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Abstract

This paper presents a model for excitation of electron plasma wave and resulting stimulated Raman scattering due to
presence of a laser beam carrying null intensity in center (hollow Gaussian beam) in a collisionless plasma. We have
studied the self-focusing of the hollow Gaussian beam and its effect on back stimulated Raman scattering process in
the presence of ponderomotive nonlinearity. To understand the nature of propagation of the hollow Gaussian beam,
electron plasma wave and back reflectivity, a paraxial-ray approximation has been invoked. It is predicted that self-
focusing and back reflectivity reduces for higher order of hollow Gaussian beam.

Keywords: Electron plasma wave; Hollow Gaussian Laser beam; Ponderomotive nonlinearity; Self-focusing; Stimulated
Raman scattering

1. INTRODUCTION

The interaction of high irradiance electromagnetic beams
with homogeneous plasma is a topic of extensive research
in many areas like optical harmonic generation (Sprangle
et al., 1991; Milchberg et al., 1995), laser-induced fusion
(Tabak et al., 1994; Kruer, 1974), and laser-driven accelera-
tors (Sprangle et al., 1988; Umstadter et al., 1996). Self-
focusing of a laser beam and back stimulated Raman
scattering are very important nonlinear processes in laser in-
duced fusion and it has been investigated experimentally
(Kirkwood et al., 2006; Tajima et al., 1979) and theoretically
(Akhmanov et al., 1968; Umstadter et al., 1996; 1997). Self-
focused laser beam may produce energetic electrons (Kaw
et al., 1973), which may preheat the fusion fuel and affect
the compression while the energy associated with back scat-
tered wave is wasted. Various spatial profile of laser beam
has been used to study the laser plasma interaction, like as;
Gaussian beam (Akhmanov et al., 1968), super Gaussian
beam (Grow et al., 2006), dark hollow Gaussian beam
(DHBs) (Sodha et al., 2009). A collimated laser beam can
be described by Laguerre-Gaussian functions, which pro-
vides a natural orthonormal basis (Allen et al., 1992).
Laguerre-Gaussian mode well defined by Lp

l , or specifically
Lm
n−m (r2) where p and (l= n−m) are associated with

radial index and azimuthal index mode respectively (see
Section 2). The amplitude of a Laguerre-Gaussian mode
has an azimuthal angular dependence of exp(ilθ) (Allen
et al., 1992). For p= 0 and l≥ 1, the intensity of the laser
beams have ring like structure and the associated magnitude
of the amplitude part of the laser beam can be described
by hollow Gaussian function. Hollow Gaussian beams
(HGBs) can be expressed as a superposition of a series of
Lagurerre-Gaussian modes (Cai et al., 2003). An optical
beam with null intensity at center is called dark hollow
laser beam (DHB); the best-known example is a TEM01

∗

beam. Various methods have been developed for creating
dark spot laser beams, like the holographic method
(Lee et al., 1994), the geometrical optical method (Herman
et al., 1991), transverse mode selection method (Wang
et al., 1993), and a conical lens (Song et al., 1999). The
propagation dynamics of the beam is sensitive to transverse
profile of the beam and propagation of HGBs through para-
xial optical system have been described for the free space
(Cai et al., 2003; 2004), in a turbulent atmosphere (Cai
et al., 2006) and homogeneous non-magnetized plasma
(Sodha et al., 2009). The self-focusing of HGBs (Sodha
et al., 2009; Gill et al., 2010) and cross focusing of HGBs
(Gupta et al., 2011) has been investigated theoretically in
plasmas.

The growth of SRS has been investigated experimentally
(Fuchs et al., 2000) in a variety of conditions, including
laser smoothing and focusing conditions, varying laser
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intensities and plasma densities. The SRS process gets af-
fected due to the self-focusing and filamentation of the
pump beam. The filament formation and its effects on SRS
have been observed by using the PIC simulations (Matsuoka
et al., 2008). The past experimental results on SRS process
did not match with the theoretical results. In the theoretical
models, the beams have Gaussian profile with TEM00

mode and the wave equations have been solved in either para-
xial or extended paraxial regime, but in many experimental
situation the pump beams are the superposition of higher
order modes. For the deep understanding of SRS process,
the theoretical analysis is needed for the higher order mode
of the waves.
In this work, we have theoretically investigated excitation of

electron plasma wave, stimulated Raman scattering for the
different orders of self-focused HGBs in collisionless plasma,
considering ponderomotive nonlinearity, using paraxial
approximation. When pump beam, having frequency ω0 and
wave number �k0, interacts with pre-excited electron plasma
wave, having frequency ω and wave number �k, generates scat-
tered beam, known as stimulated Raman scattered (SRS) wave,

of frequency (ω0− ω) and wave number �k0 − �k
( )

.

This article is organized as follows: In Section 2, we have
given the expression for the beam width parameter of the
HGBs and equations for the excitation of the electron
plasma wave when ponderomotive nonlinearity is taken in
to account. In Section 3, the basic equations that govern
the dynamics of SRS process and back SRS reflectivity of
the beam, consider the paraxial approximation. In Section 4,
we have discussed numerical results and the last section is de-
voted to the conclusions based on the present investigation.

2. PROPAGATION OF HOLLOWGAUSSIAN LASER
BEAM AND EXCITATION OF ELECTRON
PLASMAWAVE

When a high power laser beam (pump) of frequency ω0 and
wave vector �k0 is propagating in collisionless and homo-
geneous plasma along the z direction, the transverse intensity
gradient generates a ponderomotive force, which modifies
the plasma density profile in the transverse direction. Due
to this redistribution of carriers, a transverse gradient of ef-
fective dielectric constant is established which leads to self-
focusing of the electromagnetic beam. The wave equation
in isotropic and homogeneous plasma can be written as:

∇2E −∇(∇.E) + ε(r, z)ω2
0

c2
∂2E
∂t2

= 0. (1)

For transverse field ∇(∇·E)= 0, where the symbols have as
usual meanings. The solution of Eq. (1) in cylindrical coor-
dinates can be written as:

E(r, θ, z) = E0 r, θ, z( )e−i k0z−ω0 t( ). (2)

Where, k0 = ω0

c

���
ε0

√
is the wave vector and ω0 is the fre-

quency of the laser beam. In the case of linear approximation
(weak laser power), Eq. (1) will reduce to pure paraxial
equation and takes the form (Mendonca et al., 2009),

∇2
⊥ + 2ik0

∂
∂z

( )
E0 r, θ, z( ) = 0. (3)

The paraxial wave solution of Eq. (3) can be written as linear
combination of the modes E0(r,θ,z)= Ep,l(z)Fp,l(r,z)e

ilθ,
where Fp,l(r,z) is the Laguerre-Gaussian function, with inte-
ger p, l representing the radial and azimuthal number (Men-
donca et al., 2009). For p= 0 and l= 0, the laser beam has
fundamental Gaussian TEM00 mode which has maximum in-
tensity at the center but for p= 0 and l≥ 1, intensity is null at
the center. The nonlinear dielectric constant ε(r,z) is a func-
tion of intensity of the high power laser and the nonlinearity
arises in plasma due to nonlinear dependence of the free
carrier density on the electric field vector. In case of non-
linear medium (strong laser power), the propagation dy-
namics of Lagurerre-Gaussian beam is complicated because
the phase front of the beam is rotating. For Simplicity, we
have taken HGBs which have intensity null at the center
and the initial field distribution of hollow Gaussian laser
beam can be given by

(E)z=0 = E0
r2

2r20

( )n

exp − r2

2r20

( )
. (4)

Where, r0 is the initial beam width, n is the order of the
HGBs, and E0 is the maximum amplitude of the laser
beam around r = rmax = r0

���
2n

√
. The modified electron den-

sity profile of the plasma due to ponderomotive force can be
written as (Sodha et al., 1976)

N0e = N0 exp − 3
4
α
me

mi
E.E·

( )
. (5)

Where, α = e2 me/6kBT0γm
2
eω

2
0 is nonlinearity parameter, N0

is the density of plasma electrons in the absence of laser
beam, kB is the Boltzmann’s constant, T0 is the equilibrium
plasma temperature and γ is the ratio of the specific heats.
Consider the solution of Eq. (1) is

E0 r, z( ) = îA r, z( ) exp −ik0z( ), (6)

Where A(r,z) is the complex amplitude of the wave. From
Eqs. (1) and (6) we get,

2ik
∂A
∂z

= ∂2A
∂r2

+ 1
r

∂A
∂r

( )
+ ω2

0

c2
ε− ε0( )A. (7)
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The complex amplitude A(r,z) can be represented as

A r, z( ) = A0 r, z( ) exp −ik0S0 r, z( )
{ }

. (8)

Now transform the (r, z) coordinate in to (η, z) coordinate as

η = r

r0 f0
−

���
2n

√( )
. (9)

Where, r0 f0 is the beam width of laser beam and maximum
irradiance at r = r0 f0

���
2n

√
. For paraxial ray approximation

η ≪
���
2n

√
and A0 is defined as

A2
0 =

E2
0

22nf 20

���
2n

√
+ η

( )4n
exp −

���
2n

√
+ η

( )2{ }
, (10)

and eikonal of the pump beam is given as

S0 η, z
( ) =

���
2n

√ + η
( )2

r20 f0
2

df0
dz

+ f z( ). (11)

The dimensionless beam width parameter f0 can be
obtained by using the boundary conditions f0|z=0 = 1 and
df0/dz|z=0 = 0 (Akhmanov et al., 1968)

ε0 f0
d2f0
dξ2

= 4

f 20
− ε2ρ

2
0. (12)

Where ξ = c

r20ω0
z is dimensionless parameter and ρ20 =

r20ω
2
0

c2
.

In the presence of ponderomotive force, the plasma density
varies through the plasma channel and the dielectric function
ε η, z
( )

may be expressed as

ε η, z
( ) = 1− ω2

p

ω2
0

exp − 3
4
α
me

mi

E2
0

f 20

η+ ���
2n

√( )2
2

( )2n
⎧⎨
⎩

× exp − η+
���
2n

√( )2{ }⎫⎬
⎭, (13)

and

ε0 z( ) = 1− ω2
p

ω2
0

exp − 3
4
α
me

mi

E2
0

f 20
n2ne−2n

( ){ }
, (14)

ε2 z( ) = 2
ω2
p

ω2
0

3
4
α
me

mi

E2
0

f 20
n2ne−2n

( )
exp − 3

4
α
me

mi

E2
0

f 20
n2ne−2n

( )
.

(15)

Electron plasma wave (EPW) is excited in the presence

of HGBs. For analysis of EPW in the presence of pondero-
motive nonlinearity and filamented laser beam, the following
equations are used.

The equation of motion can be written as

me
∂V
∂t

+ V .∇( )V
[ ]

= −eE − e

c
V × B( ) − 2ΓemeV − γkBT0

N
∇N.

(16)

Where Γe ≈
1
2

��
π

8

√
ωp

k3λ3d
exp − 3

2
− 1

2k2λ2d

( )
is the Landau

damping factor, V is the electron fluid velocity, N is the
instantaneous electron density, E and B are associated with

electric and magnetic field vectors, and λd = kBT0

4πn0e2

( )1
2

is

the Debye length and k is the wave vector of the electrostatic
wave. The continuity equation can be written as

∂N
∂t

+∇. NV( ) = 0. (17)

From the Poisson’s equation, one can get

∇.E = −4πeN. (18)

Applying the perturbation approximation,
N= N0e+ ne0 and V= V0+ v; where ne0≪N0e & v≪V0.
Solving Eqs. (16), (17), and (18), one obtains the general

equation, which governs the electron density variation

∂2ne0
∂t2

+ 2 Γe
∂ne0
∂t

− γv2th∇
2ne0 + ω2

p exp − 3
4
α
me

mi
EE∗

( )
ne0 ≃ 0.

(19)

Where, vth is the electron thermal speed. Consider a plane
wave solution of Eq. (19),

ne0 = ne00 r, z( ) exp i ωt − kz− S r, z( )( )
}
.

{
(20)

Where, ω and k are frequency and wave vector of the plasma
wave and satisfy the Bohm-Gross dispersion relation

ω2 = ω2
p

N0e

N0
+ γk2v2th. (21)

Using the value of ne0 from Eq. (20) into Eq. (21) and separ-
ating the real and imaginary part, one gets

2
∂S
∂z

+ ∂S
∂r

( )2

= 1
k2ne00

1
r

∂ne00
∂r

( )
+ ∂2ne00

∂r2

[ ]

+ ω2
p

γk2v2th
1− N0e

N0

( )
, (22)

Stimulated Raman backscattering of filamented hollow Gaussian beams 389

https://doi.org/10.1017/S0263034613000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034613000384


2
∂n2e00
∂z

+ ∂S
∂r

∂n2e00
∂r

( )
+ n2e00

1
k2

1
r

∂S
∂r

( )
+ ∂2S

∂r2

[ ]
+ 2Γe

3v2th

ωn2e00
k

= 0 .

(23)

Now transform the (r, z) coordinate in to (η, z) coordinate by
using the Eq. (9). Hence Eqs. (22) and (23) can be solved in
paraxial ray approximation and the solution is (for initial
HGB distribution)

n2e00 =
N2
e00

f 2e 2
2n

η+
���
2n

√( )4n r0 f0
afe

( )4n

exp − η+
���
2n

√( )2
− 2kiz

( )
.

(24)

Where, fe and a are the dimensionless beam width parameter
and radius of EPW, respectively. The eikonal of the electron
plasma wave is described by,

S = η+
���
2n

√( )2r20 f 20
2fe

∂fe
∂z

+ f z( ). (25)

To solve the Eqs. (22), (24), and (25), we have used the
boundary condition at z= 0, fe= 1 & ∂fe/∂z = 0; and equat-
ing the power of η2, one gets

∂2fe
∂ξ2

= feρ20
f 20

1

k2r20 f
2
0

3+ r0f0
afe

( )4
{ }

− 2
ω2
p

γk2v2th

×
3
4
α
me

mi

E2
0

f 20
exp −2n( )n2n

{ }

exp − 3
4
α
me

mi

E2
0

f 20
exp −2n( )n2n

{ }

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (26)

Where, ki = Γeω

kv2th
is the damping factor.

3. STIMULATED RAMAN SCATTERING

Consider the high frequency electric field ET which is the
sum of the electric field of scattered wave ES and the electric
field of pump laser beam Ei.

EH = Eie
iω0t + ESe

iωst (27)

Where, ω0 and ωS are the incident laser beam and scattered
wave frequency, respectively. The wave equation for the scat-
tered field can be written as

∇2Es − ω2
s

c2
1− ω2

p

ω2
s

N0e

N0

( )
Es =

ω2
p

2c2
ωs

ω0

n∗

N0
Ei. (28)

The solution of Eq. (28) can be written as

Es = Es0 r, z( )eiks0z + Es1 r, z( )e−iks1z. (29)

Where, ks0 = ω2
s

c2
εs 0( ), kS1 and ωS satisfy the phase matching

condition.

kS1 = k0 − k, ωS = ω0 − ω. (30)

From Eqs. (28) and (29), one gets

1
r

∂ES0

∂r
+ ∂2ES0

∂r2

( )
+ 2ikS0

∂ES0

∂z
− k2S0ES0 + ω2

S

c2
∈S r, z( )ES0 = 0,

(31)

1
r

∂ES1

∂r
+ ∂2ES1

∂r2

( )
− 2ikS1

∂ES1

∂z
− k2S0ES1

+ ω2
S

c2
∈S r, z( )ES1 = 1

2

ω2
p

c2
ωS

ω0

n∗

N0
E0e

−ik0S0 . (32)

Where, εS r, z( ) = 1− ω2
p

ω2
S

N0e

N0

( )
.

To simplify the Eq. (31), one can substitute ES0= ES00(r,z)

eiks0Sc in Eq. (31) and separating the real and imaginary part,
one can get

2
∂Sc
∂z

( )
+ ∂Sc

∂r

( )2

= 1

k2s0Es00

∂2Es00

∂r2
+ 1

r

∂Er00

∂r

( )

+ ω2
S

k2S0c
2

∈S − ∈S 0( )
}
,

{
(33)

∂E2
s00

∂z
+ E2

s00
∂2Sc
∂r2

+ 1
r

∂Sc
∂r

( )
+ ∂E2

s00

∂r

( )
∂Sc
∂r

( )
= 0. (34)

Now transform the (r,z) coordinate in to (η, z) coordinate by
using the Eq. (9) and the solution of the Eqs. (33) and (34)
can be written as

E2
s00 =

B′2

22nf 2s

���
2n

√
+ η

( )4n r0f0
bfs

( )4n

exp − r20 f
2
0

b2f 2s

���
2n

√
+ η

( )2{ }
,

(35)

Sc =
���
2n

√ + η
( )2

2
r20 f

2
0

fs

∂fs
∂z

+ fs z( ). (36)

For an initial plane wave front, we used the boundary con-

ditions fS= 1,
∂fS
∂z

= 0 at z= 0. Using Eqs. (35) and (36) in

Eq. (33) and equating the coefficient of η2, one gets

d2fs
dξ2

= fsρ20
f 20

1

k2S0r
2
0 f

2
0

3+ r0f0
bfs

( )4
{ }

− ω2
s

k2s0c
2
∈S2

{ }
. (37)

In the presence of ponderomotive nonlinearity the εS(η, z)
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can be expressed as

εS η, z
( ) = εS 0( ) − η2εS2. (38)

Where

εS 0( ) = 1− ω2
p

ω2
S

exp − 3
4
α
me

mi

E2
0

f 20
n2ne−2n

( ){ }
, (39)

εS2 = 2
ω2
p

ω2
S

3
4
α
me

mi

E2
0

f 20
n2ne−2n exp − 3

4
α
me

mi

E2
0

f 20
n2ne−2n

( ){ }
. (40)

The value of B
′
may be obtained on applying appropriate

boundary conditions

ES = ES0 r, z( )eikS0z + ES1 r, z( )e−ikS1z = 0 at z = zc.

Where, zc= L− z and L is the interaction length. Here, zc is
chosen sufficiently large so that ne00 is nearly zero. There-
fore, at z= zc, one gets

B′ = 1
2n+1

ω2
p

c2

( )
n0
N0

( )
ωs

ω0

( )
fs zc( )

fe zc( )fs zc( )
r

afe zc( )
( )2n

×
r

r0f0 zc( )
( )2n bfs zc( )

r

( )2n

E00e−ikizc

k2s1 − k2s0 −
ω2
p

c2
1− N0e

N0

( ){ } e−i k0S0 + kS0Sc( )

ei kS0zc + kS1zc( ) . (41)

With the condition

1
a2f 2e zc( ) +

1

r20 f
2
0 zc( ) =

1
b2f 2s zc( ) . (42)

Back reflectivity is defined as the ratio of back scattered
power to the incident power, and is given by

R ≃
1
4

ω2
p

c2

( )2
n0
N0

( )2 ωs

ω0

( )2 1

k2s1 − k2s0 −
ω2
p

c2
1− N0e

N0

( ){ }2

×
r0f0
afe

( )4n η+ ���
2n

√( )8n
24nf 2e f

2
0

exp − η+
���
2n

√( )2r20 f 20
a2f 2e

− η+
���
2n

√( )2
−2kiz

{ }
. (43)

4. RESULT AND DISCUSSION

In collisionless plasma, the density of the plasma varies due
to the ponderomotive force and the refractive index increases
at the position of maximum irradiance; and the laser gets fo-
cused in the plasmas. Eqs. (9) and (10) describe the intensity
profile of HGBs in plasma along the radial direction in the
presence of ponderomotive nonlinearity. The intensity pro-
file of the laser beam depends on the beam width f0 in the
paraxial regime; and Eq. (12) determines the focusing/defo-
cusing of laser beam along the distance of propagation in
plasma. In Eq. (12), on the right-hand side, the first term is
responsible for diffraction, while the second term is respon-
sible for the converging behavior of the beam during propa-
gation in plasma. Numerical evaluation of Eqs. (9) and (12)
are performed by using the typical laser beam parameters: the
vacuum wavelength of the laser beam (λ= 1064 nm), laser
power flux (1018W/cm2), the initial radius of the laser
beam r0= 10 μm, the initial radius of the EPW a= 10 μm,
plasma density n/ncr= 0.2 and electron thermal speed
vth= 0.1c. Eq. (12) has been solved for an initial plane
wave front of the hollow Gaussian beam and the numerical

Fig. 1. (Color online) Normalized intensity distribution for order 1. (a) HGB and EPW at ξ= 0, (b) HGB at first focal point, (c) EPW at
first focal point, (d) Back SRS at first focal point.
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results are presented in the form of Figures 1, 2, and 3. The
variation of intensity for the EPW on the order 1, 2, and 3
have been shown in Figures 1a, 2a, and 3a, respectively at
ξ= 0; while in Figures 1b, 2b, and 3b at first focal point
(beam focused position) with normalized distance ξ. It is ob-
vious from the figure that in paraxial regime the intensity of
laser beam is maximum at η= 0; and at first focal point the
intensity of laser beam decreases with increase in the order of
the HGBs.
When the high power HGBs propagates through plasma,

the motion of electron will be modified due to ponderomo-
tive nonlinearity and will give rise to change in the nonlinear
current density. The density profile of plasma is modified and
governed by the Eq. (24). The intensity profile of the EPW
depends on the beam width parameter fe in the paraxial
regime. We have solved Eq. (26) numerically to obtain the
amplitude of the density perturbation at finite z. The results

are displayed in Figures 1a, 2a, and 3a, which show that
the EPW gets excited due to nonlinear coupling with high
power laser beam in the presence of ponderomotive nonli-
nearity and similar kind of result observed by Mendonca
et al. (2009) without introducing the nonlinearity term. The
EPW is also having the maximum intensity (for different
order of HGBs) at η= 0 in the paraxial regime. Figures 1c,
2c, and 3c depicts that the variation in intensity for order 1,
2, and 3 of EPWs at first focal point, with normalized dis-
tance ξ, respectively.
Eq. (37) expresses the beam width parameter of the scat-

tered beam and Eq. (43) gives the reflectivity against the dis-
tance of propagation. The result displayed in Figures 1d, 2d,
and 3d shows the normalized intensity of the back reflected
laser beam at the focal point for order 1, 2, and 3, respect-
ively. We have solved Eq. (43) numerically and the results
are presented in the form of Figure 4, which shows the

Fig. 2. (Color online) Normalized intensity distribution for order 2. (a) HGB and EPW at ξ= 0, (b) HGB at first focal point, (c) EPW at
first focal point, (d) Back SRS at first focal point.

Fig. 3. (Color online) Normalized intensity distribution for order 3. (a) HGB and EPW at ξ= 0, (b) HGB at first focal point, (c) EPW at
first focal point, (d) Back SRS at first focal point.
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variation of the back reflectivity with normalized distance
for different order of HGBs around the maximum irradiance
η= 0. In Figure 4, the back reflectivity for different order of
HGBs are presented with normalized distance ξ and is maxi-
mum at the focal points of the focused laser beam. It is also
shown that as we increase the order of the HGBs the reflec-
tivity decreases because the focusing of HGBs decreases
with increasing order of the beam.

5. CONCLUSION

For deeper understanding in laser plasma interaction, higher
modes of laser beam are also important because the total
field is superposition of all the modes in cylindrical coordi-
nates. The earlier work in laser plasma interaction is limited
to TEM00 mode which has maximum intensity at the center
but in the presence of higher modes, intensity profile should
be modified. In the present article, we studied the excitation
of EPW in the presence of laser beam which has null intensity
at the center. The focusing of the HGBs, excitation of EPW
and back reflectivity of HGBs has been investigated. These re-
sults should find applications in the laser induced fusion
schemewhere higher modes are also present in the laser beam.
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