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Abstract

We introduce the notion of the slot length of a family of matrices over an arbitrary field F. Using this

definition it is shown that, if n ≥ 5 and A and B are n × n complex matrices with A unicellular and the pair

{A, B} irreducible, the slot length s of {A, B} satisfies 2 ≤ s ≤ n − 1, where both inequalities are sharp, for

every n. It is conjectured that the slot length of any irreducible pair of n × n matrices, where n ≥ 5, is at

most n − 1. The slot length of a family of rank-one complex matrices can be equal to n.

2020 Mathematics subject classification: primary 15A30.
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1. Introduction

LetA be a finite family of distinct symbols. Every word w inA can be written, using

index notation, uniquely in the form a
r1

1
a

r2

2
· · · a

rk−1

k−1
a

rk

k
, where each ri is a positive integer

and adjacent bases are distinct elements of A, that is, ai , ai+1 for 1 ≤ i ≤ k − 1. We

define the slot length of the word w to be k. For example, if a, b, c, x, y, z ∈ A, a3 has

slot length 1; a2bc8 has slot length 3, assuming that a , b , c; x5y4z4a2bc5 has slot

length 6, assuming that x , y , z , a , b , c.

Let F be a field and letM be a finite family of n × n matrices over F. Let the identity

matrix I be taken as the empty word inM and let it have slot length 0. For k ∈ N, let

Sk(M), written as just Sk if it is clear whatM is, be the linear span of the words inM

of slot length at most k. Clearly Sk ⊆ Sk+1 for every k. If Sk+1 = Sk, then Sk+2 = Sk+1.

Thus there exists a positive integer s such that

FI = S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Ss = Sp, for every p ≥ s,

where ‘ ⊂’ denotes strict inclusion, and where Ss is the unital algebra generated byM.

We define the integer s to be the slot length of the familyM. Of course, any word in

M of length k in the usual sense has slot length at most k. If the field F is algebraically

closed andM is irreducible then Ss = Mn(F), by Burnside’s theorem [2].

A great deal of work has been done investigating the notion of ‘length of a family

of matrices over the field F’, much of it directed towards resolving Paz’s conjecture

[8] that the length of any finite set of n × n matrices is at most 2n − 2. This conjecture
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remains unresolved. A recent result [9, Theorem 3] of Shitov shows that the length is

at most 2n log2n + 4n − 4. For other recent results and further references, see [1, 7].

In this paper we will consider the slot lengths of irreducible pairs of n × n complex

matrices where one of the matrices is unicellular, that is, its set of invariant subspaces

is totally ordered by inclusion (equivalently, it is nonderogatory with singleton

spectrum). Here, and in what follows, irreducible will mean having no nontrivial

common invariant subspaces. We considered such pairs in [3] (see also [5]), where

it was shown that the length l of such a pair satisfies l ≤ 2n − 2 and the inequality

is sharp for all n ≥ 2. Here we show that, if n ≥ 5, the slot length s of such a pair

satisfies s ≤ n − 1, where the inequality is sharp for every n ≥ 5. We conjecture that

this inequality holds, for n ≥ 5, for any irreducible pair of matrices. Obviously, if n ≥ 2,

the slot length of such a pair is at least 2. We observe that it can actually be 2. An

example is given showing that, for any n ≥ 2, the slot length of a finite, irreducible

family of rank-one matrices can be equal to n.

Throughout, we denote the standard basis for Cn by {ei : 1 ≤ i ≤ n}, and the linear

span of a set E of vectors by 〈E〉. If e, f ∈ Cn are nonzero vectors, the rank-one matrix

e ⊗ f is defined by (e ⊗ f )(x) = (x|e) f , x ∈ Cn, where ‘(·|·)’ denotes the standard

inner-product. We then have T(e ⊗ f ) = e ⊗ T f and (e ⊗ f )T = T∗e ⊗ f , for any matrix

T, where T∗ denotes the adjoint of T. Note that ej ⊗ ei = Ei,j, the usual elementary

matrix with a 1 in position (i, j) and 0s elsewhere. The strictly upper triangular Jordan

matrix is denoted by J, the n × n matrix with 1s in positions {(i, i + 1) : 1 ≤ i ≤ n − 1}

and 0s elsewhere. It is unicellular and its nonzero invariant subspaces are Vk, where

Vk = 〈e1, e2, . . . , ek〉, for 1 ≤ k ≤ n.

For −(n − 1) ≤ k ≤ n − 1, the subset Dk of {1, 2, . . . , n} × {1, 2, . . . , n} defined by

Dk = {(i, j) : 1 ≤ i, j ≤ n, j − i = k} is called the kth diagonal.

DEFINITION 1.1. A matrix A ∈ Mn(C), A = (au,v), is called an echelon representative

for the matrix position (i, j) if ai,j , 0, and au,v = 0 if v − u < j − i and if v − u = j − i

with v < j.

In other words, A is an echelon representative for (i, j) if its (i, j)th entry is the

first nonzero entry of A in the total ordering of {1, 2, . . . , n} × {1, 2, . . . , n} defined by

(u, v) < (w, x) if v − u < x − w or v − u = x − w and v < x (equivalently, if either (u, v)

belongs to a ‘strictly lower’ diagonal than (w, x), or they belong to the same diagonal

with (u, v) in an earlier column than (w, x)). This definition was first given in [6] where

the linear bijection ρ : Mn(C)→ Cn2

was defined by

ρ(A) = (an,1, an−1,1, an,2, an−2,1, an−1,2, an,3, . . . , a1,n−1, a2,n, a1,n),

where A = (ai,j). (Here we are simply writing the matrix A as a row vector starting from

the bottom left-hand corner and finishing at the top right-hand corner.) The matrix A

is an echelon representative for position (i, j) if the first nonzero entry of its row vector

ρ(A) is the same as the position of the nonzero entry of ρ(Ei,j). Below, we use the fact

that, if a set B of n × n matrices contains an echelon representative for every one of the

matrix positions {(i, j) : 1 ≤ i, j ≤ n}, then B spans Mn(C). This follows from the fact
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that, in such a case, ρ(B) contains a set of n2 row vectors in echelon so ρ(B) spans Cn2

.

Then 〈B〉 = ρ−1(Cn2

) = Mn(C).

Notice that, if A is an echelon representative for the matrix position (i, j) then JpAJq

is an echelon representative for the matrix position (i + p, j + q) if i + p, j + q ≤ n. (The

(u, v)th entry of JA is au+1,v if 1 ≤ u ≤ n − 1 and 0 otherwise. The (u, v)th entry of AJ

is au,v−1 if 2 ≤ v ≤ n and 0 otherwise.)

2. Irreducible pairs

EXAMPLE 2.1. Let B be the 3 × 3 matrix given by B = e1 ⊗ e2 + e2 ⊗ e3. The pair

{J, B} is irreducible. We have B2
= e1 ⊗ e3 and B2, JB2, J2B2, B2J, B2J2 are echelon

representatives for the positions (3, 1), (2, 1), (1, 1), (3, 2), (3, 1), respectively. Also J, J2

are echelon representatives for (1, 2), (1, 3), respectively. Finally, BJ, BJ2 are echelon

representatives for (2, 2), (2, 3), respectively. All of these echelon representatives have

slot length at most 2. The slot length of the pair {J, B} is 2.

EXAMPLE 2.2. On Cn, n ≥ 2, consider the irreducible pair {J, J∗}, where J∗ is the

adjoint of J. Now {(J∗)q : 1 ≤ q ≤ n − 1} is a set of echelon representatives for the

matrix positions {(i, 1) : 2 ≤ i ≤ n}, so {(J∗)qJp : 0 ≤ p ≤ n − 1, 1 ≤ q ≤ n − 1} is a set

of echelon representatives for the matrix positions {(i, j) : 2 ≤ i ≤ n, 1 ≤ j≤ n}, each of

which has slot length 2. Also, {Jp : 0 ≤ p ≤ n − 1} is a set of echelon representatives

for the matrix positions {(1, j) : 1 ≤ j ≤ n}. Each of these has slot length 1, with the

exception of J0
= I which has slot length 0. The slot length of {J, J∗} is 2.

EXAMPLE 2.3. Let B be the 10 × 10 matrix

B = e1 ⊗ e3 + e2 ⊗ e5 + e4 ⊗ e7 + e6 ⊗ e9 + e8 ⊗ e10.

We have

(BJ)2B = e1 ⊗ e7 + e2 ⊗ e9 + e4 ⊗ e10, (BJ)3B = e1 ⊗ e9 + e2 ⊗ e10,

(BJ)4
= e2 ⊗ e9 + e3 ⊗ e10, (BJ)4B = e1 ⊗ e10, (BJ)4J2B = e2 ⊗ e10.

So the following statements hold.

(i) (BJ)4B is an echelon representative for the position (10, 1). It has slot length 9.

(ii) {Jp(BJ)3BJq : 0 ≤ p ≤ 8, 0 ≤ q ≤ 9} are echelon representatives for the positions

{(i, j) : 1 ≤ i ≤ 9, 1 ≤ j ≤ 10}. Each of these has slot length at most 9.

(iii) (BJ)4J2B is an echelon representative for the position (10, 2). It has slot length 9.

(iv) (BJ)4 − (BJ)2B = e3 ⊗ e10 − e1 ⊗ e7 − e4 ⊗ e10 is an echelon representative for

the position (10, 3) and {((BJ)4 − (BJ)2B)Jq : 0 ≤ q ≤ 7} are echelon represen-

tatives for the positions {(10, j) : 3 ≤ j ≤ 10} and ((BJ)4 − (BJ)2B)Jq ∈ S9.

This shows that the slot length of {J, B} is at most 9 and that {J, B} is irreducible.

EXAMPLE 2.4. Let B ∈ M4(C) be B = (J∗)2
= e1 ⊗ e3 + e2 ⊗ e4. Then {J, B} is an

irreducible pair. Now BJB = e1 ⊗ e4, so {JpBJB : 0 ≤ p ≤ 3} is a set of echelon

representatives for the matrix positions {(i, 1) : 1 ≤ i ≤ 4} and {BJBJq : 0 ≤ q ≤ 3} is

a set of echelon representatives for {(4, j) : 1 ≤ j ≤ 4}. Now BJ = e2 ⊗ e3 + e3 ⊗ e4 and
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{Jp(BJ)Jq : 1 ≤ p, q ≤ 2} is a set of echelon representatives for the matrix positions

{(i, j) : 1 ≤ i ≤ 3, 2 ≤ j ≤ 4}. So the slot length of the pair is at most 4. We show that

it is precisely 4 by showing that (We1|e3) = (We2|e4) for every word in J, B with slot

length at most 3. Since B2
= 0, the only words for which this needs to be verified are

I, B, Jp, BJq, JpB, JpBJq, BJpB, where 1 ≤ p, q ≤ 3, and this is easily done.

DEFINITION 2.5. For any n × n matrix X and any integer j with 1 ≤ j ≤ n, let Dj(X) be

the largest integer k such that the kth element of column j of X is nonzero, taking Dj(X)

to be 0 if column j of X is zero. We call Dj(X) the depth of column j of X. Also, for any

integer i with 1 ≤ i ≤ n, let Li(X) be the smallest k such that the kth element of row i

of X is nonzero, taking Li(X) to be n+1 if row i of X is zero. We call Li(X) the length

of row i of X. (We hope this does not confuse the reader.)

Observe that, for any n × n matrices X, Y and for any integers p, q, r, s such that

1 ≤ p, q, r, s ≤ n,

if Lp(X) = q and Dr(Y) < q, for all r < s, and Ds(Y) = q, then Lp(XY) = s. (2.1)

Also note that Lp(XJ) = Lp(X) + 1 and Dq(JY) = Dq(Y) − 1, for any matrices X, Y and

any p,q such that Lp(X) ≤ n and Dq(Y) ≥ 1.

REMARK 2.6. Notice that if M = {Ai : 1 ≤ i ≤ m} is a set of complex matrices and

{αi : 1 ≤ i ≤ m} is any set of scalars, then M+ = {Ai + αiI : 1 ≤ i ≤ m} has the same

slot length asM. (Any word such as (Ai1 + αi1 I)p1 (Ai2 + αi2 I)p2 · · · (Aik + αik I)pk , where

{pi : 1 ≤ i ≤ m} ⊆ Z+ and Ai + αi , Ai+1 + αi+1, for 1 ≤ i ≤ m − 1, belongs to Sk(M).)

THEOREM 2.7. If {A, B} is an irreducible pair of n × n complex matrices, with n ≥ 5,

and A is unicellular, then the slot length s of {A, B} satisfies 2 ≤ s ≤ n − 1, where both

inequalities are sharp for every n.

PROOF. Since A is unicellular, it is similar to J + λI, for some scalar λ. By the remark

above, we may suppose that λ = 0. Since irreducibility and slot length are preserved

by similarities (indeed, Sk(S−1MS) = S−1Sk(M)S, for every k ∈ N), we may suppose

that A = J. We complete the proof by exhibiting, for every matrix position (i, j), with

1 ≤ i, j ≤ n, an echelon representative belonging to Sn−1.

As mentioned earlier, the nonzero invariant subspaces of J are the subspaces

Vk = 〈{e1, e2, . . . , ek}〉, k = 1, 2, . . . , n − 1. Since B does not leave Vn−1 invariant, there

exists j < n such that column j of B has depth n. Let m1 be the smallest such j and

let d1 be the depth of column m1. Then 1 ≤ m1 < n, d1 = n and column j of B has

depth less than n if j < m1. (Column m1 of B shows that B does not leave any of

the subspaces Vm1
, Vm1+1, . . . , Vn−1 invariant.) Since B does not leave Vm1−1 invariant,

there exists j < m1 such that column j of B has depth greater than m1 − 1. Let m2

be the smallest such j and let d2 be the depth of column m2. Then 1 ≤ m2 < m1 and

m1 ≤ d2 < n. Also, column j of B has depth less than m1 if j < m2. Continuing in

this way, we obtain strictly decreasing sequences 1 = mt < mt−1 < · · · < m2 < m1 and

dt < dt−1 < . . . < d2 < d1 = n with column mi of B having depth di ≥ mi−1, i = 2, . . . , t.
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We also have di < mi−2, for i = 3, 4, . . . , t, since column j of B has depth less than mi−2

if j < mi−1, so since mi < mi−1, we have di < mi−2. Thus

1 = mt < mt−1 ≤ dt < mt−2 ≤ · · · < mi+1 ≤ di+2 < mi ≤ · · · ≤ d3 < m1 ≤ d2 < d1 = n.

By definition, Dj(B) < di if j < mi for 1 ≤ i ≤ t − 1 and Dmi
(B) = di for 1 ≤ i ≤ t.

Let ui = di − mi−1, for 2 ≤ i ≤ t, and define Xk = BJu2 BJu3 · · ·BJuk−1 BJuk , for 2 ≤

k ≤ t, and Yk = BJu3 BJu4 · · ·BJuk−1 BJuk , for 3 ≤ k ≤ t.

We show that Ln(Xk) = dk, for 2 ≤ k ≤ t. First, observe that Ln(B) = m1, so

Ln(BJu2 ) = m1 + u2 = d2. Thus the result is true for k = 2. Let 2 ≤ k ≤ t − 1 and

suppose that Ln(Xk) = dk. Then, using observation (2.1) above, Ln(XkB) = mk and so

Ln(Xk+1) = mk + uk+1 = dk+1. This completes the induction proof.

We also show that if d2 = n − 1 then Ln−1(Yk) = dk, 3 ≤ k ≤ t. Now Ln−1(B) = m2,

so Ln−1(BJu3 ) = m2 + u3 = d3. Let 3 ≤ k ≤ t − 1 and suppose that Ln−1(Yk) = dk. Then

Ln−1(YkB) = mk (again using (2.1)) and Ln−1(Yk+1) = mk + uk+1 = dk+1. This completes

the induction proof.

Thus Ln(Xt) = dt and Ln(XtB) = mt = 1. In other words the entry in position (n, 1)

of XtB is nonzero, and so XtB is an echelon representative for the position (n, 1). Let

w be the cardinality of the set {i : 2 ≤ i ≤ t and di = mi−1}. The slot length of XtB

is 2t − 1 − 2w. If 2t − 1 − 2w ≤ n − 3 then {Jp(XtB)Jq : 0 ≤ p, q ≤ n − 1} is a set of

echelon representatives for all of the matrix positions, each having slot length at most

n − 1. The slot length of the pair {J, B} is at most n − 1 in this case.

In the remainder of the proof we assume that 2t − 1 − 2w ≥ n − 2. We exhibit, in

each case, a set of echelon representatives for all the matrix positions, each belonging

to Sn−1.

Now consider

1 = mt < mt−1 ≤ dt < mt−2 ≤ · · · < mi+1 ≤ di+2 < mi ≤ · · · ≤ d3 < m1 ≤ d2 < d1 = n.

In this chain, there are 2t points of division of the integer interval [1, n], possibly not

all distinct. We have

n − 1 = (d1 − d2) + (d2 − m1) + (m1 − d3) + · · · + (dt − mt−1) + (mt−1 − mt) = Σ + S,

where

Σ = (d1 − d2) + (mt−1 − mt) +

t−2∑

j=1

(mi − dj+2) and S =

t∑

i=2

(di − mi−1).

All of the bracketed terms in the expression for Σ are positive, while only t − 1 − w of

the bracketed terms in the expression for S are positive.

Case 1: w = 0. If w = 0, since we are assuming that 2t − 1 ≥ n − 2 and since n − 1 =

Σ + S ≥ t + (t − 1) = 2t − 1, we have 2t − 1 = n − 1 or n − 2.

Case 1.1: w = 0 and 2t − 1 = n − 1. This occurs only on even-dimensional spaces and

only when the value of each of the ‘jumps’

{mj − dj+2 : 1 ≤ j ≤ t − 2} ∪ {di − mi−1 : 2 ≤ i ≤ t} ∪ {d1 − d2, mt−1 − mt} (2.2)

is equal to 1. (Example 2.3 is of this type.)
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Case 1.2: w = 0 and 2t − 1 = n − 2. This case occurs only on odd-dimensional spaces

and only when all of the jumps in (2.2) have value 1 with precisely one exception,

which has value 2.

Case 2: w , 0. If w , 0, since we are assuming that 2t − 1 − 2w ≥ n − 2, we have

2t − 1 − w ≥ n − 2 − w. But n − 1 = Σ + S ≥ 2t − 1 − w. So n − 1 ≥ n − 2 − w and so

w = 1. Then, since we are assuming that 2t − 3 ≥ n − 2 and have shown that n − 1 ≥

2t − 2, it follows that n = 2t − 1. This case occurs only on odd-dimensional spaces and

occurs when precisely one of the jumps di0 − mi0−1, say, is 0 and all of the other jumps

{mj − dj+2 : 1 ≤ j ≤ t − 2} ∪ {di − mi−1 : 2 ≤ i , i0 ≤ t} ∪ {d1 − d2, mt−1 − mt}

have values equal to 1.

Case 1.1: Echelon representatives. In this case n = 2t and

1 = mt < mt−1 < dt < mt−2 < · · · < mi+1 < di+2 < mi < · · · < d3 < m1 < d2 < d1 = n,

where each strict inequality indicates a jump of precisely 1. So, for example, mt−1 = 2,

dt = 3 and d2 = n − 1, m1 = n − 2, d3 = n − 3.

Position (n, 1). Since each ui = di − mi−1 is 1, Xk = (BJ)k−1 for 2 ≤ k ≤ t. In

particular, Xt = (BJ)t−1 and XtB = (BJ)t−1B. As noted earlier, the latter is an echelon

representative for matrix position (n, 1). It has slot length 2t − 1 = n − 1.

Positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Now Ln((BJ)t−2) = Ln(Xt−1) = dt−1, so,

using observation (2.1), Ln((BJ)t−2B) = mt−1 = 2. Consider Ln−1(Xt−1) in this case.

We have Yt = (BJ)t−2 for 3 ≤ k ≤ t. Since d2 = n − 1, it follows that Ln−1(Yt) =

Ln(Xt−1) = Ln−1((BJ)t−2) = dt and Ln−1((BJ)t−2B) = 1. Since Ln((BJ)t−2B) = 2 and

Ln−1((BJ)t−2B) = 1, the matrix (BJ)t−2B is an echelon representative for the position

(n − 1, 1), with slot length 2t − 3 = n − 3. Thus, {Jp(BJ)t−2BJq : 0 ≤ p ≤ n − 2, 0 ≤

q ≤ n − 1} is a set of echelon representatives for the matrix positions {(i, j) : 1 ≤ i ≤

n − 1, 1 ≤ j ≤ n}, each having slot length at most n − 1 (so belonging to Sn−1).

Position (n, 2). Continuing, Ln(XtJ
2) = Ln((BJ)t−1J2) = dt + 2 = dt−1, so by (2.1),

Ln((BJ)t−1J2B) = mt−1 = 2. Since Ln−1((BJ)t−2) = dt, we have Ln−1((BJ)t−1) = mt +

1 = mt−1, so Ln−1((BJ)t−1J2) = mt−1 + 2 = mt−2 > dt and Ln−1((BJ)t−1J2B) > 1. Thus

(BJ)t−1J2B is an echelon representative for the matrix position (n, 2). It has slot length

2t − 1 = n − 1.

Positions {(n, j) : 3 ≤ j ≤ n}. Finding suitable echelon representatives for the remaining

matrix positions is more difficult. (We need n ≥ 5 to find such representatives.)

Consider the matrices (BJ)t−1 and (BJ)t−3B. We have Ln((BJ)t−1) = Ln(Xt) = dt = 3

and (from above) Ln−1((BJ)t−1) = mt−1 = 2. Since Lp(XJ) > 1, for every integer

1 ≤ p ≤ n and every matrix X ∈ Mn(C), we also have Ln−2((BJ)t−1) > 1. In comparison

Ln((BJ)t−3) = Ln(Xt−2) = dt−2 so Ln((BJ)t−3B) = mt−2 = 4. Since Ln−1((BJ)t−3) =

Ln−1(Yt−1) = dt−1, we have Ln−1((BJ)t−3B) = mt−1 = 2. Also, Ln−2(B) > m3, so

Ln−2(BJ) > m3 + 1 = d4. By induction, Ln−2((BJ)k) > dk+3, for 1 ≤ k ≤ t − 3. In

particular, Ln−2((BJ)t−3) > dt, so Ln−2((BJ)t−3B) > mt = 1. Comparing
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Ln((BJ)t−1) = 3, Ln−1((BJ)t−1) = 2, Ln−2((BJ)t−1) > 1,

Ln((BJ)t−3B) = 4, Ln−1((BJ)t−3B) = 2, Ln−2((BJ)t−3B) > 1,

we see that there exists a scalar λ such that (BJ)t−1 − λ(BJ)t−3B is an echelon

representative for the position (n, 3). (The scalar λ is equal to x/y where x and y

are the (n − 1, 2)th elements of (BJ)t−1 and (BJ)t−3B, respectively.) It follows that

{((BJ)t−1 − λ(BJ)t−3B)Jq : 0 ≤ q ≤ n − 3} is a set of echelon representatives for the

matrix positions {(n, j) : 3 ≤ j ≤ n}, each belonging to Sn−1.

Case 1.2: Echelon representatives. In this case n = 2t + 1 and all of the jumps in (2.2)

have value 1 with precisely one exception, which has value 2.

(i) Suppose that mt−1 = mt + 2.

Positions {(n, j) : 1 ≤ j ≤ n}. Since Ln(XtB) = Ln((BJ)t−1B) = 1 and the slot length of

(BJ)t−1B is 2t − 1 = n − 2, we see that {(BJ)t−1BJq : 0 ≤ q ≤ n − 1} is a set of echelon

representatives for the matrix positions {(n, j) : 1 ≤ j ≤ n}, each having slot length at

most n − 1.

Positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Once again we have Ln−1((BJ)t−2) = dt, so

Ln−1((BJ)t−2B) = 1. Since Ln((BJ)t−2) = dt−1, we have Ln((BJ)t−2B) = mt−1 = 3. It

follows that (BJ)t−2B is an echelon representative for the position (n − 1, 1). It has slot

length 2t − 1 = n − 4. Hence {Jp(BJ)t−2BJq : 0 ≤ p ≤ n − 2, 0 ≤ q ≤ n − 1} is a set of

echelon representatives for the matrix positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}, each

having slot length at most n − 1.

(ii) Suppose that d1 = d2 + 2.

Positions {(i, 1) : 1 ≤ i ≤ n}. Here, Ln((BJ)t−1B) = 1 so {Jp(BJ)t−1B : 0 ≤ p ≤ n − 1} is

a set of echelon representatives for the matrix positions {(i, 1) : 1 ≤ i ≤ n}, each having

slot length at most n − 1.

Positions {(i, j) : 1 ≤ i ≤ n, 2 ≤ j ≤ n}. Now Ln((BJ)t−2) = dt−1 and it follows

that Ln((BJ)t−2B) = mt−1 = 2. Since Ln−1(B) > m2, we have Ln−1(BJ) > d3. By

induction Ln−1((BJ)k) > dk+2 for 1 ≤ k ≤ t − 2. In particular, Ln−1((BJ)t−2) > dt so

Ln−1((BJ)t−2B) > mt = 1. Hence (BJ)t−2B is an echelon representative for the matrix

position (n, 2). It has slot length n − 4. Hence

{Jp(BJ)t−2BJq : 0 ≤ p ≤ n − 1, 0 ≤ q ≤ n − 2}

is a set of echelon representatives for the matrix positions {(i, j) : 1 ≤ i ≤ n, 2 ≤ j ≤ n},

each having slot length at most n − 2.

(iii) Suppose that mj0 − dj0+2 = 2, where 1 ≤ j0 ≤ t − 2.

Positions {(n, j) : 1 ≤ j ≤ n}. Now Ln(XtB) = Ln((BJ)t−1B) = 1. Since the slot length

of (BJ)t−1B is 2t − 1 = n − 2, the set {(BJ)t−1BJq : 0≤ q≤ n − 1} is a set of echelon

representatives for the matrix positions {(n, j) : 1 ≤ j ≤ n}, each having slot length at

most n − 1.
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Positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Here, Ln−1(Yt) = Ln−1((BJ)t−2) = dt,

since d2 = n − 1, so Ln−1((BJ)t−2B) = 1. Also Ln((BJ)t−2) = Ln(Xt−1) = dt−1, so

Ln((BJ)t−2B) = mt−1 = 2. Thus (BJ)t−2B is an echelon representative for the matrix

position (n − 1, 1). It has slot length 2t − 3 = n − 4. Thus

{Jp(BJ)t−2BJq : 0 ≤ p ≤ n − 2, 0 ≤ q ≤ n − 1}

is a set of echelon representatives for the positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n},

each having slot length at most n − 2.

(iv) Suppose that di1 − mi1−1 = 2, where 2 ≤ i1 ≤ t.

Positions {(n, j) : 1 ≤ j ≤ n}. Once again, Ln(XtB) = 1 and {XtBJq : 0 ≤ q ≤ n − 1} is a

set of echelon representatives for the matrix positions {(n, j) : 1 ≤ j ≤ n}, each having

slot length at most n − 1.

Positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Here, Ln−1(Yt) = dt since d2 = n − 1. Thus

Ln−1(YtB) = 1. Since Ln(B) = m1, we have Ln(BJu3 ) = Ln(Y3) = m1 + u3 = m1 + 1 =

d2, if i1 , 2, 3. Then Ln(Y4) = m2 + u4 = m2 + 1 = d3, if i1 , 2, 3, 4. By induction,

Ln(Yk) = dk−1, if 2 ≤ k ≤ i1 − 1. Then Ln(Yi1 ) = Ln(Yi1−1BJui1 ) = mi1−2 + ui1 = mi1−2 +

2 = mi1−3 > di1−1. Then Ln(Yi1+1) = Ln(Yi1 BJui1+1 ) > mi1−1 + ui1+1 = mi1−1 + 1 > di1+1.

By induction, Ln(Yk) > dk, for i1 + 1 ≤ k ≤ t. In particular, Ln(Yt) > dt, and so

Ln(YtB) > mt = 1. This shows that YtB is an echelon representative for the position

(n − 1, 1). It has slot length 2t − 3 = n − 4. So {JpYtBJq : 0 ≤ p ≤ n − 2, 0 ≤ q ≤ n − 1}

is a set of echelon representatives for the matrix positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤

n}, each having slot length at most n − 2.

Case 2: Echelon representatives. In this case n = 2t − 1 and di0 = mi0−1, with all other

jumps equal to 1. In particular, d2 = n − 1, so we have Ln−1(Yk) = dk, for 3 ≤ k≤ t.

(i) Suppose that i0 = 2.

Positions {(n, j) : 1 ≤ j ≤ n}. In this case, Ln(Xt) = Ln(B(BJ)t−2) = dt and

Ln(B(BJ)t−2B)= 1. The slot length of B(BJ)t−2B is 2t − 3 = n − 2 and so {B(BJ)t−2BJq :

0 ≤ q ≤ n − 1} is a set of echelon representatives for the matrix positions {(n, j) : 1 ≤

j ≤ n}, each having slot length at most n − 1.

Positions {(n − 1, j) : 1 ≤ j ≤ n}. Since Ln−1(Yk) = dk, for 3 ≤ k ≤ t and uk = 1, for 3 ≤

k ≤ t, this becomes Ln−1((BJ)k−2) = dk and taking k = t gives Ln−1((BJ)t−2) = dt. So

Ln−1((BJ)t−2B) = 1. Now Ln(B) = m1, so Ln(BJ) = m1 + 1 = d1. Thus Ln((BJ)k) = d1,

for all k. In particular, Ln((BJ)t−2) = d1 and so Ln((BJ)t−2B) = m1 > 1. Thus (BJ)t−2B is

an echelon representative for the position (n − 1, 1). It has slot length 2t − 3 = n − 2, so

{(BJ)t−2BJq : 0 ≤ q ≤ n − 1} is a set of echelon representatives of the matrix positions

{(n − 1, j) : 1 ≤ j ≤ n}, each having slot length at most n − 1.

Positions {(i, j) : 1 ≤ i ≤ n − 2, 1 ≤ j ≤ n}. Since Ln((BJ)t−3) = d1 we have

Ln((BJ)t−3B)=m1 = n − 1 > 2. Since Ln−1((BJ)t−3) = Ln−1(Yt−1) = dt−1, we have

Ln−1((BJ)t−3B) = mt−1 = 2. Also, Ln−2(B) = m3 since d3 = n − 2, so Ln−2(BJ) = d4 and,
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by induction Ln−2((BJ)k) = dk+3, for 1 ≤ k ≤ t − 3. In particular, Ln−2((BJ)t−3) = dt.

Hence Ln−2((BJ)t−3B) = 1. This shows that (BJ)t−3B is an echelon representative for

the position (n − 2, 1). It has slot length 2t − 5 = n − 4. Thus {Jp(BJ)t−3BJq : 0 ≤

p ≤ n − 3, 0 ≤ q ≤ n − 1} is a set of echelon representatives for the matrix positions

{(i, j) : 1 ≤ i ≤ n − 2, 1 ≤ j ≤ n}, each having slot length at most n − 2.

(ii) Suppose that i0 , 2.

Positions {(n, j) : 1 ≤ j ≤ n}. Again Ln(XtB) = 1, with XtB = (BJ)i0−2B(BJ)t−i0 B having

slot length n − 2. So {XtJ
q : 0 ≤ q ≤ n − 1} is a set of echelon representatives for the

matrix positions {(n, j) : 1 ≤ j ≤ n}, each having slot length at most n − 1.

Positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Now Ln−1(Yt) = Ln−1((BJ)i0−3B(BJ)t−i0 ) =

dt, so Ln−1(YtB) = mt = 1. Also, Ln(Xi0−2) = Ln((BJ)i0−3) = di0−2 so Ln((BJ)i0−3B) =

mi0−2 > di0 and Ln((BJ)i0−3B(BJ)) > di0+1. By induction, Ln(Yk) > di0+k, for

1 ≤ k ≤ t − i0. In particular, Ln(Yt) > dt and Ln(YtB) > 1. This shows that YtB =

(BJ)i0−3B(BJ)t−i0 B is an echelon representative for the position (n − 1, 1), so {JpYtBJq :

0 ≤ p ≤ n − 2, 0 ≤ q ≤ n − 1} is a set of echelon representatives for the matrix

positions {(i, j) : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n}. Since the slot length of (BJ)i0−3B(BJ)t−i0 B

is 2t − 5 = n − 4, each has slot length at most n − 2.

Finally, we establish the sharpness of the inequality 2 ≤ s ≤ n − 1 as in the

statement of the theorem. Example 2.2 above shows that the lower bound is sharp.

That the upper bound is sharp is shown by Example 2.8 below. �

EXAMPLE 2.8. (a) Let n = 2t and t ≥ 3. Let the strictly decreasing sequences {mi :

1 ≤ i ≤ t} and {di : 1 ≤ i ≤ t} be as in Case 1.1: w = 0, all jumps equal to 1. Let B =∑t
i=1 emi

⊗ edi
. Then {J, B} is an irreducible pair and, by the theorem, its slot length is

at most n − 1. In fact its slot length is equal to n − 1, as we now show.

We show that every word W in J, B of slot length n − 2 or less satisfies (We1|en)= 0.

It follows that (Te1|en) = 0, for every T ∈ Sn−2, so Sn−2 , Mn(C). Observe that

Bei, Jei ∈ {0} ∪ {ej : 1 ≤ j ≤ n}, for 1 ≤ i ≤ n. In fact, Bemi
= edi

for 1 ≤ i ≤ t and

Range(B) = 〈{edi
: 1 ≤ i ≤ t}〉. Clearly B2

= 0. Note also that

{ej : j > mk} ∩ Range (B) = {edj
: 1 ≤ j ≤ k + 1}, for 1 ≤ k ≤ t.

Suppose that (We1|en) , 0, where W is a word in J, B of slot length n − 2 or

less. Since Je1 = J∗en = 0, the word W cannot begin or end with a term Jp with

p > 0. Since W , I, W has odd positive slot length, say 2r + 1, where r ≤ t − 2 (since

2r + 1 ≤ n− 2 = 2t − 2). Let W = BJp1 BJp2 · · ·BJpr B and Wk = Jpk BJpk+1 B · · · Jpr B,

for 1≤ k≤ r.

We claim that Wke1 ∈ {emj
: 1 ≤ j ≤ k}, for 1 ≤ k ≤ r. Now We1 = BW1e1 = en =

ed1
, so W1e1 = em1

, so the result is true for k = 1. Let 1 ≤ k ≤ r − 1 and assume that

the result is true for k. Then Wke1 = Jpk BWk+1e1 ∈ {emj
: 1 ≤ j ≤ k}, so that BWk+1e1 ∈

{ej : j > mk} ∩ Range (B) = {edj
: 1 ≤ j ≤ k + 1}. Thus Wk+1e1 ∈ {emj

: 1 ≤ j ≤ k + 1}.

This completes the proof by induction.
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In particular, Wre1 = Jpr Be1 ∈ {emj
: 1 ≤ j ≤ r}, so

Be1 ∈ {ej : j > mr} ∩ Range (B) = {edj
: 1 ≤ j ≤ r + 1}.

But Be1 = Bemt
= edt

and, since r + 1 < t, we get a contradiction. This contradiction

shows that the slot length of the pair {J, B} is precisely n − 1.

(b) Let n = 2t + 1, t ≥ 2. Let the strictly decreasing sequences {mi : 1 ≤ i ≤ t} and

{di : 1 ≤ i ≤ t} be as in Case 1.2 (ii): w = 0, all jumps equal to 1 except that d1 = d2 + 2.

Let B =
∑t

i=1 emi
⊗ edi

. Then {J, B} is an irreducible pair, and by the theorem, its slot

length is at most n − 1. In fact its slot length is equal to n − 1, as we now show.

We show that every word W in J, B of slot length n − 2 or less satisfies (We1|en−1) =

0. Again observe that Bei, Jei ∈ {0} ∪ {ej : 1 ≤ j ≤ n}, for 1 ≤ i ≤ n. In fact Bemi
= edi

,

for 1 ≤ i ≤ t and Range(B) = 〈{edi
: 1 ≤ i ≤ t}〉. Clearly B2

= 0. Again note that

{ej : j > mk} ∩ Range (B) = {edj
: 1 ≤ j ≤ k + 1}, for 1 ≤ k ≤ t.

Suppose that (We1|en−1) , 0, where W is a word in J, B of slot length n − 2 or

less. Clearly W , I. Since Je1 = 0, W cannot end with a term Jp with p > 0. Since

B∗en−1 = 0, W cannot begin with B either. Let W = Jp1 BJp2 B · · · Jpr B and let Wk =

Jpk BJpk+1 B · · · Jpr B, for 1 ≤ k ≤ r.

We claim that Wke1 ∈ {emj
: 1 ≤ j ≤ k − 1}, for 2 ≤ k ≤ r. Now We1 = Jp1 BW2e1 =

en = ed1
, so BW2e1 = en = ed1

and W2e1 = em1
, so the result is true for k = 1. Let 2 ≤

k ≤ r − 1 and assume that the result is true for k. Then Wke1 = Jpk BWk+1e1 ∈ {emj
: 1 ≤

j ≤ k − 1}, so

BWk+1e1 ∈ {ej : j > mk−1} ∩ Range (B) = {edj
: 1 ≤ j ≤ k}.

Thus Wk+1e1 ∈ {emj
: 1 ≤ j ≤ k}. This completes the proof by induction.

In particular, Wre1 = Jpr Be1 ∈ {emj
: 1 ≤ j ≤ r − 1}, so

Be1 ∈ {ej : j > mr−1} ∩ Range (B) = {edj
: 1 ≤ j ≤ r}.

But Be1 = Bemt
= edt

and, since r < t, we get a contradiction. This contradiction shows

that the slot length of the pair {J, B} is precisely n − 1.

CONJECTURE 2.9. If n ≥ 5, every irreducible pair of complex matrices has slot length

at most n − 1.

REMARK 2.10. (1) If R is an irreducible family of rank-one matrices, then slot

length(R) = length(R), since for every rank-one matrix R we have R2
= λR for some

scalar λ. Irreducible families of rank-one matrices are considered in [4]. In particular,

it is shown there that, if n ≥ 2 and R ⊆ Mn(C) then R has slot length at most n.

The slot length of such a family can equal n. For example, the set of elementary

matrices E = {Ei,j : j − i = −1 or n − 1, 1 ≤ i, j ≤ n} has slot length n. Here every

element of E has square 0. The linear span of the words of slot length n − 1 is

Sn−1 = 〈{Ei,j : j , i, 1 ≤ i, j ≤ n}〉 + CI. Since Ei,i+1Ei+1,i = Ei,i, for 1≤ i≤ n − 1, and

En,n−1En−1,n = En,n, where Ei,i+1, En−1,n ∈ Sn−1 and Ei+1,i, En,n−1 ∈ E, it follows that

Sn = Mn(C), so the slot length of E is n.
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(2) Examples of irreducible pairs of matrices with slot length 3 follow from [6,

Theorem 1]. By this theorem, if {A, B} is an irreducible pair and B has rank 1, then

{ApBAq; 0 ≤ p, q ≤ n − 1} is a basis for Mn(C). Clearly, the slot length of the pair is at

most 3, and since S2 is spanned by {I, B, Ap, BAq, ArB : 0 ≤ p, q, r ≤ n − 1}, which has

3n − 1 elements and 3n − 1 < n2, the slot length equals 3, if n ≥ 3.

(3) In the example in (2) above, A need not be unicellular. For example, if A

is a diagonal matrix with distinct nonzero diagonal entries it is well known that

every nonzero invariant subspace of A has the form 〈{ei : i ∈ F }〉, for some nonempty

subset F of {1, 2, . . . , n}. Thus if B = e ⊗ e, where e = (1, 1, . . . , 1), the pair {A, B} is

irreducible. It is easy to see that this pair has slot length 3, assuming that n ≥ 3. This

is so because, for 1 ≤ i ≤ n, Ei,i = pi(A) for some polynomial pi(z). So pi(A)Bpj(A) is

the elementary matrix Ei,j, for all i, j. Every polynomial in A belongs to S1({A, B}).

(4) Finally, notice that if A ∈ Mn(C) has a minimum nonzero invariant subspace

M0 and a maximum proper invariant subspace N0, any rank-one matrix B satisfying

(Bu|v) , 0 for some u ∈ M0, v ∈ N⊥
0

has no nontrivial invariant subspaces in common

with A. Indeed, if the subspace M , (0) or Cn is invariant under A, then M0 ⊆ M and

M ⊆ N0. Thus u ∈ M and v ∈ M⊥. The fact that (Bu|v) , 0 now shows that B does not

leave M invariant. The slot length of the pair {A, B} is 3, if n ≥ 3. (For example, A = J,

M0 = 〈e1〉, N0 = 〈{e1, e2, . . . , en−1}〉, B = e1 ⊗ en and u = e1, v = en.)
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