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The convective instability in a plane liquid layer with time-dependent temperature
profile is investigated by means of a general method suitable for linear stability analysis
of an unsteady basic flow. The method is based on a non-normal approach, and
predicts the onset of instability, critical wavenumber and time. The method is applied
to transient Rayleigh–Bénard–Marangoni convection due to cooling by evaporation.
Numerical results as well as theoretical scalings for the critical parameters as function
of the Biot number are presented for the limiting cases of purely buoyancy-driven
and purely surface-tension-driven convection. Critical parameters from calculations
are in good agreement with those from experiments on drying polymer solutions,
where the surface cooling is induced by solvent evaporation.

1. Introduction
Thermally driven flows near liquid interfaces continue to be an active area of research
since the first experimental studies by H. Bénard over 100 years ago. They are
characterized by a multitude of interacting physical mechanisms and display a large
variety of regular and complex flow patterns. Experimental and theoretical studies
of such flows have stimulated and accompanied the development of the theory of
pattern formation and nonlinear phenomena in general. Recent developments are
summarized in a number of monographs and review papers (see e.g. Bodenschatz,
Pesch & Ahlers 2000; Colinet, Legros & Velarde 2001; Nepomnyashchy, Simanovskii
& Legros 2006).

The driving forces in these thermally driven flows are surface-tension gradients
(Marangoni forces) and buoyancy forces, which originate from the temperature
dependency of surface tension and density, respectively. Both mechanisms are
classically studied in convection taking place within a finite layer subjected to a steady
temperature difference: for the buoyancy-driven case, this is the celebrated Rayleigh–
Bénard convection formulated by Rayleigh (1916), for the surface-tension-driven
case this is the Bénard–Marangoni convection studied by Pearson (1958). In both
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cases, a certain critical temperature difference must be applied in order to sustain
convective motion. The theoretical predictions for such critical temperature differences
are in excellent agreement with experiments (Chandrasekhar 1961; Schatz et al. 1995).
Thermal convection can also appear when the external conditions are time-dependent,
e.g. by a modulation or abrupt change of cooling or heating. In this case, the basic
conductive temperature distribution is time-dependent, and the stability problem
becomes a non-autonomous one, i.e. the solution cannot in general be sought in the
form of exponentials exp(σ t). For time-periodic modulation of the basic state one can
resort to Floquet theory (Rosenblat & Tanaka 1971; Bhadauria & Bathia 2002) but,
in the general case, the formulation and prediction of critical conditions for the onset
of convection becomes much less clear-cut than for a steady base state. The following
two basic approaches are common for a general time-dependent basic state:

(i) reduction to an autonomous problem by the frozen-time assumption, whereby
the basic state is supposed to evolve much more slowly than the perturbations, and

(ii) solution of the full non-autonomous linear perturbation problem for some
initial conditions which are supposed to be representative. This is called amplification
theory (AT).
Both approaches go at least back to the 1960s. The first one was used by Lick
(1965) and Currie (1967) and the second by Foster (1965). Later work by Homsy
(1973) introduced energy stability ideas, but the resulting bounds are not necessarily
useful for predicting instability thresholds and the mathematics is considerably more
involved. In each of these works the focus was on buoyancy-driven convection.

The frozen-time approach was used for the Marangoni convection by Kang & Choi
(1997). These authors studied the dynamics of a fluid layer subjected to a sudden
change in surface temperature. However the frozen-time method was only applied for
late times in the evolution. For early times they formulated the so-called propagation
theory, whereby the problem is again reduced to an autonomous one by using a certain
similarity solution for base state and perturbations. This approximation is actually
appropriate for an infinite layer. The frozen-time model relies on the validity of the
assumption of fast instability development (relative to the base state). This could be
inadequate at instability thresholds, at which the instability can develop on the same
time scales as the base state. The other method, namely the amplification model,
has a sounder mathematical foundation, but comes with the necessity of identifying
representative initial conditions and amplification levels for the perturbations.

A specific analysis suitable for transient problems is developed in this paper, which
is an extension of the previous amplification model. The underlying concept is called
the non-normal approach. In such a case, the choice of initial perturbations is not
somewhat arbitrary as in AT but it is guided by an optimization technique. This
procedure consists in identifying, for a given time t and a given wavenumber k, the
initial perturbation with the strongest amplification (called the optimal perturbation).
Hence this method may exhibit initial conditions which are not a priori obvious
configurations. As a consequence it gives the maximal value for the perturbation
norm that was previously defined for the problem under study. This cannot be
achieved through an AT simulation. This has been previously noted by Rapaka et al.
(2008), who report an optimal perturbation analysis of density-driven convection
in porous media. However, their optimization method differs considerably from
the adjoint-based method presented here. Concerning the determination of initial
conditions, we note that the non-normal approach has also been used for instability
problems of steady base flow, e.g. in parallel shear flows, such as boundary layers
(Schmid & Henningson 2001) or plane Poiseuille flow (Reddy et al. 1998). For
such problems, there was a long-standing gap between the standard two-dimensional
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Tollmien–Schlichting modes obtained using the classical normal mode analysis –
though these modes were only observed in some very controlled experiments –
and the general experimental observation of streak generation. It is by resorting
to non-normal mode analysis that the coherent structures observed in boundary
layer transition, i.e. streamwise rolls and streaks, could be deduced from an optimal
approach and their generation linked to the lift-up mechanism proposed by Landahl
(Schmid & Henningson 2001).

The non-normal approach can be extended to transient cases. This is precisely what
we propose here. Such a method provides the strongest amplification, i.e. the optimal
growth at a given duration T after initial conditions have started their evolution.
If this amplification is sufficiently large, the optimal perturbations may result in the
modification of the basic flow at time T and we can speak of an unstable regime
in a way to be defined by a norm. To the best of our knowledge, this approach is
the only one capable to provide clear-cut answers on instability problems for truly
unsteady basic flows. However, as mentioned by one referee, this definition of the
stability condition is blurred owing to a certain arbitrariness in choosing the norm
and defining the critical amplification gain. This is inherent to any unsteady linear
stability problem and does not depend on the particular method. It is then more
suitable to view the results as the estimation of a transition region between a domain
exhibiting strong convection and a domain where initial perturbations are damped
or have no time to significantly develop during the transient regime. The non-normal
approach allows one to characterize this transition domain properly. The results
presented here for different norms and different critical amplification values show
that this transition region is thin, so that the notion of stability threshold is still valid
for this transient problem. On the contrary, the frozen-time assumption may fail, for
instance if the base state evolves on the same time scale or faster then the unstable
modes characterizing its frozen-time stability. In that case, the computed growth rates
might not correspond to any true amplifications, at the system time scale. This might
affect the determination of critical conditions since in the frozen-time assumption, the
critical conditions are determined using the quasi-static growth rates σ (t). However
the pertinent character of this method strongly depends on the rapid variation of these
‘quasi-static growth rates’ with the basic state changes. For instance, the amplification
between times t1 and t2 would be, at zeroth-order Wentzel–Kramers–Brillouin theory,
equal to

∫ t2

t1
σ (t)dt . So if the instantaneous growth rate strongly varies during this

interval, its positive value at a given moment may not be interpreted in the right way.
In the present work, we provide the results obtained by means of the non-normal

approach as well as the frozen-time approach. In the specific flow case presented here,
the quasi-static method is shown to provide similar results except for some particular
quantities.

The proposed analysis is general and can be easily extended to many other unsteady
problems, e.g. chemically driven hydrodynamic instabilities (Eckert, Acker & Shi
2004). In the present paper, we determine the onset of convection in a drying
experiment, which leads to an unsteady Rayleigh–Bénard–Marangoni problem. More
specifically we study the sudden cooling due to evaporation of a liquid layer, where
the decrease of surface temperature is induced by the vaporization latent heat. This
problem has been the subject of many experimental or theoretical studies (see e.g.
Berg, Boudart & Acrivos 1966; Vidal & Acrivos 1968, and more recently Mancini &
Maza 2004 or Moussy, Lebon & Margerit 2004). The specific motivation for our work
is the drying process studied in experiments by Toussaint et al. (2008) performed on
a polymer solution (polyisobutylene/toluene). The solution initially at the ambient
temperature is poured in a dish located in an extractive hood. When evaporation
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of toluene begins, convective patterns are observed at the very beginning of the
experiment (quasi-instantaneous or less than 100 s after pouring the solution). They
disappear well before the end of the drying. The very large Lewis number Le = κ/Dmol

(κ and Dmol denote the thermal and mass diffusivity) of the polymer solution (about
103) is an indication that the thermal diffusion is faster and that convective patterns
observed in the first minutes should be mainly driven by thermal effects. Two
experimental observations detailed in Toussaint et al. (2008) support this thesis. First,
a few experiments were conducted with deuterated solvent, whose density is higher
than the polymer density. In that case, the density of the solution decreases when the
polymer concentration increases, leading to a stable situation if the solutal Rayleigh–
Bénard problem is considered. Since no differences were found with the experiments
conducted with the standard solvent, we can exclude solutal buoyancy as a dominant
mechanism. Second, free surface temperature fields measured by infrared camera
showed that the end of free convection was related to the duration of the transient
thermal regime. In these free convection experiments it can be inferred, from the work
on steady convection by Pearson (1958), that the Marangoni effect is dominant for
thicknesses typically less than 1 cm and the buoyancy dominant for higher thicknesses.
For a more accurate description of the experiments see Toussaint et al. (2008).

The paper is organized as follows. In § 2, we present the basic assumptions of the
model and the governing equations. Thereafter the unsteady basic state is described
and a specific stability analysis is introduced in § 3. In particular, the non-normal
method is explained and the choice of norms is discussed. Section 4 contains the main
numerical findings for the two limiting situations: the pure Rayleigh–Bénard and
the pure Marangoni case. Critical conditions for the optimal modes are presented.
Part of these numerical results are also obtained by a scaling analysis. A comparison
of this method with the frozen-time approach is also performed. Finally, in § 5, the
comparison with experimental results is discussed.

2. Mathematical model
2.1. Basic assumptions of the model

The mathematical model of Rayleigh–Bénard–Marangoni convection used throughout
this paper is based on a one-layer model in which three assumptions are made:
(i) the upper surface remains planar, (ii) the layer thickness d remains constant
and (iii) the heat and mass fluxes across the upper surface are given by transfer
coefficients. Moreover our analysis is restricted to fluids characterized by a Prandtl
number Pr = ν/κ � 1 with ν the kinematic viscosity. This turns out to be the case
of most liquids (including water and organic solvents). In that instance, the thermal
diffusion time scale is always larger than the viscous diffusion time scale.

The first hypothesis can be tested as follows. Two modes of instability are known to
occur in the Bénard–Marangoni problem (Scriven & Sternling 1964; Reichenbach &
Linde 1981; Goussis & Kelly 1990). One is generated from the interaction of the
velocity perturbations with the basic temperature, while the other mode, characterized
by a wavelength long compared with the layer thickness, is due to the coupling
of the Marangoni effect with the deflection of the free surface. Mathematically,
surface deformation can be neglected on scales of order d when the Laplace pressure
associated with a curvature 1/d is large compared with the dynamic pressure. This
condition (Davis 1987) corresponds with the smallness of the crispation number
Cr ≡ (ρνκ)/(σd) where ρ and σ respectively denote fluid density and surface tension.
Moreover, the Galileo number Ga ≡ (gd3)/(νκ) characterizes the relative importance
of gravity (g gravity constant) and diffusion. A large value of the Galileo number
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indicates that gravity stabilizes the long-wave mode. The free surface deformation
can be neglected if Cr� 1 and Ga� 1. Such conditions are shown be satisfied for
the experiments considered here.

The second hypothesis can be adopted if Pe� 1, where the Péclet number
Pe≡ (dvev)/κ is defined as the ratio between vev the interface velocity due to
evaporation which is equal to minus the time derivative of d(t), and the thermal
velocity scale κ/d . Indeed when Pe� 1, the surface displacement vevδdiff remains
negligible compared to the total thickness d during the problem characteristic time,
i.e. the diffusion time δdiff ≡ d2/κ . In the experiment (see § 5), the Péclet number is
smaller than 0.1.

Finally, let us discuss the third assumption. The boundary condition at the free
surface results from the coupling between the system and its surroundings. In
evaporation experiments, the solvent flux and thus the temperature gradient in the
fluid depends on the heat and mass transfer with the ambient air. Several authors
have developed numerical or theoretical studies taking into account this coupling
(see e.g. Colinet et al. 2003; Merkt & Bestehorn 2003; Moussy et al. 2004; Ozen &
Narayanan 2004). In this paper we adopt a simple description by global heat and
mass transfer coefficients, as our main interest is directed on the transient character
of the problem under study and not on the detailed description of the transfer per se.

2.2. Governing equations

We formulate the basic equations in a Cartesian coordinate system, where the bottom
of the layer coincides with the plane z = 0 and the upper free surface with z = d . The
fluid is characterized by a density ρ, a kinematic viscosity ν, a thermal diffusivity κ

and a thermal expansion coefficient α. The Boussinesq approximation is assumed to
govern the velocity field v = vxex + vyey + vzez and temperature field T :

∂v

∂t
+ (v · ∇)v = −∇p

ρ
+ ν∇2v + gα(T − T∞)ez, ∇ · v = 0, (2.1)

∂T

∂t
+ (v · ∇)T = κ∇2T , (2.2)

where g denotes the acceleration due to gravity and T∞ the temperature of the ambient
air. In this approximation, the density ρ is taken to be the density at T = T∞. At the
bottom, the velocity satisfies the no-slip condition and the wall is assumed adiabatic
since, in the experiment, the bottom of the dish is thermally insulated by an air gap.

v = 0, ∂zT = 0 at z = 0. (2.3)

The upper boundary conditions are more involved. Assuming a planar surface, the
local evaporation mass flux reads

Qm (Ts(x, d, t)) = ρ

(
vz(x, d, t)− d

dt
(d)

)
. (2.4)

Moreover the global mass balance reads (no fluid is introduced to counterbalance the
evaporation mass loss)

Q̄m =−ρ
d

dt
(d) = ρvev, (2.5)

where Q̄m is the mean evaporation flux over the free surface. From relations (2.4) and
(2.5) we get:

vz =
Qm(Ts)− Q̄m

Q̄m

vev. (2.6)
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If we assume that the flux variations Qm(Ts(x, d, t)) − Q̄m are much smaller than
the flux Q̄m itself, then |vz|� vev ≡Pe κ/d , the Péclet number being defined using
the evaporation velocity (see § 2.1). Since Pe� 1 and κ/d is the velocity scale, the
kinematic boundary condition so reduces to

vz = 0 at z = d . (2.7)

In addition, the balance of tangential forces at the upper surface requires that the
velocity field satisfies

ρν∂zvj = ∂jσ (Ts), (j = x, y) at z = d , (2.8)

where Ts denotes the temperature inside the fluid layer at z = d and σ (T ) denotes the
surface tension which is assumed to be a linearly decreasing function of temperature,

σ (T ) = σ (T∞)− γ (T − T∞), γ ≡−dσ

dT
> 0. (2.9)

Finally, the conservation of energy flux should be imposed at the interface. It reads

−λ∂T

∂z
+ hth(T∞ − Ts) = LQm(Ts) (2.10)

The first left-hand side term represents the heat conduction in the liquid, λ denoting
the thermal conductivity related to the thermal diffusivity via λ= κρC with C the liquid
specific heat. The second left-hand side term expresses the heat flux density in the
gas using a simple phenomenological model based on the heat transfer coefficient hth

and the difference between the air temperature T∞ far from the liquid and the surface
temperature Ts . Finally, the cooling effect due to solvent vaporization is expressed in
the right-hand side term, where L stands for the latent heat of vaporization and Qm

for the solvent mass flux per unit area. This latter quantity depends on the surface
temperature Ts . In the framework of the one-layer model, one imposes

Qm(Ts) = hm(cs(Ts)− c∞), (2.11)

where cs and c∞ denote the solvent concentration in the gas phase near the surface
and far from the surface, respectively, and hm is the phenomenological mass transfer
coefficient in the gas. Assuming local thermodynamic equilibrium, cs directly depends
on the surface temperature through the saturated vapour pressure. The variable Qm

can be linearized around T∞ which leads to the final expression:

−λ∂T

∂z
+ Hth(T∞ − Ts) = LQm(T∞), Hth = hth + L

∂Qm

∂T
(T∞). (2.12)

Initially, the liquid layer is isothermal, i.e. T (z, t = 0) = T∞. At large times, the system
reaches a steady state in which the temperature in the layer is again uniform but with
a temperature difference T∞ − Ts = 
Tst > 0 with the gas located far from the surface.
This difference is imposed by the condition (2.12), where


Tst ≡
LQm

Hth

. (2.13)

To put the above equations in a non-dimensional form, scales for temperature,
length, velocity and time are needed. The temperature difference 
Tst provides the
temperature scale and the layer thickness d the relevant length scale. Two velocity
scales can be introduced in this problem namely the viscous velocity scale V = ν/d

and the thermal velocity scale V = κ/d . Here only the thermal scale V = κ/d is used.
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Finally, the appropriate time scale is the thermal diffusion time d/V = d2/κ . The
non-dimensionalization leads to equations for v and θ(z, t) = (T (z, t)− T∞)/
Tst :

1

Pr
(∂tv + (v · ∇)v) =−∇p + ∇2v + Raθez, (2.14)

∇ · v = 0, (2.15)

∂tθ + (v · ∇)θ =∇2θ, (2.16)

∂zvx + Ma ∂xθ = ∂zvy + Ma ∂yθ = 0 at z =1. (2.17)

∂zθ + Bi θ + Bi = 0 at z = 1, ∂zθ = 0 at z = 0, (2.18)

vz = 0, at z = 1 vx = vy = vz = 0 at z = 0. (2.19)

in which the Rayleigh, Marangoni, Prandtl and Biot numbers

Ra =
αgd3
Tst

νκ
, Ma =

γ d
Tst

ρνκ
, Pr =

ν

κ
, Bi =

Hthd

λ
(2.20)

appear.
In the following, we discriminate between two opposite cases: Bi� 1 or 1�Bi.

This corresponds respectively to an effective conductance Hth in the gas much smaller
or much larger than the heat conductance λ/d in the fluid.

3. Basic state and optimal linear perturbations
We study the stability of a purely conductive unsteady basic state θ0(z, t) which is

initially uniform, i.e. θ0(z, t = 0) = 0. This state evolves since the upper free surface
is cooled down by the latent heat released through evaporation: The velocity field
remains always zero but the unsteady field θ0(z, t) satisfies a pure heat equation

∂θ0

∂t
=

∂2θ0

∂z2
with ∂zθ0 = 0 at z = 0, ∂zθ0 + Bi θ0 + Bi = 0 at z = 1. (3.1)

The basic state only depends on the Biot number Bi. Note that the term Biθ0

characterizes the heat transfer in the gas phase and the term Bi represents the
cooling effect due to evaporation. The unsteady temperature field θ0(z, t) is shown in
figure 1 for different Biot numbers and times. A cooled layer develops from the upper
surface whose thickness δ0(t)∼ min(

√
t, 1) is similar at a given time for different Biot

numbers and increases until it fills the whole layer. Conversely, if 
θ0(t) denotes the
characteristic temperature difference within the fluid, the maximum reached over the
whole time evolution by this quantity increases with Biot number Bi (figure 1d ).
Actually, two different regimes are observed according to the value of Bi (see
Appendix A of the supplementary material available at journals.cambridge.org/flm).
For small Biot numbers, typically Bi � 1, the cooled layer reaches the bottom while
the jump 
θ0(t) is less than 1. Afterwards, 
θ0(t) decreases. Such time evolution can
be summarized by the following scalings:

|θ0| ∼ 
θ0 ∼ Bi
√

t, δ0(t) ∼
√

t for 0 �
√

t � 1, (3.2)

|θ0| ∼ Bi t, 
θ0(t) ∼ Bi, δ0(t) ∼ 1 for 1 � t � Bi−1, (3.3)

For Bi−1 � t , the temperature field θ0 relaxes towards the steady uniform temperature
θ0(z, t) =−1 and all the energy needed by evaporation is carried on by convection in
the gas phase.

For large Biot numbers, typically Bi � 10, the temperature jump 
θ0(t) reaches a
maximum before the cooled layer reaches the bottom (figure 1a). In that case, the
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Figure 1. Basic temperature profile for different Biot numbers. (a)–(c) Temperature profile at
times t = 10−2, t = 10−1 and t =1. (d ) Temperature difference 
θ0(t) as a function of time t .

maximal jump is equal to one and |θ0(z = 1, t)| ∼ 1 at that time. The time evolution
can be summarized by the following scalings:

|θ0| ∼ 
θ0 ∼ Bi
√

t, δ0(t) ∼
√

t for 0 � t � Bi−2, (3.4)


θ0 ∼ 1, δ0 ∼
√

t for time Bi−2 � t � 1. (3.5)

For 1 � t , the temperature decreases in the whole layer thickness to reach the steady
state regime θ0(z, t) =−1.

In order to study the stability of the unsteady conductive state we split the fields
into a basic flow and three-dimensional perturbations

v = vp(x, y, z, t), θ = θ0(z, t) + θp(x, y, z, t), p =p0(z, t) + pp(x, y, z, t) (3.6)

and linearize in the perturbations to get a set of linear equations. Since this problem
has no preferential direction in the (x, y) plane, the perturbation Fourier modes in
such directions decouple in the linear regime. Without loss of generality, we thus
consider a non-dimensional wavenumber k in the x direction and no dependence in
the y direction reducing the flow to be two-dimensional:

(vp, θp, pp) = (û(z, t), 0, ŵ(z, t), θ̂(z, t), p̂(z, t)) exp(ikx). (3.7)

These infinitesimal perturbations are governed by the linear system

1

Pr

∂

∂t
û + ikp̂ −

[
∂2

∂z2
− k2

]
û= 0, (3.8)
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1

Pr

∂

∂t
ŵ +

∂p̂

∂z
−

[
∂2

∂z2
− k2

]
ŵ − Raθ̂ = 0, ikû +

∂ŵ

∂z
= 0, (3.9)

∂

∂t
θ̂ + ŵ

∂θ0

∂z
−

[
∂2

∂z2
− k2

]
θ̂ = 0, (3.10)

ŵ = 0, ∂zû + Ma ikθ̂ = 0, ∂zθ̂ + Bi θ̂ = 0, at z = 1, (3.11)

û= ŵ = 0,
∂θ̂

∂z
= 0 at z = 0. (3.12)

To quantify the amplification gain at time t1, it is customary to define a norm
which is generally based on the kinetic energy of perturbations. This norm can be
orthogonally decomposed in a Fourier basis so that the individual contributions of
each wavenumber k can be studied independently. In the present case, the temperature
field is playing a major role as well. We thus define two different norms corresponding
to two different situations. The first one is based on the kinetic energy of perturbations

EV (t1)≡
∫

(û(z, t1)û
+(z, t1) + ŵ(z, t1)ŵ

+(z, t1)) dz, (3.13)

where superscript + denotes complex conjugation. The integration is performed over
the entire layer width and perturbations are obtained after integrating the above
linear system over the time period [0, t1]. The second one

ET (t1)≡
∫

θ̂(z, t1)θ̂
+
(z, t1) dz (3.14)

is based on the temperature field and not on the velocity field.
For finite Prandtl number two extreme cases are considered, with the initial

perturbation concerning either the velocity field, or the temperature field. In the
following we will consider the amplification factors EV (t1)/EV (0) or ET (t1)/ET (0)
to characterize the stability. Then, when the initial perturbations only concern the
velocity field, we only take into account the amplification EV (t1)/EV (0) since ET (0) = 0.
Conversely, when the initial perturbations only concern the temperature field we use
the amplification factor ET (t1)/ET (0). For the infinite Prandtl number case, the velocity
perturbations are not dynamical quantities since the time derivative of the velocity
drops out from (3.8)–(3.9). In other words, the velocity perturbations are slaved to
the temperature perturbations. In this case, we use only ET (t1)/ET (0) and hence the
norm ET .

For a given initial disturbance, one evaluates the amplification gain at time t1 by
computing E(t1)/E(0) where E = EV or E = ET . It is the purpose of a non-normal
analysis to compute the quantity Ĝ(t1; k; Ma, Ra, Bi, P r)≡max[E(t1)/E(0)] which is
the upper bound for the energy amplification that a disturbance of wavenumber k

can reach at time t1. This approach solves a sort of the finite time stability problem: it
investigates the transient evolution and defines for any time t1, an optimal perturbation
mode which actually reaches the upper bound (Schmid & Henningson 2001). This
mode (i.e. the optimal initial z profile) is found numerically by solving an optimization
problem (Farrell & Ioannou 1996; Andersson, Berggren & Henningson 1999; Luchini
2000; Schmid & Henningson 2001). The optimum of E(t1) is determined taking into
account several constraints: (i) the disturbance energy at time t = 0 is equal to unity;
(ii) the disturbance satisfies the linear governing equation as well as the boundary
conditions during the complete time interval [0, t1]. This problem is best solved with
the help of a Lagrangian formalism and Lagrangian multipliers which are introduced
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to precisely enforce the above constraints. In the present case, these multipliers are
adjoint fields (ũ(z, t), w̃(z, t), θ̃(z, t), p̃(z, t)). Following a standard derivation, these
quantities satisfy a set of adjoint equations. It is

1

Pr

∂

∂τ
ũ− ikp̃ −

[
∂2

∂z2
− k2

]
ũ = 0, (3.15)

1

Pr

∂

∂τ
w̃ − ∂p̃

∂z
−

[
∂2

∂z2
− k2

]
w̃ + θ̃

∂θ0

∂z
=0, ikũ +

∂w̃

∂z
= 0, (3.16)

∂

∂τ
θ̃ −

[
∂2

∂z2
− k2

]
θ̃ − Raw̃ =0, (3.17)

ũ = w̃ = 0,
∂θ̃

∂z
= 0 at z = 0, (3.18)

w̃ = 0, ∂zũ= 0, ∂zθ̃ + Bi θ̃ + Ma ∂zw̃ = 0 at z = 1, (3.19)

in which τ ≡−t . These adjoint equations have to be solved backwards in time. Let us
denote by the symbol q the vector field (u, w, θ, p). One obtains the optimal perturb-
ation for time t1 by an iterative scheme which propagates a given initial condition
forwards in time using the direct problem (here denoted by Fj (q) = 0, j = 1 . . . 4),
the result of which serves as an ‘initial’ condition for the backward propagation by
the adjoint equations (here denoted by F̃ j (q̃(t)) = 0, j = 1 . . . 4). More specifically (see
Appendix B of the supplementary material available at journals.cambridge.org/flm),
a relation between the adjoint q̃(z, t1) and q(z, t1) is imposed. After one forward–
backward integration, quantity q̃(z, 0) is obtained and a relation between q̃(z, 0) and
q(z, 0) is also imposed. An updated initial condition for the next iterative step is
then available. This process should be self-consistent: one uses an iteration procedure
which is schematically illustrated by a diagram

q(z, 0)
Fj (q)= 0
−→ q(z, t1)

↑ ↓

q̃(z, 0)
F̃j (q̃)= 0
←− q̃(z, t1)

. (3.20)

Convergence is reached when the initial condition for the forward problem does
not change appreciably – up to a normalization constant – by an appropriately
chosen criterion from one iterative step to the next. The converged mode is precisely
the initial optimal perturbation for time t1. The maximum energy amplification
is computed by propagating the converged initial condition forwards in time and
by forming the ratio of the disturbance energy at the end of the time interval
to the energy at the beginning. The direct and adjoint equations have been
discretized using a pseudospectral method based on Chebyshev polynomials and a
streamfunction-based formulation to account for incompressibility (see Appendix C
of the supplementary material available at journals.cambridge.org/flm).

4. Numerical results
4.1. Quantities provided by the non-normal analysis

For the unsteady basic state θ0(z, t), a given set (Ma, Ra, Bi, Pr) and a given type
of initial perturbation (temperature or velocity), the non-normal analysis determines
at a given time t1, the maximum energy amplification Ĝ(t1; k; Ma, Ra, Bi, Pr) over
all possible perturbations of wavenumber k (see figure 2). In a way, the value
ln Ĝ/t1 is analogous to a growth rate for classical stability analysis. More generally, it
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Figure 2. The maximum energy amplification Ĝ(t; k; Ma,Ra,Bi,Pr) as a function of
wavenumber k for three different times t = 0.2, t = 0.43 and t = 1. Parameters Ma = 300,
Ra = 0, Bi = 1, Pr =∞.
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Figure 3. Isolines of the maximum amplification Gmax(Ma, Ra, Bi,Pr) in the plane (Bi,Ma)
Parameters Ra = 0, Pr =∞. The values of the isolines are written on the figure.

appears possible to extend the usual concepts of classical stability analysis to unsteady
flows. For instance, Ĝ(t1; k; Ma, Ra, Bi, Pr) can be maximized over wavenumber
k and time t1 providing the global maximum amplification Gmax(Ma, Ra, Bi, Pr)
(see figure 3). This value is reached at time t = topt (Ma, Ra, Bi, Pr), for an optimal
wavenumber denoted by kopt (Ma, Ra, Bi, Pr) and for a specific perturbation structure
in z. These latter two quantities play the role of the most amplified wavenumber and
of the most amplified mode for the standard stability analysis. One also obtains a
‘stability’ diagram, by determining the region of the space (Bi, Pr, Ma, Ra) where
the amplification gets above a threshold Gthres. It is a way of separating the region
where amplification or attenuation occurs. The value of Gthres, for instance Gthres = 1,
is somewhat arbitrary: as already said in the introduction, an unsteady problem is
indeed characterized more by a transition domain than a well-defined threshold. It is
demonstrated below that choosing Gthres =1 or Gthres =100 does not result in major
differences, so that the transition region is thin compared with the absolute values of
the Marangoni and Rayleigh numbers. For fixed Ra and Pr , one can determine the
curve Mac(Bi, Ra, Pr) such that if Ma < Mac and Ma >Mac then Gmax <Gthres and
Gmax > Gthres, respectively. Similarly, one may define for fixed Ma and Pr , the curve
Rac(Bi, Ma, Pr). These curves play a role very much similar to marginal stability
curves. Each point of the critical curve is associated to a critical wavenumber kc≡ kopt
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Figure 4. Infinite Prandtl number case and Ra = 0. Results are shown for two thresholds
Gthres = 1 and Gthres = 100. Frozen-time and steady state results are presented for comparison
(see text for details). (a) Critical Marangoni Mac(Bi), (b) critical wavenumber kc(Bi),
(c) critical time tc(Bi).

and critical optimal time tc≡ topt . Note that until this point, most of this procedure
can be extended to other unsteady problems in a straightforward way. A comparison
between these critical curves and the experimental diagram, which separates the
domains where convection is observed or not observed, is made in § 5.

4.2. Infinite Prandtl number: the pure Marangoni case Ma �= 0 and Ra =0

For infinite Prandtl number, the velocity is slaved to the temperature field. As a
consequence, only perturbations in temperature field are pertinent. In the plane
(Bi, Ma), the critical curve Mac(Bi), critical wavenumber kc(Bi) and critical optimal
time tc(Bi) are presented for the pure Marangoni case and two thresholds Gthres = 1
and Gthres = 100 (figure 4). The critical Marangoni number Mac(Bi) slightly depends
on the value of the threshold and seems to be consistent, within the numerical
uncertainties, to the following laws (here Gthres = 1):

Mac(Bi) � 83/Bi for Bi� 1 and Mac(Bi) � 15Bi for 1�Bi. (4.1)

Moreover the wavenumber kc(Bi) (figure 4b) is an increasing function of the Biot
number while optimal time tc(Bi) is a decreasing function of the same parameter.

Using heuristic arguments (cf. Appendix D available with the online version of the
paper), the following scaling laws can be deduced:

For Bi� 1 the critical conditions for instability can be expressed as

Mac ∼ 1/Bi with
√

Bi � kc � 1 and 1 � tc � 1/Bi. (4.2)
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Figure 5. The optimal temperature perturbation θ̂ (z, t) at time t = 0 (dashed) and t = tc (solid)
for Ra =0, Pr =∞, Gthres = 1: (a) Bi = 0.01, Ma = Mac = 8685 and k = kc = 0.74; (b) Bi = 100,
Ma = Mac = 1658 and k = kc = 4.46.

For 1�Bi, the critical conditions become

Mac ∼ Bi with 1 � kc � Bi and tc ∼ k−2
c . (4.3)

The spatial structure in z of the optimal perturbation at k = kc and Ma = Mac is
shown on figure 5 for two Biot numbers and two different times: time t =0 and time
t = tc when the perturbation reaches its maximum amplification. The spatial structure
of this optimal perturbation is shown to change slightly during the time evolution. In
this respect, this optimal mode does not differ much from the classical most amplified
mode of steady problems.

4.3. Infinite Prandtl number: the pure Rayleigh case Ra �= 0 and Ma = 0

In the plane (Bi, Ra), the critical curves Rac(Bi), kc(Bi) and tc(Bi) are presented
for two thresholds Gthres = 1 and Gthres = 100 (figure 6). The critical Rayleigh number
Rac(Bi) slightly depends on the value of the threshold and seem to be consistent,
within numerical uncertainties, to the following laws (here Gthres = 1):

Rac(Bi) � 600/Bi for Bi� 1 and Rac(Bi) � 960 for 1�Bi. (4.4)

Moreover the wavenumber kc(Bi) and time tc(Bi) are increasing and decreasing
functions, respectively, of the Biot number for small Biot and reach a plateau for
larger Biot number.

One can deduce, using heuristic arguments (see Appendix D of the supplementary
material available at journals.cambridge.org/flm), the following scaling laws:

Rac ∼ 1/Bi with
√

Bi � kc � 1 and 1 � tc � 1/Bi, for Bi� 1, (4.5)

Rac ∼ 1 with kc ∼ 1 and tc ∼ 1, for 1�Bi. (4.6)

4.4. Comparison with classical steady results and with transient frozen-time method

It is worth comparing the results presented here with the well-known results obtained
by Pearson (1958) in the framework of the steady Marangoni problem and Sparrow,
Goldstein & Jonsson (1963) in the framework of the steady Rayleigh problem. This
comparison is pertinent since the boundary conditions at the top and the bottom
of the layer (see (3.11)–(3.12)) are similar in the present work and in these classical
analyses. However, the Marangoni and Rayleigh numbers defined by these authors
are based on the steady temperature difference 
T0 between the top and the bottom of
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Figure 6. Infinite Prandtl number case and Ma = 0. Results are shown for two thresholds
Gthres = 1 and Gthres = 100. Frozen-time and steady state results are presented for comparison
(see text for details). (a) Critical Rayleigh Rac(Bi), (b) critical wavenumber kc(Bi), (c) critical
time tc(Bi).

the layer. This steady temperature difference is missing in the transient problem under
study. It is then not possible to make a direct comparison between the thresholds
values obtained in our paper and the previous ones from Pearson’s or Sparrow’s
publications, and a preliminary transformation is needed. Indeed, at each time t , one
might define the equivalent temperature difference between the top and the bottom
of the layer, i.e. 
θ0(t)
Tst . Using such a temperature difference, it is then easy to
define a time-dependent Marangoni M̄a(t) = 
θ0(t)Ma or a time-dependent Rayleigh
numbers R̄a(t) = 
θ0(t)Ra.

Let us compute the maximum of 
θ0(t) obtained during the time evolution for the
Marangoni and Rayleigh cases. This maximum is reached at time tc and leads to a
new Marangoni number M̄a(tc) and Rayleigh number R̄a(tc) which can be compared
to the critical values M̄aSteady and R̄aSteady, respectively, obtained by Pearson (1958)
and Sparrow et al. (1963), respectively, from the steady case. With the scalings used
here, the critical Marangoni Mac and Rayleigh Rac, respectively, predicted from these
steady results read

Mac �
M̄aSteady


θ0(tc)
and Rac �

R̄aSteady


θ0(tc)
(4.7)

Such estimations have been plotted on figures 4 and 6. They are found to be close
to our results for Gthres =1. The same comment applies for the critical wavenumbers
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except for the Bénard–Marangoni case at high Biot numbers. For critical times,
however, the steady-state approximation differs from our results.

When using the results by Pearson (1958) or Sparrow, Goldstein & Jonsson (1963),
we are clearly using the normal mode results obtained for a linear temperature field
in z on the whole thickness, which is a rough approximation especially at high Biot
number. We can go even further and compare the non-normal mode results within
the frozen-time approximation. In this latter approximation, a stability analysis in
terms of normal modes is performed at each time t . The ‘steady’ base flow is assumed
to be the temperature field θ0(z, t) computed at this specific time t . When the flow
is stable within this frozen-time approximation for each time t , it will be assumed
stable. When the control parameter reaches a critical value (here Mac or Rac), there
exists a unique critical time tc for which the frozen-time state θ0(z, tc) possesses a
marginal eigenvector with a critical wavenumber. In the present problem we have
determined the critical parameters for neutral conditions in the frozen-time case by
the Lapack routine DGGEV for generalized eigenvalue problems in combination
with a Chebyshev collocation method. As can be seen in figures 4 and 6, results
for the thresholds and the critical wavenumbers using the non-normal approach
(Gthres =1) and the frozen-time approximation are close. However the prediction of
critical times tc still differs. In the frozen-time approximation, tc corresponds to a time
when the quasi-static growth rate σ (t) becomes zero. This critical time is of a different
nature than the critical time for the non-normal approach. The latter characterizes
the perturbation evolution over the time interval from t = 0 up to tc. In zeroth-order
WKB theory, the critical time tc for the non-normal approach would be determined by∫ tc

0
σ (t)dt = ln(Gthres). Suitable modifications of the frozen-time analysis based on this

observation should therefore lead to closer agreement regarding the critical times (we
do not pursue this issue further in the present work). The frozen-time approximation
apparently provides a bound of order unity for tc because the available temperature
difference 
θ0(t) attains its maximum as soon as the thermal boundary layer of the
basic temperature distribution has reached the bottom of the layer. For small Bi,

θ0(t) remains fairly constant for larger times, and the instability can develop on
this quasi-steady background over fairly long times. This observation can explain the
apparently unbounded growth of tc with Bi for Bi → 0 in the non-normal analysis.

4.5. Results for finite Prandtl numbers

In this section, we focus on finite Prandtl numbers and more specifically on the role
of initial perturbations on the transition zone estimation. In this case, the velocity
field is not slaved to the temperature field so that perturbations in velocity can be
considered as well as perturbations in temperature. We only discuss the curves for
the pure Marangoni case (Ra = 0) (figure 7) but similar results apply to the pure
Rayleigh case (Ma = 0).

Since the frozen-time approximation seems to be valid for this unsteady problem
and an exchange of stability in a normal mode is not affected by the Prandtl number,
the effect of this latter number should not be significant. Indeed, for temperature
perturbations, the critical Marangoni Mac(Bi, Pr) is not affected when infinite Pr
number case is compared to Pr =10. For the optimal time tc(Bi, Pr) and wavenumber
kc(Bi, Pr), the same conclusions apply. For velocity perturbations, the curves differ
but not in a drastic way taking into account that perturbations are of a completely
different nature compared with the infinite-Prandtl-number problem. Perturbing the
temperature is more efficient than perturbing the velocity. Indeed critical Marangoni
numbers are smaller for temperature perturbations, but the difference is of the same
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Figure 7. Infinite Prandtl (Pr =∞) or finite Prandtl (Pr = 10) number cases. Temperature or
velocity initial perturbation results with threshold Gthres = 1. (a) Critical Marangoni Mac(Bi),
(b) critical wavenumber kc(Bi), (c) critical time tc(Bi).

order as the one obtained by changing the threshold value from 1 to 100. Actually,
the ‘blurriness’ of this transient problem induced by the choice of the threshold values
and perturbation types is not very broad and does not modify the order of magnitude
of the critical numbers if one excepts the time tc. Finally, let us note that nonlinear
direct simulations have also been made to solve this problem (Touazi et al., 2010),
showing very good agreement with the linear results presented here.

5. Comparison with experiments
The present section is devoted to the comparison between results obtained from

the optimal mode calculations and from an experimental work described in Toussaint
et al. (2008), where transient Rayleigh–Bénard–Marangoni convection is generated
by drying a polymer solution of polyisobutylene-toluene at ambient temperature.
In the experiments, buoyancy and Marangoni effects are equally present. It is the
evaporation of the solvent, i.e. toluene which cools the upper surface by latent heat.
During the experiments, the following parameters are kept constant:

κ = 0.97× 10−7 m2 s−1, λ=0.142 W K−1 m−1, ρ = 865 kg m−3,

α = 1.07× 10−3 K−1, σ = 28× 10−3 N m−1, γ = 1.19× 10−4 N K−1 m−1,

L = 3.96× 105 J kg−1, Hth =28 W K−1 m−2, 
Tst = 4.8 K.

⎫⎪⎬
⎪⎭ (5.1)

Different thicknesses d and dynamic viscosities μ are considered. d is varied from
0.3 mm to 23.5 mm while dynamic viscosity μ is set to a value in the range
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Figure 8. Comparison of theoretical and experimental results in the plane (d, μ) where d
stands for the layer thickness and μ the dynamic viscosity. The various curves displayed in
solid lines correspond to two different thresholds Gthres = 1, Gthres = 100 and two different
perturbation types (velocity and temperature). Experimental data are displayed by symbols.

[0.55 mPa s, 2100 mPa s] by monitoring the initial polymer concentration. These
data allow us to estimate the crispation, the Galileo and the Péclet numbers for each
experiment. We get the following bounds for these numbers:

10−7 � Cr � 10−3, 2× 102 � Ga � 3× 108, 10−3 � Pe � 0.1. (5.2)

As a consequence, the assumption of planar free surface and constant thickness layer
are justified. The other relevant non-dimensional numbers vary in the following range:

0.06 � Bi � 5; 6.6 � Pr � 2.5×104; 20 � Ma � 1.2×105; 1.3 � Ra � 1.4×106. (5.3)

The comparison is displayed using the critical dynamic viscosity μc(d) as a function of
thickness d (figure 8). In the plane (d, μ), each point corresponds to a given parameter
set (Ra, Ma, Pr, Bi). The four critical curves correspond to two thresholds (Gthres =1
and Gthres = 100) and two types of initial pertubation (temperature and velocity). The
theoretical critical curves divide the experimental points corresponding to regions of
convection or pure conduction in a satisfactory manner. The temperature perturbation
critical curve is above the velocity one. This analysis in the thickness/viscosity plane
shows again that the bandwidth of uncertainty due to the choice of threshold Gthres

and perturbation types is not very broad and does not modify the order of magnitude
of the critical thickness.

6. Conclusion
This paper presents a novel linear stability analysis of an unsteady base state within
the general conceptual framework of amplification theory. The non-normal approach
is used, which possesses the advantage over more classical methods to solve the
transient problem in a mathematically rigorous way. In turn, this allows one to
test other approximations. Here we have applied this approach for the first time
to characterize the stability of a transient Rayleigh–Bénard–Marangoni problem in
an horizontal fluid layer suddenly cooled from above. It provides the upper limit
of the energy amplification that a disturbance of wavenumber k can reach at time
t . This quantity reaches a maximum at time t = topt (Ma, Ra, Bi, Pr), for a specific
optimal wavenumber kopt (Ma, Ra, Bi, Pr) and a specific perturbation structure in z.
These latter two quantities play the role of the most amplified wavenumber and most
amplified mode for the standard steady analysis.
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A ‘stability’ diagram in the space (Bi, Pr, Ma, Ra) has been determined for the pure
Marangoni and the pure Rayleigh problem by the non-normal approach. Note that
the marginal conditions used to determine the stability curve was obtained by setting
the optimal amplification equal to 1 or 100. The critical time and critical wavenumber
were evaluated for these marginal conditions. Critical Marangoni and Rayleigh
numbers exhibit a strong dependency on the Biot number and a weak sensitivity
to Prandtl number variations in the range Pr � 1. Scaling exponents for critical
Rayleigh or critical Marangoni versus Biot numbers have been found numerically and
confirmed by scaling analysis in the limit of very small and very large Biot numbers.
Comparison of the non-normal approach with the frozen-time approximation (a
classical quasi-static approach) shows similar results for the critical Marangoni or
Rayleigh numbers and the critical wavenumbers. Moreover, the ‘blurriness’ inherent
in any transient problem was analysed as a function of the amplification threshold
values and perturbation types. It has been shown that the transition region is thin
compared to the large domain of Rayleigh or Marangoni numbers covered by the
analysis.

Finally, a comparison with experimental results has been performed, where
convection is induced by solvent evaporation during the drying of polymer solution.
A good agreement was indeed found between the present theoretical study and
experimental observations. The method was developed in this paper for the cooling
of a fluid induced by solvent evaporation but could easily be extended to other
transient problems.

T. B. and M. R. acknowledge financial support from the Deutsche
Forschungsgemeinschaft in the framework of the Emmy Noether Programme (grant
Bo 1668/2).

Supplementary material is available at journals.production.org/FLM.
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