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In this paper we construct solutions which develop two negative spikes as ε → 0+ for
the problem −∆u = |u|4/(N−2)u + εf(x) in Ω, u = 0 on ∂Ω, where Ω ⊂ RN is a
bounded smooth domain exhibiting a small hole, with f � 0, f �≡ 0. This result
extends a recent work of Clapp et al . in the sense that no symmetry assumptions on
the domain are required.

1. Introduction

This paper deals with the construction of solutions of the problem

−∆u = |u|p−1u + εf(x) in Ω,

u = 0 on ∂Ω,

}
(1.1)

where Ω is a bounded smooth domain in RN , N � 3, which has a small hole,
p = (N + 2)/(N − 2) is the critical Sobolev exponent, f(x) is an inhomogeneous
perturbation, f � 0, f �≡ 0 and ε > 0 is a small parameter.

In the case when 1 < p < (N + 2)/(N − 2), it is well known that if f = 0,
the associated energy functional to problem (1.1) is even and satisfies the Palais–
Smale (PS) condition in H1

0 (Ω), which implies the existence of infinitely many
non-trivial solutions by standard Lyusternik–Schnirelman theory. Also known are
many results on existence and multiplicity of sign-changing solutions for small and
large inhomogeneous perturbations (see [2, 5, 18, 19, 23, 25]), whereas in [16] it was
proved that (1.1) does not admit any positive solution if ε > 0 is too large.

In the critical case, p = (N + 2)/(N − 2), the embedding H1
0 (Ω) ⊂ Lp+1(Ω) is

continuous but not compact, so that the (PS) condition does not hold, and serious
difficulties in facing the existence question arise. In fact, Pohozaev [17] proved that
(1.1) has no solution if f = 0 and Ω is strictly star-shaped. In contrast, Brezis and
Nirenberg [7] showed that this situation can be reverted by introducing suitable
additive perturbations. Rey [20] pointed out that the result in [6] implies that if
f � 0, f �= 0 and f ∈ H−1(Ω), then at least two positive solutions exist provided
that ε > 0 is sufficiently small. Moreover, in [20] it was proven that if f � 0,
f �≡ 0, is sufficiently regular, then at least cat(Ω) + 1 positive solutions exist for
ε > 0 sufficiently small, one of them converging uniformly to 0 while the others
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concentrate at some special points in Ω, depending on f and the regular part
of Green’s function of the Laplacian on Ω, as ε → 0. In parallel to Rey’s result
in [20], but with a different approach, Tarantello [26] proved that (1.1) admits at
least two solutions for f �≡ 0 satisfying ‖εf‖H−1(Ω) < CN , where CN is an explicit
constant; such solutions are positive if f � 0. The effect of the symmetries in further
multiplicity of solutions has been considered in some works. Ali and Castro [1]
proved that the existence result in [7] is optimal for positive solutions in a ball:
if Ω is a ball and f ≡ 1, problem (1.1) has exactly two positive solutions for all
sufficiently small ε > 0. More recently, Clapp et al . [9] proved that if Ω is symmetric
with respect to 0, 0 �∈ Ω, and f is even, then at least cat(Ω) + 2 positive solutions
exist provided that ‖εf‖H−1 is sufficiently small. The results in [1, 7, 9, 20, 26] deal
with the existence of positive solutions to problem (1.1), provided that f � 0 and
f �= 0, where ε > 0 is a small parameter.

Concerning solutions which are not necessarily positive, Clapp et al . [10] showed
the existence of solutions of (1.1) under certain symmetry assumptions in the
domain Ω and the function f . Such solutions develop k negative spikes, for any
k � k0(Ω), where k0(Ω) is a sufficiently large number depending on Ω.

In this paper we leave aside any symmetry assumptions on the domain Ω and
the perturbation f , and we find solutions to problem (1.1) developing a negative
double-spike shape. Additionally, we give precise information about the asymptotic
profile of the blow-up of these solutions as ε → 0 and we indicate a clearly delimited
region where the spikes are formed.

More precisely, our setting in problem (1.1) is as follows: let us consider the
domain

Ω = D \ B(P, µ), (1.2)

where D is a bounded smooth domain in RN , N � 3, P ∈ D and µ > 0 is a small
number. Let us consider f ∈ C0,γ(Ω̄), for some 0 < γ < 1, such that infx∈Ω f(x) > 0
and, by simplicity, we fix P = 0. Then our main result is as follows.

Theorem 1.1. There exists a constant µ0 = µ0(f,D) > 0, such that for each
0 < µ < µ0 fixed, there exists a number ε0 > 0 and a family of solutions uε

of (1.1), for 0 < ε = εn < ε0, with the following property: uε has exactly a pair
of local minimum points (ξε

1, ξ
ε
2) ∈ Ω2 with k∗µ < |ξε

i | < k∗µ, i = 1, 2, for certain
constants k∗, k∗ independent of µ and such that, for each small δ > 0,

inf
{|x−ξε

i |>δ, i=1,2}
uε(x) → 0 and inf

{|x−ξε
i |<δ}

uε(x) → −∞, i = 1, 2,

as ε → 0.

Indeed, we will find that uε is a non-trivial solution of (1.1) of the form

uε(x) = −αN

2∑
i=1

{
ε2/(N−2)λiε

ε4/(N−2)λ2
iε + |x − ξε

i |2

}(N−2)/2

+ ε−1φ̂(x) + θε(x),

where θε(x) → 0 uniformly as ε → 0, φ̂ is the unique solution of the problem

−∆φ̂(x) = ε2f(x) in Ω,

φ̂ = 0 on ∂Ω,
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αN = (N(N − 2))(N−2)/4 and the points ξε
i → ξi, up to subsequences, where (ξ1, ξ2)

is a critical point of the functional

Φ(x, y) =
1
2

{
H(x, x)w2(y) + 2G(x, y)w(x)w(y) + H(y, y)w2(x)

G2(x, y) − H(x, x)H(y, y)

}

defined in the region {(x, y) ∈ Ω2 : G(x, y) − H1/2(x, x)H1/2(y, y) > 0, x �= y}.
Here G and H are, respectively, Green’s function of the Laplacian on Ω and its
regular part, and w is the unique solution of the problem

−∆w = f in Ω,

w = 0 on ∂Ω.

Additionally, one can identify the limits λi of λiε as

λi =
(

a−1
N

H(ξj , ξj)w(ξi) + G(ξi, ξj)w(ξj)
G2(ξi, ξj) − H(ξi, ξi)H(ξj , ξj)

)2/(N−2)

, i �= j, i, j = 1, 2,

where aN is an explicit constant, and consider the constants k∗, k∗ as follows: k∗
is the unique solution in ]1, +∞[ of the equation

22−N

sN−2 =
(s2 + 1)N−2 + (s2 − 1)N−2

(s4 − 1)N−2

and K � k∗ = k ∗ (Ω, f) < ∞, where K is the unique solution in ]1, +∞[ of the
equation

21−N

sN
=

(s2 − 1)N−1 + (s2 + 1)N−1

(s4 − 1)N−1 .

In particular, if f is a constant and Ω is an annulus, then k∗ = K.
On the other hand, it will be clear from the proof that the small excised domain

does not need to be exactly a ball, and we consider this case just for notational
simplicity.

The proof of theorem 1.1 follows a Lyapunov–Schmidt reduction procedure,
related with this problem. This method has been used for solving problem (1.1)
in the critical case (see [10, 20]) and in the slightly supercritical case with f = 0
(see [12,13], and also [21,22] for related results).

In the next section we derive some basic estimates for the reduced energy asso-
ciated with this problem. Sections 3 and 4 will be devoted to discussion of the
finite-dimensional reduction scheme which we use for the construction of solutions
of (1.1). In § 5 we introduce an auxiliary function which will be the key in our
min–max scheme, which we develop in § 6 to finally establish theorem 1.1.

2. Basic estimates in the reduced energy

Let Ω be a bounded smooth domain in RN , N � 3, and let us consider the expanded
domain

Ωε = ε−2/(N−2)Ω, ε > 0.

Using the change of variable

vε(x′) = −εu(ε2/(N−2)x′), x′ ∈ Ωε,
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we note that u solves (1.1) if and only if vε solves

∆v + |v|p−1v = εp+1f̃(x′) in Ωε,

v = 0 on ∂Ωε,

}
(2.1)

where p = (N + 2)/(N − 2) and f̃(x′) = f(ε2/(N−2)x′). It is well known that all
positive solutions of equation ∆ϑ + ϑp = 0 in RN are given by the functions

Ūλ,ξ(x) = αN

(
λ

λ2 + |x − ξ|2

)(N−2)/2

,

with λ > 0, ξ ∈ RN and αN = (N(N −2))(N−2)/4 [3,7,8,24]. Since Ωε is expanding
to the whole RN as ε → 0, and εp+1f̃(x′) → 0 uniformly as ε → 0, it is reasonable
to assume that, for certain numbers λ1, λ2 > 0 and points ξ1, ξ2 ∈ Ω, some solution
vε of (2.1) becomes

vε ∼ Ūλ1,ξ′
1
+ Ūλ2,ξ′

2
,

where ξ′
i = ε−2/(N−2)ξi ∈ Ωε, and where from now on ξ denotes a point in Ω and

ξ′ denotes a point in Ωε.
From [11], we know that a better approximation to vε should be obtained by

using the orthogonal projections onto H1
0 (Ωε) of the functions Ūλ,ξ′ , denoted by

Uλ,ξ′ , namely the unique solution of the problem

−∆Uλ,ξ′ = Ūp
λ,ξ′ in Ωε,

Uλ,ξ′ = 0 on ∂Ωε.

In other words, Uλ,ξ′ = Ūλ,ξ′ − ῡλ,ξ′ , where ῡλ,ξ′ solves

−∆ῡλ,ξ′ = 0 in Ωε,

ῡλ,ξ′ = Ūλ,ξ′ on ∂Ωε.

Hence, if we consider Ū = Ū1,0, we obtain

ῡλ,ξ′(x′) = ε2λ(N−2)/2H(ε2/(N−2)x′, ξ)
∫

RN

Ūp + o(ε2) (2.2)

and, away from x′ = ξ′,

Uλ,ξ′(x′) = ε2λ(N−2)/2G(ε2/(N−2)x′, ξ)
∫

RN

Ūp + o(ε2) (2.3)

uniformly for x′ on each compact subset of Ωε, where G and H are, respectively,
Green’s function of the Laplacian with the Dirichlet boundary condition on Ω and
its regular part. Now, to simplify notation, we consider the function

V (x′) = U1(x′) + U2(x′), x′ ∈ Ωε,

where Ui = Uλi,ξ′
i
, i = 1, 2, and we set ξ = (ξ1, ξ2) ∈ Ω2 and λ = (λ1, λ2) ∈ R2

+.
Then, we look for solutions of problem (2.1) of the form

v(x′) = V (x′) + η̃(x′), x′ ∈ Ωε, (2.4)
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which for suitable points ξ and scalars λ will have the remainder term η̃ of small
order all over Ωε. Since solutions of (2.1) correspond to stationary points of its
associated energy functional Jε defined by

Jε(v) = 1
2

∫
Ωε

|∇v|2 − 1
p + 1

∫
Ωε

|v|p+1 + εp+1
∫

Ωε

f̃v, (2.5)

we have that if a solution of the form (2.4) exists, then we should have Jε(v) ∼ Jε(V )
and the corresponding points (ξ,λ) in the definition of V also should be ‘approxi-
mately stationary’ for the finite-dimensional functional (ξ,λ) �→ Jε(V ). Thus, our
first goal is to estimate Jε(V ). In order to establish the expansion, we consider the
function w, which corresponds to the unique solution in C0,γ(Ω) of the problem

−∆w = f in Ω,

w = 0 on ∂Ω,

}
(2.6)

and we make the following choice of the points and parameters: we fix δ > 0 and
we define the parameters λi as

λi = (a−1
N Λi)2/(N−2), i = 1, 2,

where aN =
∫

RN Ūp and Λi ∈ ]δ, δ−1[, for i = 1, 2. We also define the set

Mδ = {(ξ,Λ) : |ξ1 − ξ2| > δ, dist(ξi, ∂Ω) > δ; i = 1, 2}, (2.7)

where ξ = (ξ1, ξ2) ∈ Ω2 and Λ = (Λ1, Λ2) ∈ ]δ, δ−1[.

Lemma 2.1. Let δ > 0 given. The expansion

Jε(V ) = 2CN + ε2Φ(ξ,Λ) + o(ε2)

holds uniformly in the C1-sense, with respect to (ξ,Λ) in Mδ. Here

CN = 1
2

∫
RN

|∇Ū |2 − 1
p + 1

∫
RN

Ūp+1 (2.8)

and the function Φ is defined by

Φ(ξ,Λ) =
1
2

{ 2∑
i=1

Λ2
i H(ξi, ξi) − 2Λ1Λ2G(ξ1, ξ2)

}
+

2∑
i=1

Λiw(ξi). (2.9)

The proof of the previous lemma is based on (2.2), (2.3) and some estimates estab-
lished in [4], and follows a similar procedure to that used to prove [13, lemma 3.2]
and [10, proposition 1]; it is therefore omitted here.

3. The finite-dimensional reduction

We first introduce some notation to be used in what follows. For functions u, v
defined in Ωε we set

〈u, v〉 =
∫

Ωε

uv.
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Let us fix a small number δ > 0 and consider points (ξ′,Λ) in

Mε
δ = {(ξ′,Λ) ∈ Ω2

ε × ]δ, δ−1[ 2: |ξ′
1 − ξ′

2| > δε, dist(ξ′
i, ∂Ωε) > δε; i = 1, 2}, (3.1)

where δε = δε−2/(N−2), ξ′ = (ξ′
1, ξ

′
2) and Λ = (Λ1, Λ2). Since all solutions ϑ of the

problem ∆ϑ + pŪp−1
Λ,0 ϑ = 0 in RN which satisfy |ϑ(x)| < C|x|2−N belong to

span
{

∂ŪΛ,0

∂xj
,
∂ŪΛ,0

∂Λ

}
j=1,...,N+1

(see [8]), it is convenient to consider, for i = 1, 2, the functions

Z̄ij(x′) =
∂Ūi

∂ξ′
ij

(x′), j = 1, . . . , N, Z̄i(N+1)(x′) =
∂Ūi

∂Λi
(x′),

and their respective H1
0 (Ωε)-projections Zij , namely, the unique solutions of

∆Zij = ∆Z̄ij in Ωε,

Zij = 0 on ∂Ωε.

In order to simplify notation, we will define

V = U1 + U2 and V̄ = Ū1 + Ū2.

We start by studying a linear problem which is the basis for the reduction of (2.1):
given h ∈ L∞(Ω̄ε), find a function η and constants cij such that

∆η + p|V |p−1η = h +
∑
i,j

cijU
p−1
i Zij in Ωε,

η = 0 on ∂Ωε,

〈η, Up−1
i Zij〉 = 0 for all i, j.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.2)

We want to prove that this problem is uniquely solvable with uniform bounds in
certain appropriate norms. In other words, we want study the linear operator Lε

associated with (3.2), namely

Lε(η) = ∆η + p|V |p−1η, (3.3)

under the previous orthogonality conditions. In order to achieve this goal, we intro-
duce the following L∞-norms with weight. Let ωi = (1+|x′−ξ′

i|2)−(N−2)/2, i = 1, 2;
for a function θ defined in Ωε, we consider the norms

‖θ‖∗ = ‖(ω1 + ω2)−σθ(x′)‖∞ + ‖(ω1 + ω2)−σ−1∇θ(x′)‖∞,

where σ = 1
2 if 3 � N � 6, σ = 2/(N − 2) if N � 7 and

‖θ‖∗∗ = ‖(ω1 + ω2)−ςθ(x′)‖∞,

where ς = 1
2p if 3 � N � 6 and ς = 4/(N − 2) if N � 7. These norms are

similar to those defined in [10] for N � 7 but, for 3 � N � 6, we have modified
them, something apparently necessary in this case, since p � 2. Now, we study the
invertibility of the linear operator Lε defined in (3.3). Hence, it is also important
to understand the differentiability of Lε in the variables (ξ′,Λ) ∈ Mε

δ.
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Proposition 3.1. Assume that (ξ′,Λ) ∈ Mε
δ. There then exist ε0 > 0 and C > 0

such that, for all 0 < ε < ε0 and for all h ∈ Cα(Ω̄ε), the problem (3.2) admits a
unique solution η ≡ Mε(h). Moreover, the map (ξ′,Λ, h) �→ η ≡ Mε(h) is of class
C1 and satisfies

‖η‖∗ � C‖h‖∗∗ and ‖∇(ξ′,Λ)η‖∗ � C‖h‖∗∗.

The proof of this proposition follows from a slight variation of the arguments in
the proof of [13, propositions 4.1 and 4.2] with the necessary modifications in [14],
so we omit it here. In what follows, C represents a generic positive constant that is
independent of ε and of the particular points (ξ′,Λ) ∈ Mε

δ.
Now, we are ready to begin the finite-dimensional reduction. We want to solve

the following nonlinear problem: find a function η̃ such that, for certain constants
cij , i = 1, 2, j = 1, . . . , N + 1, one has

∆(V + η̃) + |V + η̃|p−1(V + η̃) − εp+1f̃ =
∑
i,j

cijU
p−1
i Zij in Ωε,

η̃ = 0 on ∂Ωε,

〈η̃, Up−1
i Zij〉 = −〈φ, Up−1

i Zij〉 for all i, j,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.4)

where φ solves the problem

−∆φ = εp+1f̃ in Ωε,

φ = 0 on ∂Ωε.

}
(3.5)

Note that V + η̃ is a solution of (2.1) if the scalars cij in (3.4) are all zero. Also,
we note that the partial differential equation in (3.4) is equivalent in Ωε to

∆η + p|V |p−1η = −Nε(η) − Rε +
∑
i,j

cijU
p−1
i ,

where η = η̃ − φ,

Nε(η) = |V + η − φ|p−1(V + η − φ)+ − |V |p−1V − p|V |p−1(η − φ) (3.6)

and
Rε = |V |p−1V − Ūp

1 − Ūp
2 − p|V |p−1φ. (3.7)

A first step to solve (3.4) consists of dealing with the following nonlinear problem:
find a function ϕ that, for certain constants cij , i = 1, 2, j = 1, . . . , N + 1, solves

∆(V + η̃) + |V + η̃|p−1(V + η̃)+ − εp+1f̃ =
∑
i,j

cijU
p−1
i Zij in Ωε,

ϕ = 0 on ∂Ωε,

〈ϕ, Up−1
i Zij〉 = 0 for all i, j,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.8)

where η̃ = ψ + ϕ − φ, with φ satisfying (3.5), and the function ψ is chosen as

ψ = −Mε(Rε), (3.9)
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where Mε is defined as in proposition 3.1 and Rε is given by (3.7). Actually, it is
easy to check that, for points (ξ′,Λ) ∈ Mε

δ, one has

‖ψ‖∗ � Cε2.

Now, in (3.8) we rewrite the equation of interest as

∆ϕ + p|V |p−1ϕ = −Nε(η) − (∆ψ + p|V |p−1ψ + Rε) +
∑
i,j

cijU
p−1
i Zij ,

where η = ψ + ϕ.

Lemma 3.2. Assume that (ξ′,Λ) ∈ Mε
δ. There then exists C > 0 such that, for all

ε > 0 small enough and ‖ϕ‖∗ � 1
4 , one has

‖Nε(ψ + ϕ)‖∗∗ �
{

C(‖ϕ‖2
∗ + ε‖ϕ‖∗ + εp+1) if 3 � N � 6,

C(ε2(p−2)‖ϕ‖2
∗ + εp2−3p+2‖ϕ‖p

∗ + εp2−p+2) if N � 7.

Proof. Note that ‖φ‖∗ � Cεp if 3 � N � 6, ‖φ‖∗ � Cε2 if N � 7 and ‖ψ‖∗ � Cε2.
Since ‖ψ + ϕ‖∗ � ‖ψ‖∗ + ‖ϕ‖∗, for η = ψ + ϕ we have that ‖η‖∗ < 1. Also we note
that

Nε(η) = C|V + t̄(η − φ)|p−2(η − φ)2, (3.10)

with t̄ ∈ ]0, 1[. Hence, if 3 � N � 6, then

|(ω1 + ω2)−p/2Nε(η)| � C(ω1 + ω2)(p−1)/2‖η − φ‖2
∗ � C‖η − φ‖2

∗.

On the other hand, for N � 7, if |η| � 1
2 (ω1 + ω2), we again use (3.10) to obtain

|(ω1 + ω2)−4/(N−2)Nε(η)| � C(ω1 + ω2)(6−N)/(N−2)‖η − φ‖2
∗

� Cε(6−N)/(N−2)‖η − φ‖2
∗.

In another case we obtain directly from (3.6) that

|(ω1 + ω2)−4/(N−2)Nε(η)| � C|(ω1 + ω2)−4/(N−2)(η − φ)p|

� Cε(6−N)/(N−2)(2/(N−2))‖η − φ‖p
∗.

The result follows on combining previous estimates.

We now deal with the following problem:

∆ϕ + pV p−1ϕ = −Nε(η) +
∑
i,j

cijU
p−1
i Zij in Ωε,

ϕ = 0 on ∂Ωε,

〈ϕ, Up−1
i Zij〉 = 0 for all i, j,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.11)

where η = ψ + ϕ and ψ is the function defined in (3.9).

Proposition 3.3. Assume that (ξ′,Λ) ∈ Mε
δ. There then exists C > 0 such that,

for all ε > 0 small enough, there exists a unique solution ϕ = ϕ(ξ′,Λ) to prob-
lem (3.11). Moreover, the map (ξ′,Λ) �→ ϕ(ξ′,Λ) is of class C1 for the ‖ · ‖∗-norm
and it satisfies

‖ϕ‖∗ � Cε2 and ‖∇(ξ′,Λ)ϕ‖∗ � Cε2.
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Proof. Let us set
Fr = {ϕ ∈ H1

0 (Ωε) : ‖ϕ‖∗ � rε2},

with r > 0 a constant to be fixed later. We define the map Aε : Fr → H1
0 (Ωε) as

Aε(ϕ) = −Mε(Nε(ψ + ϕ)),

where Mε is the operator defined in proposition 3.1. Since ψ = −Mε(Rε), solving
(3.11) is equivalent to finding a fixed point ϕ for Aε. From proposition 3.1 and
lemma 3.2, we deduce that if ϕ ∈ Fr and ε > 0 is small enough, then

‖Aε(ϕ)‖∗ � rε2

for a suitable choice of r = r(N) which we consider fixed from now on. Note that,
for ϕ1, ϕ2 ∈ Fr, from lemma 3.2 we have

‖Aε(ϕ1) − Aε(ϕ2)‖∗ � C‖Nε(ψ + ϕ1) − Nε(ψ + ϕ2)‖∗∗ � Cεp‖ϕ1 − ϕ2‖∗,

for all N � 3. It follows that, for ε > 0 small enough, the map Aε is a contraction
‖ · ‖∗ in Fr. Therefore, Aε has a fixed point in Fr.

Concerning differentiability properties, let us recall that η = ψ + ϕ is defined by
the relation

B(ξ′,Λ, η) ≡ η + Mε(Nε(ψ + ϕ)) = 0.

We see that

DηB(ξ′,Λ, η)[θ] = θ + Mε(θDηNε(ψ + ϕ)) ≡ θ + M̃(θ)

and check that
‖M̃(θ)‖∗ � Cε‖θ‖∗.

This implies that, for ε small, the linear operator DηB(ξ′,Λ, η) is invertible in the
space of the continuous functions in Ωε with bounded ‖ · ‖∗-norm, with a uniformly
bounded inverse depending continuously on its parameters.

Now, let us consider the differentiability with respect to the ξ′ variable; for sim-
plicity we write

∂

∂ξ′
ij

= ∂ξ′
ij

.

Then

∂ξ′
ij

B(ξ′,Λ, η) = ∂ξ′
ij

Mε(Nε(ψ + ϕ)) + Mε(∂ξ′
ij

Nε(ψ + ϕ))

+ Mε(DηNε(ψ + ϕ)∂ξ′
ij

ψ).

It is clear that all expressions which define to ∂ξ′
ij

B(ξ′,Λ, η) depend continuously
on their parameters. Applying the implicit function theorem, we find that ϕ(ξ′,Λ)
is a C1-function in L∞

∗ . Additionally, we obtain

∂ξ′
ij

ϕ = −(DηB(ξ′,Λ, η))−1(∂ξ′
ij

B(ξ′,Λ, η))

and, using the first part of this proposition, the estimates in the previous lemmas,
proposition 3.1 and the fact that (ξ,Λ) ∈ Mε

δ, we conclude that

‖∂ξ′
ij

ϕ‖∗ � C(‖Nε(ψ +ϕ)‖∗∗ +‖∂ξ′
ij

Nε(ψ +ϕ)‖∗∗ +‖DηNε(ψ +ϕ)∂ξ′
ij

ψ‖∗∗) � Cε2.
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Similarly, we can analyse the differentiability of B with respect to Λ. This finishes
the proof.

4. The reduced functional

Now we are ready to solve the full problem. Let us consider (ξ′,Λ) ∈ Mε
δ with Mε

δ

defined by (3.1). All the estimates obtained below will be uniform on these points.
Let ϕ = ϕ(ξ′,Λ) be the unique solution, given by proposition 3.3, of problem (3.8)
with η̃ = ψ + ϕ − φ, where ϕ solves (3.9) and φ solves (3.5). Note that if ξ =
ε2/(N−2)ξ′ ∈ Ω2 and λ = (λ1, λ2) ∈ R2

+ so that cij = 0 for all i, j, then a solution
of (1.1) is

u(x) = −ε−1v(ε−2/(N−2)x), x ∈ Ω,

where v = V + ψ + ϕ(ξ′,Λ) − φ. Hence, u will be a critical point of

Iε(u) = 1
2

∫
Ω

|∇u|2 − 1
p + 1

∫
Ω

|u|p+1 − ε

∫
Ω

fu,

while v will be one of Jε given by (2.5). Then it is convenient to consider the
following functions defined in Ω:

Ûi(x) = ε−1Ui(ε−2/(N−2)x) = Uλε
i ,ξi(x), ψ̂(x) = ε−1ψ(ε−2/(N−2)x),

ϕ̂(ξ,Λ)(x) = ε−1ϕ(ξ′,Λ)(ε−2/(N−2)x) φ̂(x) = ε−1φ(ε−2/(N−2)x).

Note that Ûi = Uλiε,ξi
, where λiε = (cNΛ2

i ε)
2/(N−2) ∈ R+ and ξ = ε2/(N−2)ξ′,

with (ξ,Λ) ∈ Mδ defined by (2.7). Now, let us set Û = Û1 + Û2. Consider now the
functional

I(ξ,Λ) ≡ Iε(Û + ψ̂ + ϕ̂(ξ,Λ) − φ̂). (4.1)

It is easy to check that

I(ξ,λ) = Jε(V + ψ + ϕ(ξ′,Λ) − φ).

Then, setting η̃ = ψ + ϕ(ξ′,Λ) − φ, one shows that DJε(V + η̃)[ϑ] = 0 for all ϑ ∈
Hε, where Hε = {ϑ ∈ H1

0 (Ωε) : 〈ϑ, V p−1
i Zij〉 = 0 for all i, j}. Also one has

∂V

∂ξ′
lk

= Zlk + o(1) for all l, k,
∂V

∂Λl(N+1)
= Zl(N+1) + o(1) for all l,

with o(1) → 0 in the ‖ · ‖∗-norm as ε → 0. Then from proposition 3.3 we obtain
the following basic result.

Lemma 4.1. The function u = Û + ψ̂ + ϕ̂(ξ,Λ) − φ̂ is a solution of problem (1.1)
if only if (ξ,Λ) is a critical point of I.

Next step is then to give an asymptotic estimate for I(ξ,Λ). Set

σf =
∫

Ω

f(x)w(x) dx, (4.2)

where w is the solution of (2.6). We then have the following proposition.
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Proposition 4.2. The following expansion holds:

I(ξ,Λ) = 2CN + ε2{Φ(ξ,Λ) + σf} + o(ε2)θ(ξ,Λ) (4.3)

uniformly in the C1-sense with respect to (ξ,Λ) ∈ Mδ, where θ is a bounded uni-
formly function independently of ε > 0. Here CN is the constant given by (2.8) and
Φ is the function given by (2.9).

Proof. The first step to achieve our goal is to prove that

I(ξ,Λ) − Iε(V̂ + ψ̂ − φ̂) = o(ε2) (4.4)

and

∇(ξ,Λ)(I(ξ,Λ) − Iε(V̂ + ψ̂ − φ̂)) = o(ε2). (4.5)

Let us set ϑ = V + ψ − φ and note that

I(ξ,Λ) − Iε(V̂ + ψ̂ − φ̂) = −
∫ 1

0
t

( ∫
Ωε

Nε(ψ + ϕ)ϕ
)

dt

+
∫ 1

0
t

( ∫
Ωε

p(|V |p−1 − |ϑ + tϕ|p−1)ϕ2
)

dt.

Now, differentiating with respect to the ξ variable, we obtain

Dξ(I(ξ,Λ) − Iε(ϑ̂)) = −ε−2/(N−2)
∫ 1

0
t

∫
Ωε

p∇ξ′ [|ϑ + tϕ|p−1ϕ2 − |V |p−1ϕ2] dt

− ε−2/(N−2)
∫

Ωε

∇ξ′(Nε(ψ + ϕ)ϕ).

Bearing in mind that ‖Nε(ψ + ϕ)‖∗ + ‖ϕ‖∗ + ‖ψ‖∗ + ‖∇ξ′
i
ϕ‖∗ + ‖∇ξ′

1
ψ‖∗ � O(ε2),

we see that (4.4) and (4.5) hold.
A second step is to prove that

Iε(V̂ + ψ̂ − φ̂) − Iε(V̂ − φ̂) = o(ε2) (4.6)

and

∇(ξ,Λ)(Iε(V̂ + ψ̂ − φ̂) − Iε(V̂ − φ̂)) = o(ε2). (4.7)

Put η = V − φ and, by the fundamental calculus theorem, note that

Iε(η̂ + ψ̂) − Iε(η̂) =
∫ 1

0
(1 − t)

( ∫
Ωε

p|η + tψ|p−1ψ2 −
∫

Ωε

|∇ψ|2
)

dt

+
∫

Ωε

(|V |p − |η|p − p|V |p−1φ)ψ +
∫

Ωε

Rεψ. (4.8)
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Now, differentiating with respect to ξ variables, we obtain

Dξ(Iε(η̂ + ψ̂) − Iε(η̂)) = ε−2/(N−2)
∫ 1

0
(1 − t)

∫
Ωε

∇ξ′(p|η + tψ|p−1ψ2 − |∇ψ|2) dt

+ ε−2/(N−2)
∫

Ωε

∇ξ′(|V |p − |η|p − p|V |p−1φ)ψ

+ ε−2/(N−2)
∫

Ωε

(|V |p − |η|p − p|V |p−1φ)∇ξ′ψ

+ ε−2/(N−2)
∫

Ωε

∇ξ′Rεψ + ε−2/(N−2)
∫

Ωε

Rε∇ξ′ψ.

Since ‖Rε‖∗∗ + ‖∇ξ′
i
Rε‖∗∗ + ‖φ‖∞ + ‖ψ‖∗ + ‖∇ξ′

i
ψ‖∗ � O(ε2) and ‖φ‖∗ � O(εp) if

3 � N � 6, ‖φ‖∗ � O(ε2) if N � 7, we obtain the result that (4.6) and (4.7) hold.
Finally, we need only the following two estimates to hold:

Iε(V̂ − φ̂) − Iε(V̂ ) = ε2σf + o(ε2), (4.9)

where σf is given by (4.2), and

D(ξ,Λ)(Iε(V̂ − φ̂) − Iε(V̂ )) = o(ε2). (4.10)

Now, we have

Iε(V̂ − φ̂) − Iε(V̂ ) =
∫ 1

0

( ∫
Ωε

|∇φ|2 −
∫

Ωε

p|V − tφ|p−1φ2
)

dt

+
∫

Ωε

(Ūp
1 + Ūp

2 − |V − tφ|p)φ. (4.11)

Note that∫ 1

0
t

∫
Ωε

|∇φ|2 dt =
∫

Ωε

|∇φ|2 = εp+1
∫

Ωε

f̃φ = ε2
∫

Ω

fw = ε2σf ,

and since ‖φ‖∞ � O(εp+1), we have that∣∣∣∣
∫

Ωε

p|V − tφ|p−1φ2
∣∣∣∣ � Cε4

∫
Ωε

(ω1 + ω2)p−1 � o(ε2).

On the other hand, it is not difficult to check that∣∣∣∣
∫

Ωε

( 2∑
i=1

Ūp
i − |V − tφ|p

)
φ

∣∣∣∣ =
∣∣∣∣
∫

Ωε

Rεφ +
∫

Ωε

(|V |p − |V − tφ|p − p|V |p−1φ)φ
∣∣∣∣

� o(ε2).

The above estimates yield (4.9). Now, from (4.11) we obtain

Dξ(Iε(V̂ − φ̂) − Iε(V̂ )) = ε−2/(N−2)
∫ 1

0
t

∫
Ωε

p|V − tφ|p−2∇ξ′V φ2 dt

+ ε−2/(N−2)
∫

Ωε

∇ξ′(Ūp
1 + Ūp

2 − |V − tφ|p)φ, (4.12)
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but since ‖φ‖∞ � O(εp+1), it is easy to check that (4.10) holds. Similarly, our
results hold for differentiability with respect to Λ.

Remark 4.3. Lemma 2.1 and the previous proposition yield

∇(ξ,Λ)I(ξ,Λ) = ε2∇(ξ,Λ)Φ(ξ,Λ) + o(ε2)∇(ξ,Λ)θ(ξ,Λ), (4.13)

uniformly with respect to (ξ,Λ) ∈ Mδ, where θ and ∇(ξ,Λ)θ are bounded uniformly
functions, independently of all ε > 0 small.

5. An auxiliary function on the exterior domain

In this section we consider the domain Ω defined in (1.2) with P = 0, µ > 0
small and fixed and we assume that f ∈ C0,γ(Ω̄), for some 0 < γ < 1, with
minx∈Ω f(x) = α > 0. Let w be the unique solution in C2,γ(Ω̄) of problem (2.6).
It is then easy to check that wµ(x) = µ−2w(µx) is the unique C2,γ(µ−1Ω) solution
of the problem

−∆wµ = f̂ in µ−1Ω,

wµ = 0 on ∂(µ−1Ω),

where f̂(x) = f(µx) for x ∈ (µ−1Ω).
Now, we consider the exterior domain

E = RN \ B(0, 1)

and we denote by GE and HE , respectively, Green’s function on E and its regular
part. By convenience, in the set

V = {(x, y) ∈ RN × RN : GE(x, y) − H
1/2
E (x, x)H1/2

E (y, y) > 0} ∩ (µ−1Ω)

we define the function

ΦE(x, y) =
1
2

{
HE(x, x)w2

µ(y) + 2GE(x, y)wµ(x)wµ(y) + HE(y, y)w2
µ(x)

G2
E(x, y) − HE(x, x)HE(y, y)

}
.

Then, if x and y are variable vectors whose magnitudes remain constant and we
differentiate ΦE with respect to the angle θ formed between them, we obtain

∂

∂θ
ΦE(x, y) = F (x, y, θ) sin θ

for 0 < θ < π. Since F (x, y, θ) > 0 for all θ ∈ ]0, π[, (x, y) ∈ V , we have that for
given magnitudes |x| and |y|, ΦE maximizes its value when θ = π, is to say when
x and y have opposite directions. In the rest of this section we assume that this is
the situation.

5.1. A first step to the auxiliary function: a radial case

In this subsection we consider a fixed constant T > 0 and the domain

Ω := Aµ = {x ∈ RN : 1 < |x| < µ−1} and f ≡ 1.
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We write R := R(µ, T ) = µ−1T so that wµ ∈ C2,γ(Āµ) is defined by

wµ(x) := WR(x) =
1

2N

{
R2 − 1

R2−N − 1
|x|2−N − |x|2 + R2−N 1 − RN

R2−N − 1

}
.

From the maximum principle we have that WR is strictly positive in Aµ. Addition-
ally, it achieves its maximum value in

x∗
µ ∈ RN such that |x∗

µ| = R∗
µ =

(
(N − 2)RN−2(R2 − 1)

2(RN−2 − 1)

)1/N

. (5.1)

Note that R∗
µ → +∞ as µ → 0. Now we consider an unitary vector e and we set

x = se, y = −te with s, t > 1. Then

2βNΦE(x, y)
:= 2βNΦR(x, y)

= 2βN Φ̃R(s, t)

=
(

W̃ 2
R(t)

(s2 − 1)N−2 + 2
{

1
(s + t)N−2 − 1

(st + 1)N−2

}
W̃ 2

R(s)W̃ 2
R(t) +

W̃ 2
R(s)

(t2 − 1)N−2

)

×
((

1
(s + t)N−2 − 1

(st + 1)N−2

)2

− 1
[(s2 − 1)(t2 − 1)]N−2

)−1

,

where W̃R(r) = WR(re), for 1 < r < R.

Remark 5.1. We define in ]1, +∞[ × ]1, +∞[ the following function:

Ψ̃(s, t) =
1

(s + t)N−2 − 1
(st + 1)N−2 − 1

[(s2 − 1)(t2 − 1)](N−2)/2 . (5.2)

From (5.1), it is easy to check that we can choose µ0 small enough such that for all
0 < µ < µ0 there exist 1 < k∗ < K < R∗

µ0
independent of µ, verifying Ψ̃(k∗, k∗) = 0,

Ψ̃(K, K) = max(x,y)∈E Ψ̃(|x|, |y|). Moreover, k∗ is the unique solution in ]1, +∞[ of
the equation

22−N

sN−2 =
(s2 + 1)N−2 + (s2 − 1)N−2

(s4 − 1)N−2

and K is the unique solution in ]1, +∞[ of

21−N

sN
=

(s2 + 1)N−1 + (s2 − 1)N−1

(s4 − 1)N−1 .

Now, it is not difficult to prove the following lemma.

Lemma 5.2. The function Φ̃R achieves only one minimum value at a critical point
of the form (ρR, ρR) ∈ ]k∗, K[.

5.2. General case

Let Ω be the domain defined in (1.2), with P = 0. In this subsection we consider
the values m, M as follows: m is the radius of the biggest ball centred at the
origin contained in D and M is the radius of the smallest ball centred at the origin
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containing to D. Let w be the unique solution C2,γ(Ω̄) of problem (2.6). By the
maximum principle, we check that

zm(x) � w(x) � zM (x) for all µ < |x| < m,

where zm(x) = αµ2WR1(µ
−1x) and zM (x) = βµ2WR2(µ

−1x), with R1 = µ−1m and
R2 = µ−1M . Hence,

ΦR1(µ
−1x, µ−1y) � ΦE(µ−1x, µ−1y) � ΦR2(µ

−1x, µ−1y) for all µ < |x|, |y| < m.

Since the function Ψ̃(s, s) defined in (5.2) is decreasing in its diagonal for values of
s greater that K and goes to 0, then is not difficult to show that the system

Φ̃R1(s, s)
Φ̃R2(K, K)

� 1, s � K,

possesses a solution, we say k∗, when we have chosen µ > 0 sufficiently small but
fixed. Indeed, if we set β = maxx∈Ω f(x) and (αm2 −βM2)KN−2 +βM2 �= 0, then,
in the limit for µ, we can choose

k∗ = max
{

K,

{(
αm2KN−2

(αm2 − βM2)KN−2 + βM2

)
+

}1/(N−2)}
.

If (αm2 − βM2)KN−2 + βM2 = 0, we change K by a value a few greater than K
in the definition of k∗. Then the following lemma is obtained.

Lemma 5.3. The function ΦE(x, y) achieves a relative minimum value in a critical
point (xµ, yµ) with xµ and yµ having opposite directions, and (|xµ|, |yµ|) ∈ ]k∗, k

∗[.
Moreover, |xµ| and |yµ| belong to a compact region fully contained in ]k∗, k

∗[, which
is independent of all sufficiently small µ > 0.

Let
Q = {(x, y) ∈ V × V : k∗ < |x|, |y| < k∗}.

We then define the following value:

cµ = ΦE(xµ, yµ) = min
(x,y)∈Q

ΦE(x, y). (5.3)

Let δµ > 0 be a suitable small value such that the level set

{(x, y) ∈ Q : ΦE(x, y) = δµ}

is a closed curve and that ∇ΦE(x, y) does not vanish on it. Let us set

Υµ = {(x, y) ∈ Q : ΦE(x, y) < δµ}. (5.4)

Thus, on this region we have that ΦE(x, y) < δµ and if (x, y) ∈ ∂Υµ, then one of the
following situations happens: either there is a tangential direction τ to ∂Υµ such
that ∇ΦE(x, y)·τ �= 0, or x and y lie in opposite directions, where ΦE(x, y) = δµ and
∇ΦE(x, y) �= 0 points orthogonally outwards to Υµ. Moreover, for fixed sufficiently
small µ0 > 0,

Υµ̂ ⊂⊂ Υµ ⊂⊂ Q for all 0 < µ̂ < µ < µ0. (5.5)
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Let us now consider the exterior domain

Eµ = RN \ B(0, µ),

and we denote by Gµ and Hµ, respectively, Green’s function on Eµ and its regular
part. Then

Gµ(x, y) = µ2−NGE(µ−1x, µ−1y) and Hµ(x, y) = µ2−NHE(µ−1x, µ−1y).

In particular, if we set
Σµ

Ω = µΥµ, (5.6)

with Υµ defined by (5.4), then Σµ
Ω corresponds precisely to the set where

ΦE(µ−1x, µ−1y) < δµ,

with δµ defined by (5.4). Moreover, since

G(x, y) = Gµ(x, y) + O(1) for all (x, y) ∈ µQ,

where the quantity O(1) is bounded independently of all small µ, in the C1-sense,
and the same is true for the function H, we have that, in the region µQ, the function

ΦΩ(x, y) =
1
2

{
H(x, x)w2(y) + 2G(x, y)w(x)w(y) + H(y, y)w2(x)

G2(x, y) − H(x, x)H(y, y)

}
(5.7)

satisfies the following relation:

ΦΩ(x, y) = µN+2ΦE(µ−1x, µ−1y) + o(1), (5.8)

where the quantity o(1) is bounded independently of all small numbers µ > 0 in
the C1-sense. Additionally, o(1) → 0 as µ → 0.

6. The min–max scheme and proof of the main result

In this section µ > 0 is a fixed sufficiently small number and Ω is the domain given
in (1.2) with P = 0. According to the results (4.1) and (4.13), obtained above, our
problem reduces to that of finding a critical point for

Φ(ξ,Λ) =
1
2

{ 2∑
i=1

Λ2
i H(ξi, ξi) − 2Λ1Λ2G(ξ1, ξ2)

}
+

2∑
i=1

Λiw(ξi), (6.1)

where ξ = (ξ1, ξ2) ∈ Ω2 and Λ = (Λ1, Λ2) ∈ R2
+. Here we consider the function

Φ defined over the class Σµ
Ω × R2

+, where Σµ
Ω is defined by (5.6). Indeed Φ has

some singularities on this class which we can avoid by replacing the term G(ξ1, ξ2)
in (6.1) by

G|M (ξ1, ξ2) =

{
G(ξ1, ξ2) if G(ξ1, ξ2) � M,

M if G(ξ1, ξ2) > M,
(6.2)

where M is a big number. Hence, we can work with the modified functional, which,
for simplicity, we still denote by Φ.
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For every ξ ∈ Σµ
Ω we choose d(ξ) = (d1(ξ), d2(ξ)) ∈ R2, which is a vector defin-

ing the negative direction of the associated quadratic form with Φ. Such a direc-
tion exists since G2(x, y) − H(x, x)H(y, y) > 0 over Σµ

Ω . More precisely, for fixed
ξ0 ∈ Σµ

Ω , the function

Φ(ξ0,d) =
1
2

{ 2∑
i=1

d2
i H(ξ0,i, ξ0,i) − 2d1d2G(ξ0,1, ξ0,2)

}
+

2∑
i=1

diw(ξ0,i),

regarded as a function of d = (d1, d2) only, with d1, d2 > 0, has a unique critical
point d̄(ξ0) = (d̄1(ξ0), d̄2(ξ0)) given by

d̄i(ξ0) =
H(ξ0,j , ξ0,j)w(ξ0,i) + G(ξ0,i, ξ0,j)w(ξ0,j)
G2(ξ0,i, ξ0,j) − H(ξ0,i, ξ0,i)H(ξ0,j , ξ0,j)

, i, j = 1, 2, i �= j.

In particular,
Φ(ξ0, d̄(ξ0)) = ΦΩ(ξ0), (6.3)

where ΦΩ is the function given by (5.7). Then we simply choose d(ξ) = d̄(ξ). Let xµ

and yµ the points given by (5.3). From now on we consider ρ̂µ = |xµ| and ρ̄µ = |yµ|.
Set

S = {(x, y) ∈ Q2 : (|x|, |y|) = (µρ̂µ, µρ̄µ)}.

Let K be the class of all continuous functions

κ : S × I0 × [0, 1] → Σµ
Ω × R2

+

such that

(i) κ(ξ, σ0, t) = (ξ, σ0d(ξ)) and κ(ξ, σ−1
0 , t) = (ξ, σ−1

0 d(ξ)) for all ξ ∈ S, t ∈ [0, 1].

(ii) κ(ξ, σ, 0) = (ξ, σd(ξ)) for all (ξ, σ) ∈ S × I0, where I0 = [σ0, σ
−1
0 ] and σ0 is a

small number to be chosen later.

Then we define the min–max value as

c(Ω) = inf
κ∈K

sup
(ξ,σ)∈S×I0

Φ(κ(ξ, σ, 1)). (6.4)

In what follows we prove that c(Ω) is a critical value of Φ.

Lemma 6.1. For all sufficiently small µ > 0, the following estimate holds:

c(Ω) � µN+2cµ + o(1),

where o(1) → 0 as µ → 0, and cµ is the value defined in (5.3).

Proof. For all t ∈ [0, 1], we consider the test path defined as κ(ξ, σ, t) = (ξ, σd(ξ)).
Maximizing Φ(ξ, σd(ξ)) in the variable σ, we note that this maximum value is
attained at σ = 1, because of our choice of the vector d(ξ). Hence, from (6.3), we
have

max
σ∈I0

Φ(ξ, σd(ξ)) = Φ(ξ, d(ξ)).

On the other hand, by the definition of S, we see that

ΦE(µ−1ξ1, µ
−1ξ2) = cµ.

Then the conclusion is immediate from (5.8) and the definition of c(Ω).
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In order to prove that c(Ω) is indeed a critical point of Φ we need an intersection
lemma. The idea behind this result is the topological continuation of the set of
solutions of an equation (see [15]). For every (ξ, σ, t) ∈ S × I0 × [0, 1] we define

κ(ξ, σ, t) = (ξ̃(ξ, σ, t), Λ̃(ξ, σ, t)) ∈ Σµ
Ω × R2

+,

with ξ̃ = (ξ̃1, ξ̃2), Λ̃ = (Λ̃1, Λ̃2), and we define the set

M = {(ξ, σ) ∈ S × I0 : Λ̃1(ξ, σ, 1) · Λ̃2(ξ, σ, 1) = 1}.

The following lemma has been proved by Del Pino et al . in [12, lemma 6.2]. There-
fore, we omit the proof here.

Lemma 6.2. For every open neighbourhood W of M in S × I0, the projection g :
W → S induces a monomorphism in cohomology, that is

g∗ : H∗(S) → H∗(W )

is injective.

Proposition 6.3. There exists a constant A > 0 such that

sup
(ξ,σ)∈S×I0

Φ(κ(ξ, σ, 1)) � −A for all κ ∈ K.

Proof. Note that ξ ∈ Σµ
Ω implies that ξi ∈ B(0, µk∗) \ B(0, µk∗), for i = 1, 2, with

ρ̂µ, ρ̄µ ∈ ]k∗, k
∗[ for any µ sufficiently small. Thus, we can find a number δ0 > 0

such that if |ξ1 − ξ2| < δ0, then ξ1 · ξ2 > 0. Let A0 > 0 be such that G(x, y) � A0
implies |x − y| < δ0.

We argue by contradiction. Let us assume that, for certain κ ∈ K, we have

Φ(κ(ξ, σ, 1)) � −A0 for all (ξ, σ) ∈ S × I0.

This implies that, for all (ξ, σ) ∈ M, (ξ̃, σ̃) = (ξ̃(ξ, σ, 1), Λ̃(ξ, σ, 1)), we have

2G(ξ̃1, ξ̃2) − (Λ̃2
1H(ξ̃1, ξ̃1) + 2Λ̃1w(ξ̃1) + Λ̃2

2H(ξ̃2, ξ̃2) + 2Λ̃2w(ξ̃2)) � 2A0

and since H(ξ̃i, ξ̃i) > 0 and w(ξ̃i) > 0, we conclude that if we take a small neigh-
bourhood W of M in S × I0, then for every (ξ, σ) ∈ W we have

G(ξ̃(ξ, σ, 1)) � A0.

Hence, |ξ̃1 − ξ̃2| < δ0. Let us fix points ζi ∈ RN , i = 1, 2, such that |ζ1| = ρ̂µ and
|ζ2| = ρ̄µ. Then ζ = (ζ1, ζ2) ∈ S. Setting κ1 = κ(·, 1), we see that, because of the
above conclusion, κ1(W ) ⊂ (Σµ

Ω \ T (ζ)) × R2
+, where T (ζ) = {(t1ζ1, t2ζ2) : t1, t2 ∈

]k, K[ }.
Consider the map s : Σµ

Ω × R2
+ → S defined componentwise as

s(ξ,Λ) = µ

(
ρ̂µξ1

|ξ1|
,
ρ̄µξ2

|ξ2|

)
.

Then κ∗
0 ◦ s∗ : H∗(S) → H∗(S × I0), where κ0 = κ(·, 0) is an isomorphism. By the

homotopy axiom we then deduce that κ∗
1 ◦ s∗ is also an isomorphism. We consider
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the following commutative diagram:

H∗(S × I0)

i∗
1

��

H∗(Σµ
Ω × R2

+)
κ∗
1��

i∗
2

��

H∗(S)κ∗
��

i∗
3

��
H∗(W ) H∗(κ1(W ))

κ̃∗
1�� H∗(S \ {ζ}),s̃∗

��

where i1, i2 and i3 are inclusion maps, κ̃1 = κ1|W and s̃ = s|κ1(W ). From lemma 6.2
we have that i∗1 is a monomorphism, which is a contradiction of the fact that
H2N (S \ {ζ}) = 0. Thus, the result follows.

In order to prove that the min–max number (6.4) is a critical value of Φ, we need
to take into consideration the fact that the domain in which Φ is defined is not
necessarily closed for the gradient flow of Φ. The following lemma is given towards
this aim.

Lemma 6.4. Assume that µ > 0 is a sufficiently small number. Let (ξn, Λn) ∈
Σµ

Ω × R2
+ be a sequence such that

∇ΛΦ(ξn,Λn) → 0. (6.5)

Then each component of Λn is bounded above and below by positive constants.

Proof. Note that Σ̄µ
Ω ⊂⊂ Ω. Hence, w(ξi) > 0, i = 1, 2, for all ξ ∈ Σ̄µ

Ω . We set
ξn = (ξ1,n, ξ2,n) and Λn = (Λ1,n, Λ2,n). Then (6.5) is equivalent to

Λi,nH(ξi,n, ξi,n) − Λj,nG(ξi,n, ξj,n) + w(ξi,n) → 0, i, j = 1, 2, i �= j.

It is clear that |Λn| → 0 or Λi,n → 0 and Λj,n → C, with non-zero C and with i �= j,
cannot happen. Hence, we can suppose that |Λn| → +∞. Since H and G remain
uniformly controlled (µ is fixed), we easily see that Λ1,n → +∞ and Λ2,n → +∞.
We set Λ̃i,n = Λi,n/|Λn|, for i = 1, 2, and passing to a subsequence, if necessary,
we may assume that this sequence it approaches a non-zero vector (Λ̂1, Λ̂2) with
Λ̂i �= 0 for i = 1, 2. It follows that

Λ̃i,nH(ξi,n, ξi,n) − Λ̃j,nG(ξ1,n, ξ2,n) +
w(ξi,n)
|Λn| → 0, i, j = 1, 2, i �= j.

For a suitable subsequence, for some (ξ̄1, ξ̄2) ∈ Σ̄µ
Ω , we obtain the system

Λ̂1

Λ̂2
=

G(ξ̄1, ξ̄2)
H(ξ̄1, ξ̄1)

and
Λ̂2

Λ̂1
=

G(ξ̄1, ξ̄2)
H(ξ̄2, ξ̄2)

.

Hence,
G2(ξ̄1, ξ̄2) − H(ξ̄1, ξ̄1)H(ξ̄2, ξ̄2) = 0,

which is a contradiction, since the quantity on the left-hand side in the previous
equality is strictly positive when µ > 0 is chosen sufficiently small. This finishes the
proof.
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Proposition 6.5. Let us assume that µ > 0 is a sufficiently small number. Then
the functional Φ satisfies the (PS) condition in the region Σµ

Ω × R2
+ at the level

c(Ω) given in (6.4).

Proof. Let us consider a sequence (ξn,Λn) ∈ Σµ
Ω × R2

+ such that

∇ΛΦ(ξn,Λn) → 0 and ∇τ
ξΦ(ξn,Λn) → 0,

where ∇τ
ξΦ corresponds to the tangential gradient of Φ to ∂Σµ

Ω × R2
+ in the case

when ξn approaches ∂Σµ
Ω or the full gradient otherwise. From the previous lemma,

the components of Λn are bounded above and below by positive constants, so that
we may assume, passing to a subsequence if necessary, that (ξn,Λn) → (ξ0,Λ0) ∈
Σ̄µ

Ω × R2
+ and Φ(ξn,Λn) → c(Ω). Then

∇ΛΦ(ξ0,Λ0) = 0.

Observe that if ξ0 ∈ Int(Σµ
Ω), then ξ0 is a critical point of Φ. We assume the

opposite, i.e. that ξ0 ∈ ∂Σµ
Ω . Then

ΦE(µ−1ξ0,1, µ
−1ξ0,2) = δµ.

Firstly, we note that ∇ΛΦ(ξ0,Λ0) = 0. Then Λ0 satisfies

Λ0,i =
H(ξ0,j , ξ0,j)w(ξ0,i) + G(ξ0,i, ξ0,j)w(ξ0,j)
G2(ξ0,i, ξ0,j) − H(ξ0,i, ξ0,i)H(ξ0,j , ξ0,j)

, i, j = 1, 2, i �= j.

Substituting these values in Φ, from (6.3) we obtain

c(Ω) = Φ(ξ0,Λ0) = ΦΩ(ξ0)

and from (5.8) we deduce that

c(Ω) = µN+2ΦE(µ−1ξ0,1, µ
−1ξ0,2) + θ(ξ0),

where θ(ξ0) is small in the C1 sense, as µ > 0 becomes smaller. Hence, ∇ξΦ(ξ0,Λ0)·
τ ∼ 0 for any direction τ tangential to ∂Σµ

Ω . Thus, from the analysis in the previous
section, we have that ξ0,1 and ξ0,2 are in opposite directions; Φ(ξ0,Λ0) ∼ µN+2δµ

and ∇ξΦ(ξ0,Λ0) must be away from 0. Then choosing τ parallel to ∇ξΦ(ξ0,Λ0) we
obtain that ∇ξΦ(ξ0,Λ0) · τ must be away from 0, which is a contradiction. Then,
the point ξ0 ∈ Int(Σµ

Ω), which implies that the (PS) condition holds and the results
follows.

Now we are ready to complete the proof of theorem 1.1.

Proof of theorem 1.1. Let us consider the domain Σb
a = Σµ

Ω × [a, b]2 with a, b to
be chosen later. Then the functional I given by (4.1) is well defined on Σb

a except
on the set

∆ρ = {(ξ,Λ) ∈ Σb
a : |ξ1 − ξ2| < ρ}.

From (4.3) we can extend I to all Σb
a by extending Φ as in (6.2), and keep relations

(4.3) and (4.13) over Σb
a.

From proposition 6.5, Φ satisfies the (PS) condition. There then exist constants
b > 0, c > 0 and �0 > 0, such that if 0 < � < �0, and (ξ,Λ) ∈ Σµ

Ω satisfying
|Λ| � b and c(Ω) − 2� � Φ(ξ,Λ) � c(Ω) + 2�, then |∇Φ(ξ,Λ)| � c.
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We now use the min–max characterization of c(Ω) to choose κ ∈ K so that

c(Ω) � sup
(ξ,σ)∈S×I0

Φ(κ(ξ, σ, 1)) � c(Ω) + �.

By making a small and b large if necessary, we can assume that κ(ξ, σ, 1) ∈ Σ
b/2
2a ⊂

Σb
a for all (ξ, σ) ∈ S × I0.
Consider now η : Σb

a × [0, +∞] → Σb
a, the solution of the equation

η̇ = −h(η)∇I(η)

with initial condition η(ξ,Λ, 0) = (ξ,Λ). Here the function h is defined in Σb
a

so that h(ξ,Λ) = 0 for all (ξ,Λ) with Φ(ξ,Λ) � c(Ω) − 2� and h(ξ,Λ) = 1 if
Φ(ξ,Λ) � c(Ω) − �, satisfying 0 � h � 1.

Hence, by the choice of a and b, and bearing in mind (4.3) and (4.13), we have
that η(ξ,Λ, t) ∈ Σb

a for all t � 0. Then the min–max value

C(Ω) = inf
t�0

sup
(ξ,σ)∈S×I0

I(η(κ(ξ, σ, 1), t))

is a critical value for I. We always assume that ε is sufficiently small, in order to
make the errors in (4.1) sufficiently small. Theorem 1.1 is thus proven.
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