. Recall that we want to show that if c satisfies (5.1) and p satisfies (5.2),
then P(n, d, �, 2, p)→ 1 as n→ ∞. A standard coupling argument shows that P(n, d, �, 2, p) is
increasing in p, so it is enough to prove the lemma under the assumption that

p�
(

λ(d + �, � + 2)2

d2 log n

)d−1
. (5.17)

Let B= p−3/(d−1) and partition [n]d × [2]� into cubes of the form [B]d × [2]�. We want to show
that with high probability at least one of these cubes is internally semi-spanned. To do this, we use
the following claim, whose proof we postpone to the Appendix.
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Claim 5.11. Let d� 2, let �� 0 and let γ = γ (d, �) be as in (4.3). If c satisfies (5.1) and p satisfies
(5.2) and (5.17), then there exists a constant α > 0 such that

2γ
p1/(2d−2) − dλ(d + �, � + 2)

p1/(d−1) � α( log n)1/2 − d log n

for all n sufficiently large.

Let IB denote the event that at least one cube of the form [B]d × [2]� is internally semi-spanned
and let λ = λ(d + �, � + 2). By Lemma 5.10, Claim 5.11 and the fact that e( log n)1/3 � B, we have

P(IB)� 1−
(
1− exp

[
2γ

p1/(2d−2) − dλ
p1/(d−1)

])(n/B)d

� 1− exp
[
−

(
n
B

)d
exp

(
2γ

p1/(2d−2) − dλ
p1/(d−1)

)]

� 1− exp
[
−

(
n
B

)d
exp (α( log n)1/2 − d log n)

]
� 1− exp [− exp (α( log n)1/2 − ( log n)1/3)]
= 1− o(1).

It is easy to see that if a cube of the form [B]d × [2]� is internally semi-spanned and every cuboid
of the form [B]t−1 × {1} × [B]d−t × 1� is occupied, then the initially infected setA semi-percolates
in C∗([n]d × [2]�, 2). By (5.17), for all d� 2, we have p	 ( log n)−1/2. So, by the definition of B,
the probability that some cuboid of the form [B]t−1 × {1} × [B]d−t × 1� is unoccupied is at most

dnd(1− p)B
d−1 � dnde−p−2 = o(1).

Finally, because the events ‘a cube of the form [B]d × [2]� is internally semi-spanned’ and ‘a cuboid
of the form [B]t−1 × {1} × [B]d−t × 1� is occupied’ are increasing, Harris’s lemma implies that
P(n, d, �, 2, p)→ 1 as n→ ∞.

6. Proofs of Theorems 1.4 and 4.1
In this section we complete the proof of Theorem 4.1 and use it to deduce Theorem 1.4. Note
that Lemma 5.1 proves Theorem 4.1 for r = 2, all d� 2 and all �� 0. The rest of the proof of
Theorem 4.1 is an inductive argument that is very similar to the one used in [5]. However, we face
certain technical complications that are not present in [5]. So, in spite of the many similarities, we
will give almost all of the details of the proof.

We wish to show that for all d� r and all �� 0, if p satisfies (4.7), then P(n, d, �, r, p)→ 1 as
n→ ∞. We will assume that Theorem 4.1 holds for all r′ < r, all d� r′ and all �� 0. In order to
carry out the induction, we need two lemmas. The first is due to Holroyd [22, Lemma 2]. We will
need it for the case r = 3.

Lemma 6.1. For any d� 3, �� 0 and ε > 0, if n is sufficiently large and p−2d � nε , then

P(n, d, �, 3, p)� exp (− n1+ε).

The second lemma is due to Balogh, Bollobás and Morris [5, Lemma 12].
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Lemma 6.2. For each d� r� 2 and each �� 0, there exists a constant η = η(d, �, r)> 0 such that
the following holds. Let ε, p> 0, let n, m ∈N and let A∼ Bin ([n]d × [2]�, p). If

P(m, d − i, � + i, r − i, p)� 1− η for all i ∈ [r − 2] (6.1)
and if M� n is such that M/m is sufficiently large (depending on d, �, r and ε), then

P([n]d × 1� ⊆ [A∪ ([M]d × 1�)])� 1− ε; (6.2)
in particular,

P(n, d, �, r, p)� (1− ε)P(M, d, �, r, p).

Remark 6.3. Lemma 6.2 simply provides a lower bound on the the probability that the infected
set grows from a smaller cuboid to a larger one. However, the role of m in the statement of the
lemma deserves some explanation.

Let t�m and suppose that [t]d × 1� is internally spanned. It follows from an observation in [2]
that if (6.1) holds, then the probability that [t + 1]d × 1� is not internally spanned is exponentially
small in t/m. (For a proof of this statement, see e.g. [5, Lemma 11].) So, Harris’s lemma and the
assumption onM/m imply that there exists C > 0 such that

P([n]d × 1� ⊆ [A∪ ([M]d × 1�)])�
n−1∏
t=M

(1− Ce−t/m)� 1− ε,

which is exactly (6.2).

To prove Theorem 4.1, we will need to define quantitiesm,M and N such that 1	m	M 	
N 	 n. We will bound from below the probability of filling a cuboid of side lengthM. Then, using
our induction hypothesis and Lemma 6.2, we will bound the probability that this cuboid grows
to fill a cuboid of side length N := ( log n)3. Once we have bounded P(N, d, �, r, p), it will be easy
to show that, with high probability, there exists a copy of [N]d × 1� in [n]d × 1� that is internally
spanned and that, with high probability, this copy of [N]d × 1� grows to fill all of [n]d × 1�.

In order to apply Lemma 6.2 in the proof of Theorem 4.1, we must take some care in choosing
the values ofm andM. We want to definem such that, for all i ∈ [r − 2], P(m, d − i, � + i, r − i, p)
is sufficiently close to 1. Ifm is such that

p�
(

λ(d + �, � + r)
log(r−i−1) (m)

− cd−i,�+i,r−i
( log(r−i−1) (m))3/2

)d−r+1
, (6.3)

then the desired lower bound on P(m, d − i, � + i, r − i, p) follows from the induction hypothesis.
Comparing (6.3) to the bound on p in (4.7) suggests that it is reasonable to define m such that
log(r−2) (m) is close to log(r−1) (n). Recall also from Lemma 6.2 that we want to define M such
that M/m→ ∞ as n→ ∞. Furthermore, it will turn out that we want log(r−2) (M) to be slightly
less than log(r−1) (n). However, how close log(r−2) (m) and log(r−2) (M) must be to log(r−1) (n)
depends on n, which complicates the argument slightly.

First, let
N = ( log n)3.

Next, given d, � and r, let λ = λ(d + �, � + r) be as in (1.3). We define M, m and a third quantity
δ, such thatM andm are the largest positive values such that

δ = 2−rγ (d − r + 2, � + r − 2)
λ

( log(r−2) (M))−1/2, (6.4)

log(r−2) (M)= (1− δ) log(r−1) (n), (6.5)
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and

log(r−2) (m)= (1− 2δ) log(r−1) (n). (6.6)
It is not necessarily obvious from (6.4)–(6.6) that δ,M andm are well-defined. To see that these

quantities are indeed well-defined for n sufficiently large, let c= 2−rγ (d− r + 2, � + r − 2)/λ and
observe that by (6.4), we may rewrite (6.5) as

log(r−2) (M)= (1− c( log(r−2) (M))−1/2) log(r−1) (n). (6.7)
Now let y= log(r−1) (n) and let

f (x)= x− (1− cx−1/2)y.
Elementary calculations show that for n sufficiently large, f has at least one and at most two pos-
itive real roots, at least one of which is larger than 1. Let x0 be the larger (or only) positive real
root of f . Then we may defineM by log(r−2) (M)= x0, which is exactly (6.7). Thus, δ,M andm are
well-defined.

On another note, (6.4) and (6.5) imply that

δ = �(( log(r−1) (n))
−1/2). (6.8)

So, δ → 0 as n→ ∞. This convergence to 0, which we have not been able to avoid, is the source
of most of the technical complications in the proof of Theorem 4.1.

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. As stated above, Lemma 5.1 gives the claimed result for r = 2. So, suppose
that r� 3 and that for all r′ < r, the result holds for all d� r′ and for all �� 0.

We begin by proving a lower bound on P(M, d, �, r, p).

Claim 6.4. We have P(M, d, �, r, p)� 1/n as n→ ∞.

Proof. To prove the claim for r = 3, we first show that

p−2d � ( log log n)4d
2 �Mδ . (6.9)

The first inequality follows from (4.7). To see the second inequality, observe that (6.5) and (6.8)
imply that

δ logM � ( log log n)1/2 � log log log n.
By (6.9), we may apply Lemma 6.1 to P(M, d, �, 3, p). The lemma and (6.5) imply that for

n sufficiently large,

P(M, d, �, 3, p)� exp (−M1+δ)= exp (− ( log n)1−δ2 )� 1/n.
To prove the claim for r� 4, it suffices to bound P(M, d, �, r, p) from below by the probability

that [M]d × 1� is full. To do this, we first show that
logM 	 log log n. (6.10)

Indeed, exponentiating both sides of (6.5) and applying (6.8) gives
log(r−3) (M)= exp ((1− δ) log(r−1) (n))	 exp ( log(r−1) (n))= log(r−2) (n).

This proves (6.10) for r = 4. For r� 5, (6.10) follows by repeatedly exponentiating both sides of
the inequality above.

We then observe that, by (6.10),

P(M, d, �, r, p)� pM
d � exp (− log (1/p)( log n)1−δ),
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which means that we are done if we can show that

exp (− log (1/p)( log n)1−δ)� 1
n
. (6.11)

If we take logarithms twice in (6.11), we see that it is enough to show that log log (1/p)	
δ log log n. To do this, we observe that (6.8) and the fact that 1/p	 log(r−1) (n) imply that for
all r� 4,

δ log log n� log log n
( log(r−1) (n))1/2

� log(r+1) (n)� log log (1/p).

This proves (6.11), which proves the claim.

Now we wish to use Lemma 6.2 to show that P(N, d, �, r, p)� 1/2n for all n sufficiently large.
First, we claim that M/m→ ∞ as n→ ∞. For r� 4, this is easy to see. For r = 3, we observe

that by (6.5), (6.6) and (6.8),
M
m

= ( log n)δ = exp (δ log log n)� exp (C( log log n)1/2)

for some constant C > 0. So,M/m indeed tends to infinity as n→ ∞.
Next, we show that our induction hypothesis implies that (6.1) holds – that is, A is likely to

semi-percolate in the lower-threshold sets adjacent to [m]d × [2]�. Once we have shown this, we
will be ready to apply Lemma 6.2.

Claim 6.5. For all i ∈ [r − 2], P(m, d − i, � + i, r − i, p)→ 1 as n→ ∞.

Proof. Let λ = λ(d + �, � + r) and let cd,�,r be as in (4.5). By induction, it is enough to show that
for all i ∈ [r − 2], we have

p�
(

λ(1− 2δ)
log(r−2) (m)

− cd,�,r(1− 2δ)3/2

( log(r−2) (m))3/2

)d−r+1

�
(

λ

log(r−i−1) (m)
− cd−i,�+i,r−i

( log(r−i−1) (m))3/2

)d−r+1
.

(6.12)

The first inequality in (6.12) follows from (4.7) and (6.6). For i� 2, the second inequality in
(6.12) is easy to see. For i= 1, we need to show that

λ(1− 2δ)
log(r−2) (m)

− cd,�,r(1− 2δ)3/2

( log(r−2) (m))3/2
� λ

log(r−2) (m)
− cd−1,�+1,r−1

( log(r−2) (m))3/2
.

Because (1− 2δ)3/2 < 1, it is enough to show that

2δλ( log(r−2) (m))1/2 + cd,�,r � cd−1,�+1,r−1.

Indeed, (6.4), the fact thatm�M and (4.6) imply that

2δλ( log(r−2) (m))1/2 + cd,�,r � 2−r+1γ (d − r + 2, � + r − 2)+ cd,�,r = cd−1,�+1,r−1,

which proves (6.12).
It then follows from the induction hypothesis that for each i ∈ [r − 2],

P(m, d − i, � + i, r − i, p)→ 1 as n→ ∞,

as claimed.
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By Claim 6.5, we may apply Lemma 6.2 to P(N, d, �, r, p). The lemma and Claim 6.4 imply that

P(N, d, �, r, p)� (1− ε)P(M, d, �, r, p)� 1
2n

for all n sufficiently large. Since (n/N)d � 2n, with high probability, there exists a cuboid
K × 1� ⊆ [A] with |K|�Nd. So, by applying Lemma 6.2 again (this time with N in place of M)
and Harris’s lemma, we have

P(n, d, �, r, p)� (1− o(1))P([n]d × 1� ⊆ [A∪ (K × 1�)])= 1− o(1).

This completes the proof of Theorem 4.1.

The proof of Theorem 1.4 is immediate.

Proof of Theorem 1.4. Let d� r� 2 and let n be sufficiently large. Let cd,r = cd,0,r and note that
(4.5) implies that cd,r > 0. Applying Theorem 4.1 with � = 0 shows that

pc([n]d, r)�
(

λ(d, r)
log(r−1) (n)

− cd,r
( log(r−1) (n))3/2

)d−r+1
,

as claimed.

7. Open questions
It remains to improve the lower bound on the critical probability pc([n]d, r) for values of d� r� 2
other than d = r = 2. Given the difficulty of the proof of the lower bound in Theorem 1.3, this is
likely to be much harder than the proof of Theorem 1.4, especially for r� 3. Note, however, that
the upper bound on pc([n]2, 2) in [17] gave the correct order of magnitude of the second term.
Because the proof of Theorem 1.4 can be seen as a fairly natural generalization of the arguments
in [17] to higher dimensions, we conjecture that the theorem gives the correct order of magnitude
of the second term in pc([n]d, r) for all d� r� 2.

Conjecture 7.1. Let d� r� 2. As n→ ∞,

pc([n]d, r)=
(

λ(d, r)
log(r−1) (n)

− �

(
1

( log(r−1) (n))3/2

))d−r+1
.
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Appendix
Here we give the proofs of results from the paper that, while straightforward, rely on somewhat
lengthy calculations.

Proof of Proposition 3.2. Recall that we wish to bound |g′
k(z)| from above for all k� 1 and all

z� 1.
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By (1.2),

|g′
k(z)| =

∣∣∣∣e
−zβ ′

k(1− e−z)
βk(1− e−z)

∣∣∣∣. (A.1)

First, we bound β ′
k(1− e−z) from above. (Recall that βk is increasing on (0, 1).) Differentiating

both sides of (3.3) gives

2βk(u)β ′
k(u)= k(1− u)k−1βk(u)+ (1− (1− u)k)β ′

k(u)+ (1− u)k − ku(1− u)k−1.
So,

β ′
k(u)=

k(1− u)k−1βk(u)+ (1− u)k − ku(1− u)k−1

2βk(u)− 1+ (1− u)k
.

It follows from (1.1) and the fact that βk(u)< 1 for all u ∈ (0, 1) that

β ′
k(u)=

k(1− u)k−1βk(u)+ (1− u)k − ku(1− u)k−1√
1+ (4u− 2)(1− u)k + (1− u)2k

� k(1− u)k−1 + (1− u)k − ku(1− u)k−1√
1+ (4u− 2)(1− u)k + (1− u)2k

= (k+ 1)(1− u)k√
1+ (4u− 2)(1− u)k + (1− u)2k

. (A.2)

Observe that the denominator of the right-hand side of (A.2) is at least 1 for all u� 1/2. If z� 1
then 1− e−z � 1/2, so for all such z we have

β ′
k(1− e−z)� (k+ 1)e−zk. (A.3)

Next, observe that for u� 0, the quantity under the square root on the right-hand side of (1.1)
is at least (1− (1− u)k)2, which means that

βk(u)� 1− (1− u)k (A.4)
for all u ∈ (0, 1).

When we combine (A.3) and (A.4) with (A.1), we find that

|g′
k(z)|�

(k+ 1)e−z(k+1)

1− e−zk = k+ 1
ez(k+1) − ez

� 2
e2 − 2

<
1
2
,

which is what we wanted.

Proof of Claim 5.11. The claim is a lower bound on log (P(B, d, �, 2, p)). Recall that c is the
constant from Lemma 5.1 and that(

λ(d + �, � + 2)
log n

− c
( log n)3/2

)d−1
� p�

(
λ(d + �, � + 2)2

d2 log n

)d−1
, (A.5)

where the upper bound is the assumption (5.17).
Let λ = λ(d + �, � + 2). By (A.5),

2γ
p1/(2d−2) − dλ

p1/(d−1) � 2γ
(

λ2

d2 log n

)−1/2
− d log n

(
1− c

λ( log n)1/2

)−1
.

Let ε > 0 be sufficiently small. If x is sufficiently small, then (1− x)−1 � 1+ (1+ ε)x. Hence, for
n sufficiently large, we have

2γ
p1/(2d−2) − dλ

p1/(d−1) � d log n · 2γ
λ( log n)1/2

− d log n
(
1+ (1+ ε)c

λ( log n)1/2

)
. (A.6)
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By (5.1),

(1+ ε)c<
4c
3

< 2γ .

It follows that there exists α > 0 such that the right-hand side of (A.6) is at least α( log n)1/2 −
d log n, which is what we wanted.
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