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We investigate the issues of existence and efficiency of lookahead equilibria in congestion

games. Lookahead equilibria, whose study has been initiated by Mirrokni et al. (2012),

correspond to the natural extension of pure Nash equilibria in which the players, when

making use of global information in order to predict subsequent reactions of the other ones,

have computationally limited capabilities.

1. Introduction

The definition of the process of interaction among self-interested entities is dependent

on the context, and in particular on the set of information available to the players.

When they have very little knowledge about each others’ costs and strategies, one of

the most natural and studied dynamics are sequential best-responses, where players play

sequentially and each player selects a strategy which is a best-response to the current

strategy of the others. In such dynamics, the assumption is that each player has no

memory about the past and no knowledge about the available strategies and costs of

other players and, thus, myopically responds to the current state, without making any

prediction about the consequences of the subsequent responses of the remaining players.

One of the basic objective of study of game theory is the concept of equilibrium. An

equilibrium can be viewed as a steady state of dynamics, where no agent has an incentive

to unilaterally deviate from. The steady state of a best-response dynamics is known as

pure Nash equilibrium. It is well known that the best-response dynamics do not always

lead to a pure Nash equilibrium and that the class of congestion games (Rosenthal 1973)

is a large class of games guaranteeing convergence under best-responses.

In this work, following the study initiated by Mirrokni et al. (2012), we focus on

the settings in which each player has full knowledge of the strategies and costs of the

other players, so that, based on such a knowledge, she can make predictions about

the others’ reactions to her move. We also assume that each player is an entity with

limited computational abilities, thus she has the ability of making predictions only

on the consequences of a fixed constant number of subsequent consecutive moves. In

particular, we study the k-lookahead dynamics in which the players sequentially perform
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Fig. 1. N = {1, 2, 3}, Σ1 = {l1, r1}, Σ2 = {l2, r2}, Σ3 = {l3, r3}.

k-lookahead best-responses. When k = 1, the k-lookahead best-response coincides with the

best-response. In general, for k > 1, the current moving player p evaluates all possible

outcomes resulting from k − 1 subsequent moves, by taking into account all possible

orders in which players move and all of their possible strategies. We say that player p has

a long-sightedness of k and she makes a prediction by assuming that any player moving

j < k steps after her has a long-sightedness of k − j. Thus, player p can compute her

best move by backward induction starting from the players having long-sightedness of 1,

and proceeding backward up to k. When predicting the strategy chosen by any player q

having long sightedness k − j, it is necessary to make some assumption on which is the

next moving player. We take into account two different models: the worst-case and the

average-case ones. In the worst-case model, player p assumes that the next move after q is

performed by a player providing player q the worst possible cost in the final outcome. In

the average-case model, player p assumes that the next move after q is taken by a player

selected uniformly at random. For each of these models, we finally distinguish between the

cases of consecutive and non-consecutive moves, depending on whether player p assumes

that the next move after q may be performed by q itself or not. In Figures 1 and 2, we

show the differences between the consecutive and non–consecutive moves in the search

tree of player 1 for a strategic game with three players {1, 2, 3} with two strategies each,

in the case of 2-lookahead. The square nodes are the player nodes and the round ones

are the selection nodes.

We investigate the existence of k-lookahead equilibria and the price of anarchy

(that measures the lack of optimality due to the con-cooperativeness of the players)

of 2-lookahead equilibria in congestion games with linear latencies (Rosenthal 1973).

Congestion games model the settings in which a set of players compete for the usage of a

set of common resources. We choose congestion games as representative of a large set of

well-studied games for which the existence of pure Nash equilibria is always guaranteed.

Moreover, congestion games with linear latencies are able to model a large variety of

practical scenarios (traffic routing on communication networks, load balancing, scheduling,

competitive resource selection, P2P networks) in which the latency of a resource linearly

https://doi.org/10.1017/S0960129515000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000079


On lookahead equilibria in congestion games 199

1

l1

2

l2 r2

3

l3 r3

r1

2

l2 r2

3

l3 r3

Fig. 2. N = {1, 2, 3}, Σ1 = {l1, r1}, Σ2 = {l2, r2}, Σ3 = {l3, r3}.

increases as a function of the number of its users. The study of k-lookahead equilibria

for small values of k is justified by practical motivations, since notions of equilibria,

such as subgame perfect equilibria (Osborne and Rubinstein 1994), defined under the

assumption that the players can predict a very high number of opponents moves, make

even the computation of a player’s single move a PSPACE-complete problem. To this

aim, considering 2-lookahead equilibria constitutes a first step in the understanding of

how a greater long-sightedness (and therefore a higher individual rationality) modifies the

final outcomes resulting from the interactions of non-cooperative selfish players possessing

limited computational abilities.

1.1. Results

In Section 3, we discuss our results on the existence of equilibria. We initially focus our

attention on the existence of k-lookahead equilibria in strategic games. We are able to

show that, in the worst-case model with consecutive moves, for any strategic game, any

pure Nash equilibrium is also a k-lookahead equilibrium. This result implicitly shows

that the k-lookahead best-responses do not guarantee better performance at equilibrium

compared to those achieved by the simple best-responses. In the remainder of Section 3, we

focus on the existence of 2-lookahead equilibria in singleton congestion games. We show

that in the worst-case model without consecutive moves, any symmetric singleton game

always admits 2-lookahead equilibria. For the average-case model, instead, we show that

symmetric singleton congestion games do not always admit a 2-lookahead equilibrium

regardless of whether consecutive moves are allowed or not.

In Section 4, we present the bounds on the price of anarchy for the 2-lookahead

equilibria of linear congestion games, both in the worst-case and in the average-case

model. We first show that, in the worst-case model, for any linear congestion game, the

price of anarchy is at most 8. For the average-case model, we obtain smaller bounds. In

particular, we show that, for any linear congestion game, the price of anarchy is at most

4. This result significantly improves the previous upper bound of (1 +
√

5)2 ≈ 10.47 given
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V. Bilò, A. Fanelli and L. Moscardelli 200

in Mirrokni et al. (2012). All mentioned bounds hold either with or without consecutive

moves. We also show that, when restricting to singleton strategies, the price of anarchy

drops to at most 4 in the worst-case model with or without consecutive moves.

1.2. Related work

The lookahead search was formally proposed by Shannon (1950), as a practical heuristic

for machines to tackle difficult problems and play games. It is not surprising that Shannon

applied the method to chess. More recently, the lookahead search has also been presented

by Pearl (1984) in his book as the most important heuristic used by game-playing

programs. Mirrokni et al. (2012) initiated the theoretical examination of the consequences

of the decision making determined by the use of lookahead search. The authors formally

quantify the deterioration of the outcome when players use lookahead search, by bounding

the price of anarchy for several games among which are congestion games.

Our work is also related to many papers on congestion games. Congestion games

have been introduced by Rosenthal (1973) and have been proved to be the only class

of games admitting an exact potential function by Monderer and Shapley (1996). There

is a long series of works investigating the price of anarchy with respect to the pure

Nash equilibria (e.g. Aland et al. 1987; Bhawalkar et al. 2010; Bilò 2012; Christodoulou

and Koutsoupias 2005) and studying the best-response and approximate improvement

dynamics (e.g. Awerbuch et al. 2008; Caragiannis et al. 2011; Chien and Sinclair 2007;

Fanelli et al. 2012; Fanelli and Moscardelli 2011) for congestion games.

2. Model and preliminaries

Definition 2.1 (congestion game, strategies and delay functions). A congestion game G =

(N,E, (Σi)i∈N, (fe)e∈E, (ci)i∈N) is a non-cooperative strategic game defined by a set E of

resources and a set N = {1, . . . , n} of players sharing resources in E.

Any strategy si ∈ Σi of player i is a non-empty subset of resources, i.e. � �= Σi ⊆ 2E .

Given a strategy profile S = (s1, . . . , sn) and a resource e, the number of players using e in

S , called the congestion on e, is denoted by ne(S) = |{i ∈ N : e ∈ si}|.
A delay function fe : N �→ R+ associates to resource e a delay depending on the number

of players currently using e, so that the cost of player i for the pure strategy si is given

by the sum of the delays associated with resources in si, i.e. ci(S) =
∑

e∈si fe(ne(S)).

We refer to singleton congestion games as the games in which all of the players’

strategies consist of only a single resource.

In this paper, we will focus on linear congestion games, that is having linear delay

functions with nonnegative coefficients. More precisely, for every resource e ∈ E, fe(x) =

αex + βe with αe, βe � 0.

Definition 2.2 (social cost). Given the strategy profile S = (s1, . . . , sn), the social cost

C(S) of S is defined as the sum of all the players’ costs, i.e. C(S) =
∑

i∈N ci(S) =∑
i∈N

∑
e∈si(αene(S) + βe) =

∑
e∈E

(
αene(S)2 + βene(S)

)
. An optimal strategy profile S∗ =

(s∗
1, . . . , s

∗
n) is one with minimum social cost.

https://doi.org/10.1017/S0960129515000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000079


On lookahead equilibria in congestion games 201

Before introducing the notions of k-lookahead best-response and k-lookahead

equilibrium, we briefly define their classical correspondent notions of the best-response

and Nash equilibrium.

Each player acts selfishly and aims at choosing the strategy lowering her cost. Given a

strategy profile S and a strategy s′
i ∈ Σi, denote with S ⊕i s

′
i = (s1, . . . , si−1, s

′
i, si+1, . . . , sn)

the strategy profile obtained from S if player i changes her strategy from si to s′
i.

Definition 2.3 (best response). A best-response of player i in S is a strategy sbi ∈ Σi

yielding the minimum possible cost, given the strategic choices of the other players, i.e.

ci(S ⊕i s
b
i ) � ci(S ⊕i s

′
i) for any other strategy s′

i ∈ Σi.

Definition 2.4 (Nash equilibrium). A (pure) Nash equilibrium is a strategy profile in which

every player plays a best-response. Given a strategic game G, we denote as NE(G) the set

of its pure Nash equilibria.

We assume that each player, in order to determine her k-lookahead best-response,

exploits k-lookahead search, i.e. she predicts k − 1 consecutive possible reactions to her

move, and selects the best choice according to such a prediction, as shown in the following.

More formally, when performing a move starting from a given strategy profile S , player i

considers a directed tree game T = (V odd
T ∪ V even

T , Aodd
T ∪ Aeven

T ) of depth 2k − 1 in which

odd levels (with the root belonging to level 1) contain player nodes belonging to V odd
T and

even levels contain selection nodes belonging to V even
T . Arcs outgoing from nodes in V odd

T
(V even

T , respectively) belong to Aodd
T (Aeven

T , respectively). Each node v ∈ V odd
T is associated

to a player p(v) performing an action, with the root being associated to player i, and

each arc a outgoing from node v is associated to her strategy st(a) ∈ Σp(v); there is an

outgoing arc for each strategy of player p(v). Each selection node v ∈ V even
T is associated

to a strategy profile Sv that is obtained in the following way: Initially, Sv is set equal

to S . Now, consider the path connecting the root of T to v; starting from the root, for

every arc (u, u′) of such a path belonging to Aodd
T , Sv is updated to Sv ⊕p(u) st((u, u

′)). In

this paper, we consider two different settings, depending on whether consecutive moves

by a same player are allowed or not in the search tree. In the setting allowing consecutive

moves by the same player, each selection node has n outgoing arcs, one for each player;

in the setting in which they are not allowed, each selection node has n − 1 outgoing arcs.

We assume that, in the k-lookahead search of player i, a player corresponding to a

node of level 2j −1 in T (for j = 1, . . . , k), has a long-sightedness equal to k+1− j (player

i performs a k-lookahead search, the player moving after her a (k − 1)-lookahead search

and so on).

A k-lookahead best-response can be computed by backward induction on the levels of

tree T . First of all, it can be computed under two different models:

— The worst-case model, in which each player assumes that the subsequent move is

performed by a player providing her the worst possible cost in the final leaf of tree T .

— The average case model, in which the player moving at each step is assumed to be

selected uniformly at random.
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Notice that the worst-case model is a more ‘pessimistic’ and ‘prudent’ than the average

one, because the strategic choice is performed by taking into account that the next moving

player is the one providing her the worst possible cost in the final leaf of tree T .

Moreover, for both models we can consider the two settings in which consecutive moves

are or are not allowed.

The basis of the induction is the selection of an arc (marked as red) for each node of

the last level of T (being the odd level 2k − 1): for each node v of this last level, the base

case reduces to the selection of a 1-lookahead best-response for player p(v) (i.e. a classical

best-response to strategy profile Sv); ties are resolved such that player i’s cost in the final

strategy profile is maximized.

For each j � 1, given that some outgoing arcs for levels j + 2, . . . , 2k − 1 have been

marked as red, we now show how to mark as red an outgoing arc for each node of level

j (being an odd level) and, only in the worst-case model, how to mark as red one arc of

level j+1 (being an even level). In fact, in the average case model, all arcs of level j+1 are

always marked as red. Given any node v of the odd levels in {j+2, . . . , 2k−1}, let Lf(v) be

the (maximal) set of leaves of T such that there exists a path of red arcs going from v to

a node in Lf(v). Note that for any node v, |Lf(v)| = 1 under the worst-case model. Under

the worst-case model, a
(
k − j−1

2

)
-lookahead best-response for player p(v) (with v being

a node of level j) is performed by marking as red an arc (v, v′) outgoing from v such that

the value cp(v)(Su), with u ∈ Lf(v) (notice that, under the worst-case model, |Lf(v)| = 1), is

minimized taking into account that the worst-case (for player p(v)) arc outgoing from v′

is also marked as red; ties are resolved such that player i’s cost in the final strategy profile

is maximized. Under the average model, a
(
k − j−1

2

)
-lookahead best-response for player

p(v) (with v being a node of level j) is performed by marking as red an arc (v, v′) outgoing

from v such that the average among values cp(v)(Su) overall u ∈ Lf(v) is minimized; again,

ties are resolved such that player i’s cost in the final strategy profile is maximized.

Suppose that, in a k-lookahead best-response dynamics, player j moves after player

i. It is worth noticing that the move performed by j may not be the move anticipated

by player i in her own analysis (at the corresponding node of level 3 of T ), because in

such an analysis of player i, player j was performing a (k − 1)-lookahead search, while

when moving after player i in the ‘actual’ evolution of the game, she is performing a

k-lookahead search.

Definition 2.5 (k-lookahead equilibrium). A k-lookahead equilibrium, under the worst or

average case model and with or without consecutive moves allowed, is a strategy profile in

which every player plays a k-lookahead best-response (under the same setting). Notice that

a 1-lookahead best-response corresponds to the classical best-response, and a 1-lookahead

equilibrium to a Nash equilibrium.

Definition 2.6 (k-lookahead price of anarchy). The k-lookahead price of anarchy of a game

G, under the worst or average case model and with or without consecutive moves allowed, is

the worst-case ratio between the social cost of a k-lookahead Nash equilibrium (under the

same setting) and that of an optimal strategy profile, that is, PoA(G) = maxS∈LEk(G)
C(S )
C(S∗) ,

where LEk(G) denotes the set of k-lookahead Nash equilibria of G. Roughly speaking,
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given a social function to be optimized, the price of anarchy measures the degradation of

the quality of a game solution with respect to the optimal solution.

3. Existence of lookahead equilibria

We show that, in the worst-case model with consecutive moves, the set of pure Nash

equilibria of G is contained in the set of k-lookahead equilibria of G for any value

of k. This result has a double implication when considering the worst-case model with

consecutive moves: from one hand, it shows existence of lookahead equilibria in each

game admitting pure Nash equilibria and, from the other hand, it tells us that the price of

anarchy can only worsen when moving from the classical definition of myopic rationality

to the one based on lookahead search.

Theorem 3.1. For any strategic game G and for any index k � 1, it holds NE(G) ⊆ LEk(G)

in the worst-case model with consecutive moves.

Proof. First of all, note that, if G does not possess pure Nash equilibria, then, by

definition, � = NE(G) ⊆ LEk(G) for any index k � 1 and we are done. Hence, for

the remaining on the proof, assume that NE(G) �= �. The proof is by induction on

k � 1. Note that, the basic case of k = 1 holds by definition since the set of 1-lookahead

equilibria coincides with that of pure Nash equilibria. Hence, we only need to show the

inductive step.

For any index k � 2 assume, for the sake of induction, that NE(G) ⊆ LE j(G) for each

index j such that 1 � j � k − 1. Consider a pure Nash equilibrium S ∈ NE(G) and a

player i. If i does not change her strategy, then, since S is a (k − 1)-lookahead Nash

equilibrium for G, no player possesses a (k − 1)-lookahead improving deviation in S and

so, the resulting state of i’s search tree is S , where i pays ci(S). If i changes her strategy

to s′
i, let S ′ = S ⊕i s

′
i be the resulting state. It holds ci(S

′) � ci(S) since S is a pure Nash

equilibrium for G. Note that, if the adversary always selects i for the successive k − 1

moves, the game can never reach a state in which i pays less than ci(S) (if such a deviation

existed, it would contradict the fact that S is a pure Nash equilibrium for G). It follows

that, after player i’s deviation, the adversary can always select a sequence of player so

as to generate a final state S ′′ such that ci(S
′′) � ci(S). Hence, i does not possess any

k-lookahead improving deviation from S and the claim is proved.

For the worst-case model without consecutive moves, we show existence of 2-lookahead

Nash equilibria in symmetric singleton congestion games, that is, singleton games in which

all players share the same set of strategies.

Theorem 3.2. Any symmetric singleton congestion game always admits 2-lookahead Nash

equilibria in the worst-case model without consecutive moves.

Proof. Fix a symmetric singleton game G and consider the following two cases.

Case 1. G admits a pure Nash equilibrium S such that there exists two resources with a

congestion of at least 2. Consider a player i, using a resource e, whose cost is ci(S). Since

S is a pure Nash equilibrium for G, if i migrates to another resource e′, she gets a cost of
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at least ci(S). If the adversary selects a player j currently using a resource different than

e′, the current cost of player i cannot decrease. Since player j always exists under our

hypothesis, S has to be a 2-lookahead Nash equilibrium.

Case 2. G admits a pure Nash equilibrium S such that there exists three resources with

a congestion of at least 1. With a similar argument as in the previous case, it is possible

to show that S has to be a 2-lookahead Nash equilibrium.

If both Cases 1 and 2 do not occur, then, there exists a pure Nash equilibrium S of G in

which there are two resources e and e′ with ne(S) = 1 and ne′ (S) = n− 1, fe(2) > fe′ (n− 1)

and fe′′ (1) > fe′ (n − 1) for each e′′ ∈ E \ {e, e′}. Note also that, since S is a pure Nash

equilibrium, fe(1) � fe′′ (1) for each e′′ ∈ E \ {e, e′}.
Consider the strategy profile S ′ such that ne′ (S ′) = n. We claim that either S or S ′ is a

2-lookahead Nash equilibrium.

If S ′ is a pure Nash equilibrium for G, then it is also a 2-lookahead Nash equilibrium.

Hence, we can assume that fe(1) < fe′ (n). Consider any player: If she does not change

her strategy, then, no matter which is the other player selected by the adversary, she ends

up paying fe′ (n− 1). If she changes her strategy, then, no matter which is the other player

selected by the adversary, she ends up paying at least fe(1). Thus, S ′ is a 2-lookahead

Nash equilibrium when fe′ (n − 1) � fe(1).

On the other hand, since S is a pure Nash equilibrium, player i using resource e in S ,

ends up paying fe(1) when not changing her strategy, while any player j using resource

e′ in S ends up paying fe′ (n − 1) when not changing her strategy. If player i changes her

strategy, no matter which is the other player selected by the adversary, she ends up paying

at least min{fe(1), fe′ (n − 1)}. If any player j changes her strategy, she ends up paying at

least min{fe(2), fe′′ (1)}. Thus, S is a 2-lookahead Nash equilibrium when fe′ (n− 1) � fe(1)

and this concludes the proof.

For the average-case model, we show that there exists a very simple game G with 4

symmetric players and 3 singleton strategies admitting no 2-lookahead Nash equilibria

independently of whether consecutive moves are allowed or not.

Theorem 3.3. In both variants of the average-case model, no 2-lookahead Nash equilibria

are guaranteed to exist even in symmetric singleton games.

Proof. Let G be the symmetric singleton game in which there are four players and three

resources, namely e1, e2 and e3 such that fe1
(x) = 6x, fe2

(x) = 7x and fe3
(x) = 10x + ε,

where ε > 0 is an arbitrarily small quantity. We show, by inspection, that G does not

admit any 2-lookahead Nash equilibrium in both variants of the average-case model.

Assume, by contradiction, that a 2-lookahead Nash equilibrium S exists. We divide the

proof into the following cases.

Case 1. S is such that there exists a resource e with congestion 4, i.e. all players share

the same resource. In the variant with consecutive moves, the expected cost of any player

i when playing e is at least 1
4
6 + 3

4
18 = 15. If player i switches to another resource e′ �= e,

her expected cost is at most 10+ε. In the variant without consecutive moves, the expected

cost of any player i when playing e is at least 18. If player i switches to another resource
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e′ �= e, her expected cost is at most 10 + ε. In both cases, we get a contradiction to the

fact that S is a 2-lookahead Nash equilibrium.

Case 2. S is such that there exists a resource e with congestion 3. In the variant

with consecutive moves, the expected cost of any player i when playing e is at least
1
4
6 + 1

4
18 + 1

2
12 = 12. If player i switches to another resource e′ �= e, her expected cost is

at most 1
2
(10+ ε)+ 1

2
12 < 12. In the variant without consecutive moves, the expected cost

of any player i when playing e is at least 1
3
18 + 2

3
12 = 14. If player i switches to another

resource e′ �= e, her expected cost is at most 1
3
(10 + ε) + 2

3
12 < 14. In both cases, we get

a contradiction to the fact that S is a 2-lookahead Nash equilibrium.

Case 3. S is such that there exists two resources e and e′ with congestion 2. Assume,

without loss of generality, that e is more expensive than e′.

Case 3.1. e = e2.

In the variant with consecutive moves, the expected cost of any player i when

playing e is 1
4
7 + 1

4
(10 + ε) + 1

2
14 > 11. If player i switches to e3, her expected cost

is 10 + ε. In the variant without consecutive moves, the expected cost of any player

i when playing e is 1
3
7 + 2

3
14 > 11. If player i switches to e3, her expected cost is

10 + ε. In both cases, we get a contradiction to the fact that S is a 2-lookahead Nash

equilibrium.

Case 3.2. e �= e2 ⇒ e = e3.

In the variant with consecutive moves, the expected cost of any player i when playing

e3 is at least 1
4
6 + 1

4
(10 + ε) + 1

2
(20 + ε) > 14. If player i switches to the empty resource,

her expected cost is at most 14. In the variant without consecutive moves, the expected

cost of any player i when playing e3 is 1
3
(10 + ε) + 2

3
(20 + ε) > 16. If player i switches to

the empty resource, her expected cost is at most 14. In both cases, we get a contradiction

to the fact that S is a 2-lookahead Nash equilibrium.

Case 4. S is such that there exists only one resource e with congestion 2 (thus, both

other resources have congestion 1).

Case 4.1. e = e1.

In the variant with consecutive moves, the expected cost of any player i when

playing e1 is 12. If player i switches to e2, her expected cost is 1
4
12 + 1

4
7 + 1

2
14 < 12.

In the variant without consecutive moves, the expected cost of any player i when

playing e1 is 12. If player i switches to e2, her expected cost is 1
3
7 + 2

3
14 < 12.

In both cases, we get a contradiction to the fact that S is a 2-lookahead Nash

equilibrium.

Case 4.2. e = e2.

In the variant with consecutive moves, the expected cost of player i playing e3 is 10+ ε.

If player i switches to e1, her expected cost is 1
4
(10+ ε)+ 1

4
6+ 1

2
12 = 10+ ε

4
. In the variant

without consecutive moves, the expected cost of player i playing e3 is 10 + ε. If player i

switches to e1, her expected cost is 1
3
6 + 2

3
12 = 10. In both cases, we get a contradiction

to the fact that S is a 2-lookahead Nash equilibrium.

Case 4.3. e = e3.

In the variant with consecutive moves, the expected cost of any player i when playing

e3 is 1
4
12 + 1

4
(10 + ε) + 1

2
20 + ε > 15. If player i switches to e1, her expected cost is 12. In
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the variant without consecutive moves, the expected cost of any player i when playing e3

is 1
3
(10 + ε) + 2

3
(20 + ε) > 16. If player i switches to e1, her expected cost is 12. In both

cases, we get a contradiction to the fact that S is a 2-lookahead Nash equilibrium.

4. Bounds on the price of anarchy

In this section, we give upper bounds on the price of anarchy of 2-lookahead Nash

equilibria of linear congestion games both in the worst-case model and in the average-

case model either with or without consecutive moves. To this aim, we use the primal-dual

method introduced in Bilò (2012). Denoted with K = (k1, . . . , kn) and O = (o1, . . . , on) the

worst 2-lookahead Nash equilibrium and the social optimum, respectively, this method

aims at formulating the problem of maximizing the ratio C(K)
C(O)

via linear programming.

The two strategy profiles K and O play the role of fixed constants, while, for each e ∈ E,

the values αe and βe defining the delay functions are variables that must be suitably

chosen so as to satisfy two constraints: the first, assures that K is a 2-lookahead Nash

equilibrium, while the second normalizes to 1 the value of the social optimum C(O).

The objective function aims at maximizing the social value C(K) which, being the social

optimum normalized to 1, is equivalent to maximizing the ratio C(K)
C(O)

. Let us denote with

LP (K,O) such a linear program. By the weak duality theorem, each feasible solution

to the dual program of LP (K,O) provides an upper bound on the optimal solution of

LP (K,O). Hence, by providing a feasible dual solution, we obtain an upper bound on

the ratio C(K)
C(O)

. Anyway, if the provided dual solution is independent on the particular

choice of K and O, we obtain an upper bound on the ratio C(K)
C(O)

for any possible pair of

profiles K and O, which means that we obtain an upper bound on the price of anarchy

of 2-lookahead Nash equilibria.

For the sake of brevity, throughout this section, for each e ∈ E, we set Ke := ne(K)

and Oe := ne(O). Moreover, note that a simplificative argument widely exploited in the

literature of linear congestion games states that we do not lose in generality by assuming

βe = 0 for each e ∈ E (as long as we are not interested in singleton strategies). Finally,

we denote by c′
i(S, t) the cost that player i foresees in her search tree when selecting, in

state S , strategy t.

4.1. Worst-case model

For the worst-case model without consecutive moves, for any player i ∈ N, strategy profile

K and strategy t ∈ Σi, it holds

c′
i(K, ki) �

∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe (1)

and

c′
i(K, t) �

∑
e∈t

(αe(Ke + 2)) . (2)

In fact, with 2-lookahead best-responses, when selecting strategy ki, player i has to

suffer, for every used resource e for which Ke � 2, a congestion at least equal to Ke − 1,
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where the decrease of one unit is due to the possibility that the player performing the

next move could leave resource e; moreover, when selecting any strategy t, player i can

suffer for every used resource e, a congestion at most equal to Ke + 2, where the increase

of 2 units is due to the fact that player i is selecting e and also the player moving after

her could select e.

For the case with consecutive moves, the same inequalities apply as well, since the

fact that the adversary can also select again player i can only increase the cost c′
i(K, ki),

whereas the value
∑

e∈t (αe(Ke + 2)) is already the maximum possible one that can be

suffered by a migrating player in any model of 2-lookahead rationality.

Hence, for each player i ∈ N, since K is a 2-lookahead Nash equilibrium, by combining

inequalities 1 and 2, it holds∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe �
∑
e∈oi

(αe(Ke + 2)) . (3)

Such an inequality was already exploited in Mirrokni et al. (2012) in order to study the

price of anarchy in the average-case model without consecutive moves. Anyway, as we

will see later, in this case a more significant inequality can be derived. When embedded

into the primal-dual technique, inequality (3) gives life to the following primal formulation

LP (K,O).

maximize
∑
e∈E

(
αeK

2
e

)
subject to∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe −
∑
e∈oi

(αe(Ke + 2)) � 0, ∀i ∈ N

∑
e∈E

(
αeO

2
e

)
= 1,

αe � 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ

subject to∑
i:e∈ki

(xi(Ke − 1)) −
∑
i:e∈oi

(xi(Ke + 2)) + γO2
e � K2

e , ∀e ∈ E : Ke � 2

∑
i:e∈ki

(xiKe) −
∑
i:e∈oi

(xi(Ke + 2)) + γO2
e � K2

e , ∀e ∈ E : Ke < 2

xi � 0, ∀i ∈ N

Theorem 4.1. For any linear congestion game G, it holds PoA(G) � 8 in the worst-case

model.

Proof. We show the claim by proving that the dual solution such that xi = 2 for each

i ∈ N and γ = 8 is feasible.
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The first dual constraint becomes f1(Ke, Oe) � 0 with f1(Ke, Oe) := K2
e − 2Ke(Oe + 1) +

4Oe(2Oe − 1). It holds f1(Ke, 0) = K2
e − 2Ke which implies f1(Ke, 0) � 0 for any Ke � 2.

For Oe � 1, note that the discriminant of the equation f1(Ke, Oe) = 0, when solved

for Ke, is 1 + 6Oe − 7O2
e which is always non-positive when Oe � 1. This implies that

f1(Ke, Oe) � 0 for each pair of real numbers (Ke, Oe) with Oe � 1. Hence, it follows that

the first dual constraint is always verified for any pair of non-negative integers (Ke, Oe)

with Ke � 2.

The second dual constraint becomes f2(Ke, Oe) � 0 with f2(Ke, Oe) := K2
e −

2KeOe + 4Oe(2Oe − 1). Note that the discriminant of the equation f2(Ke, Oe) = 0,

when solved for Ke, is 4Oe − 7O2
e which is always non-positive when Oe � 0. This

implies that the second dual constraint is always verified for any pair of non-negative

reals (Ke, Oe).

4.2. Average-case model

For the average-case model without consecutive moves, for any player i ∈ N, strategy

profile K and strategy t ∈ Σi, it holds

c′
i(K, ki) �

∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe(Ke − 1)

n − 1
(4)

and

c′
i(K, t) �

∑
e∈t

(
αe

(
Ke + 2 − Ke

n − 1

))
. (5)

In fact, with 2-lookahead best-responses, when selecting strategy ki, player i has to

suffer, for every used resource e for which Ke � 2, a congestion at least equal to Ke − 1,

where the decrease of one unit is due to the event, having probability at most Ke−1
n−1

, that

the player performing the next move leave resource e (because such a player has to belong

to the set of players selecting e in K); moreover, when selecting any strategy t, in order to

evaluate the congestion player i can suffer on every used resource e, we have to distinguish

between two different cases: (i) If player i is using resource e also in K , i.e. e ∈ ki, she can

suffer on e a congestion at most equal to Ke + 1, where the increase of one unit is due to

the event, having probability at most n−Ke

n−1
= 1 − Ke−1

n−1
, that also the player moving after i

selects e (because such a player has not to belong to the set of players selecting e in K).

(ii) If player i is not using resource e in K , i.e. e �∈ ki, she can suffer on e a congestion

at most equal to Ke + 2, where the increase of one unit is due to the fact that player

i is selecting e and the increase of another unit is due to the event, having probability

at most n−1−Ke

n−1
= 1 − Ke

n−1
, that also the player moving after i selects e. Therefore, since

Ke + 2 − Ke

n−1
� Ke + 1 − Ke−1

n−1
, inequality 5 holds. Hence, for each player i ∈ N, since K is

a 2-lookahead Nash equilibrium, by combining inequalities 4 and 5 it holds

∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe(Ke − 1)

n − 1
�

∑
e∈oi

(
αe

(
Ke + 2 − Ke

n − 1

))
. (6)
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When embedded into the primal-dual technique, inequality (6) gives life to the following

primal formulation LP (K,O).

maximize
∑
e∈E

(
αeK

2
e

)
subject to∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe(Ke − 1)

n − 1

−
∑
e∈oi

(
αe

(
Ke + 2 − Ke

n − 1

))
� 0, ∀i ∈ N

∑
e∈E

(
αeO

2
e

)
= 1,

αe � 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ

subject to∑
i:e∈ki

(
xi

(
Ke − Ke − 1

n − 1

))

−
∑
i:e∈oi

(
xi

(
Ke + 2 − Ke

n − 1

))
+ γO2

e � K2
e , ∀e ∈ E : Ke � 2

∑
i:e∈ki

(xiKe) −
∑
i:e∈oi

(
xi

(
Ke + 2 − Ke

n − 1

))
+ γO2

e � K2
e , ∀e ∈ E : Ke < 2

xi � 0, ∀i ∈ N

The following result significantly improves the previous upper bound of (1 +
√

5)2 ≈
10.47 (Mirrokni et al. 2012).

Theorem 4.2. For any linear congestion game G, it holds PoA(G) � 4 in the average-case

model without consecutive moves.

Proof. For n = 2, we show that the dual solution such that xi = 2 for each i ∈ N

and γ = 4 is feasible. The first dual constraint, since n = 2 implies Ke = 2, becomes

Oe(Oe − 1) � 0 which is always satisfied for any integer value Oe. The second constraint

becomes K2
e + 4Oe(Oe − 1) � 0 which is always satisfied for any integer value Oe when

Ke ∈ {0, 1}.
For n � 3, we show that the dual solution such that xi = 3(n−1)

2n−3
for each i ∈ N and

γ = 4 is feasible.

The first dual constraint becomes f1(Ke,Oe)
2n−3

� 0 with f1(Ke, Oe) := K2
e (n− 3) − 3Ke(nOe −

2Oe − 1) + 2Oe(4nOe − 3n − 6Oe + 3). Since 2n − 3 > 0 for any n � 3, we need to show

that f1(Ke, Oe) � 0 for any pair of non-negative integers (Ke, Oe) with Ke � 2 when

n � 3. It holds f1(Ke, 0) = K2
e (n − 3) + 3Ke which implies f1(Ke, 0) � 0 for any Ke � 2

https://doi.org/10.1017/S0960129515000079 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000079
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when n � 3, moreover, f1(Ke, 1) = (K2
e − 3Ke + 2)(n − 3) which implies f1(Ke, 1) � 0

for any integer Ke when n � 3. The discriminant of the equation f1(Ke, Oe) = 0, when

solved for Ke, is n2Oe(24 − 23Oe) + 6nOe(18Oe − 19) − 9(12O2
e − 12Oe − 1). Note that

−9(12O2
e − 12Oe − 1) � 0 when Oe � 2 and n2Oe(24 − 23Oe) + 6nOe(18Oe − 19) � 0 when

Oe � 2 and n � 5. For n = 4, the discriminant becomes −44O2
e +36Oe +9 which is always

non-positive when Oe � 2. Finally, for n = 3, f1(Ke, Oe) becomes (Ke −4Oe)(1−Oe) which

is always non-negative since Oe � 2 and Ke � n = 3. Hence, it follows that the first dual

constraint is always verified for any pair of non-negative integers (Ke, Oe) with Ke � 2

when n � 3.

The second dual constraint becomes f2(Ke,Oe)
2n−3

� 0 with f2(Ke, Oe) := K2
e n−3KeOe(n−2)+

2Oe(4nOe −3n−6Oe+3). It holds f2(0, Oe) = Oe(4nOe −3n−6Oe+3) which is always non-

negative for any integer value Oe when n � 3 and f2(1, Oe) = n(8O2
e −9Oe+1)−12Oe(Oe−1)

which is always non-negative for any integer value Oe when n � 3. Hence, it follows that

the second dual constraint is always verified for any pair of non-negative integers (Ke, Oe)

with Ke < 2 when n � 3.

For the average-case model with consecutive moves, for any player i ∈ N, strategy

profile K , strategy t ∈ Σi and best-response t∗ for player i in K , it holds

c′
i(K, ki) �

1

n
ci(K ⊕i t

∗) +
n − 1

n

(∑
e∈ki

(αeKe) −
∑

e∈ki:Ke�2

αe(Ke − 1)

n − 1

)
,

and

c′
i(K, t) �

1

n
ci(K ⊕i t

∗) +
n − 1

n

∑
e∈t

(
αe

(
Ke + 2 − Ke

n − 1

))
.

In fact, if consecutive moves are allowed, with probability 1
n

a 2-lookahead best-response

of player i coincides with a classical best-response, and with probability n−1
n

the same

arguments exploited for the case without repetitions apply.

Hence, the same inequality characterizing the case without repetition occurs also in this

case and we can claim the following theorem.

Theorem 4.3. For any linear congestion game G, it holds PoA(G) � 4 in the average-case

model with consecutive moves.

4.3. Singleton strategies

In this subsection, we show that better results can be achieved for the worst-case model

when restricting to singleton linear congestion games.

For the worst-case model without consecutive moves, for any player i ∈ N, strategy

profile K and strategy t ∈ Σi, it holds, unless all the players share the same resource in K ,

c′
i(K, ki) �

∑
e∈ki

(αeKe + βe) , (7)

and

c′
i(K, t) �

∑
e∈t

(αe(Ke + 2) + βe) . (8)
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In fact, with 2-lookahead best-responses, when selecting strategy ki consisting of resource

e, in the worst-case model the adversary can always select a player not selecting e for the

next move (unless all the players share the same resource in K); moreover, when selecting

any strategy t consisting of resource e′, player i can suffer a congestion at most equal to

Ke′ + 2, where the increase of 2 units is due to the fact that player i is selecting e′ and

also the player moving after her could select e′.

For the case with consecutive moves, the same inequalities apply as well, since the

fact that the adversary can also select again player i can only increase the cost c′
i(K, ki),

whereas the value
∑

e∈t (αe(Ke + 2) + βe) is already the maximum possible one that can

be suffered by a migrating player in any model of 2-lookahead rationality.

Hence, for each player i ∈ N, since K is a 2-lookahead Nash equilibrium, by combining

inequalities (7) and (8), it holds∑
e∈ki

(αeKe + βe) �
∑
e∈oi

(αe(Ke + 2) + βe) , (9)

unless all the players share the same resource in K .

When embedded into the primal-dual technique, inequality (9) gives life to the following

primal formulation LP (K,O).

maximize
∑
e∈E

(
αeK

2
e + βeKe

)
subject to∑
e∈ki

(αeKe + βe) −
∑
e∈oi

(αe(Ke + 2) + βe) � 0, ∀i ∈ N

∑
e∈E

(
αeO

2
e + βeOe

)
= 1,

αe � 0, ∀e ∈ E

The dual program DLP (K,O) is

minimize γ

subject to∑
i:e∈ki

(xiKe) −
∑
i:e∈oi

(xi(Ke + 2)) + γO2
e � K2

e , ∀e ∈ E

∑
i:e∈ki

xi −
∑
i:e∈oi

xi + γOe � Ke, ∀e ∈ E

xi � 0, ∀i ∈ N

Theorem 4.4. For any singleton linear congestion game G, it holds PoA(G) � 4 in the

worst-case model.

Proof. Set xi = 4/3 for each i ∈ N and γ = 4.

The first dual constraint becomes f1(Ke, Oe) � 0 with f1(Ke, Oe) := K2
e − 4KeOe +

4Oe(3Oe − 2). The discriminant of the equation f1(Ke, Oe) = 0, when solved for Ke, is
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8Oe − 8O2
e which is always non-positive when Oe � 0. Hence, it follows that the first dual

constraint is always verified for any pair of non-negative reals (Ke, Oe).

The second dual constraint becomes K2
e + 8Oe � 0, which is always verified for any

pair of non-negative reals (Ke, Oe).

In order to complete the proof, we have to show that, for each 2-lookahead Nash

equilibrium K in which all players share the same resource e, it holds C(K) � 4C(O). By

the definition of K , for each player i ∈ N, it holds αe(n− 1) + βe � 2αoi + βoi . By summing

for each i ∈ N, we obtain

αen(n − 1) + βen �
∑
i∈N

(
2αoi + βoi

)
� 2C(O).

By the fact that n2 � 2n(n − 1) for each n � 2, it follows that C(K) = αen
2 + βen �

4C(O).

For the average-case model, no improved bounds, with respect to the ones holding for

the case of general strategies, seem possible using our analysis technique. However, the fact

that, for singleton strategies, the upper bound on the price of anarchy in the worst-case

model matches the one holding for the average-case model might appear counterintuitive.

To this aim, in the following example, we show that this is not the case, since there are

games with singleton strategies in which the performance of 2-lookahead Nash equilibria

in the worst-case model are better than the one achieved in the average-case model.

Example 4.1. Let G be the symmetric singleton game in which there are three players and

two resources, namely e1 and e2, such that fe1
(x) = 4

3
x and fe2

(x) = x.

Let S be the strategy profile in which two players choose e1 and one player chooses e2

and consider the average-case model. In the variant with consecutive moves, the expected

cost of any player i choosing e1 is 1
3

(
2 + 4

3
+ 8

3

)
= 2. If player i switches to resource

e2, her expected cost is 2. Moreover, the expected cost of the player choosing e2 is
1
3
(1 + 2 + 2) = 5

3
. If she switches to resource e1, her expected cost is 1

3

(
2 + 8

3
+ 8

3

)
= 22

9
.

In the variant without consecutive moves, the expected cost of any player i playing e1 is
1
2

(
4
3

+ 8
3

)
= 2. If player i switches to resource e2, her expected cost is 2. Moreover, the

expected cost of the player choosing e2 is 1
2
(2 + 2) = 2. If she switches to resource e1, her

expected cost is 1
3

(
8
3

+ 8
3

)
= 8

3
. Thus, in both variants of the average-case model, S is a

2-lookahead Nash equilibrium for G.

Consider now the worst-case model.

First of all, we show that S is not a 2-lookahead Nash equilibrium for G in both

variants of the model. In fact, in both variants, the cost of any player i choosing e1 is 8
3
.

If she switches to resource e2, her cost is 2. Thus, in both variants, S is not a 2-lookahead

Nash equilibrium for G.

Now, let S ′ be the strategy profile in which one player chooses e1 and two players

choose e2. In both variants, the cost of the player choosing e1 is 4
3
. If she switches to

resource e2, her cost is 2. Moreover, in both variants, the cost of any player i choosing e2

is 2. If she switches to resource e1, her cost is 8
3
. Thus, in both variants, S ′ is a 2-lookahead

Nash equilibrium for G.
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Finally, it is not difficult to see that any profile in which all three players choose the

same resource cannot be a 2-lookahead Nash equilibrium for G, again in both variants.

Hence, since S ′ is the only 2-lookahead Nash equilibrium for G in the worst-case model,

S is a 2-lookahead Nash equilibrium for G in the average-case model, and C(S) > C(S ′),

we can conclude that the price of anarchy of G in the average-case model is higher than

the one of the worst-case model regardless of whether consecutive moves are allowed

or not.

5. Conclusion

In this paper, we have investigated the existence of lookahead equilibria in congestion

games and we have provided upper bounds to the performance of 2-lookahead equilibria

in linear congestion games under several settings.

The main open problem is that of studying the performance of k-lookahead equilibria

with k > 2. In particular, it would be interesting to understand how the performance of

k-lookahead equilibria, for increasing values of k, is related to the one of subgame perfect

equilibria, that is known to be, in many settings, worst than that of Nash equilibria (Bilò

et al. 2015).

Moreover, finding significant lower bounds to the price of anarchy appears to be a

challenging question even for 2-lookahead equilibria: providing such bounds calls for

future investigation.

Finally, investigating the performance of equilibria induced by farsighted players in the

context of other delay functions or other games constitutes another interesting research

direction.

A preliminary version of this paper appeared (Bilò et al. 2013) in Proceedings of the

9th International Conference on Web and Internet Economics (WINE 2013). This work

was partially supported by the PRIN 2010–2011 research project ARS TechnoMedia:

‘Algorithmics for Social Technological Networks’ funded by the Italian Ministry of

University.
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