Bull. Aust. Math. Soc. **103** (2021), 260–270 doi:10.1017/S0004972720000726

THE SLOT LENGTH OF A FAMILY OF MATRICES

W. E. LONGSTAFF

(Received 17 May 2020; accepted 3 June 2020; first published online 5 October 2020)

Abstract

We introduce the notion of the *slot length* of a family of matrices over an arbitrary field \mathbb{F} . Using this definition it is shown that, if $n \ge 5$ and A and B are $n \times n$ complex matrices with A uncellular and the pair $\{A, B\}$ irreducible, the slot length s of $\{A, B\}$ satisfies $2 \le s \le n - 1$, where both inequalities are sharp, for every n. It is conjectured that the slot length of any irreducible pair of $n \times n$ matrices, where $n \ge 5$, is at most n - 1. The slot length of a family of rank-one complex matrices can be equal to n.

2020 Mathematics subject classification: primary 15A30.

Keywords and phrases: irreducible, linear span.

1. Introduction

Let \mathcal{A} be a finite family of distinct symbols. Every word w in \mathcal{A} can be written, using index notation, uniquely in the form $a_1^{r_1}a_2^{r_2}\cdots a_{k-1}^{r_{k-1}}a_k^{r_k}$, where each r_i is a positive integer and adjacent bases are distinct elements of \mathcal{A} , that is, $a_i \neq a_{i+1}$ for $1 \le i \le k - 1$. We define the *slot length* of the word w to be k. For example, if $a, b, c, x, y, z \in \mathcal{A}$, a^3 has slot length 1; a^2bc^8 has slot length 3, assuming that $a \neq b \neq c$; $x^5y^4z^4a^2bc^5$ has slot length 6, assuming that $x \neq y \neq z \neq a \neq b \neq c$.

Let \mathbb{F} be a field and let \mathcal{M} be a finite family of $n \times n$ matrices over \mathbb{F} . Let the identity matrix I be taken as the empty word in \mathcal{M} and let it have slot length 0. For $k \in \mathbb{N}$, let $\mathcal{S}_k(\mathcal{M})$, written as just \mathcal{S}_k if it is clear what \mathcal{M} is, be the linear span of the words in \mathcal{M} of slot length at most k. Clearly $\mathcal{S}_k \subseteq \mathcal{S}_{k+1}$ for every k. If $\mathcal{S}_{k+1} = \mathcal{S}_k$, then $\mathcal{S}_{k+2} = \mathcal{S}_{k+1}$. Thus there exists a positive integer s such that

$$\mathbb{F}I = S_0 \subset S_1 \subset S_2 \subset S_3 \subset \cdots \subset S_s = S_p, \text{ for every } p \ge s,$$

where ' \subset ' denotes strict inclusion, and where S_s is the unital algebra generated by \mathcal{M} . We define the integer *s* to be the *slot length* of the family \mathcal{M} . Of course, any word in \mathcal{M} of length *k* in the usual sense has slot length at most *k*. If the field \mathbb{F} is algebraically closed and \mathcal{M} is irreducible then $S_s = M_n(\mathbb{F})$, by Burnside's theorem [2].

A great deal of work has been done investigating the notion of 'length of a family of matrices over the field \mathbb{F} ', much of it directed towards resolving Paz's conjecture [8] that the length of any finite set of $n \times n$ matrices is at most 2n - 2. This conjecture

^{© 2020} Australian Mathematical Publishing Association Inc.

remains unresolved. A recent result [9, Theorem 3] of Shitov shows that the length is at most $2n \log_2 n + 4n - 4$. For other recent results and further references, see [1, 7].

In this paper we will consider the slot lengths of irreducible pairs of $n \times n$ complex matrices where one of the matrices is *unicellular*, that is, its set of invariant subspaces is totally ordered by inclusion (equivalently, it is nonderogatory with singleton spectrum). Here, and in what follows, *irreducible* will mean *having no nontrivial common invariant subspaces*. We considered such pairs in [3] (see also [5]), where it was shown that the length l of such a pair satisfies $l \le 2n - 2$ and the inequality is sharp for all $n \ge 2$. Here we show that, if $n \ge 5$, the slot length s of such a pair satisfies $s \le n - 1$, where the inequality is sharp for every $n \ge 5$. We conjecture that this inequality holds, for $n \ge 5$, for any irreducible pair of matrices. Obviously, if $n \ge 2$, the slot length of such a pair is at least 2. We observe that it can actually be 2. An example is given showing that, for any $n \ge 2$, the slot length of a finite, irreducible family of rank-one matrices can be equal to n.

Throughout, we denote the standard basis for \mathbb{C}^n by $\{e_i : 1 \le i \le n\}$, and the linear span of a set \mathcal{E} of vectors by $\langle \mathcal{E} \rangle$. If $e, f \in \mathbb{C}^n$ are nonzero vectors, the rank-one matrix $e \otimes f$ is defined by $(e \otimes f)(x) = (x|e)f$, $x \in \mathbb{C}^n$, where '(·|·)' denotes the standard inner-product. We then have $T(e \otimes f) = e \otimes Tf$ and $(e \otimes f)T = T^*e \otimes f$, for any matrix T, where T^* denotes the adjoint of T. Note that $e_j \otimes e_i = E_{i,j}$, the usual elementary matrix with a 1 in position (i, j) and 0s elsewhere. The strictly upper triangular Jordan matrix is denoted by J, the $n \times n$ matrix with 1s in positions $\{(i, i + 1) : 1 \le i \le n - 1\}$ and 0s elsewhere. It is unicellular and its nonzero invariant subspaces are V_k , where $V_k = \langle e_1, e_2, \ldots, e_k \rangle$, for $1 \le k \le n$.

For $-(n-1) \le k \le n-1$, the subset \mathcal{D}_k of $\{1, 2, \dots, n\} \times \{1, 2, \dots, n\}$ defined by $\mathcal{D}_k = \{(i, j) : 1 \le i, j \le n, j-i=k\}$ is called the *kth diagonal*.

DEFINITION 1.1. A matrix $A \in M_n(\mathbb{C})$, $A = (a_{u,v})$, is called an *echelon representative* for the matrix position (i,j) if $a_{i,j} \neq 0$, and $a_{u,v} = 0$ if v - u < j - i and if v - u = j - i with v < j.

In other words, *A* is an echelon representative for (i, j) if its (i, j)th entry is the first nonzero entry of *A* in the total ordering of $\{1, 2, ..., n\} \times \{1, 2, ..., n\}$ defined by (u, v) < (w, x) if v - u < x - w or v - u = x - w and v < x (equivalently, if either (u, v) belongs to a 'strictly lower' diagonal than (w, x), or they belong to the same diagonal with (u, v) in an earlier column than (w, x)). This definition was first given in [6] where the linear bijection $\rho : M_n(\mathbb{C}) \to \mathbb{C}^{n^2}$ was defined by

$$\rho(A) = (a_{n,1}, a_{n-1,1}, a_{n,2}, a_{n-2,1}, a_{n-1,2}, a_{n,3}, \dots, a_{1,n-1}, a_{2,n}, a_{1,n}),$$

where $A = (a_{i,j})$. (Here we are simply writing the matrix A as a row vector starting from the bottom left-hand corner and finishing at the top right-hand corner.) The matrix Ais an echelon representative for position (i, j) if the first nonzero entry of its row vector $\rho(A)$ is the same as the position of the nonzero entry of $\rho(E_{i,j})$. Below, we use the fact that, if a set \mathcal{B} of $n \times n$ matrices contains an echelon representative for every one of the matrix positions $\{(i, j) : 1 \le i, j \le n\}$, then \mathcal{B} spans $M_n(\mathbb{C})$. This follows from the fact that, in such a case, $\rho(\mathcal{B})$ contains a set of n^2 row vectors in echelon so $\rho(\mathcal{B})$ spans \mathbb{C}^{n^2} . Then $\langle \mathcal{B} \rangle = \rho^{-1}(\mathbb{C}^{n^2}) = M_n(\mathbb{C})$.

Notice that, if *A* is an echelon representative for the matrix position (i, j) then $J^p A J^q$ is an echelon representative for the matrix position (i + p, j + q) if $i + p, j + q \le n$. (The (u, v)th entry of *JA* is $a_{u+1,v}$ if $1 \le u \le n - 1$ and 0 otherwise. The (u, v)th entry of *AJ* is $a_{u,v-1}$ if $2 \le v \le n$ and 0 otherwise.)

2. Irreducible pairs

EXAMPLE 2.1. Let *B* be the 3 × 3 matrix given by $B = e_1 \otimes e_2 + e_2 \otimes e_3$. The pair $\{J, B\}$ is irreducible. We have $B^2 = e_1 \otimes e_3$ and $B^2, JB^2, J^2B^2, B^2J, B^2J^2$ are echelon representatives for the positions (3, 1), (2, 1), (1, 1), (3, 2), (3, 1), respectively. Also J, J^2 are echelon representatives for (1, 2), (1, 3), respectively. Finally, BJ, BJ^2 are echelon representatives for (2, 2), (2, 3), respectively. All of these echelon representatives have slot length at most 2. The slot length of the pair $\{J, B\}$ is 2.

EXAMPLE 2.2. On \mathbb{C}^n , $n \ge 2$, consider the irreducible pair $\{J, J^*\}$, where J^* is the adjoint of *J*. Now $\{(J^*)^q : 1 \le q \le n-1\}$ is a set of echelon representatives for the matrix positions $\{(i, 1) : 2 \le i \le n\}$, so $\{(J^*)^q J^p : 0 \le p \le n-1, 1 \le q \le n-1\}$ is a set of echelon representatives for the matrix positions $\{(i, j) : 2 \le i \le n\}$, each of which has slot length 2. Also, $\{J^p : 0 \le p \le n-1\}$ is a set of echelon representatives for the matrix positions $\{(i, j) : 1 \le j \le n\}$. Each of these has slot length 1, with the exception of $J^0 = I$ which has slot length 0. The slot length of $\{J, J^*\}$ is 2.

EXAMPLE 2.3. Let *B* be the 10×10 matrix

$$B = e_1 \otimes e_3 + e_2 \otimes e_5 + e_4 \otimes e_7 + e_6 \otimes e_9 + e_8 \otimes e_{10}.$$

We have

$$(BJ)^2 B = e_1 \otimes e_7 + e_2 \otimes e_9 + e_4 \otimes e_{10}, \quad (BJ)^3 B = e_1 \otimes e_9 + e_2 \otimes e_{10}, (BJ)^4 = e_2 \otimes e_9 + e_3 \otimes e_{10}, \quad (BJ)^4 B = e_1 \otimes e_{10}, \quad (BJ)^4 J^2 B = e_2 \otimes e_{10}.$$

So the following statements hold.

- (i) $(BJ)^4B$ is an echelon representative for the position (10, 1). It has slot length 9.
- (ii) $\{J^p(BJ)^3BJ^q: 0 \le p \le 8, 0 \le q \le 9\}$ are echelon representatives for the positions $\{(i,j): 1 \le i \le 9, 1 \le j \le 10\}$. Each of these has slot length at most 9.
- (iii) $(BJ)^4 J^2 B$ is an echelon representative for the position (10, 2). It has slot length 9.
- (iv) $(BJ)^4 (BJ)^2B = e_3 \otimes e_{10} e_1 \otimes e_7 e_4 \otimes e_{10}$ is an echelon representative for the position (10, 3) and $\{((BJ)^4 (BJ)^2B)J^q : 0 \le q \le 7\}$ are echelon representatives for the positions $\{(10, j) : 3 \le j \le 10\}$ and $((BJ)^4 (BJ)^2B)J^q \in S_9$.

This shows that the slot length of $\{J, B\}$ is at most 9 and that $\{J, B\}$ is irreducible.

EXAMPLE 2.4. Let $B \in M_4(\mathbb{C})$ be $B = (J^*)^2 = e_1 \otimes e_3 + e_2 \otimes e_4$. Then $\{J, B\}$ is an irreducible pair. Now $BJB = e_1 \otimes e_4$, so $\{J^pBJB : 0 \le p \le 3\}$ is a set of echelon representatives for the matrix positions $\{(i, 1) : 1 \le i \le 4\}$ and $\{BJBJ^q : 0 \le q \le 3\}$ is a set of echelon representatives for $\{(4, j) : 1 \le j \le 4\}$. Now $BJ = e_2 \otimes e_3 + e_3 \otimes e_4$ and

 $\{J^p(BJ)J^q : 1 \le p, q \le 2\}$ is a set of echelon representatives for the matrix positions $\{(i, j) : 1 \le i \le 3, 2 \le j \le 4\}$. So the slot length of the pair is at most 4. We show that it is precisely 4 by showing that $(We_1|e_3) = (We_2|e_4)$ for every word in *J*, *B* with slot length at most 3. Since $B^2 = 0$, the only words for which this needs to be verified are $I, B, J^p, BJ^q, J^pB, J^pBJ^q, BJ^pB$, where $1 \le p, q \le 3$, and this is easily done.

DEFINITION 2.5. For any $n \times n$ matrix X and any integer *j* with $1 \le j \le n$, let $D_j(X)$ be the largest integer *k* such that the *k*th element of column *j* of X is nonzero, taking $D_j(X)$ to be 0 if column *j* of X is zero. We call $D_j(X)$ the *depth* of column *j* of X. Also, for any integer *i* with $1 \le i \le n$, let $L_i(X)$ be the smallest *k* such that the *k*th element of row *i* of X is nonzero, taking $L_i(X)$ to be n+1 if row *i* of X is zero. We call $L_i(X)$ the *length* of row *i* of X. (We hope this does not confuse the reader.)

Observe that, for any $n \times n$ matrices X, Y and for any integers p, q, r, s such that $1 \le p, q, r, s \le n$,

if
$$L_p(X) = q$$
 and $D_r(Y) < q$, for all $r < s$, and $D_s(Y) = q$, then $L_p(XY) = s$. (2.1)

Also note that $L_p(XJ) = L_p(X) + 1$ and $D_q(JY) = D_q(Y) - 1$, for any matrices X, Y and any p,q such that $L_p(X) \le n$ and $D_q(Y) \ge 1$.

REMARK 2.6. Notice that if $\mathcal{M} = \{A_i : 1 \le i \le m\}$ is a set of complex matrices and $\{\alpha_i : 1 \le i \le m\}$ is any set of scalars, then $\mathcal{M}^+ = \{A_i + \alpha_i I : 1 \le i \le m\}$ has the same slot length as \mathcal{M} . (Any word such as $(A_{i_1} + \alpha_{i_1}I)^{p_1}(A_{i_2} + \alpha_{i_2}I)^{p_2}\cdots(A_{i_k} + \alpha_{i_k}I)^{p_k}$, where $\{p_i : 1 \le i \le m\} \subseteq \mathbb{Z}^+$ and $A_i + \alpha_i \ne A_{i+1} + \alpha_{i+1}$, for $1 \le i \le m - 1$, belongs to $\mathcal{S}_k(\mathcal{M})$.)

THEOREM 2.7. If $\{A, B\}$ is an irreducible pair of $n \times n$ complex matrices, with $n \ge 5$, and A is unicellular, then the slot length s of $\{A, B\}$ satisfies $2 \le s \le n - 1$, where both inequalities are sharp for every n.

PROOF. Since *A* is unicellular, it is similar to $J + \lambda I$, for some scalar λ . By the remark above, we may suppose that $\lambda = 0$. Since irreducibility and slot length are preserved by similarities (indeed, $S_k(S^{-1}MS) = S^{-1}S_k(M)S$, for every $k \in \mathbb{N}$), we may suppose that A = J. We complete the proof by exhibiting, for every matrix position (i, j), with $1 \le i, j \le n$, an echelon representative belonging to S_{n-1} .

As mentioned earlier, the nonzero invariant subspaces of *J* are the subspaces $V_k = \langle \{e_1, e_2, \ldots, e_k\} \rangle$, $k = 1, 2, \ldots, n-1$. Since *B* does not leave V_{n-1} invariant, there exists j < n such that column *j* of *B* has depth *n*. Let m_1 be the smallest such *j* and let d_1 be the depth of column m_1 . Then $1 \le m_1 < n$, $d_1 = n$ and column *j* of *B* has depth less than *n* if $j < m_1$. (Column m_1 of *B* shows that *B* does not leave V_{m_1-1} invariant, there exists $j < m_1$ such that column *j* of *B* has depth greater than $m_1 - 1$. Let m_2 be the smallest such *j* and let d_2 be the depth of column m_2 . Then $1 \le m_2 < m_1$ and $m_1 \le d_2 < n$. Also, column *j* of *B* has depth less than m_1 if $j < m_2$. Continuing in this way, we obtain strictly decreasing sequences $1 = m_t < m_{t-1} < \cdots < m_2 < m_1$ and $d_t < d_{t-1} < \cdots < d_2 < d_1 = n$ with column m_i of *B* having depth $d_i \ge m_{i-1}, i = 2, \ldots, t$.

We also have $d_i < m_{i-2}$, for i = 3, 4, ..., t, since column j of B has depth less than m_{i-2} if $j < m_{i-1}$, so since $m_i < m_{i-1}$, we have $d_i < m_{i-2}$. Thus

$$1 = m_t < m_{t-1} \le d_t < m_{t-2} \le \dots < m_{i+1} \le d_{i+2} < m_i \le \dots \le d_3 < m_1 \le d_2 < d_1 = n_1$$

By definition, $D_i(B) < d_i$ if $j < m_i$ for $1 \le i \le t - 1$ and $D_{m_i}(B) = d_i$ for $1 \le i \le t$.

Let $u_i = d_i - m_{i-1}$, for $2 \le i \le t$, and define $X_k = BJ^{u_2}BJ^{u_3} \cdots BJ^{u_{k-1}}BJ^{u_k}$, for $2 \le k \le t$, and $Y_k = BJ^{u_3}BJ^{u_4} \cdots BJ^{u_{k-1}}BJ^{u_k}$, for $3 \le k \le t$.

We show that $L_n(X_k) = d_k$, for $2 \le k \le t$. First, observe that $L_n(B) = m_1$, so $L_n(BJ^{u_2}) = m_1 + u_2 = d_2$. Thus the result is true for k = 2. Let $2 \le k \le t - 1$ and suppose that $L_n(X_k) = d_k$. Then, using observation (2.1) above, $L_n(X_kB) = m_k$ and so $L_n(X_{k+1}) = m_k + u_{k+1} = d_{k+1}$. This completes the induction proof.

We also show that if $d_2 = n - 1$ then $L_{n-1}(Y_k) = d_k$, $3 \le k \le t$. Now $L_{n-1}(B) = m_2$, so $L_{n-1}(BJ^{u_3}) = m_2 + u_3 = d_3$. Let $3 \le k \le t - 1$ and suppose that $L_{n-1}(Y_k) = d_k$. Then $L_{n-1}(Y_kB) = m_k$ (again using (2.1)) and $L_{n-1}(Y_{k+1}) = m_k + u_{k+1} = d_{k+1}$. This completes the induction proof.

Thus $L_n(X_t) = d_t$ and $L_n(X_tB) = m_t = 1$. In other words the entry in position (n, 1) of X_tB is nonzero, and so X_tB is an echelon representative for the position (n, 1). Let w be the cardinality of the set $\{i : 2 \le i \le t \text{ and } d_i = m_{i-1}\}$. The slot length of X_tB is 2t - 1 - 2w. If $2t - 1 - 2w \le n - 3$ then $\{J^p(X_tB)J^q : 0 \le p, q \le n - 1\}$ is a set of echelon representatives for all of the matrix positions, each having slot length at most n - 1. The slot length of the pair $\{J, B\}$ is at most n - 1 in this case.

In the remainder of the proof we assume that $2t - 1 - 2w \ge n - 2$. We exhibit, in each case, a set of echelon representatives for all the matrix positions, each belonging to S_{n-1} .

Now consider

$$1 = m_t < m_{t-1} \le d_t < m_{t-2} \le \dots < m_{i+1} \le d_{i+2} < m_i \le \dots \le d_3 < m_1 \le d_2 < d_1 = n$$

In this chain, there are 2t points of division of the integer interval [1, n], possibly not all distinct. We have

$$n-1 = (d_1 - d_2) + (d_2 - m_1) + (m_1 - d_3) + \dots + (d_t - m_{t-1}) + (m_{t-1} - m_t) = \Sigma + S,$$

where

$$\Sigma = (d_1 - d_2) + (m_{t-1} - m_t) + \sum_{j=1}^{t-2} (m_i - d_{j+2})$$
 and $S = \sum_{i=2}^t (d_i - m_{i-1}).$

All of the bracketed terms in the expression for Σ are positive, while only t - 1 - w of the bracketed terms in the expression for *S* are positive.

Case 1: w = 0. If w = 0, since we are assuming that $2t - 1 \ge n - 2$ and since $n - 1 = \Sigma + S \ge t + (t - 1) = 2t - 1$, we have 2t - 1 = n - 1 or n - 2.

Case 1.1: w = 0 and 2t - 1 = n - 1. This occurs only on even-dimensional spaces and only when the value of each of the 'jumps'

$$\{m_j - d_{j+2} : 1 \le j \le t - 2\} \cup \{d_i - m_{i-1} : 2 \le i \le t\} \cup \{d_1 - d_2, m_{t-1} - m_t\}$$
(2.2)

is equal to 1. (Example 2.3 is of this type.)

Case 1.2: w = 0 and 2t - 1 = n - 2. This case occurs only on odd-dimensional spaces and only when all of the jumps in (2.2) have value 1 with precisely one exception, which has value 2.

Case 2: $w \neq 0$. If $w \neq 0$, since we are assuming that $2t - 1 - 2w \ge n - 2$, we have $2t - 1 - w \ge n - 2 - w$. But $n - 1 = \Sigma + S \ge 2t - 1 - w$. So $n - 1 \ge n - 2 - w$ and so w = 1. Then, since we are assuming that $2t - 3 \ge n - 2$ and have shown that $n - 1 \ge 2t - 2$, it follows that n = 2t - 1. This case occurs only on odd-dimensional spaces and occurs when precisely one of the jumps $d_{i_0} - m_{i_0-1}$, say, is 0 and all of the other jumps

$$\{m_j - d_{j+2} : 1 \le j \le t - 2\} \cup \{d_i - m_{i-1} : 2 \le i \ne i_0 \le t\} \cup \{d_1 - d_2, m_{t-1} - m_t\}$$

have values equal to 1.

Case 1.1: Echelon representatives. In this case n = 2t and

$$1 = m_t < m_{t-1} < d_t < m_{t-2} < \cdots < m_{i+1} < d_{i+2} < m_i < \cdots < d_3 < m_1 < d_2 < d_1 = n,$$

where each strict inequality indicates a jump of precisely 1. So, for example, $m_{t-1} = 2$, $d_t = 3$ and $d_2 = n - 1$, $m_1 = n - 2$, $d_3 = n - 3$.

Position (n, 1). Since each $u_i = d_i - m_{i-1}$ is 1, $X_k = (BJ)^{k-1}$ for $2 \le k \le t$. In particular, $X_t = (BJ)^{t-1}$ and $X_t B = (BJ)^{t-1} B$. As noted earlier, the latter is an echelon representative for matrix position (n, 1). It has slot length 2t - 1 = n - 1.

Positions $\{(i, j) : 1 \le i \le n - 1, 1 \le j \le n\}$. Now $L_n((BJ)^{t-2}) = L_n(X_{t-1}) = d_{t-1}$, so, using observation (2.1), $L_n((BJ)^{t-2}B) = m_{t-1} = 2$. Consider $L_{n-1}(X_{t-1})$ in this case. We have $Y_t = (BJ)^{t-2}$ for $3 \le k \le t$. Since $d_2 = n - 1$, it follows that $L_{n-1}(Y_t) = L_n(X_{t-1}) = L_{n-1}((BJ)^{t-2}) = d_t$ and $L_{n-1}((BJ)^{t-2}B) = 1$. Since $L_n((BJ)^{t-2}B) = 2$ and $L_{n-1}((BJ)^{t-2}B) = 1$, the matrix $(BJ)^{t-2}B$ is an echelon representative for the position (n-1, 1), with slot length 2t - 3 = n - 3. Thus, $\{J^p(BJ)^{t-2}BJ^q : 0 \le p \le n - 2, 0 \le q \le n - 1\}$ is a set of echelon representatives for the matrix positions $\{(i, j) : 1 \le i \le n - 1, 1 \le j \le n\}$, each having slot length at most n - 1 (so belonging to S_{n-1}).

Position (n, 2). Continuing, $L_n(X_tJ^2) = L_n((BJ)^{t-1}J^2) = d_t + 2 = d_{t-1}$, so by (2.1), $L_n((BJ)^{t-1}J^2B) = m_{t-1} = 2$. Since $L_{n-1}((BJ)^{t-2}) = d_t$, we have $L_{n-1}((BJ)^{t-1}) = m_t + 1 = m_{t-1}$, so $L_{n-1}((BJ)^{t-1}J^2) = m_{t-1} + 2 = m_{t-2} > d_t$ and $L_{n-1}((BJ)^{t-1}J^2B) > 1$. Thus $(BJ)^{t-1}J^2B$ is an echelon representative for the matrix position (n, 2). It has slot length 2t - 1 = n - 1.

Positions $\{(n, j): 3 \le j \le n\}$. Finding suitable echelon representatives for the remaining matrix positions is more difficult. (We need $n \ge 5$ to find such representatives.) Consider the matrices $(BJ)^{t-1}$ and $(BJ)^{t-3}B$. We have $L_n((BJ)^{t-1}) = L_n(X_t) = d_t = 3$ and (from above) $L_{n-1}((BJ)^{t-1}) = m_{t-1} = 2$. Since $L_p(XJ) > 1$, for every integer $1 \le p \le n$ and every matrix $X \in M_n(\mathbb{C})$, we also have $L_{n-2}((BJ)^{t-1}) > 1$. In comparison $L_n((BJ)^{t-3}) = L_n(X_{t-2}) = d_{t-2}$ so $L_n((BJ)^{t-3}B) = m_{t-2} = 4$. Since $L_{n-1}((BJ)^{t-3}) = L_{n-1}(Y_{t-1}) = d_{t-1}$, we have $L_{n-1}((BJ)^{t-3}B) = m_{t-1} = 2$. Also, $L_{n-2}(B) > m_3$, so $L_{n-2}(BJ) > m_3 + 1 = d_4$. By induction, $L_{n-2}((BJ)^k) > d_{k+3}$, for $1 \le k \le t - 3$. In particular, $L_{n-2}((BJ)^{t-3}) > d_t$, so $L_{n-2}((BJ)^{t-3}B) > m_t = 1$. Comparing

W. E. Longstaff

$$L_n((BJ)^{t-1}) = 3, \quad L_{n-1}((BJ)^{t-1}) = 2, \quad L_{n-2}((BJ)^{t-1}) > 1,$$

$$L_n((BJ)^{t-3}B) = 4, \quad L_{n-1}((BJ)^{t-3}B) = 2, \quad L_{n-2}((BJ)^{t-3}B) > 1,$$

we see that there exists a scalar λ such that $(BJ)^{t-1} - \lambda(BJ)^{t-3}B$ is an echelon representative for the position (n, 3). (The scalar λ is equal to x/y where x and y are the (n-1, 2)th elements of $(BJ)^{t-1}$ and $(BJ)^{t-3}B$, respectively.) It follows that $\{((BJ)^{t-1} - \lambda(BJ)^{t-3}B)J^q : 0 \le q \le n-3\}$ is a set of echelon representatives for the matrix positions $\{(n, j) : 3 \le j \le n\}$, each belonging to S_{n-1} .

Case 1.2: Echelon representatives. In this case n = 2t + 1 and all of the jumps in (2.2) have value 1 with precisely one exception, which has value 2.

(i) Suppose that $m_{t-1} = m_t + 2$.

Positions $\{(n,j): 1 \le j \le n\}$. Since $L_n(X_tB) = L_n((BJ)^{t-1}B) = 1$ and the slot length of $(BJ)^{t-1}B$ is 2t - 1 = n - 2, we see that $\{(BJ)^{t-1}BJ^q: 0 \le q \le n - 1\}$ is a set of echelon representatives for the matrix positions $\{(n,j): 1 \le j \le n\}$, each having slot length at most n - 1.

Positions $\{(i,j): 1 \le i \le n-1, 1 \le j \le n\}$. Once again we have $L_{n-1}((BJ)^{t-2}) = d_t$, so $L_{n-1}((BJ)^{t-2}B) = 1$. Since $L_n((BJ)^{t-2}) = d_{t-1}$, we have $L_n((BJ)^{t-2}B) = m_{t-1} = 3$. It follows that $(BJ)^{t-2}B$ is an echelon representative for the position (n-1,1). It has slot length 2t - 1 = n - 4. Hence $\{J^p(BJ)^{t-2}BJ^q: 0 \le p \le n-2, 0 \le q \le n-1\}$ is a set of echelon representatives for the matrix positions $\{(i,j): 1 \le i \le n-1, 1 \le j \le n\}$, each having slot length at most n - 1.

(ii) Suppose that $d_1 = d_2 + 2$.

Positions { $(i, 1) : 1 \le i \le n$ }. Here, $L_n((BJ)^{t-1}B) = 1$ so { $J^p(BJ)^{t-1}B : 0 \le p \le n-1$ } is a set of echelon representatives for the matrix positions { $(i, 1) : 1 \le i \le n$ }, each having slot length at most n-1.

Positions $\{(i, j) : 1 \le i \le n, 2 \le j \le n\}$. Now $L_n((BJ)^{t-2}) = d_{t-1}$ and it follows that $L_n((BJ)^{t-2}B) = m_{t-1} = 2$. Since $L_{n-1}(B) > m_2$, we have $L_{n-1}(BJ) > d_3$. By induction $L_{n-1}((BJ)^k) > d_{k+2}$ for $1 \le k \le t-2$. In particular, $L_{n-1}((BJ)^{t-2}) > d_t$ so $L_{n-1}((BJ)^{t-2}B) > m_t = 1$. Hence $(BJ)^{t-2}B$ is an echelon representative for the matrix position (n, 2). It has slot length n - 4. Hence

$$\{J^p(BJ)^{t-2}BJ^q: 0 \le p \le n-1, 0 \le q \le n-2\}$$

is a set of echelon representatives for the matrix positions $\{(i, j) : 1 \le i \le n, 2 \le j \le n\}$, each having slot length at most n - 2.

(iii) Suppose that $m_{j_0} - d_{j_0+2} = 2$, where $1 \le j_0 \le t - 2$.

Positions $\{(n,j): 1 \le j \le n\}$. Now $L_n(X_tB) = L_n((BJ)^{t-1}B) = 1$. Since the slot length of $(BJ)^{t-1}B$ is 2t - 1 = n - 2, the set $\{(BJ)^{t-1}BJ^q: 0 \le q \le n - 1\}$ is a set of echelon representatives for the matrix positions $\{(n,j): 1 \le j \le n\}$, each having slot length at most n - 1.

[7]

Positions $\{(i,j): 1 \le i \le n-1, 1 \le j \le n\}$. Here, $L_{n-1}(Y_t) = L_{n-1}((BJ)^{t-2}) = d_t$, since $d_2 = n-1$, so $L_{n-1}((BJ)^{t-2}B) = 1$. Also $L_n((BJ)^{t-2}) = L_n(X_{t-1}) = d_{t-1}$, so $L_n((BJ)^{t-2}B) = m_{t-1} = 2$. Thus $(BJ)^{t-2}B$ is an echelon representative for the matrix position (n-1, 1). It has slot length 2t - 3 = n - 4. Thus

$$\{J^p(BJ)^{t-2}BJ^q: 0 \le p \le n-2, 0 \le q \le n-1\}$$

is a set of echelon representatives for the positions $\{(i, j) : 1 \le i \le n - 1, 1 \le j \le n\}$, each having slot length at most n - 2.

(iv) Suppose that $d_{i_1} - m_{i_1-1} = 2$, where $2 \le i_1 \le t$.

Positions $\{(n,j) : 1 \le j \le n\}$. Once again, $L_n(X_tB) = 1$ and $\{X_tBJ^q : 0 \le q \le n-1\}$ is a set of echelon representatives for the matrix positions $\{(n,j) : 1 \le j \le n\}$, each having slot length at most n-1.

Positions $\{(i,j): 1 \le i \le n - 1, 1 \le j \le n\}$. Here, $L_{n-1}(Y_t) = d_t$ since $d_2 = n - 1$. Thus $L_{n-1}(Y_tB) = 1$. Since $L_n(B) = m_1$, we have $L_n(BJ^{u_3}) = L_n(Y_3) = m_1 + u_3 = m_1 + 1 = d_2$, if $i_1 \ne 2, 3$. Then $L_n(Y_4) = m_2 + u_4 = m_2 + 1 = d_3$, if $i_1 \ne 2, 3, 4$. By induction, $L_n(Y_k) = d_{k-1}$, if $2 \le k \le i_1 - 1$. Then $L_n(Y_{i_1}) = L_n(Y_{i_1-1}BJ^{u_{i_1}}) = m_{i_1-2} + u_{i_1} = m_{i_1-2} + 2 = m_{i_1-3} > d_{i_1-1}$. Then $L_n(Y_{i_1+1}) = L_n(Y_{i_1}BJ^{u_{i_1+1}}) > m_{i_1-1} + u_{i_1+1} = m_{i_1-1} + 1 > d_{i_1+1}$. By induction, $L_n(Y_k) > d_k$, for $i_1 + 1 \le k \le t$. In particular, $L_n(Y_t) > d_t$, and so $L_n(Y_tB) > m_t = 1$. This shows that Y_tB is an echelon representative for the position (n - 1, 1). It has slot length 2t - 3 = n - 4. So $\{J^p Y_t B J^q : 0 \le p \le n - 2, 0 \le q \le n - 1\}$ is a set of echelon representatives for the matrix positions $\{(i, j): 1 \le i \le n - 1, 1 \le j \le n\}$, each having slot length at most n - 2.

Case 2: Echelon representatives. In this case n = 2t - 1 and $d_{i_0} = m_{i_0-1}$, with all other jumps equal to 1. In particular, $d_2 = n - 1$, so we have $L_{n-1}(Y_k) = d_k$, for $3 \le k \le t$.

(i) Suppose that $i_0 = 2$.

Positions $\{(n,j): 1 \le j \le n\}$. In this case, $L_n(X_t) = L_n(B(BJ)^{t-2}) = d_t$ and $L_n(B(BJ)^{t-2}B) = 1$. The slot length of $B(BJ)^{t-2}B$ is 2t - 3 = n - 2 and so $\{B(BJ)^{t-2}BJ^q: 0 \le q \le n - 1\}$ is a set of echelon representatives for the matrix positions $\{(n,j): 1 \le j \le n\}$, each having slot length at most n - 1.

Positions $\{(n-1,j): 1 \le j \le n\}$. Since $L_{n-1}(Y_k) = d_k$, for $3 \le k \le t$ and $u_k = 1$, for $3 \le k \le t$, this becomes $L_{n-1}((BJ)^{k-2}) = d_k$ and taking k = t gives $L_{n-1}((BJ)^{t-2}) = d_t$. So $L_{n-1}((BJ)^{t-2}B) = 1$. Now $L_n(B) = m_1$, so $L_n(BJ) = m_1 + 1 = d_1$. Thus $L_n((BJ)^k) = d_1$, for all k. In particular, $L_n((BJ)^{t-2}) = d_1$ and so $L_n((BJ)^{t-2}B) = m_1 > 1$. Thus $(BJ)^{t-2}B$ is an echelon representative for the position (n - 1, 1). It has slot length 2t - 3 = n - 2, so $\{(BJ)^{t-2}BJ^q: 0 \le q \le n - 1\}$ is a set of echelon representatives of the matrix positions $\{(n - 1, j): 1 \le j \le n\}$, each having slot length at most n - 1.

Positions $\{(i,j): 1 \le i \le n-2, 1 \le j \le n\}$. Since $L_n((BJ)^{t-3}) = d_1$ we have $L_n((BJ)^{t-3}B) = m_1 = n-1 > 2$. Since $L_{n-1}((BJ)^{t-3}) = L_{n-1}(Y_{t-1}) = d_{t-1}$, we have $L_{n-1}((BJ)^{t-3}B) = m_{t-1} = 2$. Also, $L_{n-2}(B) = m_3$ since $d_3 = n-2$, so $L_{n-2}(BJ) = d_4$ and,

W. E. Longstaff

by induction $L_{n-2}((BJ)^k) = d_{k+3}$, for $1 \le k \le t-3$. In particular, $L_{n-2}((BJ)^{t-3}) = d_t$. Hence $L_{n-2}((BJ)^{t-3}B) = 1$. This shows that $(BJ)^{t-3}B$ is an echelon representative for the position (n-2, 1). It has slot length 2t-5 = n-4. Thus $\{J^p(BJ)^{t-3}BJ^q : 0 \le p \le n-3, 0 \le q \le n-1\}$ is a set of echelon representatives for the matrix positions $\{(i,j) : 1 \le i \le n-2, 1 \le j \le n\}$, each having slot length at most n-2.

(ii) Suppose that $i_0 \neq 2$.

Positions {(n,j) : $1 \le j \le n$ }. Again $L_n(X_tB) = 1$, with $X_tB = (BJ)^{i_0-2}B(BJ)^{t-i_0}B$ having slot length n - 2. So { $X_tJ^q : 0 \le q \le n - 1$ } is a set of echelon representatives for the matrix positions { $(n,j) : 1 \le j \le n$ }, each having slot length at most n - 1.

Positions $\{(i, j) : 1 \le i \le n - 1, 1 \le j \le n\}$. Now $L_{n-1}(Y_t) = L_{n-1}((BJ)^{i_0-3}B(BJ)^{t-i_0}) = d_t$, so $L_{n-1}(Y_tB) = m_t = 1$. Also, $L_n(X_{i_0-2}) = L_n((BJ)^{i_0-3}) = d_{i_0-2}$ so $L_n((BJ)^{i_0-3}B) = m_{i_0-2} > d_{i_0}$ and $L_n((BJ)^{i_0-3}B(BJ)) > d_{i_0+1}$. By induction, $L_n(Y_k) > d_{i_0+k}$, for $1 \le k \le t - i_0$. In particular, $L_n(Y_t) > d_t$ and $L_n(Y_tB) > 1$. This shows that $Y_tB = (BJ)^{i_0-3}B(BJ)^{t-i_0}B$ is an echelon representative for the position (n - 1, 1), so $\{J^p Y_t B J^q : 0 \le p \le n - 2, 0 \le q \le n - 1\}$ is a set of echelon representatives for the matrix positions $\{(i, j) : 1 \le i \le n - 1, 1 \le j \le n\}$. Since the slot length of $(BJ)^{i_0-3}B(BJ)^{t-i_0}B$ is 2t - 5 = n - 4, each has slot length at most n - 2.

Finally, we establish the sharpness of the inequality $2 \le s \le n-1$ as in the statement of the theorem. Example 2.2 above shows that the lower bound is sharp. That the upper bound is sharp is shown by Example 2.8 below.

EXAMPLE 2.8. (a) Let n = 2t and $t \ge 3$. Let the strictly decreasing sequences $\{m_i : 1 \le i \le t\}$ and $\{d_i : 1 \le i \le t\}$ be as in Case 1.1: w = 0, all jumps equal to 1. Let $B = \sum_{i=1}^{t} e_{m_i} \otimes e_{d_i}$. Then $\{J, B\}$ is an irreducible pair and, by the theorem, its slot length is at most n - 1. In fact its slot length is equal to n - 1, as we now show.

We show that every word W in J, B of slot length n - 2 or less satisfies $(We_1|e_n) = 0$. It follows that $(Te_1|e_n) = 0$, for every $T \in S_{n-2}$, so $S_{n-2} \neq M_n(\mathbb{C})$. Observe that $Be_i, Je_i \in \{0\} \cup \{e_j : 1 \le j \le n\}$, for $1 \le i \le n$. In fact, $Be_{m_i} = e_{d_i}$ for $1 \le i \le t$ and Range $(B) = \langle \{e_{d_i} : 1 \le i \le t\} \rangle$. Clearly $B^2 = 0$. Note also that

$$\{e_j : j > m_k\} \cap \text{Range}(B) = \{e_{d_i} : 1 \le j \le k+1\}, \text{ for } 1 \le k \le t.$$

Suppose that $(We_1|e_n) \neq 0$, where *W* is a word in *J*, *B* of slot length n-2 or less. Since $Je_1 = J^*e_n = 0$, the word *W* cannot begin or end with a term J^p with p > 0. Since $W \neq I$, *W* has odd positive slot length, say 2r + 1, where $r \leq t - 2$ (since $2r + 1 \leq n - 2 = 2t - 2$). Let $W = BJ^{p_1}BJ^{p_2}\cdots BJ^{p_r}B$ and $W_k = J^{p_k}BJ^{p_{k+1}}B\cdots J^{p_r}B$, for $1 \leq k \leq r$.

We claim that $W_k e_1 \in \{e_{m_j} : 1 \le j \le k\}$, for $1 \le k \le r$. Now $We_1 = BW_1e_1 = e_n = e_{d_1}$, so $W_1e_1 = e_{m_1}$, so the result is true for k = 1. Let $1 \le k \le r - 1$ and assume that the result is true for k. Then $W_k e_1 = J^{p_k} BW_{k+1}e_1 \in \{e_{m_j} : 1 \le j \le k\}$, so that $BW_{k+1}e_1 \in \{e_j : j > m_k\} \cap \text{Range}(B) = \{e_{d_j} : 1 \le j \le k + 1\}$. Thus $W_{k+1}e_1 \in \{e_{m_j} : 1 \le j \le k + 1\}$. This completes the proof by induction.

In particular, $W_r e_1 = J^{p_r} B e_1 \in \{e_{m_i} : 1 \le j \le r\}$, so

$$Be_1 \in \{e_j : j > m_r\} \cap \text{Range}(B) = \{e_{d_i} : 1 \le j \le r+1\}.$$

But $Be_1 = Be_{m_t} = e_{d_t}$ and, since r + 1 < t, we get a contradiction. This contradiction shows that the slot length of the pair $\{J, B\}$ is precisely n - 1.

(b) Let $n = 2t + 1, t \ge 2$. Let the strictly decreasing sequences $\{m_i : 1 \le i \le t\}$ and $\{d_i : 1 \le i \le t\}$ be as in Case 1.2 (ii): w = 0, all jumps equal to 1 except that $d_1 = d_2 + 2$. Let $B = \sum_{i=1}^{t} e_{m_i} \otimes e_{d_i}$. Then $\{J, B\}$ is an irreducible pair, and by the theorem, its slot length is at most n - 1. In fact its slot length is equal to n - 1, as we now show.

We show that every word W in J, B of slot length n - 2 or less satisfies $(We_1|e_{n-1}) = 0$. Again observe that $Be_i, Je_i \in \{0\} \cup \{e_j : 1 \le j \le n\}$, for $1 \le i \le n$. In fact $Be_{m_i} = e_{d_i}$, for $1 \le i \le t$ and Range $(B) = \langle \{e_{d_i} : 1 \le i \le t\} \rangle$. Clearly $B^2 = 0$. Again note that

$$\{e_j : j > m_k\} \cap \text{Range}(B) = \{e_{d_i} : 1 \le j \le k+1\}, \text{ for } 1 \le k \le t.$$

Suppose that $(We_1|e_{n-1}) \neq 0$, where W is a word in J, B of slot length n-2 or less. Clearly $W \neq I$. Since $Je_1 = 0$, W cannot end with a term J^p with p > 0. Since $B^*e_{n-1} = 0$, W cannot begin with B either. Let $W = J^{p_1}BJ^{p_2}B\cdots J^{p_r}B$ and let $W_k = J^{p_k}BJ^{p_{k+1}}B\cdots J^{p_r}B$, for $1 \leq k \leq r$.

We claim that $W_k e_1 \in \{e_{m_j} : 1 \le j \le k-1\}$, for $2 \le k \le r$. Now $We_1 = J^{p_1}BW_2e_1 = e_n = e_{d_1}$, so $BW_2e_1 = e_n = e_{d_1}$ and $W_2e_1 = e_{m_1}$, so the result is true for k = 1. Let $2 \le k \le r-1$ and assume that the result is true for k. Then $W_k e_1 = J^{p_k}BW_{k+1}e_1 \in \{e_{m_j} : 1 \le j \le k-1\}$, so

 $BW_{k+1}e_1 \in \{e_j : j > m_{k-1}\} \cap \text{Range}(B) = \{e_{d_j} : 1 \le j \le k\}.$

Thus $W_{k+1}e_1 \in \{e_{m_j} : 1 \le j \le k\}$. This completes the proof by induction.

In particular, $W_r e_1 = J^{p_r} B e_1 \in \{e_{m_j} : 1 \le j \le r - 1\}$, so

 $Be_1 \in \{e_j : j > m_{r-1}\} \cap \text{Range}(B) = \{e_{d_i} : 1 \le j \le r\}.$

But $Be_1 = Be_{m_t} = e_{d_t}$ and, since r < t, we get a contradiction. This contradiction shows that the slot length of the pair $\{J, B\}$ is precisely n - 1.

CONJECTURE 2.9. If $n \ge 5$, every irreducible pair of complex matrices has slot length at most n - 1.

REMARK 2.10. (1) If \mathcal{R} is an irreducible family of rank-one matrices, then slot length(\mathcal{R}) = length(\mathcal{R}), since for every rank-one matrix R we have $R^2 = \lambda R$ for some scalar λ . Irreducible families of rank-one matrices are considered in [4]. In particular, it is shown there that, if $n \ge 2$ and $\mathcal{R} \subseteq M_n(\mathbb{C})$ then \mathcal{R} has slot length at most n.

The slot length of such a family can equal *n*. For example, the set of elementary matrices $\mathcal{E} = \{E_{i,j} : j - i = -1 \text{ or } n - 1, 1 \le i, j \le n\}$ has slot length *n*. Here every element of \mathcal{E} has square 0. The linear span of the words of slot length n - 1 is $S_{n-1} = \langle \{E_{i,j} : j \ne i, 1 \le i, j \le n\} \rangle + \mathbb{C}I$. Since $E_{i,i+1}E_{i+1,i} = E_{i,i}$, for $1 \le i \le n - 1$, and $E_{n,n-1}E_{n-1,n} = E_{n,n}$, where $E_{i,i+1}, E_{n-1,n} \in \mathcal{S}_{n-1}$ and $E_{i+1,i}, E_{n,n-1} \in \mathcal{E}$, it follows that $S_n = M_n(\mathbb{C})$, so the slot length of \mathcal{E} is *n*.

W. E. Longstaff

(2) Examples of irreducible pairs of matrices with slot length 3 follow from [6, Theorem 1]. By this theorem, if $\{A, B\}$ is an irreducible pair and *B* has rank 1, then $\{A^pBA^q; 0 \le p, q \le n-1\}$ is a basis for $M_n(\mathbb{C})$. Clearly, the slot length of the pair is at most 3, and since S_2 is spanned by $\{I, B, A^p, BA^q, A^rB : 0 \le p, q, r \le n-1\}$, which has 3n - 1 elements and $3n - 1 < n^2$, the slot length equals 3, if $n \ge 3$.

(3) In the example in (2) above, A need not be unicellular. For example, if A is a diagonal matrix with distinct nonzero diagonal entries it is well known that every nonzero invariant subspace of A has the form $\langle \{e_i : i \in \mathcal{F}\} \rangle$, for some nonempty subset \mathcal{F} of $\{1, 2, ..., n\}$. Thus if $B = e \otimes e$, where e = (1, 1, ..., 1), the pair $\{A, B\}$ is irreducible. It is easy to see that this pair has slot length 3, assuming that $n \ge 3$. This is so because, for $1 \le i \le n$, $E_{i,i} = p_i(A)$ for some polynomial $p_i(z)$. So $p_i(A)Bp_j(A)$ is the elementary matrix $E_{i,j}$, for all i, j. Every polynomial in A belongs to $S_1(\{A, B\})$.

(4) Finally, notice that if $A \in M_n(\mathbb{C})$ has a minimum nonzero invariant subspace M_0 and a maximum proper invariant subspace N_0 , any rank-one matrix B satisfying $(Bu|v) \neq 0$ for some $u \in M_0, v \in N_0^{\perp}$ has no nontrivial invariant subspaces in common with A. Indeed, if the subspace $M \neq (0)$ or \mathbb{C}^n is invariant under A, then $M_0 \subseteq M$ and $M \subseteq N_0$. Thus $u \in M$ and $v \in M^{\perp}$. The fact that $(Bu|v) \neq 0$ now shows that B does not leave M invariant. The slot length of the pair $\{A, B\}$ is 3, if $n \ge 3$. (For example, A = J, $M_0 = \langle e_1 \rangle, N_0 = \langle \{e_1, e_2, \dots, e_{n-1}\} \rangle, B = e_1 \otimes e_n$ and $u = e_1, v = e_n$.)

References

- A. E. Guterman, T. Laffey, O. V. Markova and H. Smigoc, 'A resolution of Paz's conjecture in the presence of a nonderogatory matrix', *Linear Algebra Appl.* 543 (2018), 234–250.
- [2] V. Lomonosov and P. Rosenthal, 'The simplest proof of Burnside's theorem on matrix algebras', *Linear Algebra Appl.* 383 (2004), 45–47.
- W. E. Longstaff, 'Burnside's theorem: irreducible pairs of transformations', *Linear Algebra Appl.* 382 (2004), 247–269.
- [4] W. E. Longstaff, 'Irreducible families of complex matrices containing a rank one matrix', Bull. Aust. Math. Soc. 102(2) (2020), 226–236.
- [5] W. E. Longstaff, A. C. Niemeyer and O. Panaia, 'On the lengths of pairs of complex matrices of size at most five', *Bull. Aust. Math. Soc.* 73 (2006), 461–472.
- [6] W. E. Longstaff and P. Rosenthal, 'On the lengths of irreducible pairs of complex matrices', Proc. Amer. Math. Soc. 139(11) (2011), 3769–3777.
- [7] O.V. Markova, 'The length function and matrix algebras', *Fundam. Prikl. Mat.* 17(6) (2012), 65–173.
 English transl. J. Math. Sci. (N. Y.) 193(5) (2013), 687–768.
- [8] A. Paz, 'An application of the Cayley-Hamilton theorem to matrix polynomials in several variables', *Linear Multilinear Algebra* 15 (1984), 161–170.
- [9] Y. Shitov, 'An improved bound for the lengths of matrix algebras' (English summary), Algebra Number Theory 13(6) (2019), 1501–1507.

W. E. LONGSTAFF,11 Tussock Crescent, Elanora,Queensland 4221, Australiae-mail: bill.longstaff@alumni.utoronto.ca