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This article explores the relationship and disparities between
human and computational creativity by addressing the
following questions: How well are computational creativity
systems currently performing at creative tasks? Could
computers outperform human composers? And, if not, is
computational creativity a utopia? Automatic composition
systems are examined with respect to Boden’s three criteria
of creativity (novelty, surprise and value), as well as their
assumptions about the nature of creativity. As an alternative
to a competitive relationship between human and
computational creativity, the article proposes the concept of
a distributed human–computer co-creativity, in which
computational creativity extends – rather than replaces –
human creativity, by expanding the space of creative
possibilities.

1. INTRODUCTION

Boden (2004: 1) defines creativity as ‘the ability to
come up with ideas or artefacts that are new, surpris-
ing and valuable’. She identifies two ways in which an
idea (or artefact) can be new and consequently distin-
guishes between two types of creativity: psychological
and historical (P-creativity and H-creativity respec-
tively). P-creativity involves an idea that is new to
the person who conceived it, while H-creativity
involves an idea that is historically new, that is, an idea
that has been conceived for the first time in human his-
tory. Similarly, there are three ways in which an idea
can be surprising: it can be unlikely, unexpected but
fitting into an existing conceptual space (i.e., style of
thought) or previously thought of as impossible.
While Boden’s first two criteria (novelty and surprise)
are relatively straightforward and unambiguous, the
third one (value) resists a precise definition, since, as
Boden points out, aesthetic values are not only diffi-
cult to describe, but also vary across cultures, or
even subcultures within the same culture; and of
course they change through time (Boden 2010: 39).
Dorin and Korb (2012) propose an alternative defi-

nition of creativity that focuses exclusively on novelty,
rejecting notions of value and appropriateness as irrel-
evant. They specifically criticise discussions of value as
counterproductive for computational creativity and
non-essential to understanding human creativity.

They suggest that what makes an activity creative
must relate to the activity itself rather than the recep-
tion of its outcomes. Bown (2012), on the other hand,
distinguishes between two types of creativity: genera-
tive and adaptive, the difference between the two being
that only the latter is concerned with value. This
debate on value will be examined more closely later
in this article. For now, Boden’s definition will be used
as a guide in determining to what extent computer-
generated artefacts fulfil her criteria of creativity
and what implicit and explicit assumptions about
human creativity are evident in the design of compu-
tational creativity systems.
While creativity can be understood in a variety of

contexts, spanning over a broad spectrum of human
and non-human activity – creativity can be attributed
not only to humans, but also to biological systems
and processes, such as evolution (Bentley and Corne
2002) – this article will focus on creativity as it relates
to artistic production. Specifically, it will focus on art
music composition, including both acoustic and elec-
troacoustic music composition, and try to answer the
following questions: How well are computers currently
performing at creative tasks? Could computers outper-
form human composers? And, if not, is computational
creativity a utopia?

2. HOW WELL ARE COMPUTERS
PERFORMING AT CREATIVE TASKS?

Automatic composition and music generation systems
cover a wide range of musical styles and genres and
therefore employ different types of data and algo-
rithms. While an exhaustive literature review of such
systems is beyond the scope of this article, the three
examples discussed below are meant to illustrate dif-
ferent approaches to the automation of musical
tasks, along with their shortcomings, as reported by
their designers and other researchers.
David Cope’s EMI (Experiments in Musical

Intelligence) is one of the most well-known automatic
composition systems designed for acoustic composi-
tion. EMI performs statistical analysis on a corpus
of sample works stored as MIDI scores and identifies
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patterns found in more than one of the sample works.
It then uses Augmented Transition Networks (ATNs)
in order to generate new works. The generated
compositions are finally analysed and compared to
the sample works. Cope’s system focuses exclusively
on pitch and duration as a means to reduce the
dimensionality of the input data and does not take into
account parameters such as timbre and dynamics.
Cope identifies as a weakness of the program its bias
towards ‘diatonic tonal music’, suggesting that it could
be expanded to recognise the minor mode and other
scales (Cope 1992: 82). He also suggests that the
system could benefit from additional software compo-
nents written to address chromaticism, cadences,
phrase length and musical form.

Another automatic composition system, Autocous-
matic, generates electroacoustic art music compositions
using a database of sound files provided by the user.
The input sound files are processed andmachine listening
is used in order to avoid ‘overloads and other digital
nastiness, as well as silence and low activity’ (Collins
2012: 10). The form of the generated mixes is built based
on a section duration and density model, derived
through manual analysis of sample works. An optional
component can be used to evaluate the generated output
mixes with respect to their proximity to TrevorWishart’s
Vox 5. The similarity is determined usingDynamic Time
Warping (DTW) and features such as perceptual loud-
ness, sensory dissonance, onsets and several spectral
descriptors (Collins 2012). As part of the system’s eva-
luation, Autocousmatic-generated compositions were
submitted to music festivals and conferences and feed-
back was sought from professional electroacoustic music
composers. Collins reports that none of the submissions
has been successful so far. The professional composers
asked to evaluate the system expressed criticism towards
its ability to generate larger forms, describing the
transitions between different sections as ‘abrupt’ and
‘arbitrary’ and criticising the generated mixes for lacking
‘directionality’ (ibid.).

A more recent trend in automatic music generation
involves the use of Deep Learning algorithms that learn
from unstructured data (i.e., raw audio), such as
WaveNet (van den Oord et al. 2016). WaveNet was
developed mainly for speech applications and is based
on a probabilistic and autoregressive model, that is, a
model in which predictions for each audio sample are
conditioned on all previous samples (van den Oord
et al. 2016). WaveNet can generate musical sequences
(in the formof rawaudio)withpartially convincing local
structure, but poor global structure, showing that the
algorithm fails to learn mid- and long-range dependen-
cies (Manzelli, Thakkar, Siahkamari and Kulis 2018).
Furthermore, music applications of WaveNet (van
den Oord et al. 2016; Manzelli et al. 2018) have so
far focused on tonal, pitch-based music, in which

short- and long-term dependencies are governed by
the rules of traditional harmony.Whether the algorithm
would perform better or worse on a corpus of electro-
acoustic music or even contemporary instrumental
music remains to be seen.

3. COULD COMPUTERS OUTPERFORM
HUMANS IN CREATIVE TASKS?

Creativity involves highly complex cognitive and psy-
chological processes, a simulation of which would be
an undoubtedly ambitious undertaking. As a way to
reduce data dimensionality and computational com-
plexity, automatic composition systems employ
models based entirely on domain-specific features as
input data, such as MIDI data (Cope 1992) or percep-
tual audio descriptors (Collins 2012), and reframe the
problem of musical creativity as one of style imitation.
This is evident in the use of musical corpora and tech-
niques such as statistical analysis and machine
learning in order to model and subsequently produce
artefacts within certain musical styles. An obvious lim-
itation of this approach lies in its prioritisation of
mastery over innovation. Presumably, even if a style imi-
tation system succeeded in ‘mastering’ the style of one or
more human composers (i.e., if it passed the Turing test),
it still would not be able to produce anything innovative,
as that would be beyond its scope and intent.
Creativity, particularly H-creativity, is not just a

matter of mastery, but also imagination, resourceful-
ness and invention. In fact, some of the most pivotal
works in music history are those that broke away from
tradition, either by proposing new composition sys-
tems (e.g., the twelve-tone system), or through their
innovative and imaginative use of technology (e.g.,
Steve Reich’s Pendulum Music (1968)), or even by
questioning the very definition of music (e.g., John
Cage’s 4 033 00 (1952)). For that reason, even if com-
puters achieved a high level of mastery within certain
styles, we would still need to investigate whether they
are capable of creating new styles, an objective that
would require fundamental changes to the models cur-
rently employed by computational creativity systems.
Most subfields of Artificial Intelligence (AI), from

rule-based systems to Machine Learning (ML), share
a common understanding of artificial intelligence as
the ability of computers to solve domain-specific prob-
lems commonly associated with humans. Machine
learning brought about a revolution in the way these
tasks were performed: instead of executing a set of
hand-coded rules, computers could now learn by
examples, figuring out the rules ‘on-the-fly’. This
made possible many applications that would be nearly
impossible otherwise (e.g., image and speech recogni-
tion). However, when it comes to the automation of
musical tasks, both rule-based systems and machine
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learning applications seem to be limited in their defi-
nition of creativity. For example, both training
examples and rules are derived from already existing
artefacts. They are manifestations of the stylistic con-
straints of already existing styles. Creativity is then
understood as the ability to imitate, or conform to
the constraints of a given style, as discussed above.
Besides P-creativity and H-creativity, Boden makes

an additional distinction between combinational, expl-
oratory and transformational creativity (Boden 2004).
Combinational creativity involves combining familiar
ideas in unfamiliar and surprising ways. Exploratory
creativity involves the generation of new ideas within
an existing conceptual space (e.g., an existing style).
Finally, transformational creativity involves transform-
ing and essentially redefining an existing conceptual
space (i.e., creating new styles). Interestingly, Boden
mentions Schoenberg’s atonality as an example of
transformational creativity (Boden 2007), while she
considers automatic composition systems, suchasDavid
Cope’s EMI, as examples of exploratory creativity
(Boden 2004).
Assuming that automatic composition systems are

indeed capable of exploratory creativity, then the
question that needs to be answered is: are computers
capable of transformational creativity? Boden answers
this question positively and uses evolutionary algo-
rithms as an example of how computer programs
can randomly change their rules, thereby transforming
their conceptual space (Boden 2010: 38).
However, in assuming that by randomly generating

a new rule system the computer has created a new
‘style’, Boden has overlooked her third criterion of cre-
ativity: value. Whether a deviation from existing styles
constitutes an anomaly or a paradigm shift is not only
a question of novelty, but also impact. A deviation
from the norm alone does not qualify as a new style
if it is historically inconsequential. Whether a new,
human- or computer-generated rule system qualifies
as a ‘style’ can only be determined by its acceptance –
or lack thereof – by a society or social group (de Jager
1972), such as contemporary composers, and/or its
replication by other members within that group
(Meyer 1983). Schoenberg’s twelve-tone system is con-
sidered a ‘style’ because of its impact on Schoenberg’s
contemporaries and successors. Had it not had such
an impact on music history, the 12-tone system
would probably not hold the same cultural value it
does today.
Dorin and Korb (2012) attempt to detach creativity

from notions of value, suggesting that what makes an
activity creative must relate to the activity itself, rather
than the reception of its outcomes. They use the exam-
ple of artists who were recognised posthumously to
illustrate that value relates to reception, not creativity.
However, even if we accept that what makes an

activity creative is determined by the activity itself,
we still have to acknowledge that what makes the out-
come of this activity art is determined by reception.
Marcel Duchamp’s Fountain, a readymade sculpture
consisting of a urinal, is only art because we (society,
or a smaller group within it) agree it is art. The cultural
value attributed to the object is a result of extrinsic, not
intrinsic qualities: the urinal itself is a mass-produced
commercial product. It seems then that, at least in
the case of art, creativity is inextricably connected to
value. As for cases of posthumous recognition, one
might argue that these are proof of the dynamic and
complex nature of value systems, not their irrelevance.
Most importantly, evaluation is carried out not only at
reception, but also as part of the creative process.
During the latter, ideas are constantly evaluated by
the artist based on their subjective, but culturally
informed, values.
Duchamp’s example illustrates that creativity, espe-

cially transformational creativity, cannot be reduced
to a set of domain-specific skills, nor studied outside
a broader social context. Creativity is a situated phe-
nomenon driven among others by social, cultural,
psychological, political, technological and economical
factors. Nowhere is this better illustrated than in
the work of pioneers such as Pauline Oliveros and
John Cage.
Pauline Oliveros’s Sonic Meditations, a collection of

verbal scores for a group of performers/participants
meeting regularly over a longer period of time, is a rev-
olutionary work due, among other reasons, to its
participatory approach to music-making. Musical
training is not a requirement for participation, since,
as Oliveros states, she aims to ‘erase the subject/object
or performer/audience relationship by returning to
ancient forms which preclude spectators’ (Oliveros
1974). Expanding one’s sonic awareness, sharing a
common experience with other members of the group
and releasing psychological and physiological tension
are also mentioned as some of the goals of this activity,
of which ‘music is a welcome by-product’ (Oliveros
1974). This last sentence is enlightening with regard
to the composer’s aims and priorities: Oliveros is more
interested in the social, psychological and even physi-
ological aspects of music-making than in its product.
Similarly, in 4 033 00 John Cage (1952) poses a series

of ontological questions (‘What is music?’, ‘What con-
stitutes a musical work?’, etc.) in a piece that consists
entirely of silence. The aesthetic and cultural value of
the piece, as well as its novelty, lies in the position it
takes with respect to the debate on musical ontology –

another position being Varèse’s definition of music as
‘organised sound’ (Varèse and Wen-Chung 1966). In
this particular example, taking the work out of its
context would be stripping it of its cultural value.
For example, one could not expect to analyse this
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piece, feed the data into a machine learning algorithm
and generate music in Cage’s style. While this might
seem as an extreme example, it illustrates in a practical
way that creativity in art cannot be understood outside
a sociocultural context.

Another aspect of art creation and reception exempli-
fied by Cage’s work is that of inter-human communi-
cation. From the composer’s perspective, 4 033 00 is based
on certain assumptions about listeners’ general and
even specialised knowledge, as well as their expectations
of a musical work. From a listener’s perspective, recep-
tion and interpretation are based on similar assumptions
(e.g., that the composer is human and is communicating
some thoughts, albeit through unconventional means).
Evenwhen expectations are subverted, this is interpreted
as an intentional act of communication. Having said
that, if we accept O’Hear’s (1995) definition of art as
inter-human communication, then we axiomatically
reject computer-generated art as an impossibility.

This article wishes to adopt a pragmatic approach
and will therefore avoid shifting the discussion into
philosophical debates on consciousness and intention-
ality. The examples mentioned above are just meant to
illustrate an obvious shortcoming in current approaches
to the automation of compositional tasks: the assump-
tion that creativity is a domain-specific skill and that
the domain at hand (music) can be studied in isolation
from any social context.

Admittedly, these examples involve a specific type
of innovation: innovation in goals (de Jager 1972).
Innovation in goals refers to innovation with respect
to extra-musical ends (e.g., activist art), while innova-
tion in means can refer among others to the invention
of new composition systems (e.g., serialism), new
instruments (e.g., sensor-based interfaces), or new per-
formance practices (e.g., live coding). Particularly in
contemporary music creation, however, it can be
rather hard to distinguish between the two types of
innovation, since in many cases they seem to co-exist.
For example, participatory art can be considered as
innovative with respect to both its ends (lifting the dis-
tinction between performer/author and spectator) and
its means (technologies and practices that enable and
encourage participation). Oliveros’s Sonic Meditations
is a good example of a concurrence of the two types of
innovation, in which a novel artistic goal (exploring
the social aspects of music-making through participa-
tion and inclusion) leads to the invention of new
means, designed to accommodate that new goal (ver-
bal scores that can be interpreted by non-musicians).

However, even in Schoenberg’s case, in which inno-
vation is restricted to the means, transformational
creativity required an extensive knowledge of music
history, leading to the realisation that the tonal
system had reached and exceeded its limits. This illus-
trates that, even when innovation is restricted to

the means, the why still matters and is subject to
a cultural and historical context.
Additionally, innovation in means can be driven or

influenced by extra-musical factors, such as technolog-
ical and economical advances. For example, musique
concrète would not have existed if it were not for
recording technology. Similarly, a laptop orchestra
would have been unthinkable before the invention,
in 1966, of the integrated circuit (microchip) and that
of the personal computer less than two decades later.
The small size, low-cost and high-computational power
of modern computers have revolutionised the way in
which music is composed and performed. Network
performances, interactive human–computer improvisa-
tion and performances with sensor-based interfaces are
only a few examples of artistic practices facilitated by
technological and economical advances.
The task of defining the factors that can play a role in

creative decision-making becomes exponentially more
complex when considering what is probably the most
essential component of human creativity: psychology.
A person’s subjective experience of the world is perhaps
the least quantifiable of all factors influencing creative
decision-making. Real-life experiences and the cogni-
tive and emotional responses they may trigger in an
individual differ from one person to another and are
nearly impossible to simulate and predict.Artists, unlike
software agents, are subjects with unique personalities,
aesthetic preferences and belief systems (values, opin-
ions, etc.), all of which influence creative decisions.
By overlooking extra-musical factors that influence

creative decision-making, automatic composition sys-
tems are making either one of the following implicit or
explicit assumptions: 1) that creativity in music is inde-
pendent of any social context and can be modelled
using domain-specific features; or more likely, 2) that
modelling transformational creativity as a social, situ-
ated phenomenon is currently beyond computational
means and therefore all computational creativity can
aim for is the exploration of existing musical styles.
Interestingly, specifically in acoustic music compo-

sition, computational creativity systems have focused
on musical styles governed by the rules of tonal har-
mony. For instance, there currently appears to be
no automatic composition system dealing with con-
temporary art music composition. In the latter,
‘style’ cannot be defined in terms of pitch or harmony,
while there is no universally agreed-upon notation sys-
tem, with each composer essentially creating and using
their own. A MIDI reduction of musical scores of this
type would be practically useless – if at all possible.
To formulate the problem in machine learning terms,

the objective of automating compositional tasks seems
to pose a significant challenge for feature engineering.
Describing musical styles in terms of stylistic const-
raints, using domain-specific features (e.g., MIDI data
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or audio descriptors) might be adequate for the purpose
of simulating exploratory creativity – at least within
certain styles. But, for computational creativity to go
beyond exploratory creativity (i.e., style imitation),
computational models would have to be adapted
accordingly to reflect the situatedness of human creativ-
ity, taking into account extra-musical (sociopolitical,
cultural, psychological, technological, etc.) factors that
influence creative decisions.
A counter-position to this argument might be that

computational creativity does not need to simulate
human creativity. This may apply particularly to cases
of human–computer co-creativity, in which computa-
tional creativity is understood as complementary to
human creativity. However, the question being asked
here is whether computational creativity systems, spe-
cifically autonomously creative systems, are capable
of transformational creativity. The work of pioneers
such as Cage, Oliveros, Schoenberg and many others
suggests that transformational creativity requires
knowledge and interpretation of a sociocultural and
historical context. It should follow then that, in order
for computers to be capable of transformational crea-
tivity, they should have similar capabilities.
While this remains beyond computational means,

computational creativity will not be able to challenge
human creativity. That is not to say that computers
will never be capable of transformational creativity
but rather that, if we were to pursue this objective,
we would have to devise models that reflect the
situatedness of human creativity and avoid over-
simplified assumptions that equate creativity to style
imitation.
At this point a clarification is needed: the claim that

while computational creativity remains limited to
exploratory creativity it will not be able to challenge
human creativity refers to the aesthetic and cultural
value of computer-generated art, not its financial
value. In fact, computational creativity is already pro-
ducing high financial value and will probably continue
to do so. For example, in October 2018, an eighteenth-
century-style painting generated by a generative
adversarial network was sold for over $400,000 at a
well-known auction house (Cohn 2018). However,
market value is not to be confused with cultural or aes-
thetic value, nor is it an indicator of innovation.
Whether this AI-generated painting will have an influ-
ence on the artistic community remains to be seen.
Regarding its potential for innovation, that is, as
expected, rather low, since it was generated by a model
trained on already existing paintings. One could, of
course, argue that innovation here lies in the tech-
nology through which it was produced, not the arte-
fact itself. Even so, the painting remains an example
of exploratory creativity, as technological innovation
does not constitute aesthetic innovation.

4. EVALUATION OF COMPUTER-
GENERATED ARTEFACTS

Besides feature engineering, another significant chal-
lenge for computational creativity is the evaluation
of computer-generated artefacts. The evaluation of
computer-generated compositions is usually based
on Turing-like tests designed to determine whether
they are distinguishable from compositions created
by humans. A few variations of the Turing Test have
been proposed specifically for the evaluation of gener-
ative music systems (Ariza 2009). While the rationale
behind this approach is understandable, it is still
important to note that a Turing Test says little about
the aesthetic value of an artwork: musical works
are not normally assessed with respect to their believ-
ability. Furthermore, evaluation in composition is
formative, rather than summative. This means that
evaluation takes place not only after a composition
is completed, but also while it is in progress. The inte-
gration of machine listening processes in automatic
composition systems such as Autocousmatic (Collins
2012) is a first step towards addressing the issue of for-
mative evaluation in the automation of musical tasks.
However, it is still worth pointing out that listening as
an act of aesthetic appreciation, based on culturally
informed and most importantly subjective aesthetic
criteria, is still far from being simulated by Music
Information Retrieval.
In addition to Turing Tests, computer-generated

artefacts can also be evaluated through computational
means. The history of computational aesthetic evalu-
ation encompasses a wide range of methods and
approaches, from formulaic theories and biologically
inspired fitness measures to psychological models
and empirical studies of human aesthetics (Galanter
2012). Galanter (2012) distinguishes between two
modes of computational aesthetic evaluation based
on whether the aesthetic standards are defined by
humans or generated by software agents, but goes
on to point out that software-generated aesthetics
often ‘feel alien and disconnected from human experi-
ence’ (Galanter 2012: 256). He claims that research in
psychology and neurology has shown promising
results for future work in computational aesthetic
evaluation, but acknowledges its limitations with
regard to the highly subjective and complex nature
of human aesthetic evaluation.
McCormack is more critical towards universal aes-

thetic values derived through empirical studies (e.g.,
Martindale 1999), arguing that aesthetic preferences
depend on cultural values and individual taste and that
‘surface aesthetic qualities’ often have little relevance for
the appreciation of contemporary art (McCormack
2012: 44).
The idea of removing the artist’s aesthetics from

the creative process and replacing it through
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computer-generated aesthetics has both been praised
(Dorin and Korb 2012) and met with scepticism
(McCormack 2012; Galanter 2012). All in all, the
debate on the evaluation of computer-generated arte-
facts is ongoing and far from being settled.

5. IS COMPUTATIONAL CREATIVITY A
UTOPIA?

Given the difficulties involved in both the automation
of creative processes and the evaluation of computer-
generated artefacts, one might ask whether computa-
tional creativity is at all possible. The answer to that
question strongly depends on our definition and
expectations of computational creativity. Expecting
that computers will generate historically consequential
art of high cultural value is a rather utopian vision,
or dystopian, if we consider the ethical and economic
impactof computersdisplacinghumanartists.However,
for computational creativity to be worth pursuing it
does not have to compete with human creativity.

The question of whether human and computational
intelligence should be in a competitive or complemen-
tary relationship with each other recalls the debate on
Artificial Intelligence (machines replacing humans at cog-
nitive tasks) versus Intelligence Augmentation (machines
assisting humans at cognitive tasks) (Licklider 1960;
Engelbart 1962; Ashby 1964). AI has led to impressive
results in controlled environments, where the inputs and
goals of the algorithm are clearly defined and its perfor-
mance can be evaluated in quantitative terms; for
example, in applications such as image and speech recog-
nition, or even self-driving cars. However, in creative
tasks, where the inputs and goals are hard to define, AI
has demonstrated less promising results. This suggests
that, when it comes to creative tasks, we might need to
think of artificial intelligence in different terms.

Ito proposes the term Extended Intelligence (EI),
instead of Artificial Intelligence, to indicate an under-
standing of intelligence as a ‘fundamentally distri-
buted phenomenon’. He argues that AI should be seen
as yet another actor contributing to a ‘networked intel-
ligence’ that encompasses both humans and machines
(Ito 2016). Concepts such as collective intelligence and
collective learning (the process through which knowl-
edge and information is shared and preserved across
generations in human societies) could have a transfor-
mative potential for the way we conceptualise comp-
utational intelligence. Collective learning implies that
intelligence extends beyond the individual mind to a
network – a society – of minds. Computational intelli-
gence could then contribute to a networked intelligence
by augmenting, not replacing, human intelligence.

A connection between the idea of an extended intel-
ligence contributing to a collective human–machine
intelligence and Latour’s Actor-Network-Theory is

easy to draw. Latour defines an actor as an entity
which ‘is made to act’ (Latour 2005: 46) and as ‘any
thing’ that modifies a state of affairs (Latour 2005:
71), pointing out that objects, not just humans, can
be actors. Latour does not fail to acknowledge the
asymmetry between human and non-human actors:
human and non-human actors do not have the same
type of agency, a distinction that is crucial in regarding
extended intelligence as an actor. Extended intelli-
gence undeniably has the potential to modify the
‘state of affairs’ in music composition, despite its rela-
tionship to human actors being asymmetrical, and
therefore falls under Latour’s definition of an actor.

6. WHAT ARE THE IMPLICATIONS OF
EXTENDED INTELLIGENCE FOR MUSIC
COMPOSITION?

The idea of an extended and distributed intelligence in
music composition translates into practices that
encompass both human and machine actors. This, in
practice, means shifting the focus from automating
creative tasks to re-conceptualising those tasks with
the help of machine intelligence. The purpose of such
an approach is to potentially extend what is creatively
possible and gain a better understanding of human
creativity as a whole.
In line with that approach, McCormack’s concept of

creative ecosystems encompasses ‘humans, technology
and the socially/technologicallymediated environment’.
His approach to creativity views the creative process as
an explorative, rather than an optimisation process, in
which human creativity is enhanced through computa-
tional means. The ecosystemic approach does not aim
to automate the creative process or replace human
aesthetic judgement, but rather openupnewpossibilities
for creative exploration, allowing the artist to expand
their creativity (McCormack 2012).
In music composition, applications of such a distrib-

uted human–computer co-creativity can be found
among others in computer-assisted composition and
interactive music systems, that is, systems in which
human performers interact with software agents in a
reciprocal manner. In interactive music systems
machine intelligence extends what is humanly possible
(e.g., through generative rule-based processes and fast
information processing), while high-level aesthetic
decisions are made by the human. Jones, Brown and
d’Inverno (2012) describe a similar approach to com-
puter-assisted composition, in which the artist makes
important aesthetic decisions and exercises selective
control over computer-generated material. The pur-
pose of this approach is to extend and reflect on
one’s own compositional practice, by ‘disrupting hab-
its’ and discovering new creative possibilities.
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7. TOWARDS A DISTRIBUTED HUMAN–

COMPUTER CO-CREATIVITY

An example of distributed human–computer co-
creativity in music is the case of interactive compositions,
that is, compositions involving real-time interaction and
mutual adaptation among musicians and software
agents. Interactive compositions account for only a small
fraction of applications of interactive music systems, the
vast majority of which are designed for human–
computer improvisation (Gioti 2017). Nevertheless, they
provide a fruitful domain for exploring the creative
potential of distributed human–computer co-creativity,
by challenging traditional notions of authorship and
the binary of composition/improvisation.
Interactive compositions differ from interactive impr-

ovisation systems in that the design of the software
agents involved in them is not just idiom-specific (e.g.,
designed for jazz improvisation), but composition-
specific and therefore far more idiosyncratic. Interactive
compositionsusually consist of several interaction scenar-
ios, composed in terms of sonic and interaction afford-
ances.Moreover, theyarecharacterisedbyaprioritisation
of interactivity over compositional control, and therefore
process over product, manifested in the real-time (human
and computational) decision-making involved in them.
This emphasis on the process is not new: works by John
Cage (1960) andCornelius Cardew (1967), among many
others, are examples of similar process-over-product
approaches. What is new in the case of interactive
compositions is that creative responsibility is shared
among not just human, but also non-human actors.
The actions of the latter are the result of an extension
of human intentionality through technological inten-
tionality (i.e., the intentionality, or ‘directedness’, of
the algorithms themselves, determined by what is com-
putationally possible).
Verbeek (2008) distinguishes between three types of

intentionality involved in human–technology relations:
technologically mediated intentionality, hybrid inten-
tionality and composite intentionality. Technologically
mediated intentionality occurs when human intentio-
nality is carried out by technological artefacts; for exam-
ple, when a pair of glasses is used to enhance human
vision. Hybrid intentionality occurs when the human
and the technological merge; for example, when an arti-
ficial valve is implanted to replace a patient’s defective
heart valve. Finally, composite intentionality is defined
as the addition of human and technological intentional-
ity, whereby technological intentionality is understood
as the way in which a technological artefact is directed
at theworld.Asan exampleof this type of intentionality,
Verbeek (2008) mentions radio telescopes, which pro-
duce images of stars by detecting radiation not visible
to humans. Verbeek’s examples of all three types of
‘cyborg’ intentionality are limited to physical objects

and donot include algorithms as technological artefacts.
Nevertheless, the concept of a composite or, better yet,
extended intentionality can be useful in the context of
distributed human–computer co-creativity.
In distributed human–computer co-creativity, this

extended intentionality is the result of compositional
intentionality carried out by software agents that uti-
lise machine learning and/or generative, rule-based
processes. These software agents are capable of crea-
tive decisions within a musical space defined by the
(human) composer. In this way, creativity is distrib-
uted between the human and the computer. To use
Boden’s terminology, the human defines the conceptual
space and the computer explores it. This, of course,
implies an asymmetry in the relationship between
human and machine, mirroring the disparities between
human creativity and computational affordances.

8. CONCLUSION

Xu, Wang and Bhattacharya (2010) cite Michalos
(1970) to distinguish between two forms of creativity:
one that is concerned with ‘problem-solving’ and is
goal-driven and one that is concernedwith ‘problem cre-
ation’ and is impulse-driven. They argue that design
research on artificially intelligent systems has focused
primarily on goal-directed problem solving, ignoring
the problem creation phase, which should logically pre-
cede it, and that the design process should first address
the ‘why’ and then the ‘how’ (Xu et al. 2010).
Similar criticism can be directed towards automatic

composition systems. The latter seem to be based on
the assumption that composition is ‘problem-solving’ –
the problem being one of style imitation – rather than
‘problem creation’ and, as a result, produce artefacts
of limited aesthetic value. That is not to say that research
on autonomously creative systems is not valuable or that
it cannot produce useful knowledge. It is the aesthetic
potential of such research that is questionable, not its
epistemic value.
From an aesthetic viewpoint, the disparities between

human and computational creativity seem to suggest
that an ecosystemic approach to creativity, encompass-
ing both humans and machines, is potentially more
advantageous, since it allows for a dialogical relationship
between human expertise and computational affordan-
ces. In distributed human–computer co-creativity, high-
level aesthetic decisions are made by humans, while
non-human agency is understood as an extension of
human intentionality, enabling new types of human–
technology interaction and the redefinition of conceptual
spaces and artistic practices. The premise behind this
approach is that art creation can benefit from a synergy
between human and machine intelligence, in which both
humans and machines do what they do best.
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