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Abstract

We consider the explicit solution to the axisymmetric diffusion equation. We recast the
solution in the form of a Mellin inversion formula, and outline a method to compute a
formula for u(r, t) as a series using the Cauchy residue theorem. As a consequence, we
are able to represent the solution to the axisymmetric diffusion equation as a rapidly
converging series.
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1. Introduction and the main results

The axisymmetric diffusion equation is given as [3, p. 61]

κ∇2u ≡ κ1
r
∂

∂r

(
r
∂u
∂r

)
= κ
(
urr +

1
r

ur

)
=
∂u
∂t

, (1.1)

where t > 0, r ∈ (0,∞), u(r, 0) = g(r) and κ is the positive diffusivity constant. The
boundary conditions u→ 0, ∂u/∂r → 0 as r → ∞ are also assumed. The Hankel
transform of a function f (x) is defined as [3, p. 58, equation (1.10.1)]

H(f (y))(x) :=
∫ ∞

0
yJ0(xy)f (y) dy.

We may temporarily drop the integrating variable in denoting integral transforms
according to when the context is appropriate throughout. The known explicit solution
is obtained by taking Hankel transform of (1.1), which gives

∂

∂t
H(u(r, t))(x) + x2κH(u(r, t))(x) = 0 (1.2)
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334 A. E. Patkowski [2]

with initial condition H(u(r, 0))(x) = H(g(r)). Applying the inverse Hankel transform
H−1 to (1.2) gives the explicit solution [3, p. 62, equation (1.10.25)]

u(r, t) =
1

2κt
e−r2/(4κt)

∫ ∞
0

yg(y)I0

( yr
2κt

)
e−y2/(4κt) dy, (1.3)

where the modified Bessel function of the first kind is given by

Iv(x) =
∑
n≥0

1
n! Γ(v + n + 1)

( x
2

)2n+v
.

Some simple examples include the bell-shaped temperature profile g(r) = e−cr2
or the

uniform temperature profile g(r) = 1 on (0, 1). In both these instances it is a simple
task to appeal to the tables for integral transforms.

The purpose of this note is to provide further analysis of (1.3) by means of Mellin
inversion [6, p. 80]. In applying methods from Olver [5], we can better understand
u(r, t) by providing a method to obtain an infinite series representation involving
Laguerre polynomials or a hypergeometric function. One of our motivations for
selecting Bessel functions for initial conditions is to apply Watson’s lemma [5, p. 336,
equations (6.01) and (6.02)]. Indeed, coefficients for the power series representations
of Bessel functions are well known and, as a consequence, we may obtain the
asymptotic behaviour related to u(r, t). An example of this method will be provided in
our last section, which should be compared to our rapidly convergent series obtained in
our main theorems. For a general overview of applying Mellin transforms to evaluating
integrals involving Bessel functions, see [8, p. 196]. For a recent example of applying
Mellin transforms to analyse partial differential equations, see the paper by Boyadjiev
and Luchko [2].

Recall that the Mellin transform [6] is given by

M(g)(s) :=
∫ ∞

0
ys−1g(y) dy.

Parseval’s identity is [6, p. 83, equation (3.1.11)]
∫ ∞

0
k(y)g(y) dy =

1
2πi

∫
(c)
M(k)(s)M(g)(1 − s) ds, (1.4)

where (c) is the vertical line where the integrand is analytic.
Recall from [4, p. 709, equation (6.643), #2] (with change of variables x→ x2 and

μ = s/2) that

∫ ∞
0

yse−αy2
I2v(2βy) dy =

Γ(s/2 + v + 1/2)eβ
2/(2α)

2Γ(2v + 1)β
α−s/2M−s/2,v

(
β2

α

)
, (1.5)

valid for�(s/2 + v + 1/2) > 0.
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Here Mμ,v(x) is the Whittaker hypergeometric function [4, p. 1024]

Mμ,v(x) = xv+1/2e−x/2
1F1
(
v − μ + 1

2 ; 2v + 1; x
)

(1.6)

and 1F1(a; b; x) is the confluent hypergeometric function.

THEOREM 1.1. If M(g)(1 − s) is analytic in a subset S of the region {s ∈ C |
�(s)> − 1}, then

u(x, t) =
1
r

e−(r2−r2/2)/(4κt) 1
2πi

∫
(c)
Γ

( s
2
+

1
2

)
(4κt)s/2M−s/2,0

( r2

4κt

)
M(g)(1 − s) ds,

c ∈ S ∩ {s ∈ C | �(s) > −1}.

PROOF. We choose the k(y) to be the integrand in (1.5) with v = 0,α = 1/4κt, β =
r/4κt and apply (1.4). �

Some relevant notes are in order to apply Theorem 1.1. First, Theorem 1.1 requires
that M(g)(s) is analytic in the region {s ∈ C | �(s) < 2}. It is known that Mμ,v(x) only
has simple poles for fixed μ and x at v = −(k + 1)/2, k ∈ N. By [4, p. 1026, 9.228],

Mμ,v(x) ∼ 1
√
π
Γ(2v + 1)μ−v−1/2x1/4 cos

(
2
√
μx − vπ − π

4

)

as |μ| → ∞ and further we have the functional relationship [3, p. 1026, equation
(9.231), #2],

x−1/2−vMμ,v(x) = (−x)−1/2−vM−μ,v(−x).

We now consider three example initial conditions where we choose Bessel functions
and products of Bessel functions of various types. It should be mentioned that our
choices of initial conditions were due to their following inherent known properties.

(i) Mellin transforms of Bessel functions are well known and involve ratios of
gamma functions, allowing for easy computation in applying Cauchy’s residue
theorem (see [6] for examples).

(ii) The power series coefficients for Bessel functions are well known and so power
series of products of Bessel functions are also readily computable. Thus, we may
apply Watson’s lemma to obtain asymptotic behaviour of our solutions as well.

EXAMPLE 1.2. In the model with u(r, 0) = J0(ar), the Bessel function of the first kind,
we may proceed in the following way. Note that for −v < �(s) < 3/2 [6, p. 407]

M(Jv(ay))(s) =
2s−1Γ(v/2 + s/2)
Γ(1 + v/2 − s/2)

a−s. (1.7)

We set v = 0 and insert (1.7) into the equation in Theorem 1.1 to obtain for −1/2 <
�(s) = c < 1,

u(r, t) =
1
r

e−(r2−r2/2)/(4κt) 1
2πi

∫
(c)

(4κt)s/2M−s/2,0

( r2

4κt

)
2−sΓ

(1 − s
2

)
as−1 ds. (1.8)
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It is known that

1F1(a, 1; x) = exLa−1(−x), (1.9)

where Ln(x) is the Laguerre polynomial [3]. This can be seen by using [4, p. 1001]
La(x) = 1F1(−a; 1; x) together with Kummer’s [1, p. 509] 1F1(a; b; x) = ex

1F1(1 −
a; b;−x) with b = 1. Now (1.6) with (1.8) leads to

u(r, t) =
e−r2/(4κt)

√
4κt

1
2πi

∫
(c)

(4κt)s/2
1F1

( s
2
+

1
2

; 1;
r2

4κt

)
2−sΓ

(1 − s
2

)
as−1 ds

=
e−r2/(4κt)

√
4κt

1
2πi

∫
(1−c)

(4κt)(1−s)/2
1F1

(
1 − s

2
; 1;

r2

4κt

)
2s−1Γ

( s
2

)
a−s ds.

Here we made the change of variable s→ 1 − s. This integrand has simple poles at
s = 0 and the negative even integers s = −2n. We consider a rectangular contour CM,c,T ,
where M = 2N + 1/2 with vertices at (1 − c, iT), (−M, iT), (−M,−iT) and (1 − c,−iT)
with T > 0. Due to Stirling’s formula [6, pp. 31 and 121], the contribution from the
horizontal sides tends to zero as T → ∞. Noting that these poles are contained within
our CM,c,T and using (1.9) to compute the residues gives

u(r, t) =
∑
n≥0

Ln(−r2/4κt)
n!

(−a2κt)n = e−a2κtJ0(ar).

Here we have applied the α = 0 case of [7, p. 102, Theorem 5.1 and equation (5.1.16)]

∑
n≥0

L(α)
n (x)

Γ(n + α + 1)
wn = ew(xw)−α/2Jα(2

√
xw).

Next we consider an example of Theorem 1.1 with a function for which it is difficult
to evaluate (1.3), and is apparently new.

THEOREM 1.3. The solution of (1.1) with u(r, 0) = J2
0(ar) is given by

u(r, t) =
1
2

∑
n≥0

(2n)!
(n! )3 Ln

(
− r2

42κt

)
(−a2κt)n.

PROOF. First, we write down [6, p. 407]

M(J2
v (ay))(s) =

2s−1Γ(s/2 + v)Γ(1 − s)
Γ2(1 − s/2)Γ(1 + v − s/2)

a−s, (1.10)
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valid for −�(v) < �(s) = c′ < 1. We set v = 0 in (1.10) and insert it into the equation
in Theorem 1.1 to find for 0 < c′ < 1,

u(r, t) =
1
r

e−r2/(4κt) 1
2πi

∫
(c′)

(4κt)s/2M−s/2,0

( r2

4κt

)2−sΓ((1 − s)/2)Γ(s)
Γ2(1/2 + s/2)

as−1 ds

=
e−r2/(4κt)

√
4κt

1
2πi

∫
(1−c′)

(4κt)(1−s)/2
1F1

(
1 − s/2; 1;

r2

4κt

)2s−1Γ(s/2)Γ(1 − s)
Γ2(1 − s/2)

a−s ds.

The resulting integrand has simple poles at s = −2n for each integer n ≥ 0.
We consider a rectangular contour CM,c′,T where M = 2N + 1/2 with vertices at
(1 − c′, iT), (−M, iT), (−M,−iT) and (1 − c′,−iT) with T > 0. Due to Stirling’s
formula, the contribution from the horizontal sides tends to zero as T → ∞. Noting
that these poles are contained within our CM,c′,T , we use (1.9) to compute the residues.
Therefore, computing the residues at these poles gives, by Cauchy’s residue theorem
and (1.9),

u(r, t) =
1
2

∑
n≥0

(2n)!
(n! )3 Ln

(
− r2

42κt

)
(−a2κt)n. �

It is interesting to note that taking the limit r → 0 of Theorem 1.3 gives

lim
r→0

(∑
n≥0

(2n)!
(n! )3 Ln

(
− r2

42κt

)
(−a2κt)n

)
= e−a2κtI0(a2κt)

by means of [4, p. 1024, equation (9.215), #3, p = 0, z = ix]. Next we consider an initial
condition involving the modified Bessel function of the second kind Kv(x), which has
the general relationship [4]

Kv(x) =
π(I−v(x) − Iv(x))

2 sin(πv)
.

THEOREM 1.4. The solution to (1.1) with u(r, 0) = Iv(ar)Kv(ar) is given by

u(r, t) = e−r2/(4κt) (4κta2)v

4
√
π

[∑
n≥0

1F1

(
1 + v + n; 1;

r2

4κt

)

× Γ(1 + v + n)Γ(−v − n)Γ(1/2 + n + v)
n! Γ(2v + 1 + n)

(−a24κt)n
]

+
e−r2/(4κt)

4
√
π

∑
n≥0

1F1

(
1 + n; 1;

r2

4κt

)
Γ(v − n)Γ(1/2 + n)
Γ(v + 1 + n)

(−a24κt)n,

provided that v is not an integer or equal to 0.

PROOF. From [8, p. 199, equation (7.10.8)] with 0 < �(s) = c′ < 1,

M(Iv(ay)Kv(ay))(s) =
Γ(s/2 + v)Γ(1/2 − s/2)Γ(s/2)

4
√
πΓ(v + 1 − s/2)

a−s. (1.11)
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Setting v = 0 in (1.11) and applying Theorem 1.1, we have that u(r, t) is equal to

u(r, t) =
1

r4
√
π

e−r2/(4κt) 1
2πi

∫
(c′)

[
(4κt)s/2Γ

(1
2
+

s
2

)
M−s/2,0

( r2

4κt

)

× Γ((1 − s)/2 + v)Γ(1/2 − s/2)Γ(s/2)
Γ(v + 1/2 + s/2)

as−1
]

ds

=
e−r2/(4κt)

4
√
π
√

4κt

1
2πi

∫
(1−c′)

[
(4κt)(1−s)/2

1F1

(
1 − s

2
; 1;

r2

4κt

)

× Γ(1 − s/2)Γ(s/2 + v)Γ(s/2)Γ((1 − s)/2)
Γ(v + 1 − s/2)

a−s
]

ds.

Now we see that if v = 0, then the gamma functions would have a pole of order two
at the negative even integers s = −2n, which we want to avoid due to the lengthy
resulting formula. Hence, we restrict v to be a noninteger and v � 0, and the poles at
s = −2n − 2v and s = −2n are simple. We consider a rectangular contour CMv,c′,T ,
where M = 2N + 2v + 1/2 with vertices at (1 − c′, iT), (−M, iT), (−M,−iT) and
(1 − c′,−iT) with T > 0. Due to Stirling’s formula [6, pp. 31 and 121], the contribution
from the horizontal sides tends to zero as T → ∞. Noting that these poles are contained
within our CMv,c′,T , we use the integrand to compute the residues. For the poles at
s = −2n − 2v, we have the residue

e−r2/(4κt) (4κta2)v

4
√
π

∑
n≥0

1F1

(
1 + v + n; 1;

r2

4κt

)

× Γ(1 + v + n)Γ(−v − n)Γ(1/2 + n + v)
n! Γ(2v + 1 + n)

(−a24κt)n

and, for the poles at s = −2n, we have the residue

e−r2/(4κt)

4
√
π

∑
n≥0

1F1

(
1 + n; 1;

r2

4κt

)
Γ(v − n)Γ(1/2 + n)
Γ(v + 1 + n)

(−a24κt)n. �

A nice consequence of our series representations of u(r, t) is that they are rapidly
converging and so should be of great interest for numerical calculations. From [4,
p. 1003, equation (8.978), #3,α = 0], we have the asymptotic expansion for the
Laguerre polynomial

Ln(x) =
ex/2

√
π

(xn)−1/4 cos
(
2
√

nx − π
4

)
+ O(n−3/4) (1.12)

as n→ ∞, uniformly in x > 0. In conjunction with our series involving Laguerre
polynomials, (1.12) may be used to obtain approximations for u(r, t).
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2. Some related observations

We mention a method of evaluating (1.3) when g(y) = h(y) log(y) for a suitable
function h(y). It is known [4, p. 919, equation (8.447)] that

I0(x) log
( x
2

)
= −K0(x) +

∑
n≥1

x2n

22n(n! )2ψ(n + 1), (2.1)

where ψ(x) is the digamma function [4]. The formula (2.1) appears to provide an
effective way of computing special cases of (1.3). We provide an outline of a method.

THEOREM 2.1. Let h(y) be a suitable function chosen so the series converges. The
solution to (1.1) with initial condition u(r, 0) = h(r) log(r) satisfies

u(r, t) =
1

2κt
e−r2/(4κt)

[
log
(4κt

r

)
Z1(h) −

∫ ∞
0

yh(y)e−y2/(4κt)K0

( yr
2κt

)
dy

+
∑
n≥1

ψ(n + 1)
22n(n! )2

( r
2κt

)2n
Z2n+1(h)

]
,

where

Zs(h) := M(yh(y)e−y2/(4κt))(s) =
∫ ∞

0
h(y)yse−y2/(4κt) dy.

PROOF. Note that equation (2.1) implies that

I0

( yr
2κt

)
log(y) = log

(4κt
r

)
− K0

( yr
2κt

)
+
∑
n≥1

ψ(k + 1)
22k(k! )2

( yr
2κt

)2k
.

Hence,
∫ ∞

0
yh(y)I0

( yr
2κt

)
log(y)e−y2/(4κt) dy = log

(4κt
r

) ∫ ∞
0

yh(y)e−y2/(4κt) dy

−
∫ ∞

0
yh(y)e−y2/(4κt)K0

( yr
2κt

)
dy

+
∑
n≥1

ψ(k + 1)
22k(k! )2

( r
2κt

)2k
Z2k(h(y)),

provided yh(y) log(y) satisfies certain growth conditions. In particular, by [4, p. 920],
K0(t) = O(e−t/

√
t) when t → ∞ in |arg(t)| < 3π/2 and so we require the very mild

necessary condition that for a positive constant c1 and any t > 0,

|yh(y)| < c1ey2/(4κt)

by the first integral on the right-hand side. �
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3. Asymptotic analysis of u(r, t)

First, we write down Watson’s lemma (see [5, p. 336, equations (6.01) and (6.02)] or
[6, p. 5, Lemma 1.2]). Suppose that f (y) has the power series expansion

f (y) ∼
∑
n≥0

any(n+λ−μ)/μ (3.1)

as y→ 0+. Then, if λ > 0, μ > 0,∫ ∞
0

e−xyf (y) dy ∼
∑
n≥0

Γ

(n + λ
μ

) an

x(n+λ)/μ
(3.2)

as x→ ∞, assuming that the integral converges. In this section, we illustrate an
attractive aspect of working with Bessel functions for u(r, 0). Namely, exploiting
the power series representation to find an asymptotic formula related to the integral
representation of u(r, t). First, in our initial example following Theorem 1.1, with
f (r) = J0(ar), we can use the power series formula

J0(ay)I0

( yr
2κt

)
=
∑
n≥0

( 1
22n

∑
0≤k≤n

(−a2)k

(k! )2((n − k)! )2

( r
2κt

)2(n−k))
y2n, (3.3)

which is easily obtained by equating coefficients after taking the product of power
series. Now we replace y by

√
y in (3.3), put μ = λ = 1 in (3.1)–(3.2) and make the

change of variable y→ y2 in (3.2) to obtain the following theorem.

THEOREM 3.1. We have

2
∫ ∞

0
ye−xy2

J0(ay)I0

( yr
2κt

)
dy ∼

∑
n≥0

n! bn

x(n+1)

as x→ ∞, where

bn =
1

22n

∑
0≤k≤n

(−a2)k

(k! )2((n − k)! )2

( r
2κt

)2(n−k)

.

In the example provided in Theorem 1.3, we will need the known power series
[4, p. 918, equation (8.442), #1, v = μ = 0, z = ay],

J2
0(ay) =

∑
n≥0

(−1)n(n + 1)n

(n! )3

(ay
2

)2n
. (3.4)

Proceeding precisely in the same way as we did for Theorem 3.1 but with (3.4), we
obtain the following theorem.

THEOREM 3.2. We have

2
∫ ∞

0
ye−xy2

J2
0(ay)I0

( yr
2κt

)
dy ∼

∑
n≥0

n! cn

x(n+1)
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[9] A note on the axisymmetric diffusion equation 341

as x→ ∞, where

cn =
1

22n

∑
0≤k≤n

(−a2)k(k + 1)k

(k! )3((n − k)! )2

( r
2κt

)2(n−k)

.
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