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Abstract

The Asian corn borer, Ostrinia furnacalis (Guenée), emerges as a significant threat to maize cul-
tivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents
a critical point characterised by significant economic consequences on maize yield. To man-
age the infestation of this pest effectively, timely and precise identification of its larval stages
is required. Currently, the absence of techniques capable of addressing this urgent need poses
a formidable challenge to agricultural practitioners. To mitigate this issue, the current study
aims to establish models conducive to the identification of larval stages. Furthermore, this study
aims to devise predictive models for estimating larval weights, thereby enhancing the precision
and efficacy of pest management strategies. For this, 9 classification and 11 regression models
were established using four feature datasets based on the following features geometry, colour,
and texture. Effectiveness of the models was determined by comparing metrics such as accu-
racy, precision, recall, F1-score, coefficient of determination, root mean squared error, mean
absolute error, and mean absolute percentage error. Furthermore, Shapley Additive exPlana-
tions analysis was employed to analyse the importance of features. Our results revealed that for
instar identification, the DecisionTreeClassifier model exhibited the best performance with an
accuracy of 84%. For larval weight, the SupportVectorRegressor model performed best with R>
of 0.9742. Overall, these findings present a novel and accurate approach to identify instar and
predict the weight of O. furnacalis larvae, offering valuable insights for the implementation of
management strategies against this key pest.

Introduction

Maize plays a crucial role in global food security, serving as a staple crop for both human
consumption and livestock feed (Erenstein et al., 2022; Kennett et al., 2020). However, maize
cultivation faces significant challenges due to pest infestation, primarily from lepidopteran pests
(Foba et al., 2023; Li et al., 2023; Zhao et al., 2022). Among these pests, Ostrinia furnacalis
(Guenée) (Lepidoptera: Crambidae) poses a serious threat, as it heavily relies on maize as its
primary food source, leading to adverse effects on crop yields (Fang et al., 2021; He et al., 2003;
Liet al., 2021).

For effective pest management, understanding the insect life cycle (fig. 1) and its feeding
preference is crucial. Insects at different developmental stages demonstrate distinct food pref-
erences and consumption patterns (Nawaz et al., 2020; Revadi ef al., 2021). For instance, early
instar larvae of O. furnacalis feed on leaves, while third instar larvae feed on tassels, and late
(fourth and fifth) instar larvae feed on stems and spikes. Consequently, plant damage sites and
intensity also vary starting from leaf damage to stem boring, compromising both the yield and
quality of maize (Xu et al., 2016).

In addition to plant damage associated with the insect developmental stage, pest manage-
ment strategies also vary according to the developmental stages of the insect. For instance, first
and second instar larvae of Helicoverpa armigera show high mortality to insecticides belonging
to nucleopolyhedrovirus and Bacillus thuringiensis compared to third instar larvae, demonstrat-
ing the importance of targeting specific developmental stages in pest control (Vivan et al., 2016).
Similarly, third instar larvae of Listronotus maculicollis are more susceptible to the insecticides
tebufenozide and methoxyfenozide than the fifth instar, emphasising the need for stage-specific
interventions (Koppenhofer et al., 2019). In the context of O. furnacalis, accurate identification
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Figure 1. Life cycle of Ostrinia furnacalis, showing the stages of egg, larva, pupa, and adult. Source: Collected and illustrated by the authors.

of larval instars is equally crucial, as it can inform the selection
of appropriate control measures, optimising their effectiveness and
reducing unnecessary pesticide use.

Furthermore, larval weight contributes to a more detailed
understanding of insect growth status at different developmen-
tal stages, which helps in the assessment of their potential threat
to crops. An instar with increased weight demonstrates higher
fitness compared to low-weight instars, with higher mass indi-
cating greater feeding capacity and potential damage to plants.
Additionally, larval weight plays a crucial role in the success-
ful transition of larvae into the pupal stage (Fletcher, 2009),
and pupal weight has been found to correlate with adult lifes-
pan and fertility (Barah and Ak, 1991; Greenberg et al., 2001),
influencing pest population dynamics. Consequently, accurate and
timely identification of instar and prediction of weight are essen-
tial for implementing effective pest management strategies. These
strategies can be tailored to mitigate damage to crops and liv-
ing environments (Johari et al., 2023; Xu et al., 2022; Ye et al,
2020).

Conventional methods for identifying instar and predicting
the mass of pests are not only time-consuming but also labour-
intensive (Wu et al., 2013). These traditional approaches often
involve manual examination and measurement, which can be inef-
ficient and prone to errors. This challenge has driven the need for
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more advanced and efficient methods to improve pest management
strategies. With recent progress in machine learning (ML), there
has been a growing interest in the utilisation of ML in pest man-
agement approaches, such as insect detection (Li et al, 2020;
Majewski et al., 2022), identification (Kirkeby et al., 2021), and
prediction (Ibrahim et al., 2022). Additionally, several ML classifi-
cation algorithms have already been applied for various insect pests
for instar identification. For instance, the support vector model has
been effective in predicting mangrove crab larvae growth stages
with 85% accuracy (Almarinez and Hernandez, 2019), the ran-
dom forest model has achieved 85.59% accuracy in identifying
for Spodoptera frugiperda (Smith) (Xu et al., 2022), and the K-
nearest model have achieved accuracy rates ranging from 58.33%
to 84.67% in studies on Metisa plana (Walker) (Johari et al., 2022).
In contrast, deep learning (DL), a subset of ML, involves more com-
plex algorithms such as convolutional neural networks (CNNG),
which can automatically learn features from data. DL methods
have demonstrated remarkable success in pest management appli-
cations. For instance, the ResNet-Locusr-BN model, based on
CNNeG, has been used for identifying locust instars (Ye et al., 2020).
Furthermore, various DL models, including VGG16, ResNet50,
ResNet152, and DenseNet201, were used for M. plana instar iden-
tification (Johari et al., 2023). Despite its economic importance
as a crop pest, ML and DL models have not yet been employed
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for identifying the instar and weight prediction of O. furnacalis
larvae.

Precise identification of instars and accurate prediction of lar-
val weight are essential for effective pest control. To tackle this
challenge, our study focused on employing smartphone-captured
images combined with ML technology to develop a model for
accurately identifying the instars and predicting the weight of
O. furnacalis larvae. This approach - targeted pest management
based on developmental stages - optimises the use of chemical
pesticides, reducing environmental impact and minimising crop
losses. By aligning with Integrated Pest Management principles,
this method supports food security through more efficient and sus-
tainable pest control strategies. The outcomes of our study provide
insights into the potential application of these models as a novel
tool for determining the instar and weight of O. furnacalis and
other insects.

Materials and methods
Insect

The larvae of O. furnacalis were obtained from the Conservation
Monitoring Base of Jilin Agricultural University (125.40°E,
43.82°N) and were carefully maintained in a semi-natural
environment (10 £ 2°C-32 £ 2°C, relative humidity:
40 + 10%-70 + 10%). These larvae were reared on an artifi-
cial diet comprising brewer’s yeast powder (50 g), wheat germ
flour (150 g), nipagin (4 g), sorbic acid (4 g), agar (14 g),
sucrose (15 g), vitamin C (4 g), and water (700 ml) (Zhou et al.,
1980).

A.

B.

Larval maintenance and observation

A total of 200 larvae were individually placed in a food-grade plas-
tic box (40 ml), covered with wax paper, and provided with ample
food. To maintain humidity and air circulation, six round holes
(2-3 mm diameter) were incorporated into the plastic box’s top,
and approximately 30 holes (0.5 mm diameter) were added to the
wax paper (Guangzhou Lechu Trading Co., Ltd., China).

To accurately determine the O. furnacalis larval instar stage
(first to fifth), we observed the larvae daily at 14:00 to check if
moulting had occurred since the last observation. After moult-
ing for 4-6 h, the larvae were photographed while alive (described
below), and their weights were measured daily using an electronic
balance (BSA223S, Sartorius, Germany) until the pupation phase.

Data acquisition for larval instar and weight

The data acquisition set-up included a mobile phone (iPhone 12,
Apple Inc., USA), phone support (Shanghai Xuanxiang Trading
Co., Ltd., China), and grid paper (75 cm x 105 cm, Wenlin Art
Office Supplies Store, China) (fig. 2A-C). The mobile camera was
positioned directly above the larvae, parallel to the surface, at a
consistent distance of 180 mm and an angle of 180° to the sur-
face, ensuring uniformity across all images. No additional lighting
was used, only ambient daylight from the environment was utilised
to maintain natural lighting conditions. Photography was initiated
daily at 14:00, to ensure consistent lighting conditions through-
out the observation period. Both observations and photography
were carried out under natural daylight to avoid direct sunlight and
minimise the influence of external variables.
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Figure 2. Experimental set-up for image acquisition and evaluation of bounding techniques for Ostrinia furnacalis larvae. (A) Schematic of the image acquisition set-up;
(B) front view of the image acquisition set-up; (C) actual experimental set-up used for image acquisition; (D) application of the minimum bounding rectangle (MBR) on a
curved larva. The figure shows the limitations of MBR for accurately measuring the larva’s true length and width, as the bounding box encloses empty areas, especially for
curved postures; (E) application of the minimum circumscribed ellipse (MCE) on a curved larva. The figure illustrates how MCE fails to precisely capture the true dimensions
and curvature of the larva, as the ellipse encompasses unnecessary space, leading to inaccurate representation.
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Table 1. Input features and symbols of instar identification and weight prediction models of Ostrinia furnacalis larvae
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Image features Description Symbols

Geometric features Area of the larvae Area
Perimeter of the larvae Perimeter
Smaller solution to the area and perimeter equations for joint larvae Width
Bigger solution to the area and perimeter equations for joint larvae Length
The equivalent diameter of the larval head Diameter

Perimeter?/Area

Shape Factor

Width/Length

Shape Index

Colour features

The mean value of hue within the larval region. Hue represents the basic type of
colour and is typically measured as an angle on the colour wheel.

Average Hue

The mean value of saturation within the larval region. Saturation measures the
purity or intensity of the colour, with higher values indicating more vivid colour.

Average Saturation

The mean value within the larval region. Value reflects the lightness or darkness of
the colour, with higher values indicating brighter colours.

Average Value

Textural features

The mean value of contrast within the larval region. Contrast measures the degree
of variation in pixel intensity within the target area.

Average Contrast

The mean value of energy within the larval region. Energy quantifies the amount of
pixel intensity uniformity, reflecting the texture’s smoothness.

Average Energy

The mean value of homogeneity within the larval region. Homogeneity measures

Average Homogeneity

how uniform the texture is, with higher values indicating more uniformity.

Given that the larvae were alive during image acquisition, there
was a risk of motion-induced blurriness. To address this, we imple-
mented a rigorous quality control process: any blurry images were
discarded and retaken to ensure that all images used in the dataset
were clear and of high quality. A dataset of 1,283 images was com-
piled, focusing on the larval instar stages from the second to fifth.
The first instar larvae were excluded from the study due to their
very small size, which resulted in negligible weight measurements.
The resolution of the images used was 4032 x 3024.

Feature extraction

To avoid errors during edge detection, an open-source image
annotation tool software, Labelme (version 4.5.13), was used to
label RGB images of larvae manually. Mask images were gen-
erated based on the RGB images and annotation files and then
converted into binary images using a thresholding value of 60 to
determine whether pixels in the region of interest (ROI) repre-
sented larvae or background. Pixels exceeding this threshold were
identified as larvae, while those below it were categorised as back-
ground. The binary images were used to identify the ROI, specif-
ically the larval region, which was then analysed in the original
RGB images. Geometric, colour, and texture features were subse-
quently extracted from the identified ROI using OpenCV (Table 1).
Although the binary images are instrumental in accurately defin-
ing the ROI, the actual feature extraction was performed on the
original images, ensuring that detailed information, such as colour
and texture, was preserved.

Considering the irregular and dynamic body shapes of lar-
vae observed during image acquisition, utilising the length and
width of the minimum bounding rectangle (MBR) or the major
and minor axes of the minimum circumscribed ellipse (MCE)
to approximate larval dimensions is not practical (fig. 2D, E).
These methods require larvae to remain still and relatively straight,
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which is challenging. To overcome these limitations, we employed
polygon annotation techniques to accurately extract the contour
perimeter and area of the larvae. By integrating these measure-
ments into simultaneous equations (Equations (1) and (2)), we
effectively approximated the length and width of larvae, even while
they are in motion.

width =

Perimeter (Perimeter
4 4

)2 — Area (1)

length — Perizfzeter n \/(Peri;::eter)z _ Area @)

Data-processing

Outliers in the final input features of models were identified using
the 30 principle. Data that satisfy Equation (3) are deemed nor-
mal values, whereas those that do not are regarded as outliers and
removed. A total of 1261 images were obtained after processing.

w—30 < X < u+ 30 3)

To select the input features for models, one-way analysis of vari-
ance and Tukey’s least significant difference test in Origin 2023b
software (OriginLab Corporation, Northampton, MA, USA) were
conducted on each of the 13 features separately (o« = 0.05). The lar-
vae were categorised into different instar stages, and each stage was
treated as a distinct treatment in the study. The counts for the four
larval instars were as follows: 306, 331, 311, and 313, respectively.
Additionally, Pearson correlation analysis was performed simulta-
neously, with the 13 features extracted from the images serving as
independent variables and O. furnacalis larval instar and weight
serving as dependent variables.
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Table 2. Input features contained in four feature datasets

Feature datasets

Geometric,

Geometric Geometric colour, and
Features Geometric  and colour and texture texture
Area v v v v
Perimeter v v v v
Width v v v v
Length v v v %
Diameter v v v v
Shape
Factor
Shape
Index
Average v v
Hue
Average v v
Saturation
Average v v
Value
Average v v
Contrast
Average v v
Energy
Average v %

Homogeneity

To standardise the prediction accuracy across parameters with
different magnitudes, feature variables underwent z-score normal-
isation (Equation (4)). Additionally, due to the larvae’s small weight
values, a logarithmic transformation with base ‘¢’ was applied to the
target variable.

z= 2L (4)
g

where x represents the parameter value, and p and o represent the
mean and standard deviation over training data, respectively.

Development of feature datasets

To explore the contribution of different feature types individu-
ally and in combination, we developed ML models using four
distinct feature datasets: (1) with the inclusion of geometric fea-
tures, (2) incorporating both geometric and colour features, (3)
integrating geometric and texture features, and (4) encompass-
ing a combination of geometric, colour, and texture features
(Table 2). Instar identification and weight prediction models were
established based on the four datasets and division ratio (training:
testing = 7:3).

Instar identification model performances and feature
importance analysis

Identification models

We selected the following ML models from the SciKit-Learn library
for their robust performance and applicability in classification
tasks: AdaBoostClassifier (an ensemble method that combines
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weak learners), DecisionTreeClassifier (a model based on decision
trees), GradientBoostingClassifier (an ensemble technique that
optimises predictions), KNeighborsClassifier (a non-parametric
method that classifies based on proximity), LogisticRegression (a
linear model for binary classification), RandomForestClassifier (an
ensemble of decision trees), RidgeClassifier (a linear classifier with
L2 regularisation), SGDClassifier (a linear model optimised via
stochastic gradient descent), and Support Vector Classification
(a model that finds the optimal hyperplane for classification)
(Pedregosa et al., 2011). Each of these models was developed and
evaluated independently. For instar identification, datasets were
randomly divided into a training dataset (70%) and a testing
dataset (30%). The GridSearchCV algorithm and 10-fold cross-
validation were employed to find optimal parameters for all models
(Pedregosa et al., 2011), with the original dataset, consisting of
1,024 images of larvae, randomly partitioned into 10 equal-sized
sub-datasets. All methods were implemented in Python 3.8 and
PyTorch 1.12.1, with computational experiments conducted using
an NVIDIA GeForce RTX 3060 GPU and an Intel Core i5-12490F
CPU.

Performance assessment

To assess the model’s validity and feasibility, we calculated
the following metrics: accuracy, precision, recall, and F1-score
(Equations (5)-(8)).

TP + TN
ACUraY = Tp Y FP+ TN + EN )
precision = % (6)
recall = TPT—;—% (7)
F1 — score — 2 X precision X recall ®)

precision + recall

where TP (true positives) represent the number of actual pos-
itive samples correctly classified as positive, FN (false nega-
tives) are actual positive samples incorrectly classified as nega-
tive. False positives (FP) indicate actual negative samples incor-
rectly classified as positive, and true negatives (TN) denote actual
negative samples correctly classified as negative (Sokolova and
Lapalme, 2009). These categories (TP, FN, FB TN) are identi-
fied by comparing the model’s predictions with the actual sample
labels.

Feature importance analysis

Shapley Additive exPlanations (SHAP) analysis was conducted on
the top-performing models (Lundberg and Lee, 2017) to evaluate
the importance of feature variables in the larval instar identifica-
tion process. The analysis utilised RGB images to determine the
contribution of each feature to the model’s predictions.

Weight prediction model performances and feature importance
analysis

Prediction models

To predict the larval weight, 11 regression models were selected:
AdaBoostRegressor, BaggingRegressor, DecisionTreeRegressor,
GradientBoostingRegressor, =~ KNeighborsRegressor, ~ Lasso,
LinearRegression, ~RandomForestRegressor, RidgeRegressor,
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SGDRegressor, and Support Vector Regression (Pedregosa et al.,
2011). As with the instar identification models, these regression
models were designed to operate independently. To refine the
identification of optimal parameters, we utilised the GridsearchCV
algorithm, along with 10-fold cross-validation.

Performance assessment

Four evaluation criteria, namely the coefficient of determina-
tion (R?), root mean squared error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE) were
employed to assess the performance of the larval prediction mod-
els (Equations (9)-(12)). The R?, which ranges from 0 to 1, provides
insight into the model’s goodness of fit. A value closer to 1 indi-
cates a stronger fit. Additionally, RMSE, MAE, and MAPE values
span from 0 to positive infinity. The closer these values are to 0, the
greater the accuracy of the model’s predictions.

> (=3

R=1-2+—— 9)

—\2

Z ()’i —)’i>

i=1
— 1 - N 2

RMSE = 4/~ ; i =) (10)

1 — R
MAE = ;;U’i—)’ﬂ (11)
MAPE = %Z y‘y;y’ (12)

i=1 i

where 7 is the total number of data, y; is the observed larval
weight, and y; is the predicted larval weight.

Feature importance analysis
To evaluate the significance of feature variables in models predict-
ing larval weight, a SHAP analysis was again performed on the

Xiao Feng et al.

highest-performing model (Lundberg and Lee, 2017). In contrast
to the previous SHAP analysis for larval instar identification, which
utilised RGB images, this analysis specifically targeted the pre-
diction of larval weight, providing insights into how each feature
variable contributed to the outcome.

Results
Feature selection

Characteristics such as Area, Diameter, and verage Hue, with the
exception of Shape Factor and Shape Index, displayed notable
variations among different instar stages (figs. 3 and 4).

Pearson correlation coefficients (r;, r,) between each feature,
larval instar, and weight were calculated. A value greater than 0
indicates a positive correlation with the target variable (instar or
weight), while a value less than 0 indicates a negative correlation.
Notably, the feature Perimeter exhibited the highest correlation
with instar (0.92), followed by Length (0.91), Width (0.88), and
Average Homogeneity (0.88), while the Shape Index had the small-
est correlation (0.21) (figs. 3 and 4). For weight, features Area,
Average Energy, and Average Homogeneity showed the highest
correlation (0.98), with the Shape Factor having the smallest cor-
relation (0.044) (figs. 3 and 4).

Instar identification model performances and feature
importance analysis

Identification model performances

In total, nine models were employed for instar identification.
Among these models, DecisionTreeClassifier exhibited best per-
formance based on geometric, colour, and texture features, which
was closely followed by GradientBoostingClassifier on the geomet-
ric features. In contrast, the KNeighborsClassifier model demon-
strated the poorest performance on geometric and texture fea-
tures (Table 3).
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Figure 3. Mean values (+SE) of geometric features for the second to fifth instar Ostrinia furnacalis larvae, presented in seven metrics: (A) Area; (B) Perimeter; (C) Width;
(D) Length; (E) Diameter; (F) Shape Factor; (G) Shape Index. Mean bars marked with different lowercase letters indicate statistically significant differences based on Tukey’s

HSD test (P < 0.05).
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Figure 4. Mean values (+SE) of colour and texture features for the second to fifth instar Ostrinia furnacalis larvae, shown in three metrics: (A) average hue; (B) average
saturation; (C) average value; (D) average contrast; (E) average energy; (F) average homogeneity. Mean bars with different lowercase letters indicate statistically significant

differences based on Tukey’s HSD test (P < 0.05).

Based on geometric features, the GradientBoostingClassifier
model exhibited the best performance for instar identification,
achieving an accuracy of 84.17%, precision of 84.49, recall of
84.42, and an Fl-score of 84.39. However, the RidgeClassifier
model was the least able to discriminate between instars. When
considering geometric and colour features, the accuracy of
the nine models used for comparison ranged from 78.63% to
83.11%. In dataset geometric and texture features, the accuracy
(75.73%), precision (76.43), recall (76.41), and Fl-score (75.82)
of the KNeighborsClassifier model were the lowest. In dataset
geometric, colour, and texture features, the DecisionTreeClassifier
and SGDClassifier models exhibited the highest accuracy
(84.43%), but the DecisionTreeClassifier model outperformed in
terms of precision (84.73), recall (84.81), and F1 score (84.69)
(Table 3).

Feature importance analysis

Based on identification efficiency, DecisionTreeClassifier - the best
model - was utilised to assess the significance of individual vari-
ables in identifying larval instars with SHAP.

In general, Average Energy and Saturation emerged as the
primary features, as indicated by their average SHAP values
(0.3049 and 0.2292) (fig. 5A). Geometric features played a cru-
cial role in identifying second and fifth instar larvae, con-
tributing 51.22% and 40.08%, respectively. Texture features were
pivotal in third instar larvae identification, while colour fea-
tures played a crucial role in identifying fourth instar larvae
(fig. 5B).
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Weight prediction model performances and feature importance
analysis

Prediction model performances

A total of 11 models were employed for weight prediction. The
R? varied between 0.9584 and 0.9742. Notably, when comparing
the performance of 11 models across all four datasets, the Support
Vector Regressor (SVR) demonstrated the highest performance
on the dataset with geometric and colour features, while the
AdaBoostRegressor exhibited the lowest performance on the
dataset with geometric and texture features (Table 4).

In dataset geometric features, the SVR excelled across all
evaluation metrics, boasting an R? of 0.9691, RMSE of 0.2149,
MAE of 0.1502, and MAPE of 0.0329. Other models such as
Lasso, LinearRegressor, and RidgeRegressor show similar levels
of excellence across all evaluation criteria. Based on geometric
and colour features, the SVR also achieved the best performance
with R? (0.9742), RMSE (0.1963), MAE (0.1290), and MAPE
(0.0272). However, the AdaBoostRegressor model showed the
worst performance in terms of R* (0.9605). Based on geometric
and texture features, the R? of the models extend from 0.9584
to 0.9694 and the MAPE ranges from 0.0321 to 0.0413. Using
geometric, colour, and texture features, the R? of models such as
SVR, LinearRegressor, RidgeRegressor, Lasso, SGDRegressor, and
RandomForestRegressor were over 0.97 (Table 4).

Feature importance analysis
The average SHAP value of the Width feature (0.2702)
exceeded that of other features, indicating its influence
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Table 3. Comparison of the larval instar identification model performances in terms of accuracy, precision, recall, and F1-score

Feature Models Accuracy Precision Recall F1l-score
Geometric AdaBoostClassifier 79.68% 79.83 80.15 79.66
DecisionTreeClassifier 81.27% 82.20 81.82 81.36
GradientBoostingClassifier 84.17% 84.49 84.42 84.39
KNeighborsClassifier 78.10% 78.81 78.74 78.12
LogisticRegression 82.59% 82.82 83.01 82.77
RandomForestClassifier 80.21% 80.45 80.78 80.35
RidgeClassifier 76.78% 78.10 77.86 76.08
SGDClassifier 81.53% 83.56 81.30 81.77
SupportVectorClassifier 80.47% 80.59 80.92 80.60
Geometric and colour AdaBoostClassifier 81.53% 81.82 82.05 81.60
DecisionTreeClassifier 79.95% 80.62 80.10 80.26
GradientBoostingClassifier 80.47% 80.52 80.98 80.61
KNeighborsClassifier 78.89% 80.01 79.65 79.00
LogisticRegression 83.11% 83.29 83.55 83.26
RandomForestClassifier 82.32% 82.44 82.86 82.44
RidgeClassifier 78.63% 79.32 79.72 78.11
SGDClassifier 83.11% 83.72 83.56 83.39
SupportVectorClassifier 82.06% 82.13 82.52 82.23
Geometric and texture AdaBoostClassifier 79.42% 79.54 79.88 79.41
DecisionTreeClassifier 82.06% 82.45 82.40 82.26
GradientBoostingClassifier 82.85% 83.15 83.32 82.96
KNeighborsClassifier 75.73% 76.43 76.41 75.82
LogisticRegression 82.32% 82.44 82.71 82.44
RandomForestClassifier 82.06% 82.30 82.46 82.25
RidgeClassifier 77.84% 79.12 78.85 77.36
SGDClassifier 83.38% 83.58 83.73 83.54
SupportVectorClassifier 81.79% 82.05 82.22 81.99
Geometric, colour, and texture AdaBoostClassifier 80.74% 81.32 81.24 80.90
DecisionTreeClassifier 84.43% 84.73 84.81 84.69
GradientBoostingClassifier 83.38% 83.56 83.86 83.48
KNeighborsClassifier 80.21% 81.33 80.92 80.29
LogisticRegression 83.91% 84.03 84.31 84.06
RandomForestClassifier 83.38% 83.56 83.79 83.59
RidgeClassifier 78.63% 79.67 79.70 78.11
SGDClassifier 84.43% 84.62 84.79 84.62
SupportVectorClassifier 83.38% 83.55 83.79 83.60

on the SupportVectorRegressor optimal weight predic- Discussion
tion model. Conversely, the feature average hue (0.0322)
demonstrated the lowest impact (fig. 6A). Additionally, geo-
metric features with 73.05% exerted the greatest influence
on model prediction, followed by colour features (26.95%)
(fig. 6B).

In this study, we aim to propose ML models to identify the instar
and predict the weight of O. furnacalis larvae through the utilisa-
tion of images captured with smartphones. The swift identification
of larval instars and prediction of their weights in the field present
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Figure 5. Mean absolute SHAP values for feature importance analysis for the optimal instar identification model (Decisiontreeclassifier using geometric, colour, and texture
features) of Ostrinia furnacalis larvae: (A) Ranking of feature importance: displays the ranking of individual features based on their contribution to the model’s predictive
performance, with the most important features listed first. (B) Percentage distribution of the importance of geometric, colour, and texture features: illustrates the relative
contribution of the three feature categories (geometric, colour, and texture) to the overall feature importance. The percentages represent the proportion of the total SHAP
value attributed to each category, showing how each feature category influences the model’s prediction.

Table 4. Comparison of the larval weight prediction model performances in terms of coefficient of determination (R?), root mean squared error (RMSE), mean
absolute error (MAE), and mean absolute percentage error (MAPE)

Feature Models R? RMSE MAE MAPE
Geometric AdaBoostRegressor 0.9594 0.2464 0.1882 0.0418
BaggingRegressor 0.9643 0.2311 0.1598 0.0347
DecisionTreeRegressor 0.9632 0.2346 0.1637 0.0353
GradientBoostingRegressor 0.9669 0.2225 0.1541 0.0339
KNeighborsRegressor 0.9647 0.2297 0.1597 0.0350
Lasso 0.9679 0.2191 0.1580 0.0348
LinearRegression 0.9678 0.2194 0.1581 0.0348
RandomForestRegressor 0.9669 0.2226 0.1587 0.0348
RidgeRegressor 0.9678 0.2194 0.1581 0.0348
SGDRegressor 0.9659 0.2260 0.1677 0.0377
SupportVectorRegressor 0.9691 0.2149 0.1502 0.0329
Geometric and colour AdaBoostRegressor 0.9605 0.2430 0.1859 0.0408
BaggingRegressor 0.9708 0.2090 0.1434 0.0307
DecisionTreeRegressor 0.9648 0.2294 0.1643 0.0361
GradientBoostingRegressor 0.9705 0.2102 0.1443 0.031
KNeighborsRegressor 0.9697 0.2130 0.1452 0.0315
Lasso 0.9709 0.2088 0.1469 0.0316
LinearRegression 0.9712 0.2075 0.1452 0.0311
RandomForestRegressor 0.9708 0.2091 0.1427 0.0308
RidgeRegressor 0.9712 0.2075 0.1452 0.0311
SGDRegressor 0.9682 0.2181 0.1610 0.0358
SupportVectorRegressor 0.9742 0.1963 0.1290 0.0272
(Continued)
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Table 4. (Continued.)

Feature Models R? RMSE MAE MAPE
Geometric and texture AdaBoostRegressor 0.9584 0.2495 0.1879 0.0413
BaggingRegressor 0.9645 0.2304 0.1591 0.0345
DecisionTreeRegressor 0.9626 0.2366 0.1652 0.0363
GradientBoostingRegressor 0.9650 0.2289 0.1594 0.0348
KNeighborsRegressor 0.9650 0.2288 0.1542 0.0340
Lasso 0.9683 0.2178 0.1561 0.0343
LinearRegression 0.9687 0.2164 0.1540 0.0339
RandomForestRegressor 0.9664 0.2241 0.1596 0.0351
RidgeRegressor 0.9687 0.2164 0.1541 0.0339
SGDRegressor 0.9663 0.2247 0.1672 0.0381
SupportVectorRegressor 0.9694 0.2140 0.1474 0.0321
Geometric, colour, and texture AdaBoostRegressor 0.9596 0.2457 0.1857 0.0409
BaggingRegressor 0.9687 0.2163 0.1459 0.0312
DecisionTreeRegressor 0.9632 0.2346 0.1637 0.0353
GradientBoostingRegressor 0.9689 0.2156 0.1462 0.0315
KNeighborsRegressor 0.9691 0.2149 0.1417 0.0309
Lasso 0.9710 0.2085 0.1460 0.0313
LinearRegression 0.9716 0.2061 0.1436 0.0309
RandomForestRegressor 0.9707 0.2095 0.1429 0.0307
RidgeRegressor 0.9716 0.2061 0.1436 0.0309
SGDRegressor 0.9709 0.2088 0.1469 0.0318
SupportVectorRegressor 0.9737 0.1982 0.1309 0.0277

Width -
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26.95% ;
Length - 4 geometric features
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Average Saturation - +

Average Value - &4
Diameter - }
Average Hue +

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.
mean(|]SHAP Values|)

o
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Figure 6. Mean absolute SHAP values for feature importance analysis for the optimal weight prediction model (support vector regression using geometric and colour features)
of Ostrinia furnacalis larvae: (A) Ranking of feature importance: displays the ranking of individual features based on their contribution to the model’s predictive performance,
with the most important features listed first. (B) Percentage distribution of the importance of geometric and colour features: illustrates the relative contribution of each of
the two feature categories (geometric and colour) to the overall feature importance. The percentages represent the proportion of the total SHAP value contributed by each
category, providing a breakdown of the feature categories’ influence on the model’s prediction.
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a significant challenge, particularly for agricultural practitioners
such as farmers. This undoubtedly heightens the complexity of
targeted pest control efforts. To address these challenges, we devel-
oped multiple models for predicting the larval instars and weights
of O. furnacalis. Each model was trained and evaluated indepen-
dently to assess the effectiveness of various feature combinations.
This approach provides agricultural practitioners with flexible and
robust tools, allowing them to select the most appropriate model
based on specific field conditions or operational needs.

The larvae frequently change between various curved positions,
which surely pose a challenge to the actual implementation of
the strategy since it assumes that larvae should follow a straight
path. To tackle this challenge, we propose a solution by formu-
lating equations that establish a relationship between larval area
and perimeter concerning width and length rather than relying
solely on the major and minor axes of the MBE (Johari et al., 2022;
Lu and S-j, 2020). This not only streamlines the process of cap-
turing larval images but also introduces a novel perspective for
feature extraction in analogous research studies. However, accu-
rately capturing contours and areas remains a challenge under
varying environmental conditions. Enhancing this approach with
advanced image processing techniques or adaptive ML models
could improve performance in diverse field conditions.

Our evaluation revealed that the DecisionTreeClassifier and
GradientBoostingClassifier were particularly effective in instar
identification. The DecisionTreeClassifier showed commendable
performance within the geometric, colour, and texture features,
achieving accuracy, precision, recall, and F1-score metrics exceed-
ing 84%. This highlights its sensitivity and robustness in handling
instar identification. The GradientBoostingClassifier also demon-
strated high performance across diverse metrics in all four datasets,
indicating its superiority in navigating dynamically changing data
scenarios. Similarly, the GradientBoostingClassifier showed high
performance across various metrics, indicating its superiority in
navigating dynamically changing data scenarios.

For weight prediction, the SVR proved to be the most effective
model. It demonstrated high accuracy and robustness by effectively
managing the non-linear relationship between features and larval
weight. This capability is crucial for optimising pest control strate-
gies, as precise weight predictions are essential for tailoring inter-
ventions based on the developmental stage of the larvae. Notably,
the SVR performed exceptionally well when utilising geometric
and colour features, highlighting its effectiveness in capturing the
variations in weight across different instar stages.

Although most studies have focused on predicting the weight
of larger animals like pigs and cows (He et al., 2021; Ruchay et al.,
2022), recent advancements in estimating the biomass of inver-
tebrates, such as the BIODISCOVER system (Arje et al., 2020),
offer a novel approach for invertebrate biomass estimation using
advanced image analysis and ML techniques. Incorporating such
techniques into larval weight prediction could enhance model
accuracy and applicability. Future research may explore these
advanced methods may provide further refinement and validation
of weight prediction models in diverse field conditions.

Image quality is a critical factor for effective model training.
Despite rigorous quality control in laboratory settings to ensure
clear and blur-free images, capturing high-quality images in the
field remains challenging due to variations in lighting, camera
motion, and complex backgrounds. To address this, further devel-
opment of advanced preprocessing techniques and image enhance-
ment methods is essential to mitigate the impact of suboptimal
image quality on model performance.
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The inclusion of SHAP (Shapley Additive Explanations) analysis
was crucial for improving model interpretability. SHAP provides
insights into how each feature contributes to predictions, enhanc-
ing feature selection, and model accuracy. This transparency is
valuable for validating model decisions and making the method-
ology more accessible to agricultural practitioners. Future assess-
ments should examine SHAP’s effectiveness in scenarios with miss-
ing features to ensure model robustness under varied conditions.

The exclusion of outliers during model training was essential to
prevent noise from reducing accuracy and generalisability. While
outliers can sometimes offer insights, their inclusion could have led
to overfitting and decreased model robustness. Thus, their exclu-
sion was deemed necessary to maintain a high level of model
performance and reliability. Future studies may explore the poten-
tial benefits of integrating outlier detection mechanisms to assess
their impact on model training more comprehensively.

While our models demonstrated strong performance in con-
trolled settings, further optimisation is needed for practical field
applications. Variations in real-world environments can intro-
duce noise that affects model accuracy. Enhancing preprocessing
methods and model adaptability will be crucial for maintaining
high performance in diverse conditions. These improvements will
expand the practical use of our models, offering farmers more
accurate tools for pest assessment and contributing to better pest
control strategies and reduced economic losses.
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