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Objectives: The aim of this study was to describe the evolution of a cost-utility model used to inform the UK National Institute for Health and Clinical Excellence’s (NICE) most recent
decisions on the cost-utility of drug treatments for Alzheimer’s disease (AD), and to explore the impact of structural assumptions on the cost-utility results.
Methods: Changes informed by noted limitations of the decision model used in NICE’s previous decisions (in 2006) were made cumulatively to the original decision model for
donepezil compared with best supportive care (for patients with mild to moderate AD). Deterministic and probabilistic analyses were undertaken for each cumulative change of the
model. The expected value of perfect information (EVPI) of parameter estimates and structural assumptions was also calculated.
Results: Cumulative changes to the decision model highlighted how the results of the original model (incremental cost-effectiveness ratio of £81,000 per quality-adjusted life-year
gained) related to those of the new model (where donepezil was estimated to be cost-saving), mainly due to uncertainty in the incremental cost of donepezil treatment over best
supportive care (ranging from -£600 to £3,000 per patient). The partial EVPI analysis reflected this finding where further information on treatment discontinuations and cost
parameter estimates were shown to be valuable in terms of reducing decision uncertainty.
Conclusions: Assessing the evolution of the cost-utility model helped to identify and explore structural differences between cohort-based models and is likely to be useful for decision
models in other disease areas. This approach makes the structural uncertainty explicit, forcing decision makers to address structural uncertainty in addition to parameter
uncertainty.
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Health technology assessments (HTAs) carried out to inform
guidance made by the National Institute for Health and Clin-
ical Excellence (NICE) in England are time-constrained (as
in many countries) and rarely permit dedicated exploration of
uncertainty beyond scenario analyses and probabilistic anal-
ysis. Increasingly, as many of the previous recommendations
from NICE come up for review, technology appraisal groups
are carrying out up-dates of previous systematic reviews and
economic evaluations. This can often provide an opportunity
to explore sources of structural uncertainty in decision models
where the development of the new model is based upon the
previous model.

In 2010, we undertook an update of the evidence for the
effectiveness and cost-effectiveness of four treatments for
Alzheimer’s disease (AD). The final guidance was published
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in 2011 and can found here: http://publications.nice.org.uk/
donepezil-galantamine-rivastigmine-and-memantine-for-the-
treatment-of-alzheimers-disease-ta217. AD is a chronic
condition and progression can be modeled on various domains
(e.g., cognition, functional status, behavior), each of which can
be measured on several different scales (1). Defining disease
progression and incorporating a treatment effect can therefore
be difficult, requiring many assumptions often based on little
or inconsistent evidence. Clearly this leads to a great deal of
uncertainty associated with the development of a decision
model for AD and several decision models have been published
in this area (see Bond et al.) (2).

Here, we detail the development of the decision model in
the updated technology assessment which evolved through a
series of stepped changes from the decision model developed
by Loveman et al. (3) for NICE’s previous assessment of drug
treatments for AD in 2006. The stepped changes made to the
original model included those reflecting (i) changes in the NICE
methods guide (4) between 2004 and 2010 (e.g., discount rates)
and (ii) changes in the available evidence base. The develop-
ment of the up-dated decision model was also informed by a
prioritized list of the key limitations of the original model (that
developed by Loveman et al.). This approach provides an oppor-
tunity to explore which changes have the greatest impact on the
findings of the decision model, and the uncertainty associated
with such changes in model structure.
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Figure 1. Original decision model structure. FTC, full-time care.

Although the review and economic evaluation for NICE
assessed four drug treatments for AD (donepezil, galantamine,
rivastigmine, and memantine), for the purposes of illustrating
our approach we focus on the cost-effectiveness of donepezil
for people with mild to moderate AD. Donepezil was chosen
as it was associated with the largest clinical evidence base as
reviewed in Bond et al (2). Results of the original and new
decision models for galantamine, rivastigmine, and memantine
can be found elsewhere (2).

In the next section, a brief description of the original de-
cision model is given. This is followed by a description of the
seven cumulative changes made to the structure of the original
model which led to the development of the new decision model.
The results of deterministic and probabilistic analyses of the
eight cumulative models are presented, followed by discussion
of the findings and their limitations.

ORIGINAL DECISION MODEL

Description
A detailed description of the original decision model can be
found elsewhere (3;5). Briefly, this was a cohort-based model,
developed in Excel, based on the AHEAD decision model (6),
with three health states: pre-full time care, full-time care (FTC)
and death (see Figure 1). FTC was defined as “equivalent in-
stitutional care” (7), including day and night “supervision of
personal care, safety or medical care” (8). Occupancy within
the pre-FTC and FTC states was predicted from risk equations
incorporating five patient characteristics: modified Mini-Mental
State Examination (MMSE) score, presence of psychotic symp-
toms, presence of extrapyramidal (movement disorder) symp-
toms, age at onset, and duration of illness. The risk equations
were derived from an analysis of a U.S. population of 236 people
with AD (6).

To allow incorporation of trial-based effectiveness esti-
mates in the decision model, an initial treatment period of 6
months was assumed during which treatment and monitoring
costs for the donepezil arm were accounted for but quality-
adjusted life-year (QALYs) were not. After this initial 6-month
treatment period, a treatment effect on ADAS-cog (Alzheimer’s

Disease Assessment Scale – cognitive subscale), translated onto
the modified MMSE scale, was incorporated in the model. Drug
treatment was assumed to continue for all treated individuals un-
til they entered the FTC health state, where it was assumed that
patients had severe AD (for which donepezil is not licensed).
The decision model had monthly cycles and a time horizon of 5
years. Drug, monitoring and care costs falling on the National
Health Service (NHS) and the Personal and Social Services
(PSS) budget were accounted for, initially with an annual dis-
count rate of 6 percent for costs and 1.5 percent for benefits (as
per the guidance at the time [3] p. 123). We take as our starting
point the model and results as reported in Loveman et al. (3),
and not the “augmented model” as referred to elsewhere (9).

Identified Limitations of Original Model
Limitations of the original model were documented, with many
of the structural changes leading to the new model based
upon these (see references 9–11) plus documentation related
to (12) [http://guidance.nice.org.uk/TA111]). To identify and
collate these limitations, all documents relating to the decision
model used in the previous NICE appraisal were reviewed. This
included (i) searching documentation on the NICE Web site
[http://guidance.nice.org.uk/TA111], (ii) searching related arti-
cles subsequently published in the literature referencing either
the HTA monograph (3) or the study by Green et al. (5) and
(iii) discussion with Colin Green (the health economist who
developed the original model). The noted limitations were then
categorized by those relating to structural uncertainty (i.e., un-
certainty in developing and defining the model structure) and
those relating to parameter estimation uncertainty. Most of the
limitations related to structural uncertainty (see Table 1).

Changes to the original model were prioritized according
to (i) the perceived importance of the stated limitation in the
context of producing a cost–utility analysis according to cur-
rent NICE methods guidance, and (ii) the expected feasibility
of addressing the limitation. We also consulted NICE about pri-
oritizing the potential improvements to the model. Changes to
the original model were therefore prioritized as in Table 1. Fur-
ther changes to the original model were necessary to update the
model, that is, updated discount rates and parameter estimates
and associated uncertainty.

METHODS

Evolution of the New Model
From the list of limitations, the following changes to the original
model were identified: (a) update discount rates, (b) extend the
model time horizon, (c) allow for treatment discontinuations,
(d) update effectiveness parameter estimates, (e) use UK data
to inform disease progression, (f) incorporate heterogeneity in
patient baseline characteristics, (g) stratify the pre-FTC state by
disease severity.
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Table 1. Main Criticisms of the Original Model

Criticism of original model Method to address the criticism

Risk equations used to predict time to FTC were based on U.S. data and may not be
generalizable to England and Wales

A data set of AD patients from the Oxfordshire area of England was used to model
disease progression

Costs used were inaccurate, out-of-date, not UK based Resource and cost data from the Oxfordshire study was used to inform the cost
parameters in the model. All costs were uprated to 2009 prices.

The pre-FTC state is too heterogeneous for a single cost value Costs in the pre-institutional care state are dependent upon time to institutionalization
There is no QALY benefit for those on donepezil who die while in the pre-FTC health state Since utilities in the pre-institutional care state are dependent upon time to

institutionalization, treated individuals dying while in the pre-institution state accrue
some QALY benefit

The pre-FTC state is too heterogeneous for a single utility value Utilities in the pre-institutional care state are dependent upon time to institutionalization
There was no consideration of treatment drop-out, non-responders or adverse events Estimates of treatment discontinuation are included based on available RCT evidence
The time horizon should have been longer than 5 years The time horizon is 20 years, at which time <5% of the cohort are still alive
Mortality should not have been assumed constant for the total cohort Mortality in the PenTAG model is based on starting age, starting MMSE and starting

ADL, and is the same for treated and untreated patients

FTC, full-time care; AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination; ADL, activities of daily living; RCT, randomised controlled trial; QALY, quality-adjusted life-year.

Changes (a) to (d) were considered to be the simplest in
terms of the time and effort required to implement, and the
fact that these changes had very little impact on other parts of
the model. Changes (e), (f), and (g) were deemed to be more
complex and time-consuming to implement because they relied
on acquiring and analyzing individual participant data (IPD)
and impacted upon structural and parameter changes to other
parts of the model. Changes (a) to (g) are described below.

(a) Update Discount Rates
Recommendations of the UK Treasury have changed since the
previous review and so discount rates were updated from 6
percent for costs and 1.5 percent for effects to 3.5 percent for
both costs and effects (4).

(b) Extend Time Horizon
Extending the time horizon from 5 years to 20 years simply
required extending the rows in the Excel spreadsheet.

(c) Treatment Discontinuations
The original model did not account for the impact of treatment
discontinuations on costs or effects, in other words it was as-
sumed that all patients continued taking treatment until they
entered the health state “FTC.” For the new model, data on the
proportions of individuals discontinuing treatment were avail-
able from the RCTs included in the systematic review of clinical
effectiveness conducted by Bond et al. (2). Although there was
information across different dose levels and follow-up times
in these RCTs, discontinuations were reported only at the fi-
nal follow-up time (often only 6 months), and it was assumed
that the corresponding effectiveness evidence was from an in-
tention to treat (ITT) analysis. Based on the limited data points
available and clinical opinion, a constant rate of discontinuation

of donepezil of 4 percent per month was assumed in the new
model. This impacted upon the costs in the decision model, but
not on effectiveness.

(d) Updated Parameter Estimates
Updated parameter estimates were available from the systematic
review of effectiveness studies reported in Bond et al. (2).

(e) UK Patient Data
We used IPD on people with AD from the Oxfordshire area of
the UK to inform disease progression (13). This data set con-
sist of 92 people with AD, collected from 1988/9 and followed
for up to 11 years (mean, 3.5 years). At study entry, partic-
ipants had had a diagnosis of AD for a median of 4 years
(mean, 4.9 years). Use of this data set enabled us to over-
come the limitations of the original model that disease pro-
gression, based on U.S. data, may not be generalizable to the
population of England and Wales. However, because of dif-
ferent characteristics between the UK study (13) and the U.S.
study (7), use of the UK data had additional impacts on the
structure and parameterization of the decision model as now
described.

First, using the UK patient data led to a change in the defi-
nition of the health states in the cohort-based model. Data from
Wolstenholme et al. (13) allowed direct calculation of insti-
tutionalization as the event of interest. Thus, the new model
was as in Figure 1 but with the two alive states defined as
pre-institutionalized (people still living in their homes) and in-
stitutionalized.

Second, use of the UK patient data resulted in changes to
the parameters used to predict movement between health states.
In the original model, modified MMSE, presence of psychosis,
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age at onset, presence of extrapyramidal symptoms and dura-
tion of illness were all used to predict time to FTC. However,
MMSE, Barthel Activities of Daily Living (ADL), and age were
measured and collected by Wolstenholme et al. (13) and used to
predict time to institutionalization. Effectiveness data on these
outcome measures would therefore also be needed, and so ef-
fectiveness was measured on MMSE and ADL (specifically the
Barthel Index) in the new model rather than on ADAS-cog as
in the original model. The new model therefore allowed for
treatment effects on two important aspects of AD, cognition
(MMSE), and functional status (ADL), and this was seen as
an improvement on the original model, which only considered
treatment effects on cognition (ADAS-cog).

Cost and mortality data were available from the UK data
set, and so was used in the new model. Thus, mortality was
not assumed to be constant as in the original model, but as a
function of baseline age, MMSE, and ADL score (see Bond
et al.) (2), addressing a limitation of the original model in that
un-stratified mortality rates were used.

(f) Incorporating Patient Heterogeneity
The patient cohort was split into three age groups in the new
model to capture heterogeneity in patient age, and subsequently
the risk of entering the institutionalization state.

(g) Stratifying Pre-institution State by Disease Severity
In the new model, disease severity was allowed to increase as
patients approached the time when they became institutional-
ized. This (a) addressed the limitation that the pre-FTC state is
too heterogeneous to be assigned a single cost and a single util-
ity, and (b) allowed patients receiving an effective treatment to
accumulate benefits before institutionalization, compared with
patients not on treatment. To model decreasing utility as individ-
uals approach institutionalization, data sources reporting utility
by AD severity were identified. Many of these used MMSE to
reflect severity, and because MMSE was available in the Wol-
stenholme et al. data set, it was chosen to map utility on to time
to institutionalization (11). Analysis of the IPD from Wolsten-
holme et al. identified a relationship between MMSE and time
to institutionalization (see Bond et al.) (2). Thus, utility could
be defined by time to institutionalization. The Wolstenholme et
al. IPD also allowed direct modeling of a relationship between
time to institutionalization and costs of care (2).

Therefore, patients receiving an effective treatment would
have higher average utilities and lower average costs in the
pre-institutional state because an effective treatment is modeled
as delaying time to institutionalization (see Bond et al.) (2).
Description of the utility weights by MMSE score has been
reported elsewhere, but for example MMSE < 10 was assigned
a utility of 0.33 and MMSE > 25 a utility of 0.69 (2).

Each change (a) to (g) was made to the original model
cumulatively in that order of priority. Thus, in the results section,
Model (a) refers to the original model plus change (a), Model

(b) refers to the original model plus change (a) and change (b),
and so on.

Probabilistic Analyses
To account for uncertainty in parameter estimation we under-
took probabilistic analysis of each model. As decisions in the
development of a model can be uncertain we carried out further
probabilistic analyses incorporating uncertainty in both param-
eter estimation and three elements of the model structure (see
below). The probabilistic results are based on 10,000 simula-
tions.

Many of the structural changes made to the model can be
thought of in terms of “missing parameters or parameters as-
signed a single and often extreme value” (14). For instance, in
the original model, treatment discontinuations were not con-
sidered, yet this could be thought of in terms of the treatment
discontinuation parameter being assigned the extreme value
of zero, while in the new model this takes the value of 0.04
per patient per month with associated uncertainty. Considering
structural uncertainty in these terms allows us to more fully
characterize the uncertainty in the decision model and can help
to explore the value of further research (14).

Using the method described by Claxton (15) and Bojke et al.
(14), we incorporate structural uncertainty into the probabilistic
analysis to help more fully characterize model uncertainty. Each
dichotomous choice for the following assumptions had a 50
percent probability (weight) of occurring:

• Data as basis for disease progression: UK or U.S. data set.

• Treatment discontinuations: 0 percent or 4 percent per month (with associ-
ated parameter uncertainty).

• Stratifying the pre-institutional state by severity: yes or no (only relevant for
UK data set).

The probability of 50 percent is arbitrary and would ideally
be informed by evidence, most likely expert evidence.

Expected Value of Partial Information (EVPI)
Calculation of the expected value of information allows an as-
sessment of decision uncertainty within a model and the max-
imum amount of money a decision maker would be willing
to pay for further information to reduce decision uncertainty
(16). Calculation of the expected value of partial information
(EVPI) allows assessment of decision uncertainty associated
with different groups of information. To calculate the partial
EVPI we assume an effective lifetime of the decision of 10
years and a population of 380,000 individuals in England and
Wales having Alzheimer’s disease in 2005(17) with 50–64 per-
cent of these having mild to moderate Alzheimer’s disease and
eligible for donepezil (17). The model inputs were categorized
into six groups on which the partial EVPI is calculated. These
groups correspond to three assumptions about model structure
(UK or U.S. data set for disease progression, 0 percent or 4 per-
cent treatment discontinuation per month, whether to stratify the
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Table 2. Cumulative Cost-Effectiveness Results per Patient

Probability donepezil
most cost-effective

option

Model
Treatment

arm
Total costs

(£)∗
Total
QALYs

Incremental
costs

(£)∗∗

Incremental
benefits
(QALYs)

Cost (£) per
QALY∗

£20,000
per QALY

£30,000
per QALY

Original decision model as published in Loveman et al BSC £23,000 1.825 £2,900 0.036 £81,000 0.02 0.05
Donepezil £25,000 1.861

(a) As Original model with 3.5% discount rates for costs and benefits BSC £23,000 1.743 £2,900 0.033 £88,000 0.02 0.04
Donepezil £26,000 1.776

(b) As Model (a) with 20-year time horizon BSC £53,000 2.696 £2,800 0.042 £66,000 0.05 0.11
Donepezil £56,000 2.739

(c) As Model (b) with 4% per month treatment discontinuation rate BSC £53,000 2.696 £200 0.042 £5,000 0.67 0.77
Donepezil £54,000 2.739

(d) As Model (c) with PenTAG parameter estimates BSC £156,000 2.696 £1,400 0.041 £34,000 0.05 0.19
Donepezil £157,000 2.737

(e) As Model (d) with UK AD progression data BSC £79,000 1.685 £900 0.035 £26,000 0.34 0.53
Donepezil £80,000 1.720

(f) As Model (e) stratified by three age groups BSC £84,000 1.802 £900 0.035 £26,000 0.33 0.53
Donepezil £85,000 1.836

(g) As Model (f) with pre-institutional care stratified by severity BSC £70,000 1.584 -£600 0.035 Donepezil 0.97 0.99
Donepezil £70,000 1.619 dominates

BSC

∗ Rounded to nearest £1,000.
∗∗ Rounded to nearest £500.
AD, Alzheimer’s disease; BSC, best supportive care; QALY, quality-adjusted life-year.

pre-institutional state by severity) and three groups of parame-
ters (utilities, effectiveness, and costs). All results are presented
assuming that the willingness to pay (WTP) per QALY gained
is £30,000. Note that, in these analyses, it is the decision uncer-
tainty at the specified WTP value that is being assessed.

RESULTS

Evolution of the New Model
The cumulative results of the structural changes can be seen
in Table 2. Addressing omissions from the original model and
updating discount rates to 3.5 percent for costs and benefits leads
to a cost per QALY of £88,000 (Model (a)) up from £81,000
per QALY gained in the original model.

Extending the time horizon from 5 to 20 years (Model (b))
leads to greater total costs and QALYs, and also to greater in-
cremental QALYs. The original 5-year time horizon only cap-
tures 78 percent of the incremental QALYs modeled by the
20-year time horizon, whereas the incremental costs are almost

unchanged. This leads to a smaller cost per QALY of £66,000
(Model (b)).

Treatment discontinuation is assumed in Model (c). Be-
cause this assumption only affects the costs of donepezil, the
estimated incremental QALYs remain at 0.042, but the incre-
mental costs are reduced by over 90 percent. Thus, the cost per
QALY is reduced to £5,000 from £66,000 (in Model (b)).

Inclusion of updated parameter estimates (Model (d)) also
has a large impact on cost-effectiveness: the cost per QALY in-
creases from £5,000 to £34,000. Incremental QALYs are largely
unchanged, but incremental costs increase. As noted above,
these updated parameters relate to effectiveness and costs. In
particular, the updated cost estimates suggest a much smaller
difference between the mean costs associated with the pre-
institutional (£2,051 per month) and institutional (£2,117 per
month) states, thus fewer savings are made by delaying institu-
tionalization.

Model (e) incorporates several changes as a consequence
of using the UK data to model disease progression. Although
the incremental costs and QALYs are different to Model (d),
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Figure 2. Incremental cost-effectiveness plane showing mean and 95% confidence ellipses.

the cost per QALY is only reduced slightly (to £26,000 from
£34,000 in Model (d)). Accounting for heterogeneity in patient
ages has little impact on the results (Model (f)).

When costs and utilities in the pre-institutionalized care
state are a function of the time to institutionalization, the in-
cremental QALYs remain unchanged, but donepezil becomes
cost-saving (Model (g); the new model). This is because pre-
institutional costs are now based on time to institutionalization
which is delayed due to treatment; therefore the mean cost in the
pre-institutionalized state is lower for those receiving donepezil
than for those not receiving donepezil, because those receiv-
ing donepezil are further from being institutionalized. Further
details on this aspect of modeling can be found in Bond et al. (2).

In summary, as Table 2 shows, the incremental QALYs as-
sociated with each of the cumulative models do not change
considerably (ranging from 0.033 to 0.042); however, the in-
cremental costs differ greatly depending on the assumptions
made (ranging from donepezil saving £600 to costing an ad-
ditional £3,000 per person over a lifetime), leading to critical
differences in the ICERs (ranging from £88,000 per QALY to
donepezil being cost-saving).

Parameter Uncertainty
The results from the probabilistic analyses for each of the
eight models on the cost-effectiveness plane are shown in
the Supplementary Figure, which can be viewed online at
www.journals.cambridge.org/thc2013086. The 95 percent con-
fidence ellipses (a two-dimensional representation of the joint
95 percent confidence intervals for the incremental costs and
QALYs), and the mean incremental costs and QALYs (the dia-
monds) are shown for each cost-utility model. No model stands

out in terms of their 95 percent confidence ellipse being in a dif-
ferent area of the cost-effectiveness plane than the other models.
In fact as noted from the deterministic analyses above, all mod-
els lead to similar estimated gains in QALYs, but to different
estimates of the incremental costs associated with donepezil
treatment, leading to quite different conclusions on the cost-
effectiveness of donepezil: at a WTP of £30,000 per QALY
gained, the probability of donepezil being more cost-effective
than best supportive care ranges from just 4 percent from Model
(a) to 99 percent from the updated model (Model (g)). See Ta-
ble 2.

The 95 percent confidence ellipses in the Supplementary
Figure only account for uncertainty in the estimates used to
parameterize the models, these probabilistic analyses should
be considered the minimum uncertainty associated with the
decision model.

Model Structure Uncertainty
When uncertainty concerning the three structural assumptions
(UK or U.S. data, 0 percent or 4 percent treatment discontinua-
tions, stratifying the pre-institutional state by severity or not) is
incorporated into the probabilistic analysis, greater uncertainty
is represented in the 95 percent confidence ellipses as would be
expected (see Figure 2), and a more conservative estimate of the
probability of donepezil being the most cost-effective treatment
at a WTP of £30,000 per QALY gained is calculated: 31 per-
cent. This too is as expected, because the two options for each of
the three structural assumptions have been given a probability
weighting of 50 percent, effectively averaging across models.

The partial EVPI calculations from this analysis indicate
that there is decision uncertainty (at a WTP of £30,000 per
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QALY) for both structural assumptions and parameter estima-
tion: further information on the structural assumptions associ-
ated with treatment discontinuations, which only affects costs
(partial EVPI = £315 million) and cost parameter estimation
(partial EVPI = £140 million) would also be valuable. At a
WTP of £30,000 per QALY, there is no decision uncertainty
associated with any of the other assumptions and parameters.

DISCUSSION
Using a stepped approach, we have documented the evolution
of a new model for donepezil treatment in patients with mild to
moderate AD. Through this approach, we have shown that the
cumulative assumptions have greater impact on the incremental
costs than on the incremental QALYs. This is reflected in the
partial EVPI analyses where further information on treatment
discontinuations (which only affects the cost of donepezil treat-
ment) and cost parameter estimation is shown to be valuable. As
would be expected, consideration of both parameter uncertainty
and model structure uncertainty in probabilistic analysis leads
to a more conservative probability of donepezil being the most
cost-effective treatment than just considering parameter uncer-
tainty in the new model (where uncertainty regarding structural
decisions is not assumed).

Cost-effectiveness modeling of chronic conditions, such as
AD, is not straightforward and involves a great deal of uncer-
tainty. Many decisions on model structure are required but often
the uncertainty associated with these decisions is overlooked.
Moreover, much of the data informing model parameter values
in AD outcome models are out of date or difficult to generalize.
Thus, the uncertainty associated with the model findings will be
much greater than that which is often reported. It is in situations
like this, where there is a great deal of uncertainty in model
structure, that the explicit documentation of model develop-
ment can be useful to policy makers to assess the likely impact
of model structure decisions. Chronic conditions, in particular,
and more rare conditions where little evidence is available on
disease progression would be areas where this explicitness in
model development would be useful in policy making.

In explicitly documenting stages of model development
and attempting to characterize the related uncertainty, we have
demonstrated that assumptions related to the cost of donepezil
treatment have a large impact on the findings of the economic
evaluation and consequently on the uncertainty of the com-
missioning decision. Our analysis demonstrates that structural
uncertainty is an important source of uncertainty in addition to
parameter uncertainty.

There are several limitations of this approach. First, we did
not incorporate all possible sources of uncertainty. For instance,
the proportion of people discontinuing treatment was assumed
to increase linearly with time spent on treatment. Second, the
probability weights assigned to each structural choice in Sec-
tion 4.2 were arbitrarily set to 50 percent. Formal elicitation of

expert opinion would be invaluable for assigning these weights,
and uncertainty in the weights themselves should also be incor-
porated into the model. Third, in amending the original model,
other sources of uncertainty have become apparent. In particu-
lar, although UK data are more relevant to a cost-effectiveness
model for informing policy in England and Wales, the UK data
set was based on just 92 participants, from one area of the
United Kingdom (Oxfordshire) collected 10–20 years ago. The
new model continues to share several limitations of the original
model. These include the validity and reliability of the clini-
cal effectiveness and cost estimates, and that a complex multi-
dimensional chronic condition such as AD, is reduced to only
two health states defined by care setting. Fourth, this approach
does not lend itself to the comparison of decision models that
are structurally very different. For instance, the decision model
reported by Getsios et al. (18) for donepezil is a discrete event
simulation model. This difference in modeling approach and
the associated structural assumptions and parameter estimates
required does not easily permit comparison with the original
or new Markov models. For example, it is very difficult to
compare effectiveness estimates: the discrete event simulation
model uses equations based on annual rates of change and other
covariates to predict institutionalization at different time points,
while the new Markov model incorporates the average benefit
based on baseline MMSE and ADL within the time to insti-
tutionalization equations. Finally, as stated in the introduction,
the order of changes to the original model was prioritized based
on several criteria that were pre-specified. However, this priori-
tization was subjective, and a different order of changes would
lead to a different pattern in the cumulative results represented
in Table 2 and the Supplementary Figure.

CONCLUSIONS
Explicit documentation and attempts to characterize uncertainty
in model development leads to a greater appreciation of the
uncertainty of findings from decision models. This also helps to
identify which aspects of the model are associated with greatest
uncertainty. Although widely publicized debate has highlighted
the main aspects of structural uncertainty in cost-effectiveness
models of AD, there has been much less debate about structural
uncertainty in other disease areas. Explicit documentation of
model development is valuable, regardless of the disease area.

SUPPLEMENTARY MATERIAL
Supplementary Figure:
www.journals.cambridge.org/thc2013086
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