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We use an online database of a turbulent channel-flow simulation at Reτ = 1000 (Graham
et al. J. Turbul., vol. 17, issue 2, 2016, pp. 181–215) to determine the origin of vorticity
in the near-wall buffer layer. Following an experimental study of Sheng et al. (J. Fluid
Mech., vol. 633, 2009, pp.17–60), we identify typical ‘ejection’ and ‘sweep’ events in the
buffer layer by local minima/maxima of the wall stress. In contrast to their conjecture,
however, we find that vortex lifting from the wall is not a discrete event requiring ∼1
viscous time and ∼10 wall units, but is instead a distributed process over a space–time
region at least 1 ∼ 2 orders of magnitude larger in extent. To reach this conclusion, we
exploit a rigorous mathematical theory of vorticity dynamics for Navier–Stokes solutions,
in terms of stochastic Lagrangian flows and stochastic Cauchy invariants, conserved
on average backward in time. This theory yields exact expressions for vorticity inside
the flow domain in terms of vorticity at the wall, as transported by viscous diffusion
and by nonlinear advection, stretching and rotation. We show that Lagrangian chaos
observed in the buffer layer can be reconciled with saturated vorticity magnitude by
‘virtual reconnection’: although the Eulerian vorticity field in the viscous sublayer has
a single sign of spanwise component, opposite signs of Lagrangian vorticity evolve by
rotation and cancel by viscous destruction. Our analysis reveals many unifying features of
classical fluids and quantum superfluids. We argue that ‘bundles’ of quantized vortices
in superfluid turbulence will also exhibit stochastic Lagrangian dynamics and satisfy
stochastic conservation laws resulting from particle relabelling symmetry.

Key words: vortex dynamics, turbulent boundary layers, quantum fluids

1. Introduction

Vorticity is well recognized to play a fundamental role in turbulent flows and its ultimate
origin lies quite frequently at solid walls or flow boundaries. It therefore becomes a basic
question to understand how vorticity in the interior of the flow evolved from vorticity

† Email address for correspondence: eyink@jhu.edu
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generated at the wall. Recent mathematical work of Constantin & Iyer (2008, 2011) has
provided new exact tools to answer this question in terms of stochastic Lagrangian particle
trajectories evolved backward in time. In the previous work by Eyink, Gupta & Zaki (2020)
– hereafter referred to as Part 1 – it was shown that the mathematical representations of
Constantin & Iyer (2008, 2011) have a simple fluid dynamical interpretation in terms of
the ‘vortex-momentum density’ associated to a continuous distribution of infinitesimal
vortex rings, which is the basis of the Kuz’min (1983)–Oseledets (1989) formulation
of the incompressible Navier–Stokes equation. For smooth ideal Euler solutions, the
vortex-momentum density is Lie transported by the fluid flow as a 1-form and its curl,
the vorticity, is transported as a 2-form (Oseledets 1989; Tur & Yanovsky 1993). This Lie
transport leads naturally to the vorticity invariants of Cauchy (1815) for incompressible
Euler solutions and to generalized Cauchy invariants for the vortex-momentum density
(Tur & Yanovsky 1993; Besse & Frisch 2017). The mathematical theory of Constantin &
Iyer (2008, 2011) provides corresponding ‘stochastic Cauchy invariants’ for Navier–Stokes
solutions that are conserved on average by the stochastic Lagrangian flow backward in time
and these invariants provide an explicit representation of the vortex-momentum density
and the vorticity in terms of boundary data. We furthermore discussed in Part 1 some
relations of the Constantin & Iyer (2008, 2011) stochastic Lagrangian representation with
the Eulerian theory of Lighthill (1963)–Morton (1984) for vorticity generation at solid
walls and with an exact statistical result of Taylor (1932)–Huggins (1994) for the ‘vorticity
flux tensor’. The latter is an anti-symmetric tensor �ij, which represents the flux of the
jth component of the vorticity in the ith coordinate direction and which was observed
by Huggins (1994) (following Taylor (1932) for a two-dimensional pipe flow) to have a
mean value directly proportional to the mean pressure gradient in the kth direction, with
i, j, k all distinct. This relation applies to drag generally for any flows driven by imposed
pressure gradients and/or free stream velocity, such as turbulent shear layers and wakes
(Brown & Roshko 2012). The ‘vorticity source’ of Lighthill (1963) and Morton (1984) is
defined at the wall by the vector σi = �ijn̂j, summed over repeated index j, where n̂ is the
outward-pointing unit normal vector on the boundary (Lyman 1990; Eyink 2008).

The main result that we exploit in the present work is the relation (Part 1, (2.51))

ω(x, t) = E [ω̃s(x, t)] , s < t, (1.1)

which expresses the vorticity vector at space–time point (x, t) as an expectation E of the
stochastic Cauchy invariant ω̃s(x, t) (Part 1, (2.55)). This is a random vector that can be
evaluated along stochastic Lagrangian particle trajectories satisfying

d̂Ã
s
t (x) = u(Ã

s
t (x), s) ds +

√
2ν d̂W̃(s), s < t; Ã

t
t(x) = x, (1.2)

which are released at (x, t) and move backward in time s. Here W̃(s) is a random Wiener
process that represents diffusion by molecular viscosity. For every realization of the
process, there is a largest time s = σ̃t(x) at which the stochastic particle first hits the
wall, backward in time. Each particle is stopped at the wall where it first hits and in
that particular realization ω̃s(x, t) = ω̃σ̃t(x)(x, t) for s < σ̃t(x), thus remaining fixed at
earlier times. If one considers s � t then the inequality s < σ̃t(x) will hold with near
certainty and, in that case, (1.1) represents the interior vorticity in terms of wall vorticity
which is transported to (x, t) by advection, diffusion and stretching. A numerical Monte
Carlo Lagrangian algorithm was also developed in Part 1 to calculate realizations of the
stochastic Cauchy invariants and their statistics, given a Eulerian space–time solution of
the incompressible Navier–Stokes equation.
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Stochastic Lagrangian dynamics of vorticity. Part 2 901 A3-3

Here we shall exploit that approach to make a first-of-its-kind numerical study of
stochastic Lagrangian dynamics of vorticity in a turbulent channel flow at high Reynolds
number. If we denote Cartesian coordinate directions as streamwise x, wall normal y and
spanwise z, then statistical homogeneity in x and z and reflection symmetry in y provide
simplifications in long-time averages. In particular, the mean flux of spanwise vorticity
vertically from the wall becomes independent of wall-normal location as a consequence
of conservation, ∂y� yz = 0, and is given by

� yz = v′ω′
z − w′ω′

y − ν
∂ωz

∂y
= ∂p

∂x
= −u2

∗
h

< 0, (1.3)

where f ′ := f − f defines fluctuation away from the long-time mean value and the velocity
vector u = (u, v, w), where u∗ is the friction velocity and h is the channel half-height
(Huggins 1994; Eyink 2008). According to (1.3) the constant flux of spanwise vorticity
away from the wall is numerically equal to the rate of mean downstream pressure drop,
which characterizes turbulent drag and dissipation. In this paper we shall study the
Lagrangian dynamics of vorticity in the buffer layer of a turbulent channel flow, which
is conventionally taken to be the layer of fluid at heights y+ over the range 5 < y+ < 30
(Tennekes & Lumley 1972), with y+ in dimensionless wall units (see § 2). We have both
pragmatic and fundamental reasons to focus on the buffer layer. Since all interior flow
vorticity traces its origin back to a solid wall, the ‘youngest’ vorticity must lie closest to
the wall. This makes the near-wall region numerically easiest to study by our approach.
There is also motivation to understand the turbulent physics close to the wall, since one
can expect that control of vorticity creation and transport at the earliest stage will be most
efficient in reducing drag (Koumoutsakos 1999; Zhao, Wu & Luo 2004). On the other
hand, nonlinear contributions to the dynamics are subleading (on average) in the viscous
sublayer y+ < 5, and nonlinear contributions to mean vorticity transport first become
substantial in the buffer layer.

Our study is directly motivated by laboratory experiments of Sheng, Malkiel & Katz
(2009), who investigated buffer-layer structures in a turbulent square-duct channel flow at
Reτ = 1470 using a technique of digital holographic microscopy that yields well-resolved
measurements of three-dimensional velocity and velocity gradient fields. Conditional
sampling based on local wall shear-stress maxima and minima revealed two types of
structures that generate such extreme stress events; in accord with common terminology,
these may be called ‘sweeps’ and ‘ejections’, respectively. The latter type of flow event
generates arrays of vortex lines with a simple ‘hairpin’ structure that rise in an arch
above the location of the wall stress minimum; see figure 1, which represents well the
typical geometry of vortex lines observed by Sheng et al. (2009) during an ‘ejection’.
These raised vortex lines with a non-vanishing vertical component of vorticity are the
signature closest to the wall of a contribution by nonlinear stretching and rotation to
transport of spanwise vorticity upward from the wall. Such an orderly spatial array of
lines as illustrated in figure 1 invites interpretation in terms of a similarly simple temporal
progression, with each line apparently ‘moving’ forward and evolving into its downstream
neighbour. Indeed, Sheng et al. (2009) on the basis of such spatial arrays of lines (see their
figures 7 and 21) have proposed an ‘abrupt lifting’ of vorticity in just one viscous time or,
spatially, in a short distance of 10 wall units, above the location of a local stress minimum.

As we shall show by detailed Lagrangian analysis exploiting the stochastic Cauchy
invariants, the deceptively simple Eulerian picture of vortex lines in figure 1 is in fact
the outcome of a hidden, violent conflict between intense nonlinear stretching and rotation
of vorticity vector elements on the one hand, and vigorous destruction of vorticity by
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901 A3-4 G. L. Eyink, A. Gupta and T. A. Zaki

FIGURE 1. A typical array of vortex lines pointing spanwise and lifting in an arch over a
low-speed streak at a wall stress minimum during an ‘ejection’ event in the buffer layer of a
turbulent boundary layer. The wide arrow indicates the direction of the mean flow.

viscosity on the other. Previous work by Johnson et al. (2017) has demonstrated existence
of Lagrangian chaos in channel-flow turbulence, which leads to rapid exponential
stretching of material line elements. This poses a theoretical puzzle, however, because such
stretching should lead to unbounded growth of vorticity, but the channel flow nevertheless
attains a statistical steady state with a saturated magnitude of vorticity. The obvious
mechanism that limits vortex stretching is viscous destruction (Taylor 1938), but advection
and diffusion of same-sign vorticity cannot quench the growth due to stretching. We find
that vorticity vector elements in the buffer layer are not only exponentially magnified, but
also strongly rotated, so that they often point opposite to the negative spanwise direction
pictured in figure 1. Cancellation of this oppositely directed vorticity by viscous diffusion
leads to the regular geometry in figure 1. Furthermore, we find that the vortex lifting is
not an ‘abrupt’ discrete event, but is instead a highly distributed process spread over more
than 100 viscous times and 1000 wall units.

These results are obtained by a numerical study using an online computational dataset of
channel-flow turbulence at Reτ = 1000 (Graham et al. 2016). The accuracy of this database
to study buffer-layer physics has been carefully evaluated and documented in Part 1, as
briefly summarized in § 2. Our study not only yields new insights into Lagrangian vorticity
dynamics of pressure-driven wall-bounded flows, but also reveals many common features
of classical fluids and quantum superfluids, especially for wall-bounded turbulent flows
through pipes and channels. To mention here just a few of these similarities, the Kuz’min
(1983)–Oseledets (1989) representation of the classical fluid by the vortex-momentum
density is closely related to intuitive pictures of ‘vortex tangles’ in superfluids as
superpositions of small vortex rings (Campbell 1972; Schwarz 1982; Kuz’min 1999).
Perhaps most importantly, Huggins (1994) has emphasized that (1.3) is the exact analogue
of the ‘Josephson–Anderson relation’ in quantum fluids; see Josephson (1962), Anderson
(1966), Packard (1998) and Varoquaux (2015) for reviews. This relation provides the
accepted explanation for effective drag in an otherwise non-dissipative superfluid by
cross-stream motion of quantized vortex lines. For further discussions of this analogy,
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Stochastic Lagrangian dynamics of vorticity. Part 2 901 A3-5

see also Huggins (1970) and Eyink (2008). We argue briefly in the conclusion of the
present paper that such similarity should extend to Lagrangian dynamics of vorticity and
that the motion of ‘bundles’ of quantized vortex lines in turbulent superfluids should be
also intrinsically stochastic.

The contents of this paper are outlined as follows. Section 2 summarizes the essentials of
our numerical methods, which are described more completely in Part 1. Section 3 explains
how the two specific flow events were selected for examination (3.1) and then describes
both the ejection (3.2) and sweep (3.3) events in detail in conventional Eulerian terms.
Our novel Lagrangian analysis is presented in § 4, where we first choose specific vorticity
vectors for quantitative study (4.1) and then determine their dynamical origin at the wall
for both the ejection (4.2) and the sweep (4.3). Finally, § 5 summarizes our results and
conclusions, especially on common features of wall-bounded turbulence in classical fluids
and quantum superfluids. Additional material that complements the discussion in the main
text is provided as supplemental materials available at https://doi.org/10.1017/jfm.2020.
492.

2. Numerical methods

We review here for completeness some necessary information about our computational
approach from Part 1, which should be consulted for full details. The Johns Hopkins
turbulence databases (JHTDB) channel-flow dataset (Graham et al. 2016) is exploited
for the empirical study in this paper. This data was generated from a Navier–Stokes
simulation in a channel using a pseudospectral method in the plane parallel to the walls and
a seventh-order B-splines collocation method in the wall-normal direction (Lee, Malaya
& Moser 2013). For a numerical solution, the Navier–Stokes equations were formulated in
wall-normal velocity–vorticity form (Kim, Moin & Moser 1987). Pressure was computed
by solving the pressure Poisson equation only when writing to disk, which was every
five time steps for 4000 snapshots, enough for about one domain flow-through time.
The simulation domain [0, 8πh] × [−h, h] × [0, 3πh], h = 1, was discretized using a
spatial grid of 2048 × 512 × 1536 points. Time advancement was made with a third-order
low-storage Runge–Kutta method and dealiasing was performed with 2/3 truncation
(Orszag 1971). A constant pressure head was applied to drive the flow at Reτ = 1000
(Rebulk = 2hUbulk/ν = 40 000) with bulk velocity near unity. As is common, we shall
indicate with a superscript ‘+’ non-dimensionalized quantities in viscous wall units, with
velocities scaled by friction velocity u∗ and lengths by viscous length δν = ν/u∗ = 10−3.

Also as usual, we define y+ = (h ∓ y)/δν near y = ±h. In these units, the first y-grid point
in the simulation is located at a distance Δy+

1 = 1.65199 × 10−2 from the wall, while in
the centre of the channel Δy+

c = 6.15507. Other numerical parameters are summarized in
table 1.

In Part 1 we developed and tested a numerical Monte Carlo Lagrangian algorithm
to calculate the stochastic Cauchy invariants and their statistics, by discretizing the
stochastic ordinary differential equation (1.2) with a step size Δs and by averaging over
N independent realizations W̃(n)(s), n = 1, . . . , N of the Wiener process. We showed in
that work for the two specific cases from the JHTDB channel-flow dataset studied in the
present paper that Δs = 10−3 and N = 107 sufficed to give converged results for the mean
and variance of the stochastic Cauchy invariant over a time interval −100 < δs+ < 0 with
δs := s − t. In particular, it was shown that the mean conservation law (1.1) holds for
those two cases to within a few per cent over that time interval, which is a quite stringent
test of validity of our numerics. The residual errors in the mean conservation can be
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Nx Ny Nz Reτ dp/dx ν u∗ Ubulk Δx+ Δz+ Δt

2048 512 1536 1000 −2.5 × 10−3 5 × 10−5 5 × 10−2 1.00 12.3 6.1 1.3 × 10−3

TABLE 1. Simulation parameters for a turbulent channel-flow dataset.

explained by some near wall under resolution of the numerical JHTDB data, indicated
by the sizable Δx+ and Δz+ values in table 1, and by errors in the finite-difference
approximation of velocity gradients within the database. To test that hypothesis, we also
spatially coarse grained the relation (1.1) over ni grid spacings in each of the coordinate
directions i = x, y, z, since such coarse-grained fields from the JHTDB dataset should
represent better a coarse-grained Navier–Stokes solution. We verified that such coarse
graining noticeably improves mean conservation, in particular, for (nx , ny, nz) = (4, 0, 4).

In §§ 3.1 and 4.1, below, we describe the criteria that we used to select the two test cases
for study in this work. In particular, we discuss in § 3.1 how a pair of events, an ‘ejection’
and a ‘sweep’, were identified in the Eulerian dataset, following the work of Sheng et al.
(2009). In § 4.1 we then describe how we selected a space–time point (x, t) in each event
for comparative study by stochastic Lagrangian analysis. We also show there that coarse
graining the JHTDB fields with (nx , ny, nz) = (4, 0, 4) does not change qualitatively the
Eulerian and Lagrangian picture of the two events. These results, together with those
presented in Part 1, validate both our Monte Carlo numerical method to calculate the
stochastic Cauchy invariant and also the adequacy of the JHTDB channel-flow database to
resolve the physics of the turbulent buffer layer.

3. Eulerian vorticity dynamics in the buffer layer

3.1. Identification of ejections and sweeps
Following the approach of Sheng et al. (2009), we selected events where the viscous shear
stress τxy = ν(∂u/∂y) at the wall has local minima and local maxima with magnitudes
satisfying a threshold condition. For this purpose, we downloaded the stress field at the
entire top wall of the channel-flow database at the final archived time tf = 25.9935 and
searched for local minima and maxima. Note that we used the data at the top wall because
the bottom wall data was temporarily unavailable when we began our study; in order to
present our results below we always rotate the figures 180◦ around the streamwise axis,
so that the top wall is exchanged with the bottom wall. In supplementary material we
provide a plot of the normalized stress field τ+

xy = τxy/u2
∗ over the entire channel wall and

a probability density function (PDF) of its values, which range from −2.55 to +7.54 and
have mean value unity. To find local minima and maxima, we used a fast peak finder
for two-dimensional scalar data (Natan 2013). We found that the points identified by this
code for field τxy were indeed local maxima and for −τxy were local minima, but that
weaker maxima/minima were often missed. We therefore do not regard the output of this
algorithm to be completely reliable to obtain statistics of the local extrema, but it suffices
for our purpose of identifying specific local maxima/minima. Nevertheless, we do provide
in the supplementary material for the interest of readers the obtained PDF’s of the stress
values at the positions both of the local minima and also of the local maxima. The PDF
of the local minimum stress values shows a large peak at τ+

p
.= 0.6, while the PDF of the

local maximum stress values shows a large peak at τ+
p

.= 1.8. Interestingly, the condition
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Stochastic Lagrangian dynamics of vorticity. Part 2 901 A3-7

x y z t

Local minimum 21.107576 1.000000 7.565593 25.9935
Local maximum 0.711767 1.000000 0.724039 25.9935

TABLE 2. Coordinates of local minimum and local maximum wall stress events.

that Sheng et al. (2009) applied to identify ‘extreme stress events’ was τ+
xy < 0.6 for local

minima and τ+
xy > 1.8 for local maxima, in good agreement with these peaks values. We

therefore searched for two typical events of this type, namely, for a local minimum of
stress with value τ+

xy
.= 0.6 and for a local maximum of stress with value τ+

xy
.= 1.8. We

also looked for such local extremum points which were relatively isolated from others.
After examining several candidates, we selected as representative the two local extrema
with database space–time coordinates given in table 2. The reader will note that these
coordinates correspond, as stated above, to points on the top wall of the channel. The
reader should transform results in Part 1 according to (ωx , ωy, ωz) → (ωx ,−ωy,−ωz) for
consistency with visualizations in the present paper. In particular, mean spanwise vorticity
ωz under this transformation becomes negative.

We shall refer to the local minimum stress event as an ‘ejection’ and to the
local maximum stress event as a ‘sweep.’ This terminology is in agreement with the
classification of Sheng et al. (2009) in their table 2, but it differs somewhat from the
most common characterization of such structures based on quadrant analysis in the (u′, v′)
velocity plane, with connected regions of Q2 fluctuations designated as ‘ejections’ and
regions of Q4 fluctuations as ‘sweeps’ (Jiménez 2013). As we shall see from a detailed
Eulerian description of these two selected events in the following §§ 3.2 and 3.3, our
use of the terms ‘ejection’ and ‘sweep’ is not unrelated with the traditional quadrant
analysis. We have purposely avoided using the term ‘burst’ to describe either of our two
events, although ‘ejections’ have sometimes in the past been equated with ‘bursts.’ In
more current understanding, however, buffer-layer ‘bursting’ is believed to be associated
with quasi-periodic breakdown of unstable coherent structures presumably described by
travelling wave solutions of Navier–Stokes equations (Jiménez (2013), sections IV.A–B;
Park, Shekar & Graham 2018). The quasi-period of this bursting is expected to be 
 400
viscous times tν = ν/u2

∗ with duration 
 100 viscous times, during which the travelling
structure evolves from a low wall stress to high wall stress state; see, for example, Jiménez
(2013), figure 10, or Park et al. (2018), figure 6. Therefore, ‘ejections’ and ‘sweeps’ in our
sense may both be associated with buffer-layer bursting, at different stages in the evolution
of the burst. Our interest here is mainly in analysing the Lagrangian dynamics of vorticity
within these two buffer-layer events and not in determining their relation with ‘bursting’.

In §§ 3.2 and 3.3 we first provide a detailed description of these events in Eulerian
terms. This does illuminate some connections with ‘bursting’, but our primary purpose is
to describe these two events in terms of standard Eulerian theory of vorticity generation
at walls and to compare with prior numerical and experimental results. Among these, we
wish to compare our chosen events with those selected in Sheng et al. (2009) by identical
criteria and to verify that our events have the same characteristic features. In particular, we
shall show that our ‘ejection’ event is quite typical of those studied by Sheng et al. (2009)
and used by them to postulate the ‘abrupt lifting’ of vortex lines. Here it is appropriate to
make a remark on the relative importance of nonlinear dynamics and viscous diffusion for
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vorticity transport in the buffer layer. As stressed in the introduction, an ‘abrupt lifting’
event requires nonlinear stretching and rotation of spanwise vorticity in order to create
a vertical arch. However, linear viscous diffusion dominates the mean vertical flux of
spanwise vorticity not only in the viscous sublayer and buffer layer but even into the log
layer! In fact, the simple relation

v′ω′
z − w′ω′

y = ∂

∂y

(−u′v′) (3.1)

implies that the nonlinear contribution to spanwise vorticity flux is positive for y+ < y+
p ,

the location of the peak Reynolds shear stress −u′v′ (Klewicki et al. 2007; Eyink 2008).
In the JHTDB channel-flow dataset at Reτ = 1000 this peak occurs at about y+

p
.= 50

(Graham et al. 2016). The net effect of the nonlinear terms for y+ < y+
p is thus to transport

spanwise vorticity opposite to the conserved total flux � yz in (1.3), and viscous transport
must be even more negative to compensate. We shall see also in the Lagrangian description
that viscous diffusion plays an essential role in buffer-layer vorticity transport, even for
extreme stress events where nonlinear terms are enhanced.

3.2. Eulerian description of ejection event
The stress local minimum that we selected for study is located within a long low-speed
streak of the type commonly observed in near-wall turbulence, with typical spanwise
separations δz+ 
 100 between streaks (Jiménez 2013). This environment is illustrated in
figure 2, which plots the viscous shear stress τxy = ν(∂u/∂y) at the wall, with magnitudes
represented by the colour (or shade, in greyscale), together with the location of the stress
local minimum as an asterisk ‘∗’. This figure also plots the two-dimensional wall stress
field τW = ν(∂u/∂y, ∂w/∂y) with black arrows. The arrows indicate a near-wall, in-plane
flow which is converging toward the streak. This convergence is consistent with a vertical
flow that is upward, away from the wall, at the streak and it agrees with results of Sheng
et al. (2009) for the conditional average stress field in the vicinity of such local minima
(see their figure 6f ). More insight into the local flow conditions is provided by figure 3,
which in panel (a) visualizes the coherent vortices in the vicinity of the local minimum
using isosurfaces of λ2, or the second eigenvalue of the (∇x u)2 matrix (Jeong & Hussain
1995). Somewhat different choices of λ2-levels and different vortex visualization criteria
yield similar results. Clearly observed are two long, equal strength, streamwise vortices
located on each side of the low-speed streak and inclined away from the wall. Measurement
of ωx reveals that these vortices are counter-rotating, generating a lifting flow above the
low-speed streak. This is illustrated in figure 3(b), which provides a colour plot of ωx in
the transverse y-z-plane through the middle of the visualized box and which also plots as
arrows the two-dimensional cross-stream flow vectors (w, v) within that plane. This type
of counter-rotating vortex pair generating a lifting flow between them is a quite common
buffer-layer configuration, encountered in about 16 % of all samples in the study of Sheng
et al. (2009) and in 98 % of their realizations satisfying the condition τ+

xy < 0.6. Our
selected event thus appears to be quite typical of such stress minima and similar features
were observed in many other local minima stress events that we identified in the JHTDB
channel-flow dataset satisfying the criteria τ+

xy 
 0.6.

This typicality is confirmed by figure 4 which plots vortex lines crossing the visualized
domain in the spanwise direction, initialized at evenly spaced streamwise locations and
at initial elevations y+ = 2, 4, 6, 8. These vortex lines are lifted in arches above the
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FIGURE 2. Field of viscous shear stress τ+
xy = (∂u+/∂y+) at the wall y+ = 0 in wall units so

that the average is unity. The black arrows represent the two-dimensional in-wall stress vector
τW . The asterisk ‘∗’ marks the location of the selected stress local minimum.
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value 〈|λ+2 |〉 = 4.09 × 10−3. The shear-stress field from figure 2 is replotted in the bottom
x-z-plane for reference. (b) Field of streamwise vorticity ω+

x in plane x+ = 85.9 (transparent
in panel (a)). The black arrows represent cross-stream velocity vectors (w, v).

low-speed streak, with a typical ‘hairpin’ geometry. The arches are nearly vertical for
lines initiated at y+ = 2, 4 and also for y+ = 6, 8 at points well upstream of the stress
minimum. For lines initiated at y+ = 6, the arches rise and bend downstream approaching
the stress minimum, while the lines initiated at y+ = 8 near the stress minimum have
instead an ‘	-vortex’ geometry and the uppermost tips are bent back slightly upstream.
These arrays of vortex lines are typical of those observed in the vicinity of stress local
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FIGURE 4. Vortex lines initiated at points with streamwise separations Δx+ = 12.3, with z+ =
128.8 and (a) y+ = 2, (b) y+ = 4, (c) y+ = 6, (d) y+ = 8. The shear-stress field from figure 2
is replotted in the bottom x-z-planes for reference.

minima in the study of Sheng et al. (2009), as illustrated in their figures 4(a), 8(a) for
individual realizations and in their figure 7 for lines of the conditionally averaged vorticity
field given τ+

xy < 0.6. Note that figure 4(c) plots the same vortex lines shown in figure 1
in the introduction. One of the primary goals of this work is to elucidate the surprisingly
complex and violent Lagrangian dynamics underlying this simple vortex-line structure.

Further insight into the local vorticity dynamics from the Eulerian perspective is
provided by results on the in-wall pressure distribution p(x, z), spanwise vorticity source
σz(x, z) and selected in-wall vortex lines, as plotted in figure 5 for the vicinity of our stress
local minimum. Panel (a) of that figure reveals that our selected stress minimum is very
close to a local pressure minimum, which in turn is flanked upstream and downstream
at distances δx+ 
 ±60 by a pair of local pressure maxima. The pressure isolines or
isobars in this plot are the lines of instantaneous generation of tangential vorticity in
the Lighthill–Morton theory, with positive (counterclockwise) sense of rotation around
pressure maxima and negative (clockwise) rotation around pressure minima. Of course,
these isobars align only with the direction of generation of vorticity and the instantaneous
vortex lines within the wall are instead pointed mainly in the spanwise direction with
small streamwise deviations, as shown in figure 5(b). The bending of these lines is
explained in detail by the relation τW = νn̂×ωW between the in-wall stress and vorticity
fields (Lighthill 1963; Morton 1984). As a consequence, the stress vectors τW plotted
in figure 2 are locally perpendicular to the in-wall vortex lines in figure 5(b) and the
concavity of the lines is exactly that required to produce a converging flow at the
low-speed streak. We plot in figure 5(b) as well the negative spanwise vorticity source
−σ+

z = −∂p+/∂x+ = ∂ω+
z /∂y+ in wall units. We included the minus sign since drag
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FIGURE 5. (a) Pressure field p+ at the wall, with selected isolines in black. (b) The source field
−σ+

z of the negative spanwise vorticity and selected in-wall vortex lines. The asterisk ‘∗’ in both
panels marks the location of the selected stress local minimum.

evidenced by a streamwise drop in pressure is associated to flux of negative spanwise
vorticity away from the wall. Thus, the colour/shading schemes in figures 2 and
5(b) are consistent, with yellow/light corresponding to increased drag (high stress,
pressure drop) and blue/dark corresponding to reduced drag (low stress, pressure rise).
Note, however, that the mean pressure drop associated to dissipative turbulent drag is
−∂p+/∂x+ = 1/Reτ = 10−3, whereas the instantaneous streamwise pressure gradients
plotted in figure 5(b) are 100 times larger in magnitude, spanning a range from −0.15 to
+0.15. It is consistent with the results in figure 5(b) that instantaneous pressure gradients
at the wall scale as u2

∗/δν and, thus, remain O(1) in wall units. The average streamwise
pressure drop is thus the result of near cancellation between large instantaneous gradients
of both signs.

It is interesting to observe in figure 5(b) that a region of negative streamwise pressure
gradient occurs just upstream of the stress local minimum and a corresponding region
of positive gradient occurs just downstream. This seems to agree with experimental
observations of ‘bipolar’ spanwise vorticity generation by Andreopoulos & Agui (1996)
and Klewicki, Priyadarshana & Metzger (2008), based on conditionally averaged time
series of pressure and vorticity flux, and on time-correlation functions of pressure and
pressure gradients. Andreopoulos & Agui (1996) proposed a conceptual model of ejections
as rising ‘mushroom vortices’ that would produce exactly such a bipolar pattern of
spanwise vorticity source at the wall; see Andreopoulos & Agui (1996), figure 28(b).
However, a plot in figure 6 of the spanwise vorticity fluctuation ω′

z and velocity vector
fluctuation (u′, v′) in the plane z+ = 85.9 for our event is not consistent with such a picture.
Panel (a) of that figure shows the entire y+-range, for context, and panel (b) zooms into
the near-wall region y+ < 10. To make the flow pattern more clear in figure 6(b), we have
calculated fluctuations with respect to local planar averages at fixed distances y+ from
the wall (see supplementary material for details). We observe that the ‘bipolar’ source is
produced by a fluid layer with ω′

z < 0 being lifted up and to the right from the bottom wall,
while replacement fluid with ω′

z > 0 is advected in from the right and downward toward
the wall. This dynamics is very similar to that postulated by Jimenez et al. (1988, figure
6) as a mechanism of sublayer ejections. Those authors also observed thin, low-inclined
layers of ω′

z like those in our figure 6(a) and interpreted them as Tollmien–Schlichting
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FIGURE 6. (a) Field of spanwise vorticity fluctuation ω+′
z in the x-y-plane at z+ = 85.9. The

black arrows represent the vectors (u′, v′) of the cross-section velocity fluctuation. (b) Same as
(a) but with fluctuations calculated relative to local planar averages at constant y+ and plotted in
the near-wall region y+ < 10.

waves. Such shear layers are also inferred for coherent, nonlinear travelling waves (Waleffe
1998, figure 1). Finally, Andreopoulos & Agui (1996) argued that ‘ejections which carry
fluid of negative ωz away from the wall. . .are expected to be characterized by positive
∂ωz/∂y. Negative ∂ωz/∂y is expected to be the distinguishing feature of sweeps. . .’. The
ejection event that we consider has near y+ 
 5–10 an upward flux of negative spanwise
vorticity associated with v′ω′

z < 0. However, there is no instantaneous balance between
this advective flux and the viscous flux σz = −ν(∂ωz/∂y) at the wall. Thus, it is not clear
that the region with ∂ωz/∂y > 0 upstream of the stress local minimum should be regarded
as the ‘source’ of the advective spanwise vorticity flux at y+ 
 5–10. Our Lagrangian
analysis in § 4 shall show indeed that there is no causal connection.

3.3. Eulerian description of sweep event
The stress local maximum that we selected for study is likewise located within a
high-speed streak of a type also commonly observed in near-wall turbulence, generally
shorter than the low-speed streaks in streamwise extent and flanking them (Jiménez
2013). This neighbourhood is illustrated in figure 7, which plots the viscous shear stress
τxy = ν(∂u/∂y) at the wall and the location of the stress local maximum as an asterisk
‘∗’. The arrows representing the two-dimensional wall stress field τW indicate a near-wall,
in-plane flow which is diverging from the streak. This divergence is consistent with a
vertical flow that is downward toward the wall at the streak and it agrees with results of
Sheng et al. (2009) for the conditional average stress field in the vicinity of such local
maxima (see their figure 6e). Vortex visualization in figure 8(a) via λ2-isosurfaces shows
a more complex environment than for the preceding local minimum event. There are two
or three large quasi-streamwise vortices at heights y+ > 20, but these do not seem to
influence strongly the near-wall physics. Instead at elevations y+ < 20 there is a pair of
counter-rotating almost streamwise vortices, one on each side of the observed high-speed
streak. The plot in figure 8(b) of streamwise vorticity ωx and cross-stream velocity vectors
(w, v) in the transverse y-z-plane cutting through the middle of the visualized box shows
clearly that this low-lying pair generate a downward, splatting flow between them. Unlike
the pair observed near the stress minimum, however, this pair is asymmetrical in strength,
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FIGURE 7. Field of viscous shear stress τ+
xy = (∂u+/∂y+) at the wall y+ = 0 in wall units so

that the average is unity. The black arrows represent the two-dimensional in-wall stress vector
τW . The asterisk ‘∗’ marks the location of the selected stress local maximum.
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FIGURE 8. (a) Isosurface λ+2 = −0.0107, with a magnitude three times the local box-average
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x-z-plane for reference. (b) Field of streamwise vorticity ω+

x in plane x+ = 85.9 (transparent
in panel (a)). The black arrows represent cross-stream velocity vectors (w, v).

with the rightmost member of the pair distinctly weaker. If we increase the magnitude
of the threshold value of λ2 by even 33 % to λ+

2 = −0.0143 then no isosurface appears
for this weaker vortex and only the single stronger vortex is observed at y+ < 20. This
is consistent with the findings of Sheng et al. (2009), who did encounter counter-rotating
vortex pairs generating a splatting flow between them in 11 % of all of the samples in their
study. However, under the condition τ+

xy > 1.8, only about 8 % of the realizations were of
this type and all of these vortex pairs were quite asymmetrical in strength. Instead, 55 %
of the realizations in the study of Sheng et al. (2009) that satisfied the condition τ+

xy > 1.8
had the stress maximum generated by a single low-lying vortex. Our selected event thus
exhibits typical features for such stress maxima. Similar features were observed also in
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FIGURE 9. Vortex lines initiated at points with streamwise separations Δx+ = 12.3, with z+ =
128.8 and (a) y+ = 4, (b) y+ = 8, (c) y+ = 12, (d) y+ = 16. The shear-stress field from figure 7
is replotted in the bottom x-z-planes for reference.

other local maxima stress events that we identified in the JHTDB channel-flow dataset
satisfying the criteria τ+

xy 
 1.8.

The vortex lines that we observe near this stress local maximum likewise show
expected features. See figure 9, which plots vortex lines crossing the visualized domain
in the spanwise direction, initialized at evenly spaced streamwise locations and at initial
elevations y+ = 4, 8, 12, 16. These lines are clearly squashed or depressed toward the wall
by the downward splatting flow at the high-speed streak. Such arrays of vortex lines are
typical of those observed in the vicinity of stress local maxima in the study of Sheng et
al. (2009), as illustrated in their figure 16 for individual realizations and in their figure
17 for lines of the conditionally averaged vorticity field given τ+

xy > 1.8. As they also
observed, the ‘troughs’ of depressed lines are wider than the corresponding ‘hairpins’
above low-speed streaks. Also, the asymmetry in strength of the streamwise vortices is
clearly visible, with the ridge of lines located at the strong vortex obviously twisted higher
than those at the weak vortex. In § 4 we shall study in depth the Lagrangian dynamics of
the illustrated squashed lines at the local maximum of stress.

First, however, we consider the vorticity dynamics for this event in more detail from the
Eulerian perspective. The plot in figure 10(a) of the pressure field and its isolines at the
wall shows that the stress maximum is close to a local pressure maximum, with a pair of
local pressure minima upstream and downstream at distances δx+ 
 ±80. In contrast to
the instantaneous generation of vorticity along the isobars, the actual vortex lines at the
wall plotted in figure 10(b) are aligned mainly in the spanwise direction. The lines bend
in the streamwise direction so that the locally perpendicular stress vectors τW, as plotted
in figure 7, correspond to a near-wall flow diverging away from the high-speed streak.
The negative spanwise vorticity source −σz also plotted in figure 10(b) again shows a
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FIGURE 10. (a) Pressure field p+ at the wall, with selected isolines in black. (b) The source
field −σ+

z of the negative spanwise vorticity and selected in-wall vortex lines. The asterisk ‘∗’
in both panels marks the location of the selected stress local maximum.
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FIGURE 11. Field of spanwise vorticity fluctuation ω+′
z in the x-y-plane at z+ = 79.7. The black

arrows represent the vectors (u′, v′) of the cross-section velocity fluctuation. (b) Same as (a) but
with fluctuations calculated relative to local planar averages at constant y+ and plotted in the
near-wall region y+ < 10.

bipolar pattern of the type inferred by Andreopoulos & Agui (1996) and Klewicki et al.
(2008) from experimental data, with a region of positive streamwise pressure gradient
occurring just upstream of the stress local maximum and a region of negative gradient
just downstream. In the conceptual model of Andreopoulos & Agui (1996), figure 28(a),
sweeps correspond to inverted ‘mushroom vortices’ moving toward the wall, producing
just such a pattern of positive spanwise vorticity source upstream and negative spanwise
source downstream. However, we do not observe such a mushroom vortex here. The plot
in figure 11(a) of the spanwise vorticity fluctuation ω′

z and velocity vector fluctuation
(u′, v′) in the plane z+ = 79.7 does exhibit a fluid layer near y+ 
 10 with ω′

z > 0 and
v′ < 0, associated with a spanwise vorticity flux v′ω′

z < 0. However, this occurs mainly
upstream from the stress local maximum, which is exactly opposite to what is proposed
in the mushroom-vortex model. Figure 11(b) shows instead underneath the primary vortex
with ω′

z > 0 a layer of strong secondary vorticity with ω′
z < 0 just above the wall. (Unlike

for the ejection case earlier, the local plane average of streamwise velocity u, used to
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define the fluctuation u′ in figure 11(b), is noticeably larger than the global average. See
figure 11(a) and the supplementary material.) This secondary layer is apparently produced
by a strong interaction of the primary vortex with the wall, as illustrated in figure 26 of
Andreopoulos & Agui (1996), but the primary and secondary layers are not rolled up to
form the head of a mushroom vortex. It is the presence of the secondary layer with ω′

z < 0
just above the wall that makes ∂ωz/∂y < 0 upstream of the stress local maximum, while
the absence of such a secondary layer makes ∂ωz/∂y > 0 downstream. The thin, inclined
layers of ω′

z observed in figure 11(a), although now for a sweep rather than an ejection, are
again quite similar to those reported by Jimenez et al. (1988), who also emphasized the
important role of opposite-sign vorticity induced at the wall in producing such structures.
These observations suggest some possible common features in viscous sublayer dynamics
of ejections and sweeps. In the following § 4 we shall attempt to further explicate the
physics of both types of events by stochastic Lagrangian analysis.

4. Stochastic Lagrangian dynamics of vorticity in the buffer layer

4.1. Selection of vorticity vectors
We now select for analysis specific vortex lines and specific vorticity vectors lying upon
them. In this initial study we will compare the Lagrangian dynamics of two vorticity
vectors both pointing approximately in the negative spanwise direction and located at
points at a similar distance from the wall, y+ 
 5, at the bottom of the buffer layer. For the
ejection event in particular, we want to investigate the initial nonlinear transfer of spanwise
vorticity from the wall, which was described by Sheng et al. (2009) as the process where
‘spanwise vorticity lifts abruptly from the wall, creating initially a vertical arch’. We have
therefore considered for Lagrangian analysis in the ejection event the lowest-lying vortex
lines in figure 4(a), which are replotted in figure 12(a). These lines all start on the right at
height y+ = 2 and then pass left in the negative spanwise direction, rising up in a nearly
vertical arch over the low-speed streak. We chose the middle of these lines, coloured solid
black, and, in particular, the vorticity vector at the top of the arch on that line at height
y+ = 5.35, indicated by the arrow. For comparison, we considered in the sweep event
the vortex lines which are squashed down to a comparable height above the wall by the
splatting flow. This is the set of lines in figure 4(c), replotted in figure 12(b), which all
start at y+ = 12 and as they pass leftward are depressed in a trough above the high-speed
streak. We chose the middle of these lines, coloured solid black, and, in particular, the
vorticity vector at the bottom of the trough on that line at height y+ = 4.90, indicated by
the arrow. The components of the two vorticity vectors and their position coordinates in the
channel-flow database are recorded in table 3. Note that the vorticity vector for the sweep
has a magnitude around twice that for the ejection. This is consistent with the argument
of Lighthill (1963) that sweeps to the wall should stretch and magnify spanwise vorticity,
while ejections should attenuate it (see his figure II.22).

Although the two vectors have different magnitudes, they are otherwise similar in
orientation and in distance from the wall. This pair of vectors is thus well suited to
illuminate differences in Lagrangian dynamics that arise solely from the different flow
conditions that exist in the two events. In particular, our expectation is that the vorticity
in the ejection event should have arisen recently from the wall and should be ‘younger’,
while the vorticity at the same distance from the wall in the sweep event should be ‘older’
vorticity that entered from the wall at an earlier time, was processed by the flow, and
was then returned by the splatting motion toward the wall. We shall see whether these
expectations are borne out by our stochastic Lagrangian analysis.
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FIGURE 12. The selected vortex lines, solid black, and the two selected vorticity vectors
represented as arrows for (a) the ejection event and (b) the sweep event. Other vortex lines in
the two flow events are plotted as dotted lines.

x y z t ωx ωy ωz

Ejection 21.094707 0.994647 7.563944 25.9935 −2.24948978 −0.110395804 22.1811829
Sweep 0.715000 0.995100 0.725900 25.9935 0.05745593 −0.1597188 47.2303467

TABLE 3. Coordinates of analysed vorticity vectors.

We must first consider, however, the effect of filtering/coarse graining on the structure
and dynamics of the two events pictured in figure 12. As discussed in § 2, the mean
conservation law (1.1) obtained from the JHTDB simulation data would be expected to
have improved validity when spatially coarse grained over ni grid spaces in the three
coordinate directions i = x, y, z. This expectation was verified in Part 1 with a box filter;
see figure 3 there for the ejection case and figure 5 for the sweep case. However, to
justify the JHTDB channel-flow data as a Navier–Stokes solution accurate enough to
investigate buffer-layer physics, it must also be shown that the filtering does not smear
out the motions of interest. We have thus attempted to choose (nx , ny, nz) as small as
possible, sufficient to verify that mean conservation is improved but not so large that
the coarse graining obscures the essential physics. We have found that coarse graining
in the y-direction does not help to improve mean conservation, presumably since the
numerical resolution in the channel-flow simulation was sufficient in that direction, so
that we take ny = 0. By trial, we have found that a good choice of filtering lengths in the
wall-parallel directions are nx = nz = 4, although somewhat smaller or larger values give
similar results. Figure 13 verifies that the coarse-grained fields for (nx , ny, nz) = (4, 0, 4)
in the ejection event preserve the basic flow features. Plotted in figure 13(a) is the field
line of the coarse-grained vorticity field which passes through the same space point as
the field line of the fine-grained vorticity that was plotted in figure 12(a) (see table 3
for the spatial coordinates). This line starts at the right of the figure at vertical height
y+ = 2.7039 and figure 13(a) also plots an array of lines that start at that same height and
pass in the spanwise direction. As in figure 12(a), the vortex lines rise up nearly vertically
in an arch over the low-speed streak, and the main effect of the coarse graining is that
the arch is broadened in the spanwise direction. The coarse-grained vorticity field at the
selected point is ω̂(x, t) = (−1.2871, 0.3523,−29.8522), with magnitude increased by
mixing with adjacent stronger vorticity. Figure 13(b) plots isosurfaces of the λ2-invariant
for the coarse-grained field, which reveals a pair of quasi-streamwise, counter-rotating
vortices flanking the low-speed streak. Compared with figure 3(a) for the fine-grained
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FIGURE 13. (a) Vortex line (solid black line) and vorticity vector (arrow) for the coarse-grained
vorticity field at the selected point in the ejection event. Other vortex lines are plotted as dotted
lines. (b) Isosurface λ+2 = −0.00815 of the coarse-grained field, with a magnitude four times the
local box-average value 〈|λ+2 |〉 = 2.038 × 10−3.
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FIGURE 14. (a) Vortex line (solid black line) and vorticity vector (arrow) for the coarse-grained
vorticity field at the selected point in the sweep event. Other vortex lines are plotted as dotted
lines. (b) Isosurface λ+2 = −0.005338 of the coarse-grained field, with a magnitude three times
the local box-average value 〈|λ+2 |〉 = 1.780 × 10−3.

field, the vortices are somewhat smoother and weaker, but otherwise are quite similar. The
relatively mild effects of the coarse graining are explainable by the well-known long-range
coherence in the streamwise direction of buffer layer, slow-speed streaks, which extend
with some meander for 103–104 wall units (Jiménez 2013).

Similar observations are presented in figure 14 for the sweep event, considering also
fields coarse grained over a box with sides of (nx , ny, nz) = (4, 0, 4) grid lengths. At
the same space point as shown in figure 12(b), the coarse-grained vorticity vector is
ω̂(x, t) = (0.099327,−1.5828, 49.04330), which is not much changed from the value
of the fine-grained vorticity reported in table 3. We have plotted through this point the
integral line of the coarse-grained vorticity, which starts at the right of the figure at a height
y+ = 10.5622. This is just a bit lower than the height y+ = 12 of the corresponding line for
the fine-grained field. An evenly spaced array of lines of coarse-grained vorticity that start
also at height y+ = 10.5622 is shown in figure 12(b). These are depressed into a trough
over the high-speed streak, which is shallower but just slightly wider than for the similar
trough of lines in figure 12(b) for the fine-grained vorticity. Figure 14(b) plots isosurfaces
of the λ2-invariant for the coarse-grained field, which have a somewhat simpler structure
but are qualitatively very similar to the isosurfaces in figure 8(a) for the fine-grained
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vorticity. The effects of coarse graining are even less pronounced here than for the ejection
event, presumably because the sweep is a bit broader in the spanwise direction.

We believe that these results provide sufficient a priori justification for our use of
the JHTDB dataset to study buffer-layer vortex dynamics. We shall present below the
results of our stochastic Lagrangian analysis of the raw/unfiltered vorticity, where mean
conservation of the stochastic Cauchy invariant already holds to within a few per cent.
In the supplementary material we present the corresponding Lagrangian analysis for the
coarse-grained stochastic Cauchy invariant, with (nx , ny, nz) = (4, 0, 4), demonstrating
improved conservation. All results are slightly changed quantitatively, but not qualitatively,
by the filtering.

4.2. Lagrangian description of ejection event

4.2.1. Origin of vorticity at the wall
We now turn to the central question of the paper, the origin at the wall of the buffer-layer

vorticity. A regular spatial array of vortex lines such as plotted in figure 12(a) might
suggest a simple dynamical process of ‘abrupt lifting’ of the vorticity away from the wall
within a few viscous times. There are, however, a priori theoretical reasons to expect that
the process is much slower and more complex. We have already discussed in Part 1 the
strong Lagrangian chaos in the buffer layer (Johnson et al. 2017), which argues against
a simple ideal lifting motion. Furthermore, we note that stochastic Lagrangian particles,
moving backward in time, cannot ever reach the wall by fluid advection alone but only
through viscous diffusion, because the wall-normal velocity drops to zero rapidly with
decreasing distance to the wall. Diffusion is an intrinsically slow process. If wall-normal
velocity were exactly zero then a Brownian particle with diffusivity ν released at height y+

would reach the wall at y+ = 0 in a random time σ̃+ > 0 (in wall units) with probability
density

p(σ+) = y+
√

4πσ+3
exp

(
− y+2

4σ+

)
, σ+>0, (4.1)

which is a special case of an ‘inverse Gaussian distribution’; see Chhikara & Folks (1988),
Borodin & Salminen (2015), Part II, formula 2.02 (p.295). The mean value of the hitting
time with distribution (4.1) is infinite, which implies that it takes a very long time to reach
the wall, with a high probability. This result does not contradict the natural expectation
that vorticity created at the wall will diffuse across the viscous sublayer to y+ ∼ 5 in a
time of order tν = δ2

ν/ν, because the diffusion process is asymmetric in time. Under time
reversal, a Brownian particle that reaches the wall is described by a ‘three-dimensional
Bessel process’ forward in time (Borodin & Salminen (2015), Part I, Chapter II.5, p.35),
which is strongly repelled from the wall at y = 0, because it cannot return there again.
The stochastic trajectory released at y+ = 5 and moving backward in time will take much
longer to reach the wall, because it will cross and recross the level y+ = 5 many times
before ultimately reaching the wall located at y+ = 0.

Numerical results on stochastic Lagrangian dynamics of vorticity from our Monte Carlo
approach confirm the above theoretical expectations. The percentage of particles released
at the selected point at y+ = 5.35 which have hit the wall going backward in time is plotted
in figure 15(a) versus δs = s − t. The percentage grows faster in time for this fluid ejection
event than it does for pure diffusion, because the lifting flow advects particles toward the
wall backward in time. Nevertheless, hundreds of viscous times are required for nearly the
entire ensemble of particles to hit the wall. After an initial fairly abrupt rise to ∼ 75 % in
the interval −50 < δs+ < 0, less than 90 % of the particles have hit the wall even after
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FIGURE 15. (a) Fraction of particles at the wall, (b) partial means of the parallel component
of the stochastic Cauchy invariant, and (c) partial means of the perpendicular component of the
stochastic Cauchy invariant. All quantities in wall units plotted versus δs+.

150 viscous times. An even more salient issue is the relative contributions to the stochastic
Cauchy invariant which arise from particles that have arrived at the wall and from those
still in the flow interior. We can define such partial contributions by

EC
[
ω̃si(x, t)

]
:= E

[
1Cω̃si(x, t)

]
,

where C is a subset of stochastic trajectories satisfying conditions such as

particle at wall at time s: W = {|b̃s
t (x)| = h},

particle in interior at time s: I = {|b̃s
t (x)| < h}

and 1C is the indicator function of this subset, which is equal to 1 on the set and 0 on its
complement. The stochastic Cauchy invariants are vector quantities, and we consider here
the intrinsic parallel and perpendicular components as defined in Part 1, (3.14), or

ω̃s‖(x, t) := ω̃s(x, t) · n̂ω(x, t), ω̃s⊥(x, t) := ω̃s(x, t) − ω̃s‖(x, t)n̂ω(x, t), (4.2a,b)

where n̂ω(x, t) = ω(x, t)/|ω(x, t)|. In figure 15(b,c) we plot partial means for subsets
C = W, I and for components i = ‖, ⊥. We also plot in figure 15(b,c) the conserved
total means of the stochastic Cauchy invariants, reproducing the results for i = ‖, ⊥ in
figure 2 of Part 1. As can be observed, the conserved means are the summed results of
strongly time-dependent contributions separately from particles at the wall and in the
interior and conservation for i =⊥, in particular, involves complete vector cancellations
between the two contributions. (To make this cancellation visually obvious, we have
plotted +|EI[ω̃s⊥(x, t)]| and −|EW[ω̃s⊥(x, t)]| in figure 15(c). The complete cancellation
is more perfectly exhibited by the results on the coarse-grained Cauchy invariant presented
in the supplementary material, since the total perpendicular component remains closer to
vanishing there.) For the parallel component plotted in figure 15(b), there is a gradual
crossover from the conserved mean arising from interior particles to instead arising from
wall particles going backward in time. The contribution from the wall particles is notably
larger than the fraction of the particles located at the wall. Indeed, at δs+ 
 −100, almost
100 % of the conserved parallel component arises from the wall contribution, even though
only about 85 % of the particles have reached the wall.

Even so, however, the ∼ 100 viscous times to get the entire parallel vorticity component
originating from the wall is much longer than the few viscous times postulated by Sheng
et al. (2009). Lifting of vorticity from the wall is not an ‘abrupt’ event but is instead a very
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FIGURE 16. Fractional contribution of the parallel vorticity arising at times s < t from interior
particles, plotted versus δs+, and its discrete approximation as ‘abrupt lifting’.

prolonged process. To quantify the time required or the mean ‘age’ of the vorticity vector
ω(x, t), we can introduce an integral formation time for the parallel component

T‖(x, t) :=
∫ t

−∞
ds f‖(s; x, t), f‖(s; x, t) := EI

[
ω̃s‖(x, t)

]
|ω(x, t)| . (4.3a,b)

Here f‖(s; x, t) is the fractional contribution of the parallel vorticity arising at times s < t
from interior particles, satisfying f‖(t; x, t) = 1 and f‖(−∞; x, t) = 0. Figure 16 plots as
a function of δs the fraction f‖(s; x, t) obtained from our numerical Monte Carlo method,
together with the discrete approximation that corresponds to a Heaviside step function
with jump at δs = −T‖(x, t). Numerical quadrature gives T+

‖ (x, t) 
 20.7 in wall units.
The step function represents graphically the ‘abrupt lifting’ proposed by Sheng et al.
(2009), pictured as a discrete event. This is not an unreasonable caricature of the actual
vortex-lifting process, except that the integral time is about an order of magnitude larger
than the heuristic time estimate by Sheng et al. (2009) and the discrete picture misses
entirely the long, slowly decaying tail. As a matter of fact, the true ‘age’ of the vorticity
ω(x, t) in our selected point is even much larger than estimated by T‖(x, t) because,
as shown in figure 15(c), the interior particles contribute also a very slowly vanishing
perpendicular component to the vorticity. One could define an integral time for decay of
this perpendicular component to zero, for example, by

T⊥(x, t) :=
∫ t

−∞
dsf⊥(s; x, t), f⊥(s; x, t) := |EI [ω̃s⊥(x, t)]|

maxs |EI [ω̃s⊥(x, t)]| . (4.4a,b)

We shall not attempt a quantitative evaluation of this quantity, because our numerical
Monte Carlo scheme with N = 107 particles does not yield converged results for the
perpendicular Cauchy invariant at times δs+ < −100. However, figure 15(c) shows that
the perpendicular component at δs+ = −100 still remains about 0.1|ω|. It is thus clear
from figure 15(b,c) at least that T⊥(x, t) � T‖(x, t).
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FIGURE 17. Scatterplot of ω̃+
s‖(x, t) values for particles hitting the wall in five-unit time

intervals ending at (a) δs+ = −5, (b) δs+ = −30, (c) δs+ = −55, (d) δs+ = −80, (e) δs+ =
−105, ( f ) δs+ = −130. Mean position of all particles (∗, red) and only those particles in the
interior (∗, green). The resultant vorticity magnitude |ω+(x, t)| .= 0.45.

The broad space–time distribution and intricate Lagrangian dynamics of the vorticity
generation process is further revealed by figure 17. Plotted at the channel wall are
realizations of the parallel component of the stochastic Cauchy invariant, ω̃s‖(x, t), with
values encoded by colour/shade, at the position (ã∗(x, t), c̃∗(x, t)) where the particle
hits the wall and grouped in intervals of hitting time −5(5k + 1) < δσ̃+

t (x) < −25k for
k = 0, 1, 2, 3, 4, 5, with δσ̃t(x) := σ̃t(x) − t. This figure was created with a sub-ensemble
of 106 stochastic Lagrangian particles and each panel plots Cauchy vorticity contributions
for all of the particles in this sub-ensemble that hit the wall in the given five-viscous-time
interval. In the supplementary material we provide a video with similar plots as frames,
at a larger set of backward times δs, with greater time resolution, and employing all
107 available particles. Averaging over all of these wall contributions yields the resultant
vorticity magnitude |ω(x, t)| at the selected space–time point (x, t) in the ejection event.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.492


Stochastic Lagrangian dynamics of vorticity. Part 2 901 A3-23

For spatial reference, figure 17 also plots in each frame three points: (1) the wall-parallel
position (x, z) of the selected point, taken as the coordinate origin (0,0), plotted as a black
asterisk ‘∗’; (2) the mean position of all particles in the entire ensemble at the given time
s, plotted as a red/dark-grey asterisk ‘∗’; and (3) the mean position of all interior particles
at the given time s, plotted as a green/light-grey asterisk ‘∗’. The green point drifts quickly
upstream backward in time, since the ‘living’ particles are generally at higher elevations
where the streamwise velocity is larger. The red point also drifts upstream, but more and
more slowly as particles hit the wall and stop at their ‘birth place.’ These points provide
useful context in the figure.

The wall plots in figure 17 display clearly the space–time origin of the resultant vorticity.
The particles newly arrived to the wall in each frame land roughly between the mean
positions of all particles in the ensemble and of interior ‘living’ particles. Over the range
of times −100 < δs+ < 0 that contribute substantially to ω(x, t), the stochastic particles
hit the wall in a region extending ∼ 1000 wall units in the streamwise direction and ∼ 200
wall units in the spanwise direction. The ‘cloud’ of points instantaneously hitting the wall
in each frame also expands going backward in time, faster in the streamwise direction
than in the spanwise. The faster growth of the particle cloud in the streamwise direction
is explained by the dispersive effect of the mean shear, which produces a super-ballistic
∼ (δs)3 growth of the mean-square streamwise extent of the cloud (Corrsin 1953). Such
super-ballistic growth was previously verified for stochastic Lagrangian particles in the
buffer layer of this same channel-flow database (Drivas & Eyink 2017b) and it is also
observed here (see supplementary material). The mean-square spanwise extent of the
cloud also grows backward in time, but at a slower diffusive rate ∼ δs (see supplementary
material). We conclude that the vorticity in the vertical arch at y+ = 5.35 does not arise
from a location ∼ 10 wall units upstream, as conjectured by Sheng et al. (2009), but instead
from a region at the wall at least 1–2 orders of magnitude larger in extent.

The magnitude of the final vorticity in the arch is |ω+| .= 0.45, but the individual
contributions of the stochastic Cauchy invariant are much larger. The maximum values
observed will, of course, increase with the number of samples N employed in our
calculation. For the N = 106 ensemble used to prepare figure 17, the largest values of
ω̃+

s‖(x, t) were seen to grow with increasing |δs| at a slightly less than exponential rate
over the interval −150 < δs+ < 0, from values near ±1 at small δs+ to around ±500
at δs+ = −150. There are substantial fluctuations from smooth (sub)exponential growth,
however, and the largest values of the stochastic invariant ω̃+

s‖ encountered over the interval
−150 < δs+ < 0 with N = 106 were ±104. It should be emphasized that these large values
do not correspond to the vorticity magnitudes sampled by the particles when they hit
the wall. The wall vorticity is pointed mainly in the spanwise direction, as illustrated
in figure 5(b), and has magnitude .= 1 in wall units. The large values are instead the
consequence of exponential growth of the wall vorticity as it is transported forward in
time along the stochastic Lagrangian trajectories, consistent with the growth of variances
observed in Part 1, figure 2(b) and with the strong Lagrangian chaos reported in the buffer
layer (Johnson et al. 2017). The mean value of the realizations ω̃

+
s‖ arising from the wall

can yield the order unity value |ω+| .= 0.45 only if there is nearly complete cancellation
between contributions of an opposite sign. This is clearly exhibited in figure 17, where
yellow/light indicates large positive values and blue/dark large negative values. The
negative values arise from vorticity elements that start at the wall aligned in the negative
spanwise direction with the mean vorticity, but whose parallel component is rotated 180◦

as the vector is transported from its ‘birth place’ at the wall to the final point (x, t)
on the arch. The extensive cancellation between oppositely signed contributions is the
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representation in our stochastic Lagrangian framework of strong viscous destruction of
vorticity, which counterbalances the exponential growth of vorticity by strong Lagrangian
chaos.

The plots in figure 17 exhibit an interesting and non-trivial structure of the parallel
Cauchy invariant plotted against wall position, especially for intermediate values of δs+.

The particles that hit the wall in the earliest time interval −5 < δs+ < 0 (panel (a))
contribute only positive values of order unity. The wall vorticity in this early time is
transported essentially by pure diffusion and without stretching or rotation. However, for
more negative values of δs+, large opposite signs of ω̃

+
‖ develop at the wall, with clear

spatial organization. This order presumably reflects in part the well-known Eulerian vortex
structures in the flow, such as the counter-rotating pair of streamwise vortices pictured in
figure 3(a). However, these patterns involve also the Lagrangian evolution over time and
become progressively more complex and fine grained as δs+ grows more negative. The
complex, intertwined positive and negative values enhance the amount of cancellation.
Eventually, for δs+ < −100, the scatter of positive and negative values of ω̃

+
‖ becomes

essentially random and the cancellation is nearly complete (panel ( f )). Particles continue
to hit the wall backward in time for δs+ � −100 and the root mean square values of ω̃

+
‖

grow larger, but these very early contributions become less and less probable and cancel
almost entirely, giving no net contribution to the resultant magnitude |ω(x, t)| at the top
of the arch.

4.2.2. Relation to the Eulerian vorticity source
To make a connection with the Eulerian theory of Lighthill (1963) and Morton (1984),

we present in figure 18 a plot of the negative spanwise vorticity source −σz(x, s) at time
δs+ = −5k, together with a scatterplot of particles landing at the wall in the interval
of hitting time −(5k + 1) < δσ̃+

t (x) < −5k for values k = 0, 1, 2, 3, 4, 5 in successive
panels. To render more clear the pattern of the source underneath the particle markers,
we have added isolines −σ+

z = k/30 for |k| ≤ 4. We go back in time by only about
T+

‖
.= 20.7, since figure 16 shows that more than 50 % of the final parallel vorticity

is generated from the wall in that interval. We provide in the supplementary material
a movie whose frames are plots of the same format, but with more frames and going
back 50 viscous times. The first panel, figure 18(a), is essentially the same as figure 5(b)
but showing a larger domain. The two regions with σz < 0 just upstream of the stress
minimum and with σz > 0 just downstream in figure 5(b) now appear as parts of larger
‘band’ structures. The spanwise vorticity source plotted in figure 18 exhibits an alternating
pattern of such bands, each with streamwise thickness L+

x ∼ 25–50 and spanwise length
L+

z ∼ 50–100. The reverse sign in successive bands is the manifestation of the ‘bipolarity’
of the vorticity source. Since it has been proposed in the literature that ejections should be
associated with values σz < 0 (Andreopoulos & Agui 1996), we would like to investigate
whether the region with σz < 0, just upstream of the point marked with an asterisk ‘∗’,
can be the source of the vertical vortex arch at height y+ = 5.35.

A striking feature in figure 18 which is even more apparent in the associated movie (see
supplementary material) is that the band patterns seem to travel in the negative streamwise
direction, backward in time. In fact, it is well known that velocity and pressure structures at
the wall consist of travelling waves with streamwise velocities ∼ 10–15 measured in units
of the friction velocity u∗ (Kim & Hussain 1993), agreeing well with the velocity inferred
by eye from figure 18. This means, in particular, that propagation speeds of the waves
exceed the mean flow velocity u( y) for y+ < 15 and increasingly so as y+ decreases.
A consequence is that the band with σz < 0 just upstream of the ‘∗’ moves further
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FIGURE 18. Colour plots of negative spanwise vorticity source together with scatterplots of
particles hitting the wall in unit time intervals ending at: (a) δs+ = −1, (b) δs+ = −6, (c) δs+ =
−11, (d) δs+ = −16, (e) δs+ = −21, ( f ) δs+ = −26. The light grey lines are contour levels
−σ+

z = k/30 for integers |k| ≤ 4. Also shown are the mean position of all particles (∗, red) and
of only those in the interior (∗, green).

upstream (backward in time) at a considerably faster speed than does the cloud of particles
released at y+ = 5.35, and, thus, particles in that ensemble hit this moving band with
very low probability. It therefore seems ruled out that the upstream band with σz < 0 is
the ‘source’ of the vorticity in the arch at y+ = 5.35. Only particles released at very small
heights y+ � 1, well below the arch, hit that band with substantial probability and at those
heights the vortex lines are flat, with almost no vertical component.

Instead, the particles released from the vortex arch at y+ = 5.35 and going backward
in time hit structures that were originally downstream of ‘∗’ in figure 18(a), but which
rapidly moved upstream of ‘∗’ in subsequent panels. In particular, there is a band with
large negative values σ+

z 
 −0.1 about 100 wall units downstream of ‘∗’ in figure 18(a)
which particles hit with very high probability at times −15 < δs+ < −10 (figure 18c,d).
At this same interval in figure 16 one sees a very sharp increase in the contribution from
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the wall to the final vorticity magnitude. The intense band 100 wall units downstream of
‘∗’ in figure 18(a) is thus a more likely source of the enhanced negative spanwise vorticity
in the vertical arch (figure 6), or at least the part associated to ‘abrupt lifting’. Of course,
the negative spanwise vorticity injected by this source is not all delivered to this one arch
but is instead distributed more generally throughout the flow. Figure 18(e,f ) shows that
the particles for −26 < δs+ < −21 sample a broad region with smaller negative values of
source σ+

z , corresponding to the turnover to a slowly decaying tail in figure 16.

4.3. Lagrangian description of sweep event
We now discuss the results for the vorticity at the bottom of the trough in the ‘sweep’
event, as pictured in figure 12(b). In particular, we investigate how the vorticity in the
trough originates at the wall. We are especially interested to compare with the previously
discussed results for the low arch in the ‘ejection’ event pictured in figure 12(a).

4.3.1. Origin of vorticity at the wall
Plotted in figure 19(a) is the percentage of particles residing at the wall as a function

of δs = s − t in wall units. The percentage is more slowly rising (backward in time) than
for the ejection case pictured in figure 15(a) and, indeed, at δs+ = −150 has risen to only
50 %. This is consistent with the expectation that the vorticity is ‘older’ in the sweep than
it is in the ejection, at the same height above the wall. Since the wall-normal velocity is
downward in the sweep, the ensemble of particles moves generally upward going backward
in time and fewer particles hit the wall over the same time interval than for the ejection.

Plotted next in figure 19 are the partial contributions to the mean Cauchy invariants
arising from the wall (C = W) and from the interior (C = I) as functions of δs+ for
the parallel component (i = ‖) in panel (b) and the perpendicular component (i =⊥) in
panel (c). Just as for the ejection case, we see that the conservation of the mean invariant
is non-trivial and involves detailed cancellations between contributions from the wall
and from the interior. Indeed, for the perpendicular component of the stochastic Cauchy
invariant in figure 19(c), the two separate contributions are both increasing backward in
time, roughly linearly in δs+ over the range −150 < δs+ < 0. The entire perpendicular
contribution ω+

⊥,int-near from the interior at time δs+ = −150 has a magnitude near
|ω+|, the value of the ultimate parallel component. It is not surprising to see such a
larger perpendicular contribution for the sweep. The cloud of interior particles rises
steadily backward in time from y+ 
 5 at δs+ = 0 to y+ 
 42.5 at δs+ = −150 (see
plot in supplementary material),while simultaneously the number of interior particles as
a percentage of the total drops from 100 % to 50 %. This subcloud of particles represents
the vorticity brought down from the interior of the flow by the splatting motion, forward
in time. Since the vorticity high in the buffer layer is more variable, it is natural that this
interior contribution ω+

⊥,int-near to the resultant vorticity is not mainly spanwise but points
instead in an orthogonal direction. This orthogonal component is exactly cancelled by
an equal and opposite contribution ω+

⊥,wall-near = −ω+
⊥,int-near from the other 50 % of the

particles that hit the wall in the near-time interval −150 < δs+ < 0.
A first conclusion of the results plotted in figure 19(c) is that the vorticity in the sweep

is indeed very ‘old’ and arose from the wall in the distant past, as expected. The quantity
|EI[ω̃s⊥(x, t)]| that appears in the definition (4.4a,b) of the perpendicular integral time
T⊥(x, t) is apparently increasing past δs+ = −150 and to values > |ω|, before finally
decaying to zero. We do not have results well enough converged, even with N = 107,
in order to evaluate this time accurately, but it is clear at least that T+

⊥ (x, t) � 100
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FIGURE 19. (a) Fraction of particles at the wall, (b) partial means of the parallel component
of the stochastic Cauchy invariant, and (c) partial means of the perpendicular component of the
stochastic Cauchy invariant. All quantities in wall units plotted versus δs+.

for the sweep. A more surprising and puzzling conclusion follows, however, from the
exact anti-correlation ω+

⊥,wall-near = −ω+
⊥,int-near. The interior contribution ω+

⊥,int-near at time
δs+ = −150 was itself the result of vorticity shed from the wall in the far distant past.
Going far backward to distant times where nearly 100 % of the particles have hit the
wall must reproduce that contribution. Thus, ω+

⊥,int-near = ω+
⊥,wall-dist, where the latter is the

contribution from particles that hit the wall in the distant past δs+ < −150. The immediate
implication is that there is also a perfect anti-correlation ω+

⊥,wall-dist = −ω+
⊥,wall-near. In other

words, the vorticity shed from the wall in the far distant past δs+ < −150 is making a
very sizable contribution to streamwise and wall-normal components of vorticity in the
trough, with magnitude |ω+

⊥,wall-dist| > 1, but this is exactly cancelled by a large, exactly
anti-parallel contribution ω+

⊥,wall-near from the wall in the near past −150 < δs+ < 0! This
very long-range temporal correlation is required by mean conservation of the value 0 of
the perpendicular Cauchy invariant, but it seems a bit counterintuitive, fluid dynamically.
A possible explanation is that ω+

⊥,wall-near arises from secondary vorticity induced by
the strong interaction with the wall of the primary interior vorticity ω+

⊥,int-near as it is
advected downward. This picture may help make plausible the exact anti-correlation
ω+

⊥,wall-near = −ω+
⊥,int-near. In any case, our findings emphasize not only the great ‘age’ of

the vorticity vector in the ‘trough’ but also its very complex origin at the wall.
A surprise in the opposite direction is that the final parallel component of the vorticity

vector in the ‘trough’, which is pointed almost spanwise, is just about as ‘old’ as the
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FIGURE 20. Fractional contribution of the parallel vorticity arising at times s < t from interior
particles, plotted versus δs+, and its discrete approximation as ‘abrupt lifting’.

vorticity vector at the same height on the ‘arch’ in the ejection case. Indeed, the history
of formation of the parallel component out of vorticity shed from the wall is remarkably
similar for the ‘ejection’ and the ‘sweep’, as can be seen by comparing the results in
figures 15(b) and 19(b). Except for the different magnitudes of the parallel components in
the two cases, the plots otherwise agree quite closely. This fact is underlined by figure 20,
which plots for the vorticity vector in the ‘trough’ the fractional contribution to the parallel
component arising from the interior. This plot is almost identical to that in figure 16 for
the ejection case. The integral time of formation of the parallel component calculated
from (4.3a,b) must therefore be similar also for the two cases. Indeed the value obtained
by numerical quadrature for the sweep, T+

‖ (x, t) .= 24.6, is just slightly larger than the
value T+

‖ (x, t) .= 20.7 for the ejection.
To further explore this issue we have made for the sweep case a figure of the same

type as figure 17 for the ejection, again plotting realizations of the parallel component of
the stochastic Cauchy invariant. See figure 21, which uses the same time intervals and
the same size subensemble of 106 particles as in the earlier plot. In the supplementary
material we provide a video with greater time resolution and employing all 107 available
particles. This plot only deepens the mystery however. The plots in figure 21 are broadly
similar to those in figure 17 for the ejection, but also show significant differences. The
clouds of particles are clearly more compact for the sweep case and disperse less quickly
going backward in time. Furthermore, the spatial pattern at the wall of the parallel Cauchy
invariant values is strikingly ‘bipartite’ for the sweep at times −60 < δs+ < 0, with large
positive values in the lower half of the particle cluster and large negative values in the
upper half. This pattern is presumably due to the rotation of vorticity vectors by the pair of
low-lying quasi-streamwise vortices pictured in figure 8(a), and it is much more ordered
than the pattern for the ejection case in figure 17. Despite these clear differences in the
spatial patterns in the two plots, the summed results yield the time variations plotted in
figures 16 and 20, which are remarkably similar.
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FIGURE 21. Scatterplot of ω̃+
s‖(x, t) values for particles hitting the wall in five-unit time

intervals ending at: (a) δs+ = −5, (b) δs+ = −30, (c) δs+ = −55, (d) δs+ = −80, (e) δs+ =
−105, ( f ) δs+ = −130. Mean position of all particles (∗, red) and only those in the interior
(∗, green). The resultant vorticity magnitude |ω+(x, t)| = 0.95.

4.3.2. Relation to the Eulerian vorticity source
Some further insight may be gained by considering the Eulerian picture. In figure 22

we plot the negative spanwise vorticity source −σz(x, s) together with a scatterplot of
particles landing at the wall. We consider the same set of times δs+ = −(5k + 1), k =
0, 1, 2, 3, 4, 5 as in figure 18 for the ejection, going backward by 26 viscous times. This
is close in value to the integral shedding time T+

‖
.= 24.6 for the sweep. A movie with

greater time resolution and going back further in time is provided in the supplementary
material. As before, the first panel, figure 22(a), is essentially the same as figure 10(b)
but over a larger spatial domain. It was conjectured by Andreopoulos & Agui (1996) that
positive wall sources σz > 0 should be associated with sweeps. Indeed, just upstream of
the point marked with an asterisk ‘∗’ in figure 22(a) there is a band with large values
σz

.= 0.1. However, as shown by the subsequent panels (or by the movie, in more detail)
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FIGURE 22. Colour plots of the negative spanwise vorticity source together with scatterplots
of particles hitting the wall in unit time intervals ending at: (a) δs+ = −1, (b) δs+ = −6, (c)
δs+ = −11, (d) δs+ = −16, (e) δs+ = −21, ( f ) δs+ = −26. The light grey lines are contour
levels −σ+

z = k/30 for integers |k| ≤ 4. Also shown are the mean position of all particles (∗,
red) and of only those in the interior (∗, green).

the particles hit that region of the wall with negligible probability backward in time, since
this band with σz > 0 retreats upstream with high velocity ∼ 10u∗. Instead, the particles
hit mainly regions with σz < 0 over the time interval shown in figure 22. In particular,
there is a space band with moderately negative values originally about 200 wall units
downstream of the point marked ‘∗’ which travels rapidly upstream backward in time and
which intensifies to values σz

.= −0.1. The particles released from the depressed vortex
line at height y+ = 4.90 are sampling mainly points in this band of strong negative source
σz

.= −0.1 over the time interval −25 < δs+ < −16. In fact, the pattern of vorticity source
sampled by the particles in this sweep case is rather similar to that sampled in the ejection
case, pictured in figure 18. This seems to contradict the proposal of Andreopoulos & Agui
(1996). Here it should be noted that nonlinear advection contributes also in the sweep case
a negative flux of spanwise vorticity away from the wall over much of the region y+ < 15.
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As illustrated in figure 11, positive fluctuations of spanwise vorticity ω′
z > 0 are here often

associated pointwise with downward fluctuations v′ < 0 of wall-normal velocity.
These results suggest a possible explanation for the surprising agreement of figure 16

for the ejection and figure 20 for the sweep. This agreement could be expected if viscous
diffusion dominates the transport of spanwise vorticity in the viscous sublayer, not only on
average (Klewicki et al. 2007; Eyink 2008), but also in instantaneous realizations of the
flow. The structure of in-wall vortex lines is very similar for the ejection and sweep, with
magnitudes |ω+| .= 1 and pointed mainly in the spanwise direction (or negative spanwise
direction for rotated visualizations). Of course, these nearly uni-directional wall vorticity
vectors are strongly stretched and rotated by the stochastic Lagrangian flow and yield
both large positive and large negative values of the parallel stochastic Cauchy invariant,
as illustrated in figures 17 and 21 for the ejection and sweep, respectively. It is possible
however that these large values almost completely cancel and leave only the contributions
of viscous diffusion and advection by the mean velocity. Here we note that the viscous
fluxes/wall sources of spanwise vorticity sampled by the stochastic particles are also quite
large. The values σ+

z
.= −0.1 sampled in both the ejection and sweep events for this

Reτ = 1000 simulation are ∼ 100 times larger than the mean value 〈σ+
z 〉 .= −1 × 10−3.

The very similar temporal profiles in figures 16 and 20 may just reflect a common origin
of the spanwise vorticity at height y+ .= 5 in the parallel transport of initially spanwise
wall vorticity by viscous diffusion and by advection due to the mean shear velocity.

In summary our results for the sweep rather dramatically contradict the naive idea
that vortex lines are approximately ‘frozen-in’ and advected by the flow. If that idea
were correct, the spanwise vorticity at the bottom of the depressed vortex lines over the
high-speed streak would have been swept down from the interior of the flow. We have
found that there is indeed a large non-spanwise vorticity contribution swept down from the
interior in the near past, but this contribution is exactly cancelled by an equal and opposite
vorticity originating from the wall in that same period. This cancelling contribution from
the wall can be plausibly explained to arise from opposite-signed vorticity induced by
interactions of the solid wall and the downswept interior vorticity. In contrast to this ‘old’
interior vorticity, the resultant (mainly spanwise) vorticity at the bottom of the depressed
vortex line at y+ = 5 is much ‘younger’, arising from vorticity shed by the wall in the near
past and perhaps transported primarily by viscous diffusion.

5. Conclusions and prospects

We have presented a first concrete application of our Monte Carlo numerical Lagrangian
method to channel-flow turbulence, using an online database of a high-Re channel-flow
simulation (Graham et al. 2016). We have analysed the Lagrangian vorticity dynamics
for two specific events in the near-wall buffer layer, a pair selected as generic examples
of an ‘ejection’ and a ‘sweep.’ We find that the growth of vorticity magnitude due to
nonlinear Lagrangian chaos is compensated by viscous cancellation of oppositely signed
vector components, or viscous reconnection in a generalized sense. We may refer to this as
‘virtual reconnection,’ because spanwise anti-parallel components of the Eulerian vorticity
field almost never appear in the viscous sublayer but arise by non-trivial Lagrangian
dynamics in an average over virtual, stochastic processes. We find also that vortex lifting
from the wall is a highly distributed development in space–time, not an abrupt, discrete
event. Consistent with expectations, we find that, at the same distance from the wall, the
vorticity in the ‘sweep’ event is older than in the ‘ejection’ event, being birthed at the
wall in the more distant past. Surprisingly, however, the greater age is evidenced only by a
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persistent orthogonal contribution from the wall, which requires many hundreds of viscous
times to decay, whereas the vorticity in the ultimate parallel direction is assembled over
∼100 viscous times in a similar manner for both events.

Future numerical studies should examine many more such events, to verify whether such
features are typical and to reach statistically relevant conclusions. Such studies should
illuminate the detailed Lagrangian mechanisms of the organized transport of spanwise
vorticity away from the wall, which is required for turbulent drag and dissipation. More
empirical studies are required even of the Eulerian turbulent vorticity flux, which has been
examined much less than momentum transport and Reynolds stress, in order to understand
which flow structures sustain the required flow of spanwise vorticity. As emphasized by
Brown & Roshko (2012), ‘The subject stands at the beginning of a new era in which
both LES and DNS calculations can provide details of the vorticity field and the fluxes of
vorticity (vortex force).’ The stochastic Lagrangian methods developed in our work can
provide even deeper insight into the dynamics, especially when tightly integrated with the
Eulerian picture. We take some further steps in this direction in a work in progress, which
develops a stochastic Lagrangian representation in which the Eulerian vorticity source of
Lighthill (1963)–Morton (1984) is incorporated as Neumann boundary conditions for the
Helmholtz equation via stochastic particle trajectories that are reflected from the wall.

A remarkable aspect of the stochastic Lagrangian theory is the many unifying features
that emerge naturally between classical and quantum fluids. Even based upon our
preliminary results, we can make some relevant comparisons with quantum turbulence
in superfluids (Barenghi, Skrbek & Sreenivasan 2014). The regime with the closest
correspondence to the classical case is two-fluid turbulence in 4He. Forced flows of
superfluid 4He in the two-fluid regime through smooth wall tubes and square channels
at high Reynolds numbers suffer a pressure drop in reasonable agreement with classical
friction laws (Swanson, Donnelly & Ihas 2000; Fuzier, Baudouy & Van Sciver 2001)
and velocity profiles determined from particle imaging velocimetry exhibit a near-wall
turbulent boundary layer (Xu & Van Sciver 2007). A factor in favour of such classical
correspondences is the locking or coupling of the two fluid components (Vinen 2000;
Kivotides 2007), but complete understanding of the similar behaviours is still lacking. We
believe that the theory developed in this paper and Part 1 may assist in developing such
explanations, because of the several connections it exposes between classical and quantum
fluids.

To emphasize this point, we briefly summarize here some of the common features. The
Kuz’min (1983)–Oseledets (1989) formulation of Navier–Stokes dynamics in terms of a
continuous distribution of infinitesimal vortex rings is very similar to the intuitive picture
of a quantized vortex tangle proposed by Campbell (1972), as a superposition of small
vortex rings, which was invoked by Schwarz (1982) to explain intuitively the phase-slip
process in superfluid turbulence; see also Kuz’min (1999). Huggins (1994) and Eyink
(2008) have already emphasized that constant flux of a conserved vorticity current is
necessary for dissipative drag in both classical and superfluid turbulent channel flows.
The mechanism in quantum turbulence proposed by Schwarz (1988, 1990), based on his
vortex-filament simulations, was the cross-stream ‘ballooning’ of ring vortices, which are
ultimately driven to annihilate at the wall. As observed by Huggins (1994), an equivalent
flux in the classical case results from vorticity creation at the wall and subsequent transport
to the channel centre, where opposite orientations cancel. Last but not least, Eyink (2010)
showed that mean conservation of the stochastic Cauchy invariants and of stochastic
circulations (Kelvin theorem) for incompressible Navier–Stokes solutions arises from
particle relabelling symmetry in a stochastic least action principle. These conservation

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

49
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.492


Stochastic Lagrangian dynamics of vorticity. Part 2 901 A3-33

laws hold, in close analogy to those for ideal Euler equations, although viscosity vitiates
the standard ‘frozen-in’ property of vorticity and permits vortex reconnection. Similarly,
it has been shown for superfluids, both in the zero-temperature Gross–Pitaevskii model
(Nilsen, Baym & Pethick 2006) and in strongly rotating, chiral flows (Wiegmann 2019),
that the Kelvin theorem holds while simultaneously quantized vortices are not frozen into
the flow. For chiral flows, the Kelvin theorem is derived as a consequence of particle
relabelling symmetry (Wiegmann 2019), while this issue seems open for Gross–Pitaevskii.
The contrary finding of Kedia et al. (2018) with the Thomas–Fermi approximation neglects
the quantum pressure, which is crucial to determine the correct motion of quantized
vortices (Nilsen et al. 2006) and to permit vortex reconnection (Koplik & Levine 1993).

This underlying unity has importance because fewer differences between classical
and quantum fluids appear starker than the differences in reconnection physics. Vortex
reconnection is believed to be a crucial element of superfluid turbulence, as discussed
in works of Schwarz (1982, 1988, 1990), and we have argued that reconnection in
some generalized sense is an essential feature also of classical channel-flow turbulence.
In a classical fluid vortex lines are continuously distributed in space and cannot be
unambiguously tracked in time. Vorticity may be attributed a stochastic law of motion and
viscous reconnection then results from cancellations in averaging random contributions,
just as for the similar case of resistive magnetic reconnection in plasmas (Eyink et al.
2013). The vorticity of a superfluid is quantized, on the other hand, and individual
segments of vortex lines are topological defects that may be followed objectively and
deterministically. We believe, however, that stochastic laws of motion similar to those
for classical viscous fluids will hold also in superfluid turbulence for coherent ‘bundles’
of quantized vortex lines (L’vov, Nazarenko & Rudenko 2007; Baggaley et al. 2012).
There seems no reason to doubt that individual vortex lines in a superfluid regime with
a Kolmogorov energy spectrum (Nore, Abid & Brachet 1997; Barenghi et al. 2014)
will exhibit ‘spontaneous stochasticity’ due to turbulent Richardson dispersion (Bernard,
Gawedzki & Kupiainen 1998; Drivas & Eyink 2017a). Because of such explosive
dispersion effects and ubiquitous microscopic reconnection, the motion and collective
reconnection of vortex bundles in superfluids (Alamri, Youd & Barenghi 2008) should
appear stochastic just as in classical viscous fluids. Stochastic Lagrangian invariants
would naturally arise in a dissipative effective action for coarse-grained fields preserving
relabelling symmetry (Crossley, Glorioso & Liu 2017).
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Supplementary material and movies

Supplementary material and movies are available at https://doi.org/10.1017/jfm.2020.
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