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Abstract

Objectives: Clinical neuroscience is increasingly turning to imaging the human brain for answers to a range of questions
and challenges. To date, the majority of studies have focused on the neural basis of current psychiatric symptoms, which
can facilitate the identification of neurobiological markers for diagnosis. However, the increasing availability and
feasibility of using imaging modalities, such as diffusion imaging and resting-state fMRI, enable longitudinal mapping of
brain development. This shift in the field is opening the possibility of identifying predictive markers of risk or prognosis,
and also represents a critical missing element for efforts to promote personalized or individualized medicine in psychiatry
(i.e., stratified psychiatry). Methods: The present work provides a selective review of potentially high-yield populations
for longitudinal examination with MRI, based upon our understanding of risk from epidemiologic studies and initial MRI
findings. Results: Our discussion is organized into three topic areas: (1) practical considerations for establishing temporal
precedence in psychiatric research; (2) readiness of the field for conducting longitudinal MRI, particularly for
neurodevelopmental questions; and (3) illustrations of high-yield populations and time windows for examination that
can be used to rapidly generate meaningful and useful data. Particular emphasis is placed on the implementation of
time-appropriate, developmentally informed longitudinal designs, capable of facilitating the identification of biomarkers
predictive of risk and prognosis. Conclusions: Strategic longitudinal examination of the brain at-risk has the potential to
bring the concepts of early intervention and prevention to psychiatry. (JINS, 2016, 22, 164–179)

Keywords: Magnetic resonance imaging (MRI), Longitudinal examination, Prediction, Stratified psychiatry, Brain
development, Population and time window

INTRODUCTION

Biological psychiatry entails the study of how the brain
functions to manage cognition, behavior, and emotion in
health and disease. In recent years, magnetic resonance
imaging (MRI) has emerged as a mainstream tool for devel-
oping models of brain structure and function. In large part,
this shift toward MRI usage reflects the increasing ability of
MRI techniques to non-invasively characterize inter-
individual differences in the organization of human brain
circuitry. Crucially, MRI measurements can be related to
individual variations in cognition, behavior, and emotion.
Already, MRI studies of clinical populations have offered
several novel perspectives on pathologic processes. Perhaps

most exciting, there is growing evidence that MRI may yield
clinically useful brain-based biomarkers (Buckholtz &
Meyer-Lindenberg, 2012; Castellanos, Di Martino,
Craddock, Mehta, & Milham, 2013; Di Martino, Fair, et al.,
2014; Kaiser, 2013; Kelly, Biswal, Craddock, Castellanos, &
Milham, 2012; Watanabe, Kessler, Scott, Angstadt, & Sri-
pada, 2014). To realize these ambitions, researchers are
endeavoring to increase the validity and reproducibility of
imaging findings via leveraging multicenter designs
(Van Essen et al., 2013), as well as large-scale aggregate
samples generated through data sharing initiatives
(Di Martino, Yan, et al., 2014; Mennes, Biswal, Castellanos,
& Milham, 2013; Nooner et al., 2012). However, increasing
sample size alone will not be sufficient to address the broader
range of neuroscientific and clinical questions, as most data-
sets collected to date are cross-sectional. While such datasets
have value for efforts to differentiate populations from one
another (e.g., establishing the neural correlates of illness,
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carrying out brain-based diagnostic classification), they are
limited in their ability to support a mechanistic understanding
of the developmental processes underlying psychiatric ill-
ness, as well as to offer predictions regarding risk or
prognosis.
The importance and value of developing cohorts in which

individuals are imaged repeatedly over the course of time
(i.e., longitudinal designs) is reinforced by the growing con-
sensus that most psychiatric illness is neurodevelopmental in
origin. Some of the most compelling support for this notion
are epidemiologic findings suggesting that at least 50% of
mental disorders arise before age 14, and 75% before age 24
(Kessler, Avenevoli, & Merikangas, 2001). Furthermore,
genetic research has documented the high heritability of
many forms of severe psychiatric illness (e.g., autism, bipolar
disorder, schizophrenia) (Burmeister, McInnis, & Zollner,
2008; Colvert et al., 2015; Cross-Disorder Group of the
Psychiatric Genomics et al., 2013; Muhle, Trentacoste, &
Rapin, 2004). These findings are bolstered by the growing
number of associations between psychiatric illness and
genetic variants (i.e., common and rare) (Caspi & Moffitt,
2006; Gaugler et al., 2014; Martin, O’Donovan, Thapar,
Langley, & Williams, 2015; Sandin et al., 2014), as well as
undeniable familial associations with psychiatric illness (e.g.,
19% risk for autism spectrum disorder [ASD] in younger
siblings of an individual with ASD) (Ozonoff et al., 2011).
Arguably, the neurodevelopmental perspective of psychiatric

illness suggests not only the need for longitudinal research, but
also the need to begin research as early in development as
possible. In support of these needs, imaging researchers are
rapidly developing the capabilities needed for functional and
structural imaging in prenatal and early postnatal life (e.g.,
neonatal imaging, infant imaging, toddler imaging) (e.g., Almli,
Rivkin, McKinstry, & Brain Development Cooperative, 2007;
Ramenghi et al., 2009; Reddy, Abuhamad, Levine, Saade, &
Fetal Imaging Workshop Invited, 2014; Smyser, Snyder, &
Neil, 2011). Undeniably, several technical challenges still exist,
as exemplified by head motion (Power, Barnes, Snyder,
Schlaggar, & Petersen, 2012; Satterthwaite et al., 2013; Yan,
Craddock, He, & Milham, 2013) and the various logistical
hurdles of imaging during the prenatal period, or during natural
sleep (Di Martino, Fair, et al., 2014). Nevertheless, pioneering
studies have demonstrated the feasibility of longitudinally
mapping developmental trajectories in clinical and non-clinical
populations alike.
Beyond neuroscientific ambitions, the growing interest of the

medical community in “personalized” health care and stratified
(or “precision”) interventions, is further motivating the genera-
tion of longitudinal datasets. In “stratified psychiatry” (Kapur,
Phillips, & Insel, 2012), it is crucial to identify and validate
objective measures or “stratifiers” capable of enhancing our
ability to inform predictions of risk, prognosis, or treatment
outcome, beyond that afforded by conventional diagnostic
systems (e.g., DSM-5) or historical data. Such measures have
the potential to guide clinical efforts focused on prevention,
early intervention, and the selection of optimal treatments
(Costa e Silva, 2013; Schumann et al., 2014). The genetics

community has led the way in such pursuits, although marked
gaps remain. While imaging has the potential to meaningfully
contribute to these efforts, the prerequisite longitudinal data are
yet to be generated.
Despite their potential benefits, the scale with which

longitudinal studies can be deployed in imaging research
remains limited by their associated costs and time-requirements.
Realizing the need to balance promise with an appreciation of
logistical challenges, it is our tenet that targeting high-yield
“at-risk” clinical populations and age-ranges is essential for
efficacious and impactful implementations of longitudinal
imaging studies. As will be elucidated below, risk can be defined
using a range of variables, including genetics, familial factors,
fetal exposures, environmental exposures, and current
psychiatric symptomatology. Our discussion is organized into
four topic areas: (1) a special role of connectomics in psychiatric
research; (2) practical considerations for establishing temporal
precedence in psychiatric research; (3) readiness of the field for
conducting longitudinal MRI, particularly for neurodevelop-
mental questions; and (4) illustrations of high-yield populations
and time windows for examination that can be used to rapidly
generate meaningful and useful data.

A SPECIAL ROLE OF CONNECTOMICS

The principles and frameworks discussed in the present work
are broadly applicable to various brain imaging methodolo-
gies. In recent years, the human connectome has taken a
central focus in efforts to map brain function and structure
(e.g., Van Essen et al., 2013). A growing number of studies
are working to map changes in the connectome across
the lifespan (Nooner et al., 2012), as well as to identify
connectome-based markers of illness, risk and prognosis
(see Castellanos et al., 2013 for review; Di Martino, Yan,
et al., 2014). The increased focus on the connectome allows
for more direct appreciation of interactions among brain
regions, particularly between cortical and subcortical regions.
Importantly, such complex interactions contribute to the
occurrence of psychiatric illness, a concept originally
espoused by Norman Geschwind in his 1965 papers entitled
“Disconnexion syndromes in animals and man” (Geschwind,
1965a, 1965b). Recent advances in MRI imaging modalities
are providing researchers with the critical tools needed for
in vivo mapping of structural and functional brain con-
nectivity underlying pathological symptoms. Although still
in their infancy, studies of connectomes are rapidly extending
models of psychiatric disorders, to integrate the concepts of
hypo- and hyper-connectivity, as well as more complex
disturbances embedded in the connectome (e.g., autism: Di
Martino, Yan, et al., 2014; ADHD: Fair et al., 2010; schizo-
phrenia: Whitfield-Gabrieli et al., 2009).
Given its role in psychiatry, there has been an increased

interest in connectome-based analyses in individuals at risk
of a disorder. Initial longitudinal efforts are emerging, a few
of which will be introduced in this review. These efforts have
capitalized on the increasing capabilities of diffusion imaging
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(Ameis & Catani, 2015; White, Nelson, & Lim, 2008), white
matter volumetrics (Radua, Via, Catani, & Mataix-Cols,
2011), and resting-state fMRI (R-fMRI) (Castellanos et al.,
2013) approaches. Looking forward, advances in quantitative
MRI (see Alexander et al., 2011, for review), particularly
relaxometry (e.g., myelin water fraction) and magnetization
transfer (myelin volume fraction, axon volume fraction,
g-ratio) methods, can provide researchers with tools capable
of providing in vivo characterizations of myelin in healthy
and disordered brains. In light of recent models suggesting
the contributions of dysregulated myelination to early-life
psychiatric disorders (Bartzokis, 2004), these quantitative
MRI techniques, which focus on characterization of myelin
properties (e.g., sheath thickness), are particularly important
in imaging the “at-risk” brain.

ESTABLISHING TEMPORAL PRECEDENCE

Optimally, the study of a given illness will lead to an
understanding of its etiology and pathophysiological
mechanisms; in turn, this information can be used to identify
modifiable targets for intervention. For example, phenylk-
etonuria (PKU) is an autosomal recessive disorder, for which
the causal mechanisms, downstream effects, and the timing
and optimal treatments are well understood. PKU is caused
by mutations in the phenylalanine hydroxylase gene; the
optimal intervention is to identify neonates soon after birth
using a screening blood test and promptly begin a low phe-
nylalanine diet. Such early identification and interventions
work well for diseases with a clear etiology that can be
validated through objective means such as a blood test. In
contrast, the origins of most psychiatric disorders are poorly
understood; they are presumed to be complex and the result
of interactions between genetic and environmental factors
over time, rather than a single causal factor occurring at a
single time point.
Longitudinal designs can help address causality by

demonstrating temporal precedence (i.e., “the cause” pre-
cedes “the effect”). Given the presumed multifactorial nature
of psychiatric illness, imaging studies are unlikely to identify
most etiologic agent(s) or processes. However, imaging can
identify relationships between particular neurophenotypes
(i.e., prototypic brain organizations) and later behavioral
manifestations of illness. In some instances, a given neuro-
phenotype can either indicate an increased risk for the later
onset of a disorder or serve as a predictor of prognosis,
without any assertions regarding causality. In either the risk
or prognostic scenario, such information has the potential to
guide clinicians’ decision-making. As demonstrated in recent
studies of depression (Liston et al., 2014; McGrath et al.,
2014), researchers can attempt to explain variations in treat-
ment response (i.e., responder vs. non-responders) based on
neurophenotypic features assessed before treatment. Such
distinctions are central to stratified medicine and can mean-
ingfully impact clinical decision-making.

RESEARCH READINESS OF LONGITUDINAL
MRI

While few would argue against the potential scientific value of
longitudinal MRI studies of the developing brain, the many
logistical challenges and substantial expenses prompt concerns
regarding the field’s readiness to proceed. The recently awarded
NIH Adolescent Brain Cognitive Development (ABCD) Study
signals increased confidence in this regard. This effort is
designed to determine the impact of substance use on the
trajectories of brain, behavior, and cognitive development, while
also identifying potential brain-based markers for risk. The cost
of the proposed longitudinal examination of 10,000 nine-to-ten
year old children over the next 10 years is projected to be US
$300,000,000; its implementation will bring together more than
a dozen imaging sites from around the United States and its
success will depend on a combination of careful coordination
and state-of-the-art neuroinformatics. Despite the welcomed
endorsement of the imaging community’s progress provided by
the inception of the NIH ABCD Study, many questions remain
as the community considers similar initiatives focused on other
areas of psychiatry, or more technically challenging efforts
focused on even earlier ages.

Logistical Challenges Related to Imaging:
Reliability and Validity

While longitudinal imaging studies to date have primarily
used T1-weighted morphometry, a growing array of imaging
modalities has been suggested (e.g., R-fMRI, diffusion
weighted MRI, arterial spin labeling, quantitative T1/T2
mapping, and myelin water fraction (Deoni, Dean, Remer,
Dirks, & O’Muircheartaigh, 2015; Dubois et al., 2014; Gao
et al., 2015; Krogsrud et al., 2015; Sadeghi et al., 2013;
Smyser et al., 2010; Walker et al., 2016; Wang et al., 2008).
Given that scan session durations are limited by the toler-
ability of the scanner environment (particularly for develop-
ing and clinical populations) and cost ( ~$500–$700 per hr +
manpower costs), investigators must determine which
imaging modalities to include, and how to prioritize them,
based upon readiness of these modalities for study at the
present time. Central to assessments of the readiness
for longitudinal examination are determinations of their
reliability and validity of data collected for these imaging
modalities (e.g., Finn et al., 2015; Jovicich et al., 2014; Kuhn
et al., 2015; Mueller et al., 2015; Zuo et al., 2014). In parti-
cular, test–retest reliability is an essential prerequisite for
longitudinal studies, as experimental error in measurements
from one time point to the next inherently limits the detect-
ability of meaningful time-related changes. Despite the best
of intentions, hardware and software upgrades commonly
occur during the conduct of studies; any such changes should
be carefully denoted in datasets and considered at the analytic
level when possible. Phantom measurements and compre-
hensive quality control assessments (NessAiver, NessAiver,
Harms, & Xu, 2015) can be used to alleviate potential con-
cerns related to these events.
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Although arguably less essential for single-site studies,
inter-scanner reliability should also be considered for long-
itudinal examinations. It is generally accepted that the best
solution to the maximization of inter-scanner reliability is
standardization to a single scanner type and protocol (see
Brain Genomics Superstruct Project, Holmes et al., 2015, for
an example). However, efforts, such as the Pediatric Imaging,
Neurocognition, and Genetics (PING) (Jernigan et al., 2015),
have demonstrated it is possible to minimize protocol
differences across scanner types (e.g., Siemens, GE, Philips).
Additionally, a growing number of post hoc statistical
correction approaches is becoming capable of minimizing the
impact of scanner differences (Yan, Craddock, Zuo, Zang, &
Milham, 2013). Importantly, for any multicenter design, it is
critical to ensure that variables of interest do not vary across
scanners (e.g., all ADHD participants imaged on scanner A
but all typical comparisons on scanner B).

Putting the Pieces Together from Fetus to
Childhood

Enthusiasm has been building for imaging brain development
from the fetus to childhood and beyond. However, we must
acknowledge the challenges inherent to early life imaging
methodologies. For example, the state of wakefulness during
which children are scanned varies with age for task-
independent functional MRI. With sufficient pre-scan
habituation and training, children ages 5 years and older can
usually cooperate with rest scans while awake. However,
younger children (e.g., infants or toddlers) are unable to
remain sufficiently still while awake, but can be scanned
during natural sleep (see Di Martino, Fair, et al., 2014 for a
review). While functional connectivity is known to vary sys-
tematically between awake and sleep states (Barttfeld et al.,
2015; Fukunaga et al., 2006; Uehara et al., 2014), as well as
between eyes-open and eyes-closed states (Wang, Li, Xu, &
Ding, 2015; Zuo et al., 2014), it is not clear how these differ-
ences impact the reliability of intra- and inter-individual
differences during a developmental time course. This is one of
the challenging but important questions that can be addressed
by longitudinal MRI studies.

Non-imaging Logistical Challenges

Discussions of the readiness for large-scale longitudinal stu-
dies tend to focusmost heavily on the reliability and validity of
MRI measurements. However, it is equally important to take
into account the behavioral, cognitive, psychiatric and physi-
cal characterizations to which MRI measures will be linked.
Similar to the genetics community, imaging researchers are
increasingly highlighting the need for “deep” (i.e., precise and
comprehensive) phenotyping protocols (Loeffler et al., 2015;
Rafii et al., 2015; Stepniak et al., 2014). Simultaneously, there
is increasing pressure to obtain broader assessments, which
provide a more holistic characterization of an individual
(Nooner et al., 2012), although often at the cost of additional

burden on participants and experimenters. Additional trends
are an increased focus on the adoption of dimensional char-
acterizations of behaviors and symptomatology, which can be
used to transcend DSM-5 diagnostic classifications. A multi-
tude of measurements are emerging for all of these domains,
ranging from self-administered, clinician-administered,
informant-based assessments, to more objective measures
(e.g., device, computer, or laboratory measurements).

SELECTION OF HIGH-YIELD TARGET
POPULATIONS AND APPROPRIATE TIME
WINDOWS FOR LONGITUDINAL
EXAMINATION

How can we best design a longitudinal study? Should all
longitudinal studies begin at birth, since many psychiatric
disorders have early onsets and strong genetic influences?
The answer may be “Yes” if a research question is etiological
(i.e., causal links). However, from an implementation and
timeliness perspective, this would likely be unrealistic and
impractical for the vast majority of MRI studies. Critically,
the ability of longitudinal MRI examinations to advance the
stratified psychiatry agenda will depend upon (1) strategic
identification of high-yield targets (e.g., risk populations),
and (2) the selection of the appropriate time windows for
examination. Here, we provide a targeted review of
psychiatric imaging and epidemiologic studies that can help
to build longitudinal MRI research models, with a particular
focus on how to determine the appropriate time window(s) to
answer specific research questions.

Autistic Spectrum Disorder

ASD poses a range of challenges for the healthcare profes-
sions, which exemplify the complexities that can arise in the
detection and treatment of neurodevelopmental disorders.
The first challenge is the task of diagnosing autism. Beyond
the core domains (i.e., social-communicative, repetitive and
restricted interests/behaviors), ASD is characterized by
marked clinical heterogeneity/comorbidity (Georgiades
et al., 2013; Geschwind, 2009; Jeste & Geschwind, 2014;
Matson & Williams, 2013; Wiggins, Robins, Adamson,
Bakeman, & Henrich, 2012), which can lead to confusion
and delays in diagnosis. The second challenge is the need to
identify those most at risk for developing the disorder as early
as possible, to create opportunities for early intervention. The
third challenge is determining prognosis, which often cannot
be determined until years after the initial diagnosis, except for
the most severely affected cases. This is particularly critical
for autism, for which long-term outcomes vary widely; some
individuals experience substantial improvements as they
mature, while others face significant, lifelong impairment,
particularly those who are non-verbal (Bal, Kim, Cheong, &
Lord, 2015; Pickles, Anderson, & Lord, 2014). It is the latter
two challenges, focused on the establishment of risk and
prognosis, which are best positioned to benefit from
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longitudinal research designs. Efforts aiming to improve the
diagnostic process (e.g., identification of distinct neurophe-
notypic subtypes, identification of biomarkers of illness that
can inform complex presentations) may also benefit from
longitudinal data, although less directly.

MRI Predictors of Risk

As with other neurodevelopmental disorders in psychiatry,
researchers studying ASD are seeking a range of predictive
biomarkers, capable of informing assessments of risk. Initial
work with brain imaging suggests its potential utility in
studying infants at risk (i.e., younger sibling of a child with
ASD) (Elison et al., 2013; Wolff et al., 2015, 2012). ASD is
highly heritable; for example, monozygotic twin con-
cordance ranges between 0.77 and 0.99 (Colvert et al., 2015),
and 18.7% of younger siblings develop ASD (Ozonoff et al.,
2011). Appreciating the strong genetic contributions to ASD,
longitudinal efforts have begun to scan infants with a familial
risk of ASD to identify early predictors of later ASD devel-
opment, as well as early mechanisms of disease, compensa-
tion and protective factors. Typically these studies are
designed to follow children at both high- and low-risk (i.e.,
siblings of children with and without an older sibling affected
by ASD, respectively) from the first few months of life to at
least age 36 months, when the diagnosis of ASD is con-
sidered stable. Initial findings have suggested that early-life
MRI indices can predict later ASD diagnosis by age 2 or later.
Example MRI indices include larger total cerebral volume

at 12–15 months (Shen et al., 2013), excessive frontal cere-
brospinal fluid at 6–9 and 12–15 months (Shen et al., 2013),
and higher white matter fractional anisotropy (FA) values at
6 months (Wolff et al., 2012), and increased cortical thick-
ness in the corpus callosum in the first year of life (Wolff
et al., 2015). Most recently, Blasi et al. (2015) quantified
differences in fMRI activation in response to human voice
sounds and non-voice sounds between high- and low-risk
ASD groups during natural sleep: 4- to 7-month-old infants at
high risk of ASD exhibited reduced sensitivity to human
voices, relative to those at low risk of ASD, during natural
sleep. This result suggests the presence of early disturbances
in perceptual processing of human voices, which are the most
basic and crucial acoustic stimuli in the social environment,
will impact later social and emotional development. These
neuroimaging findings suggest that longitudinal MRI may
serve not only to provide clues for potential biomarkers but
also to reveal pathologic mechanisms.

MRI Predictors of Prognosis

Another potentially important application of longitudinal MRI
is the prediction of prognosis (i.e., to predict later behavioral
and functional outcomes). One example would be the ability
to predict whether a child diagnosed with ASD at age
24 months will develop more than minimal verbal skills by
age 60 months, which in turn is an important predictor of later-
life behavioral and social outcomes (Baghdadli et al., 2007;

Billstedt, Gillberg, & Gillberg, 2005; Howlin, Goode, Hutton,
& Rutter, 2004; Szatmari et al., 2002). At present, the pre-
dictive value of behavioral assessment during early toddler-
hood (e.g., joint attention, repetitive behavior, and nonverbal
IQ at 2 years) for later language outcomes is limited to iden-
tifying ASD children with severe impairments (Anderson
et al., 2007; Pickles et al., 2014; Wolff et al., 2014). This
leaves a gap in the ability to predict subsequent verbal devel-
opment for less severely affected children with ASD; this gap
might be addressable by longitudinal MRI studies of toddlers.
A recent longitudinal examination demonstrated that pre-

diagnosis fMRI activity at ages 12–48 months differentiated
language deficits 1 year later in children with ASD (Lombardo
et al., 2015). More specifically, ASD children with poor lan-
guage outcomes exhibited reduced activation in language-
sensitive superior temporal regions in response to speech
when compared to ASD toddlers with relatively good lan-
guage outcomes; activation in this ASD group was also found
to be reduced when compared to typically developing children
and language-delayed non-ASD children. This finding sug-
gests the potential value of MRI assessment during toddler-
hood for identifying objective brain-based prognostic markers
of language development in ASD. If successfully obtained,
such markers would have the potential to inform decisions
regarding the deployment of early intervention efforts, as well
as to assess brain responses to intervention.

Pediatric Anxiety Disorders

Anxiety disorders are the most prevalent forms of psychiatric
illness in children and adolescents. From a stratified psychiatry
point of view, pediatric anxiety disorders are of interest
because: (1) they predict risk for later onset of a second psy-
chiatric illness (e.g., depressive disorder); and (2) their origins
appear to lie in the fetal and/or perinatal period. Thus, pediatric
anxiety disorders are another example of a potentially rich
target for longitudinal evaluation in imaging studies.

Pediatric anxiety disorders as predictors of later
depression

Pediatric anxiety disorders are believed to contribute to, or at
a minimum signal the likelihood of, the development of
secondary psychiatric complications later in life (Woodward
& Fergusson, 2001). Cross-sectional and longitudinal studies
have consistently identified the presence of anxiety disorders
in childhood and early adolescence as a strong predictor of
adult depressive symptoms (Beesdo, Pine, Lieb, & Wittchen,
2010; Kessler et al., 2001; Pine, Cohen, Gurley, Brook, &
Ma, 1998; Silberg, Rutter, Neale, & Eaves, 2001; Silk, Davis,
McMakin, Dahl, & Forbes, 2012; Weissman, Fendrich,
Warner, & Wickramaratne, 1992; Weissman et al., 2005).
While studies looking at pubertal/adolescent populations
have found links between subclinical depressive symptoms
(e.g., fatigue, poor concentration) and the later development
of major depression in adulthood (Hill, Pettit, Lewinsohn,
Seeley, & Klein, 2014; Pine, Cohen, Cohen, & Brook, 1999),
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findings from pre-pubertal studies are less clear in such links.
In fact, some have found that previously observed relation-
ships between pre-pubertal-onset depression and recurrence
of depression in adulthood do not survive after taking into
account the presence of anxiety and externalizing disorders
(Weissman et al., 1999).
Consistent with proposed commonalities in symptoms,

shared structural and functional correlates of both anxiety and
depressive disorders have been reported (Bremner, 2004;
Bruhl, Delsignore, Komossa, & Weidt, 2014; Etkin &
Wager, 2007; Kaiser, Andrews-Hanna, Wager, & Pizzagalli,
2015; Miller, Hamilton, Sacchet, & Gotlib, 2015; Schmaal
et al., 2015). These mostly include limbic structures
(e.g., amygdala) involved in emotion and its regulation, as
well as anterior cingulate cortex involved in cognitive control
(see Ray & Zald, 2012 for a review). For example, anxiety
disorders are associated with abnormalities in MRI metrics of
amygdala (e.g., gray matter volume, functional connectivity)
not only in adults (Basser & Pierpaoli, 1996; Robinson et al.,
2014; Roy et al., 2013), but also in young children (i.e., 7–9
and 12 years old) (Milham et al., 2005; Qin et al., 2014). For
depressive disorders, nearly all MRI studies that focus on
adults also highlight alterations (e.g., gray matter volume,
functional connectivity) in the ventral anterior cingulate
cortex (Bora, Harrison, Davey, Yucel, & Pantelis, 2012;
Botteron, Raichle, Drevets, Heath, & Todd, 2002; Carballedo
et al., 2011; Drevets, Savitz, & Trimble, 2008; Hastings,
Parsey, Oquendo, Arango, & Mann, 2004; Ho et al., 2014;
Price & Drevets, 2012; Yan, Cheung, et al., 2013). This
region is tightly coupled to amygdala function (Pezawas
et al., 2005; Roy et al., 2009) and commonly shows
abnormalities in studies of anxiety as well (Bruhl et al., 2014;
Drevets et al., 2008).
From the viewpoint of longitudinal study design, indivi-

duals affected by pediatric anxiety disorders represent a
valuable target for imaging studies aiming to identify bio-
markers to predict adult depressive disorders. Additionally,
when combined with intervention trials (e.g., cognitive beha-
vioral therapy, serotonin selective inhibitors), longitudinal
studies have the ability to address questions regarding the
impact of interventions on the neural and behavioral trajec-
tories of those at risk for later development of depression.
To date, there are no published longitudinal MRI studies

mapping neural trajectories of individuals diagnosed with
pediatric anxiety disorders, in an effort to study later life
depression. However, using an alternative approach to
studying the development of depression, recent work com-
paring neural development in children of depressed parents
(high-risk) with those of non-depressed parents (low-risk),
has provided initial insights. The high-risk group in this work
is at increased risk of developing anxiety and depressive
disorders relative to the low-risk group (Foland-Ross,
Hardin, & Gotlib, 2013; Tau & Peterson, 2010; Weissman
et al., 2005). For example, a cross-sectional study conducted
by Foland-Ross, Gilbert, et al. (2015) demonstrated that
diagnosis-free girls (9–17 years old) in a high-risk group
(born to mothers with recurrent depression) had cortical

thinning in the anterior cingulate cortex, which was in turn
associated with greater difficulty managing sadness. In a
longitudinal extension (Foland-Ross, Sacchet, et al., 2015),
alterations in cortical thickness, particularly cortical thinning
in the orbitofrontal cortex, at ages 10–15 reliably predicted
the subsequent onset of depression (i.e., 5 years later). This
pioneering work illustrates that longitudinal MRI research
can play a role in identifying biomarkers that can better pre-
dict individuals at high risk for developing depression.

Focus on fetal origins

A growing literature is documenting associations between
early neurodevelopmental stressors and the eventual devel-
opment of psychiatric illness—particularly pediatric anxiety
disorders (Dawson, Ashman, & Carver, 2000; Glover, 2014).
Accumulating evidence from animal and human studies
shows that prenatal maternal psychological stress (e.g.,
anxiety, depression) is a risk factor for anxiety disorders in
offspring (Buss, Entringer, Swanson, & Wadhwa, 2012;
Glover, 2014; Hay, Pawlby, Waters, Perra, & Sharp, 2010;
Kingston, Tough, & Whitfield, 2012; Monk, Spicer, &
Champagne, 2012; O’Connor, Monk, & Fitelson, 2014; Van
den Bergh & Marcoen, 2004). For example, prospective
longitudinal studies show that levels of self-reported mater-
nal stress and anxiety during pregnancy predict atypical
behavioral/emotional development in infants, such as greater
cry responses to novelty (Petzoldt et al., 2014; Werner et al.,
2007) and cognitive delay (Davis & Sandman, 2010;
Huizink, de Medina, Mulder, Visser, & Buitelaar, 2002). In
turn, such atypical behavioral/emotional responses during
infancy predict the development of anxiety disorders in
childhood and adolescent (Perez-Edgar & Fox, 2005).
Retrospective longitudinal examinations have begun link-

ing prenatal maternal stress to MRI-based brain outcomes in
childhood. Sandman, Buss, Head, & Davis (2015) demon-
strated significant cortical thinning in children (ages: 6–9
years) with a history of prenatal exposure to maternal
depressive symptoms. In particular, maternal depression at
25-weeks gestational age was strongly associated with cor-
tical thinning in the prefrontal cortex, which is coupled with
childhood externalizing symptoms. In parallel, prospective
longitudinal efforts linking prenatal maternal stress to brain
and behavioral developments in offspring of stressed mothers
during pregnancy are beginning to emerge. Initial work has
successfully linked the increased level of prenatal maternal
anxiety to lower values of white matter structural metrics
(e.g., FA) at birth (Rifkin-Graboi et al., 2013), as well as
slower volumetric growth of the hippocampus over the first
6 months (Qiu et al., 2013). Furthermore, Buss, Davis, et al.
(2012) report adverse effects of prenatal exposure to maternal
stress hormone on amygdala volume and affective behaviors
at the age of 7.
The aforementioned retrospective and prospective long-

itudinal studies point to the potential benefit of prenatal/fetal
MRI studies for understanding the impact of fetal program-
ming on the development of later life illness. Related to
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prenatal anxiety, researchers are actively working to
clarify the effect of prenatal exposure to selective serotonin
reuptake inhibitors (SSRIs)—the most commonly prescribed
antidepressants for anxiety disorders and depressive dis-
orders. While epidemiologic studies alone remain a source of
confusion due to inconsistences in findings (Eriksen,
Kesmodel, Pedersen, &Mortensen, 2015; Odsbu et al., 2015;
Ornoy & Koren, 2014), future longitudinal imaging studies
focused on the prenatal and neonatal periods may be able to
help inform this controversy. In particular, they can provide a
mechanistic understanding of possible disturbances asso-
ciated with SSRIs, if present. Arguably, imaging efforts
focused on non-human samples have the greatest potential to
inform our understanding of causality, given the ability to
experimentally manipulate exposures.
A crucial question for any efforts focused on the prenatal

period, is whether fetal MRI is reliably applicable to long-
itudinal examination (Anderson & Thomason, 2013;
Limperopoulos & Clouchoux, 2009; Saleem, 2014; Welsh,
Nemec, & Thomason, 2011). Fetal MRI requires interactive
scanning to account for a moving fetus (Ferrazzi et al., 2014;
Seshamani, Cheng, Fogtmann, Thomason, & Studholme,
2014) and the respiratory motion of the mother (Liu, Glenn,
& Xu, 2014). Although fetal MRI remains practically chal-
lenging and limited in its availability, recent advances are
beginning to reveal the structural (Jakab et al., 2015;
Kasprian et al., 2011) and functional (Jakab et al., 2014;
Schopf, Kasprian, Brugger, & Prayer, 2012; Thomason et al.,
2014, 2013, 2015) organization of the brain during this
highly dynamic period. Understanding typical fetal brain
development is vital for identifying sensitive periods of
vulnerability, in which environmental factors (e.g., exposure
to maternal stress) impact most on later psychiatric and
neurological disorders. Obtaining such knowledge would be
valuable when determining the timing of optimal/effective
intervention for these disorders.

Preterm Birth

Complementing the growing associations between pediatric
anxiety disorders and fetal stress is the MRI examination of
individuals born preterm. Although life-preserving techno-
logies have raised survival rates up to 85% (Smith, Draper, &
Field, 2014), the preservation of life does not assure typical,
healthy development. Individuals with a history of preterm
birth have three to five times increased risk of neurodeve-
lopmental disorders in childhood (Behrman & Butler, 2007;
Glass et al., 2015), such as ASD, anxiety disorders, and
attention deficit hyperactivity disorder (Johnson & Marlow,
2011; Treyvaud et al., 2013). This elevated risk mostly con-
tinues into adolescence and adulthood (Aarnoudse-Moens,
Weisglas-Kuperus, van Goudoever, & Oosterlaan, 2009;
Allin et al., 2008; Barre, Morgan, Doyle, & Anderson, 2011).
Based on clinical vulnerability of this population, an

increasing number of MRI studies has retrospectively
examined individuals with a history of preterm birth (i.e.,
toddlers, children, adolescents, and adults), revealing

alterations in multiple MRI metrics (Lubsen et al., 2011),
even in individuals born late preterm (Degnan et al., 2015).
These include gray matter volume (Ment, Kesler, et al.,
2009); FA white matter microstructure assessed by DTI
(Duerden, Card, Lax, Donner, & Taylor, 2013); intrinsic
functional networks assessed by R-fMRI (Constable et al.,
2008; Damaraju et al., 2010), and task-based fMRI activity/
connectivity (Carmody et al., 2006; Frye et al., 2009; Myers
et al., 2010 ). Some of these MRI studies highlight that the
reported abnormalities in MRI metrics, particularly white
matter microstructure (e.g., FA), are concurrently associated
with neurodevelopmental deficits in children and adolescents
born preterm. Examples include mental development at the
age of 2 (Counsell et al., 2008), IQ at the age of 12 (Constable
et al., 2008), language-related skills at the age of 9–16 years
(Feldman, Lee, Yeatman, & Yeom, 2012; Mullen et al.,
2011) and 16 years, and short-term memory in adulthood
(Finke et al., 2015).
Most relevant to the present work, prospective MRI long-

itudinal studies following preterm infants from soon after
birth have begun, providing valuable insights into develop-
mental trajectories of this vulnerable population (see Kwon,
Vasung, Ment, & Huppi, 2014; Ment, Hirtz, & Huppi, 2009).
The vast majority of studies have reported the presence of
structural (Brown et al., 2014; Kersbergen et al., 2014;
Young et al., 2015) and functional (Smyser et al., 2011) MRI
aberrancies at birth or during infancy, which are associated
with subsequent neurodevelopmental outcomes (Rose et al.,
2009; Young et al., 2015). Future longitudinal MRI research
can target this high-yield “at-risk” clinical population,
scanning from birth, and over the course of time, for
providing more precise information regarding prediction of
risk and prognosis for neurodevelopmental disorders.

Specific Learning Disabilities (SLDs)

Specific learning disabilities (SLDs) are uniquely positioned
among the various DSM-5 disorders, as they can be readily
quantified using a broad range of standardized tests. That is,
SLDs are reliably defined by impaired performance, relative
to norms, in reading, writing, and/or mathematics. Despite
the availability of objective assessments, similar to other
psychiatric disorders, SLDs are characterized by marked
heterogeneity in clinical presentations (McArthur et al.,
2013; Ramus et al., 2003), as well as a high degree of
comorbid illness (Germano, Gagliano, & Curatolo, 2010;
Willcutt et al., 2010, 2013). Among SLDs, reading disability
(i.e., dyslexia) has received the most attention in the MRI
literature, with a range of studies examining the neural bases
of risk (Raschle, Chang, & Gaab, 2011; Raschle, Stering,
Meissner, & Gaab, 2014; Saygin et al., 2013), current
impairments (Eckert et al., 2003; Richlan, Kronbichler, &
Wimmer, 2011, 2013), and responses to intervention (e.g.,
Barquero, Davis, & Cutting, 2014). The detection of neural
changes associated with widely accepted phonology-based
treatments has gained particular attention; convergent results
suggest the normalization of dyslexia-associated
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abnormalities in functional activity within the known left-
hemisphere reading network in children and adults (Aylward
et al., 2003; Eden et al., 2004; Shaywitz et al., 2004; Simos
et al., 2007; Temple et al., 2003). Complementing these
findings is work suggesting a compensatory reliance on
alternative circuits outside the reading network in remediated
dyslexic individuals (Eden et al., 2004; Koyama et al., 2013).

Identification of non-responders

Of particular relevance to the present work are findings that
the interventions are not equally effective across individuals:
20–30% of children with (or at risk of) dyslexia do not
respond adequately to generally effective interventions (see
Brown & Felton, 1999; Torgesen, 2000 for a review;
Torgesen et al., 1999; Vellutino et al., 1996). This gap could
be addressed through the establishment of neurophenotypes
at baseline that are predictive of treatment effectiveness, or
demonstration of differential patterns of treatment-related
brain changes associated with behavioral outcomes. Exam-
ples come from recent cross-sectional work suggesting that
treatment responders and non-responders (ages 10–14 years)
differ with respect to left inferior parietal lobule activation
following a 4-week reading intervention (Odegard, Ring,
Smith, Biggan, & Black, 2008).
Similarly, despite the lack of a single experimentally spe-

cified intervention, Hoeft et al. (2011) demonstrated that
initial MRI-based profiles at age 14 years (i.e., right pre-
frontal activation during phonological processing and FA of
right superior longitudinal fasciculus) predict later reading
improvement in children with dyslexia at age 16.5 years. The
next necessary step is longitudinal MRI examination to
identify biomarkers predictive of treatment response (i.e.,
who will be responders vs. non-responders), which can be
used to individualize intervention. For this, it is ideal to
implement systematic interventions, ideally different types
(e.g., attention-based) beyond phonology-based ones.
Similar to other neurodevelopmental disorders, the age of

diagnosis in reading disorders should be reduced. At present,
although commonly delayed, the signs and symptoms of
dyslexia can be readily diagnosed soon after the official start
of schooling (6–7 years old). However, as emphasized by a
growing literature, behavioral signs and symptoms are
detectable as early as in toddlerhood. Early detection of
endophenotypes that are most predictive of dyslexia (e.g.,
phonological awareness, attention, and motor skills) (Gooch,
Hulme, Nash, & Snowling, 2014; Thompson et al., 2015),
and determination of optimal interventions based upon
this information (e.g., phonological training vs. attention
training), could rapidly change the trajectory of illness
in children affected by dyslexia, before their school
performance is negatively impacted.

CONCLUDING REMARKS

The goal of delineating trajectories for typical and atypical
brain development across the first 2 decades of life is

increasingly in our grasp. As highlighted in the present work,
strategic selection of at-risk populations for examination can
help to overcome the various logistical challenges inherent to
longitudinal imaging examinations, which can otherwise
hinder the pace of progress. Focusing on the potential of
stratified psychiatry, we have provided illustrative examples
of MRI examinations in autism spectrum disorder, pediatric
anxiety disorders, and specific learning disorders. For each,
we highlighted the scientific rationale and appropriate time
windows for developmentally informed longitudinal designs
to be implemented. We anticipate that biomarkers predictive
of risk and prognosis derived from longitudinal examina-
tions, as well as those capable of monitoring treatment
outcomes, will advance the goals of early intervention and
even prevention of psychiatric illness.
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