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Abstract

In inductive learning of a broad concept, an algorithm should be able to distinguish concept

examples from exceptions and noisy data. An approach through recursively finding patterns

in exceptions turns out to correspond to the problem of learning default theories. Default

logic is what humans employ in common-sense reasoning. Therefore, learned default theories

are better understood by humans. In this paper, we present new algorithms to learn default

theories in the form of non-monotonic logic programs. Experiments reported in this paper

show that our algorithms are a significant improvement over traditional approaches based on

inductive logic programming. Under consideration for acceptance in TPLP.

KEYWORDS: inductive logic programming, non-monotonic logic programming, default rea-

soning, common-sense reasoning, machine learning

1 Introduction

Predictive models produced by classical machine learning methods are not compre-

hensible for humans because they are algebraic solutions to optimization problems

such as risk minimization or data likelihood maximization. These methods do not

produce any intuitive description of the learned model. This makes it hard for users

to understand and verify the underlying rules that govern the model. As a result,

these methods do not produce any justification when they are applied to a new data

sample. Also, extending the prior knowledge1 in these methods requires the entire

model to be re-learned. Additionally, no distinction is made between exceptions

and noisy data. Inductive Logic Programming (Muggleton 1991), however, is one

technique where the learned model is in the form of logic programming rules (Horn

clauses) that are more comprehensible and that allows the background knowledge

to be incrementally extended without requiring the entire model to be relearned.

� Authors are partially supported by NSF Grant No. 1423419.
1 In the rest of the paper, we will use the term background knowledge to refer to prior knowledge

(Muggleton 1991).
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This comprehensibility of symbolic rules makes it easier for users to understand and

verify the resulting model and even edit the learned knowledge.

Given the background knowledge and a set of positive and negative examples,

Inductive Logic Programming (ILP) learns theories in the form of Horn logic

programs. However, due to the lack of negation-as-failure (NAF), Horn clauses are

not sufficiently expressive for representation and reasoning when the background

knowledge is incomplete.

Additionally, ILP is not able to handle exception to general rules: It learns

rules under the assumption that there are no exceptions to them. This results in

exceptions and noise being treated in the same manner. Often, the exceptions to the

rules themselves follow a pattern, and these exceptions can be learned as well. The

resulting theory that is learned is a default theory, and in most cases, this theory

describes the underlying model more accurately. It should be noted that default

theories closely model common sense reasoning as well (Baral 2003). Thus, a default

theory, if it can be learned, will be more intuitive and comprehensible for humans.

Default reasoning also allows us to reason in absence of information. A system

that can learn default theories can therefore learn rules that can draw conclusions

based on the lack of evidence, just like humans. Other reasons that underscore the

importance of inductive learning of default theories can be found in the paper by

Sakama (2005) who also surveys other attempts in this direction.

As an example, suppose we want to learn the concept of flying ability of birds.

We would like to learn the default rule that birds normally fly, as well as rules

that capture exceptions, namely, penguins and ostriches are birds that do not fly.

Current ILP systems will be thrown off by the exceptions and will not discover

any general rule: They will just either enumerate all the birds that fly or cover the

positive examples without caring much about the falsely covered negative examples.

Other algorithms, such as First Order Inductive Learner (FOIL), will induce rules

that are non-constructive and thus not helpful or intuitive.

In this paper, we present two algorithms for learning default theories (i.e., non-

monotonic logic programs), called First Order Learner of Default (FOLD) and

FOLD-R, to handle categorical and numeric features, respectively. Unlike traditional

ILP systems that learn standard logic programs (i.e., no negation is allowed), our

algorithms learn non-monotonic stratified logic programs (that allow NAF ). Our

algorithms are an extension of the FOIL algorithm by Quinlan (1990) and support

both categorical and numeric features. Also, the FOLD and FOLD-R learning

algorithms can learn recursive rules. Whenever needed, our algorithms introduce new

predicates. The language bias (Mitchell 1980) also contains arithmetic constraints

of the form {A � h, A � h}. The algorithms have been implemented and tried on

variety of datasets from the UCI repository. They have shown excellent results that

are presented here as well.

The default theories that we learn using our algorithm, as well as the background

knowledge used, are assumed to follow the stable model semantics2. Stable model

2 We assume that the background knowledge has exactly one stable model.
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semantics, and its realization in answer set programming (ASP), provides an elegant

mechanism for handling negation in logic programming (Gelfond and Lifschitz

1988). We assume that the reader is familiar with ASP and stable model semantics

(Baral 2003).

This paper makes the following contributions: We propose a novel concrete algo-

rithm to learn default theories automatically in the absence of complete information.

The proposed algorithm, unlike the existing ones, is able to handle the numeric fea-

tures without discretizing them first, and is also capable of handling non-monotonic

background knowledge. We provide both qualitative and quantitative results from

standard UCI datasets to support the claim that our algorithm discovers more

accurate as well as more intuitive rules compared to the conventional ILP systems.

Rest of the paper is organized as follows: Section 2 formally defines the problem

we tackle in this paper. Section 3 presents some background materials. Section 4

presents the FOLD algorithm to solve the problem. In Section 5, we extend FOLD

to handle numeric features. Section 6 presents the experiments and results. Section

7 discusses related research. Section 8 discusses our future research direction and

finally in Section 9 we conclude.

2 The inductive learning problem

The problem that we tackle in this paper is an inductive non-monotonic logic

programming problem that can be formalized as follows.

Given

• a background theory B, in the form of a normal logic program, i.e, clauses

of the form h← l1, . . . , lm, not lm+1, . . . , not ln, where h and l1, . . . , ln are positive

literals and not denotes NAF with stable model semantics;

• two disjoint sets of grounded goal predicates E+,E− are known as positive and

negative examples, respectively;

• a hypothesis language of predicates L including function and atom free

predicates. It also contains a set of arithmetic constraints of the form {A �
h, A � h} where A is a variable and h is a real number;

• a covers(H,E,B) function, which returns the subset of E that is extensionally

implied by the current hypothesis H given the background knowledge B;

• a score(E+,E−,H,B) function, which specifies the quality of the hypothesis

H with respect to E+,E−,B;

Find

• a theory T for which covers(T,E+,B) = E+ and covers(T,E−,B) = ∅.

3 Background

Our algorithm to learn default theories is an extension of the FOIL algorithm

(Quinlan 1990). FOIL is a top-down ILP system that follows a sequential covering

approach to induce a hypothesis. The FOIL algorithm is summarized in Algorithm
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1. This algorithm repeatedly searches for clauses that score best with respect to a

subset of positive and negative examples, a current hypothesis and a heuristic called

information gain (IG).

Algorithm 1 Summarizing the FOIL algorithm

Input: goal,B,E+,E−
Output: Initialize H← ∅

1: while not(stopping criterion) do

2: c← (goal :- true.)

3: while not(stopping criterion) do

4: for all c′ ∈ ρ(c) do

5: compute score(E+,E−,H∪ {c′},B)

6: end for

7: let ĉ be the c′ ∈ ρ(c) with the best score

8: c← ĉ

9: end while

10: add ĉ to H
11: E+ ← E+ \ covers(ĉ,E+,B)

12: end while

The inner loop searches for a clause with the highest IG using a general-to-

specific hill-climbing search. To specialize a given clause c, a refinement operator

ρ under θ-subsumption (Plotkin 1971) is employed. The most general clause is

p(X1, . . . , Xn)← true, where the predicate p/n is the predicate being learned and each

Xi is a variable. The refinement operator specializes the current clause h← b1, . . . bn.

This is realized by adding a new literal l to the clause yielding h ← b1, . . . bn, l.

The heuristic-based search uses IG. In FOIL, IG for a given clause is calculated as

follows (Mitchell 1997):

IG(L,R) = t

(
log2

p1

p1 + n1
− log2

p0

p0 + n0

)
(3.1)

where L is the candidate literal to add to rule R, p0 is the number of positive

examples implied by the rule R, n0 is the number of negative examples implied by

the rule R, p1 is the number of positive examples implied by the rule R + L, n1 is

the number of negative examples implied by the rule R + L and t is the number of

positive examples implied by R also covered by R+L. FOIL handles negated literals

in a naive way by adding the literal not L to the set of specialization candidate

literals for any existing candidate L. This approach leads to learning predicates that

do not capture the concept accurately as shown in the following example.

Example 3.1

B,E+ are background knowledge and positive examples, respectively, with Closed-

World Assumption (CWA) and the concept to be learned is fly:
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B : bird(X)← penguin(X).

bird(tweety). bird(et).

cat(kitty). penguin(polly).

E+ :fly(tweety). fly(et).

The FOIL algorithm would learn the following rule:

fly(X)← not cat(X), not penguin(X).

Although this rule covers all the positives (tweety and et are not penguins and cats)

and no negatives (kitty and polly do not satisfy the clause body), it still does not

yield an intuitive rule. In fact, the correct theory in this example is as follows: “Only

birds fly but, among them there are exceptional ones who do not fly”. It translates to

the following Prolog rule:

fly(X)← bird(X), not penguin(X).

which FOIL fails to discover.

4 FOLD algorithm

The idea of our FOLD algorithm is to learn a concept as a default theory and

possibly multiple exceptions. In that sense, FOLD tries first to learn the default by

specializing a general rule of the form goal(V1, . . . , Vn)← true. with positive literals.

As in FOIL, each specialization must rule out some already covered negative

examples without decreasing the number of positive examples covered significantly.

Unlike FOIL, no negative literal is used at this stage. Once the IG becomes zero,

this process stops. At this point, if some negative examples are still covered, they

must be either noisy data samples or exceptions to the so far learned rule. As

Srinivasan et al. (1996) discuss, there is no pattern distinguishable in noise, whereas,

in exceptions, there may exist a pattern that can be described using the same

language bias. This can be viewed as a subproblem to (recursively) find the rules

governing a set of negative examples. To achieve that aim, FOLD swaps the current

positive and negative examples and recursively calls the FOLD algorithm to learn

the exception rule(s). Each time a rule is discovered for exceptions, a new predicate

ab(V1, . . . , Vn) is introduced. To avoid name collision, FOLD appends a unique

number at the end of the string ab to guarantee the uniqueness of the invented

predicates.

In the case of noisy data or in the presence of uncertainty due to the lack of

information, it turns out that there is no pattern to learn. In such cases, FOLD

enumerates the positive examples for two purposes: first, this is essential for the

training algorithm to converge, and second, it helps to detect noisy data samples.

Algorithm 2 shows a high-level implementation of the FOLD algorithm. In

lines 1–8, function FOLD serves as the FOIL outer loop. In line 3, FOLD starts

with the most general clause (e.g. fly(X) ← true.). In line 4, this clause is refined

by calling the function SPECIALIZE. In lines 5 and 6, set of positive examples

and set of discovered clauses are updated to reflect the newly discovered clause.
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In lines 9–29, the function SPECIALIZE is shown. It serves as the FOIL inner

loop. In line 12, by calling the function ADD BEST LITERAL, the “best” positive

literal is chosen and the best IG as well as the corresponding clause is returned.

In lines 13–24, depending on the IG value, either the positive literal is accepted

or the EXCEPTION function is called. If, at the very first iteration, IG becomes

zero, then a clause that just enumerates the positive examples is produced. A flag

called just started is used to differentiate the first iteration. In lines 26–27, the

sets of positive and negative examples are updated to reflect the changes of the

current clause. In line 19, the EXCEPTION function is called while swapping

the E+,E−.

In line 31, we find the “best” positive literal that covers more positive examples

and fewer negative examples. Again, note that the current positive examples are

really the negative examples and in the EXCEPTION function, we try to find the

rule(s) governing the exception. In line 33, FOLD is recursively called to extract

this rule(s). In line 34, a new ab predicate is introduced and in lines 35–36 it is

associated with the body of the rule(s) found by the recurring FOLD function call

in line 33. Finally, in line 38, default and exception are attached together to form a

single clause.

The FOLD algorithm, once applied to Example 3.1, yields the following clauses:
fly(X)← bird(X), not ab0(X).

ab0(X)← penguin(X).

Now, we illustrate how FOLD discovers the above set of clauses given E+ =

{tweety, et} and E− = {polly, kitty} and the goal fly(X). By calling FOLD, in

line 2 “while”, the clause fly(X) ← true. is specialized. In the SPECIALIZE

function, in line 12, the literal bird(X) is picked to add to the current clause,

to get the clause ĉ = fly(X) ← bird(X) that happened to have the greatest IG

among {bird, penguin, cat}. Then, in line 26–27, the following updates are performed:

E+ = {}, E− = {polly}. A negative example polly, a penguin is still covered. In

the next iteration, SPECIALIZE fails to introduce a positive literal to rule it

out since the best IG in this case is zero. Therefore, the EXCEPTION function is

called by swapping the E+, E−. Now, FOLD is recursively called to learn a rule for

E+ = {polly}, E− = {}. The recursive call (line 33), returns fly(X) ← penguin(X)

as the exception. In line 34, a new predicate ab0 is introduced and in line 35–

37 the clause ab0(X) ← penguin(X) is created and added to the set of invented

abnormalities namely, AB. In line 38, the negated exception (i.e., not ab0(X))

and the default rule’s body (i.e., bird(X)) are compiled together to form the clause

fly(X)← bird(X), not ab0(X).

Note, in two different cases enumerate is called. First, at very first iteration of

specialization if IG is zero for all the positive literals. Second, when the Exception

routine fails to find a rule governing the negative examples. Whichever is the

case, corresponding samples are considered as noise. The following example shows a

learned logic program in the presence of noise. In particular, it shows how enumerate

function in FOLD works: It generates clauses in which the variables of the goal

predicate can be unified with each member of a list of the examples for which no

pattern exists.
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Algorithm 2 FOLD algorithm

Input: goal,B,E+,E−
Output:

D = {c1, . . . , cn} � defaults’ clauses

AB = {ab1, . . . , abm} � exceptions/abnormal clauses

1: function FOLD(E+,E−)
2: while (size(E+) > 0) do

3: c← (goal :- true.)

4: ĉ← specialize(c,E+,E−)
5: E+ ← E+ \ covers(ĉ,E+,B)

6: D ← D ∪ {ĉ}
7: end while

8: end function

9: function SPECIALIZE(c,E+,E−)
10: just started← true

11: while (size(E−) > 0) do

12: (cdef , ˆIG)← add best literal(c,E+,E−)
13: if ˆIG > 0 then

14: ĉ← cdef
15: else

16: if just started then

17: ĉ← enumerate(c,E+)

18: else

19: ĉ← exception(c,E−,E+)

20: if ĉ = null then

21: ĉ← enumerate(c,E+)

22: end if

23: end if

24: end if

25: just started← false

26: E+ ← E+ \ covers(ĉ,E+,B)

27: E− ← E− \ covers(ĉ,E−,B)

28: end while

29: end function

30: function EXCEPTION(cdef ,E+,E−)
31: ˆIG← add best literal(c,E+,E−)
32: if ˆIG > 0 then

33: c set← FOLD(E+,E−)
34: c ab← generate next ab predicate()

35: for each c ∈ c set do

36: AB ← AB ∪ {c ab:- bodyof(c)}
37: end for

38: ĉ← (headof(cdef):- bodyof(c), not(c ab))

39: else

40: ĉ← null

41: end if

42: end function
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Example 4.1

Similar to Example 3.1, plus we have an extra positive example fly(jet) without any

further information:
B : bird(X)← penguin(X).

bird(tweety). bird(et).

cat(kitty). penguin(polly).

E+ :fly(tweety). fly(jet).fly(et).

The FOLD algorithm on the Example 4.1 yields the following clauses:
fly(X)← bird(X), not ab0(X).

fly(X)← member(X, [jet]).

ab0(X)← penguin(X).

FOLD recognizes jet as a noisy data. member/2 is a built-in predicate in SWI-Prolog

to test the membership of an atom in a list.

Sometimes, there are nested levels of exceptions. The following example shows

how FOLD manages to learn the correct theory in presence of nested exceptions.

Example 4.2

Birds and planes normally fly, except penguins and damaged planes that cannot.

There are super penguins who can, exceptionally, fly:
B : bird(X)← penguin(X).

penguin(X)← superpenguin(X).

bird(a). bird(b). penguin(c). penguin(d).

superpenguin(e). superpenguin(f). cat(c1).

plane(g). plane(h). plane(k). plane(m).

damaged(k). damaged(m).

E+ :fly(a). fly(b). fly(e).

fly(f). fly(g). fly(h).

The FOLD algorithm learns the following theory:
fly(X)← plane(X), not ab0(X).

fly(X)← bird(X), not ab1(X).

fly(X)← superpenguin(X).

ab0(X)← damaged(X).

ab1(X)← penguin(X).

Theorem 1

The FOLD algorithm terminates on any finite set of examples.

Proof

It suffices to show that the size of E+ on every iteration of the FOLD function de-

creases (at line 5) and since E+ is a finite set, it will eventually become empty and the

while loop terminates. Equivalently, we can show that every time the SPECIALIZE

function is called, it terminates and a clause ĉ that covers a non-empty subset of E+ is

returned. Inside the SPECIALIZE function, if E− is empty, then the function returns

its input clause and the theorem trivially holds. Otherwise, two cases might happen:

First, SPECIALIZE produces a clause that enumerates E+ and covers no negative

example. In such a case, it returns immediately and the theorem trivially holds.
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Second, SPECIALIZE calls the EXCEPTION function that may lead to a chain of

recursive calls on FOLD function. In this case, it suffices to show that on a chain of

recursive calls on FOLD, the size of function argument, i.e., E+ decreases each time a

new call to FOLD occurs. That is indeed the case because every time a literal is added

to the current clause at line 12, it covers fewer negative examples from E− that in

turn becomes the new E+ as the EXCEPTION function and subsequently the FOLD

function is recursively called. Therefore, on consecutive calls to FOLD function, the

size of input argument E+ is decreased until it eventually terminates. �

Theorem 2

The FOLD algorithm always learns a hypothesis that covers no negative example

(soundness).

Proof

It follows from the Theorem 1 that every loop in the algorithm (and, subsequently the

algorithm) terminates. In particular, the while loop inside the function SPECIALIZE

terminates as soon as the negated loop condition (i.e., the number of negative

examples covered by the rule being discovered equals zero) starts to hold. Since,

for every learned rule, no negative example is covered, it follows that the FOLD

algorithm learns a hypothesis that covers no negative example. �

Theorem 3

The FOLD algorithm always learns a hypothesis that covers all positive examples

(completeness).

Proof

The proof is similar to the soundness proof. �

5 Numeric extension of FOLD

ILP systems have limited application to datasets containing a mix of categorical and

numerical features. A common way to deal with numerical features is to discretize

the data to qualitative values. This approach leads to accuracy loss and requires

domain expertise. Instead, we adapt the approach taken in the well-known C4.5

algorithm (Quinlan 1993). This algorithm is ranked no. 1 in the survey paper

“Top 10 algorithms in datamining” by Wu et al. (2007). For a numeric feature A,

constraints such as {A � h, A > h} have to be considered where the threshold h is

found by sorting the values of A and choosing the split between successive values

that maximizes the IG. In our FOLD-R algorithm that we propose and describe

next, we perform the same method for a set of operators {<,�} and pick the

operator and threshold that maximizes the IG. Also, we need to extend the ILP

language bias to support the arithmetic constraints.

Unlike the categorical features for which we use propositionalization (Kramer

et al. 2000), for numerical features, we define a predicate that contains an extra

variable that always pairs with a constraint. For example to extend the language

bias for a numeric quantity “age”, we could define predicates of the form age(a, b)

in the background knowledge, and the candidate to specialize a clause might be as
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follows: age(X,N), N � 5. However, the predicate age/2 never appears without the

corresponding constraint.

Algorithm 3 illustrates the high-level changes made to FOLD, in order to obtain

the FOLD-R algorithm. The function test categorical, as before, chooses the best

categorical literal to specialize the current clause. The function test numeric chooses

the best numeric literal as well as the best arithmetic constraint and threshold with

the highest IG. In line 5, if neither one leads to a positive IG, EXCEPTION is tried.

If exception also fails, then enumerate is called. Otherwise, IGs are compared and

whichever is greater, the corresponding clause is chosen as the specialized clause of

the current iteration.

Algorithm 3 FOLD-R algorithm, specialize function. Other functions are the same

as in FOLD

1: function SPECIALIZE(c,E+,E−)

2: while (size(E−) > 0) do

3: (ĉ1, ˆIG1)← test categorical(c,E+,E−)

4: (ĉ2, ˆIG2)← test numeric(c,E+,E−)

5: if ˆIG1 = 0 & ˆIG2 = 0 then

6: ĉ← exception(c,E−,E+)

7: if ĉ = null then

8: ĉ← enumerate(c,E+)

9: end if

10: else

11: if ˆIG1 � ˆIG2 then

12: ĉ← ĉ1

13: else

14: ĉ← ĉ2

15: end if

16: end if

17: E+ ← E+ \ covers(ĉ,E+,B)

18: E− ← E− \ covers(ĉ,E−,B)

19: end while

20: end function

Example 5.1

Table 1 adapted from Quinlan (1993) is a dataset with numeric features “tem-

perature” and “humidity”. “Outlook” and “Windy” are categorical features. Our

FOLD-R algorithm, for the goal play(X), and positive examples shown as records

with label “Play”, and negative examples shown as records with label “Don’t Play”

outputs the following clauses:
play(X)← overcast(X).

play(X)← temperature(X,A), A � 75, not ab0(X).

ab0(X)← windy(X), rainy(X).

ab0(X)← humidity(X,A), A � 95, sunny(X).
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Table 1. Play Tennis dataset, numeric version

Outlook Temperature Humidity Wind PlayTennis

Sunny 75 70 True Play

Sunny 80 90 True Don’t Play

Sunny 85 85 False Don’t Play

Sunny 72 95 False Don’t Play

Sunny 69 70 False Play

Overcast 72 90 True Play

Overcast 83 78 False Play

Overcast 83 65 True Play

Overcast 81 75 False Play

Rain 71 80 True Don’t Play

Rain 65 70 True Don’t Play

Rain 75 80 False Play

Rain 68 80 False Play

Rain 70 96 False Play

FOLD-R results suggest an abnormal day to play is either a rainy and windy day

or a sunny day with humidity above 95%.

6 Experiments and results

This section presents the results obtained with the FOLD-R algorithm on some of the

standard UCI datasets. To conduct the following experiments, we implemented the

algorithm in Java. We used Prolog queries to process the background knowledge (the

background knowledge is assumed to be represented as a standard Prolog program).

For performing IG computations and CWA generation of negative examples, we

made the use of the JPL library (Singleton and Dushin 2003) that interfaces SWI-

Prolog version 7.1.23-34 (Wielemaker et al. 2012) with Java. Our intention here is

to investigate the quality of discovered rules both in terms of their accuracy and

the degree to which they are consistent with the common sense understanding from

the underlying concepts. To measure the accuracy, we implemented 10-fold cross-

validation on each dataset and the mean of calculated accuracy is represented, while

the standard deviation for all the datasets were 5% or lower. At present, we are not

greatly interested in the running time and/or space complexity of the algorithm:

This will be subject of future research. All the learning tasks were performed using

a PC with Intel(R) Core(TM) i7-4700HQ CPU @ 2.40 GHz and 8.00 GB RAM.

Execution times ranges from a few seconds to a few minutes. The bottleneck is

the function that sorts the numeric values to pick the best threshold and operator.

There are solutions to get around this such as those proposed by Catlett (1991).

Table 2 reports the execution time of FOLD-R on our benchmarks. The algorithm

works much faster when no numeric feature is present in the dataset. It should

be noted that calls to JPL add significant overhead to the algorithm’s execution

time.

https://doi.org/10.1017/S1471068417000333 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068417000333


A new algorithm to automate inductive learning of default theories 1021

Labor Relations: The data include a set of contracts that depending on their features

(16 features) are classified as good or bad contracts. The following set of clauses for

a good contract are discovered by FOLD-R:
good cont(X)← wage inc f(X,A), A > 2, not ab0(X).

good cont(X)← holidays(X,A), A > 11.

good cont(X)← hplan half(X), pension(X).

ab0(X)← no long disability help(X).

ab0(X)← no pension(X).
According to the first rule, a contract with 2% wage increase (default) is a good

contract except when the employer does not contribute in a possible long-term

disability and a pension plan. According to the second rule, a contract with holidays

above 11 days is also good. And, finally, if employer contributes in half of the health

plan and entire pension plan, the contract is good.

Mushroom: This dataset includes descriptions of different species of mushrooms

and their features that are used to classify whether they are poisonous or ed-

ible. The following set of clauses for a poisonous mushroom is discovered by

FOLD:
poisonous(X)← ring type none(X).

poisonous(X)← spore print color green(X).

poisonous(X)← gill size narrow(X), not ab2(X).

poisonous(X)← odor foul(X).

ab0(X)← population clustered(X).

ab0(X)← stalk surface below ring scaly(X).

ab1(X)← stalk shape enlarging(X).

ab2(X)← gill spacing crowded(X), not ab1(X).

ab2(X)← odor none(X), not ab0(X).
Note, the induced theory has nested exceptions. This nesting happens as a result of

finding patterns for negative examples, which makes the FOLD algorithm perform

more recursive steps until no covered negative example is left.

Table 2 compares the accuracy of FOLD-R algorithm against that of ALEPH

by Srinivasan (2001). The examples have been picked from well-known standard

datasets for some of which ALEPH exhibits low test accuracy. In most cases, FOLD-

R accuracy outperforms ALEPH. The experiments suggest that when the absence

of a particular feature value plays a crucial role in classification, our algorithm

shows a meaningful higher accuracy. This follows from the fact that the classical

ILP algorithms only make use of existent information as opposed to NAF in which

a decision is made based on the absence of information. As an example, in the

credit-j dataset, our algorithm generates four rules with abnormality predicates.

These rules cover positive examples that without abnormality predicates would have

remained uncovered. However, in Bridges and Ecoli where no abnormality predicate

is introduced by our algorithm, both ALEPH and FOLD-R end-up with almost the

same accuracy.

Even in cases where no improvement over accuracy is achieved, our default theory

approach leads to simpler and more intuitive rules. As an example, in the case of

Mushroom, other ILP systems, including ALEPH and FOIL, would produce nine
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Table 2. FOLD-R evaluation on UCI benchmarks

ALEPH FOLD-R FOLD-R

Dataset Size accuracy(%) accuracy(%) execution time(s)

Credit-au 690 82 83 67

Credit-j 125 53 81 20

Credit-g 1,000 70.9 78 87

Iris 150 85.9 95 1.3

Ecoli 336 91 90 6.1

Bridges 108 89 90 0.8

Labor 57 89 94 0.4

Acute(1) 34 100 100 0.3

Acute(2) 34 100 100 0.3

Mushroom 7,724 100 100 11.4

rules with two literals each in the body to cover all the positives, while our FOLD

algorithm, produces three single-literal rules and one rule with two literals in which

the second literal takes care of the exceptions.

7 Related work

Sakama (2005) discusses the necessity of having a non-monotonic language bias to

perform induction for default reasoning. It surveys some of the proposals directly

adapted from ILP, like inverse resolution (Muggleton and Buntine 1988) and inverse

entailment (Muggleton 1995) and then he explains why these are not applicable to

non-monotonic logic programs. Sakama then introduces an algorithm to induce rules

from answer sets that generalizes a rule from specific grounded rules in a bottom-up

fashion. His approach in some cases yields premature generalizations that produces

redundant negative literals in the body of the rule and therefore over-fitted to the

training data. The following example illustrates what Sakama’s algorithm would

produce:

Example 7.1
B : bird(X)← penguin(X).

bird(tweety). bird(et).

bear(teddy). crippled(et).

cat(kitty). penguin(polly).

E+ :fly(tweety).
and the algorithm outputs the following rule:

fly(X)← bird(X), not cat(X), not penguin(X), not bear(X), not crippled(X).

in which some of the literals including not cat(X) and not bear(X) are redundant.

Additionally, since ASP systems have to ground the predicates to produce the answer

set, introducing numeric data in background knowledge and also in the language

bias is prohibited.

In a different line of research, Dimopoulos and Kakas (1995) describe an algorithm

to learn exception using the patterns in the negative examples. However, they do
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not make any use of NAF as the core notion of reasoning in the absence of

complete information. Instead, their algorithm learns a hierarchical logic program,

including classical negation, in which the order of rules prioritize their application

and, therefore, it is not naturally compatible with standard Prolog.

The idea of swapping positive and negative examples to learn patterns from

negative examples has first been discussed by Srinivasan et al. (1996) where a

bottom-up ILP algorithm is proposed to specialize a clause after it has already been

generalized and still covers negative examples. Similarly, Inoue and Kudoh (1997)

propose a bottom-up algorithm in two phases: First, producing monotonic rules via

a standard ILP method, and then specializing them by introducing negated literals

to the body of the rule. In contrast, we believe our FOLD algorithm that takes a

top-down approach learns programs that have a better fit, thanks to its support for

numeric features and its better scalability. The lacks of both are inherent problems

in bottom-up ILP methods.

ALEPH (Srinivasan 2001) is one of the most widely used ILP systems that uses a

bottom-up generalization search to induce theories that cover the maximum possible

positive examples. However, since the induced theory might be overly generalized,

there is an option to refine the theory by introducing abnormality predicates that rule

out negative examples by specializing an overly generalized rule. This specialization

step is manual and unlike our algorithm, no automation is offered by ALEPH. Also,

ALEPH does not support numeric features.

XHAIL (Ray 2009) is another non-monotonic ILP framework that integrates

abductive, deductive and inductive forms of reasoning to form sets of ground

clauses called kernel set and then generalize it to learn non-stratified logic programs.

In a different line of research, Corapi et al. (2012) approaches the non-monotonic

ILP problem by incorporating the power of modern ASP solvers to search for

an optimal hypothesis among the generated so-called skeleton rules and a set of

abducibles associated to them. The last two approaches do not scale up as the

language bias grows.

8 Future work

One advantage of our FOLD-R algorithm over the existing systems is the ability

to handle non-monotonic background knowledge. Conventional ILP systems permit

only standard Prolog programs to represent background knowledge. In contrast,

our FOLD-R algorithm, once integrated with a top down ASP system like s(ASP)

(Marple and Gupta 2012), will permit the background knowledge to be represented

as an answer set program. The idea of leveraging the added expressiveness of non-

monotonic logic-based background knowledge has been discussed by Seitzer (1997).

However, because Seitzer’s method is based on grounding the background knowledge

and then computing its answer sets, it is not scalable. Using a query-driven system

allows our learning algorithm to be scalable. Extending our algorithms to allow

non-monotonic logic-based background knowledge with multiple stable models is

part of the future work.
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Our eventual goal is to develop a unified framework for learning default theories:

(i) in which we can learn hypotheses that are general answer set programs (i.e.,

these learned answer set programs may not be stratified), and (ii) that work with

background knowledge that may be represented as a non-stratified answer set

program. Also, the optimality of the learned hypothesis due to greedy nature of

IG heuristic is not guaranteed and changing the search strategy from A* to better

algorithms such as iterative deepening search is subject of future research.

9 Conclusion

In this paper, we introduced a new algorithm called FOLD to learn default theories.

Next, we proposed FOLD-R that is an extension of FOLD to handle numeric

features. Both the FOLD and the FOLD-R learning algorithms learn stratified

answer set programs that allow recursion through positive literals. Our experiments

based on using the standard UCI benchmarks suggest that the default theory, in most

cases, describes the underlying model more accurately compared to conventional

ILP systems. Default theories also happen to closely model common-sense reasoning.

Thus, rules learned from FOLD and FOLD-R are more intuitive and comprehensible

by humans. Unlike classical machine learning approaches that learn based on existing

information, FOLD and FOLD-R are able to find patterns of information that is

absent and express it via a default theory, i.e., as a non-monotonic logic program.
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