
TLP 19 (4): 603–628, 2019. c© Cambridge University Press 2019

doi:10.1017/S1471068419000036 First published online 28 February 2019

603

Optimizing Answer Set Computation via
Heuristic-Based Decomposition∗

FRANCESCO CALIMERI, SIMONA PERRI and JESSICA ZANGARI
Department of Mathematics and Computer Science, University of Calabria, Rende, Italy
(e-mails: calimeri@mat.unical.it, perri@mat.unical.it, zangari@mat.unical.it)

submitted 31 March 2018; revised 11 January 2019; accepted 14 January 2019

Abstract

Answer Set Programming (ASP) is a purely declarative formalism developed in the field of logic
programming and non-monotonic reasoning: computational problems are encoded by logic pro-
grams whose answer sets, corresponding to solutions, are computed by an ASP system. Different,
semantically equivalent, programs can be defined for the same problem; however, performance
of systems evaluating them might significantly vary. We propose an approach for automatically
transforming an input logic program into an equivalent one that can be evaluated more effi-
ciently. One can make use of existing tree-decomposition techniques for rewriting selected rules
into a set of multiple ones; the idea is to guide and adaptively apply them on the basis of proper
new heuristics, to obtain a smart rewriting algorithm to be integrated into an ASP system. The
method is rather general: it can be adapted to any system and implement different preference
policies. Furthermore, we define a set of new heuristics tailored at optimizing grounding, one
of the main phases of the ASP computation; we use them in order to implement the approach
into the ASP system DLV , in particular into its grounding subsystem I -DLV , and carry out
an extensive experimental activity for assessing the impact of the proposal.

KEYWORDS: knowledge representation and nonmonotonic reasoning, logic programming
methodology and applications, databases and semantic web reasoning, Answer Set Program-
ming

1 Introduction

Answer Set Programming (ASP) (Brewka et al. 2011; Gelfond and Lifschitz 1991) is a

declarative programming paradigm proposed in the area of non-monotonic reasoning and

logic programming. With ASP, computational problems are encoded by logic programs

∗ This work has been partially supported by the Italian region Calabria under project “DLV Large
Scale” (CUP J28C17000220006) POR Calabria FESR 2014–2020 and by both the European Union
and the Italian Ministry of Economic Development under the project EU H2020 PON I&C 2014–2020
“Smarter Solutions in the Big Data World – S2BDW” (CUP B28I17000250008). This work is the
extended version of a paper originally appeared in the Proceedings of 20th Symposium on Practical
Aspects of Declarative Languages (PADL 2018), January 8–9, 2018, Los Angeles, USA. Program
chairs were Kevin Hamlen and Nicola Leone. The paper presents new material that integrates and
extends what has been reported in the original paper; in particular, it provides the reader with proper
preliminaries (omitted in the original paper for space constraints), more detailed discussions on the
proposed techniques and richer comparisons with related approaches, along with an extended number
of examples. Furthermore, a more thorough experimental activity is presented, discussed in part in
the main text and in part in Appendices in the Supplementary Material, that covers also new domains
that were unexplored in the original paper.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036
https://orcid.org/0000-0002-0866-0834
https://orcid.org/0000-0002-8036-5709
mailto:calimeri@mat.unical.it, perri@mat.unical.it, zangari@mat.unical.it
https://doi.org/10.1017/S1471068419000036

604 F. Calimeri et al.

whose answer sets, corresponding to solutions, are computed by an ASP system (Lifschitz

1999).

The evaluation of ASP programs is “traditionally” split into two phases: grounding,

which generates a propositional theory semantically equivalent to the input program and

solving, which applies propositional techniques for computing the intended semantics

(Alviano et al. 2017; Gebser et al. 2015; Kaufmann et al. 2016; Leone et al. 2006); never-

theless, in the recent years, several approaches that deviate from this schema have been

proposed (Palù et al. 2009; Dao-Tran et al. 2012; Eiter et al. 2017; Lefèvre et al. 2017).

Typically, the same computational problem can be encoded by means of many differ-

ent ASP programs which are semantically equivalent; however, real ASP systems may

perform very differently when evaluating each one of them. This behavior is due, in part,

to specific aspects that strictly depend on the ASP system employed, and, in part, to

general “intrinsic” aspects, depending on the program at hand which could feature some

characteristics that can make computation easier or harder. Thus, often, to have sat-

isfying performance, expert knowledge is required in order to select the best encoding.

This issue, in a certain sense, conflicts with the declarative nature of ASP that, ideally,

should free the users from the burden of the computational aspects. For this reason,

ASP systems tend to be endowed with proper pre-processing means aiming at making

performance less encoding-dependent; intuitively, this is crucial for fostering and easing

the usage of ASP in practice.

A proposal in this direction is lpopt (Bichler et al. 2016a), a pre-processing tool for

ASP systems that rewrites rules in input programs by means of tree-decomposition algo-

rithms. The rationale comes from the fact that, when programs contain rules featuring

long bodies, ASP system performance might benefit from a careful split of such rules

into multiple, smaller ones. However, it is worth noting that, while in some cases such

decomposition is convenient, in other cases keeping the original rule is preferable; hence,

a black-box decomposition, like the one of lpopt , makes it difficult to predict whether it

will lead to benefits or disadvantages.

Inspired by the idea implemented in lpopt of rewriting ASP programs by means of

tree decomposition, we propose here a method that aims at taking full advantage from

rewriting, still avoiding performance drawbacks by estimating its effects in advance. It

analyzes each input rule before the evaluation and estimates whether it is convenient to

decompose it into an equivalent set of smaller rules, or not; if more than one decomposi-

tion is possible, the most promising is selected. The method is general and defined so that

all choices are made according to proper criteria and heuristics that can be customized:

it can be tailored to different phases of the ASP computation, and it is not tied to a

specific system. Furthermore, we define new heuristics and criteria relying on data and

statistics dynamically computed during the instantiation with the aim of optimizing the

performances of I -DLV (Calimeri et al. 2017b), a recently released deductive database

system that currently serves also as the grounding subsystem of DLV (Alviano et al.

2017). In addition, we present here an actual implementation into I -DLV and perform

an extensive experimental activity in order to assess the effects of our technique on ASP

program optimization.

The remainder of the paper is structured as follows. In Section 2, we recall ASP

basics along with some other preliminary notions; in Section 3, we introduce an abstract

heuristic-guided decomposition algorithm for ASP programs in its general form, while in

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 605

Section 4, we describe how we adapt it in order to foster an actual implementation into the

I -DLV grounder, along with custom heuristics for guiding the process. Section 5 presents

the results of an extensive experimental activity aimed at assessing the impact of the

proposed method, and effectiveness of the proposed heuristics on grounding performance;

we also shed light on the impact on solvers. Our conclusions are drawn in Section 6.

Some additional experiments that have been omitted from the main text for the sake of

readability are reported and discussed in Appendices in the Supplementary Material.

2 Preliminaries

In this section, we provide the reader with some preliminaries; in particular, we first

briefly introduce ASP and then recall how hypergraphs can be used in order to represent

ASP rules along with tree-decomposition strategies for rewriting them.

2.1 Answer Set Programming

A significant amount of work has been carried out on extending the basic language of

ASP, and the community recently agreed on a standard input language for ASP systems:

ASP-Core-2 (Calimeri et al. 2013), the official language of the ASP Competition series

(Calimeri et al. 2016; Gebser et al. 2016). For the sake of simplicity, we focus next on

the basic aspects of the language; for a complete reference to the ASP-Core-2 standard,

and further details about advanced ASP features, we refer the reader to Calimeri et al.

(2013) and the vast literature.

A term is either a simple term or a functional term. A simple term is either a constant

or a variable. If t1 . . . tn are terms and f is a function symbol of arity n, then f(t1, . . . , tn)

is a functional term. If t1, . . . , tk are terms and p is a predicate symbol of arity k, then

p(t1, . . . , tk) is an atom. A literal l is of the form a or not a, where a is an atom; in the

former case l is positive, otherwise negative. A rule r is of the form α1 | · · · | αk :-

β1, . . . , βn, not βn+1, . . . , not βm. where m ≥ 0, k ≥ 0; α1, . . . , αk and β1, . . . , βm are

atoms. We define H(r) = {α1, . . . , αk} (the head of r) and B(r) = B+(r) ∪B−(r) (the
body of r), where B+(r) = {β1, . . . , βn} (the positive body) and B−(r) = {not βn+1, . . . ,

not βm} (the negative body). If H(r) = ∅, then r is a (strong) constraint; if B(r) = ∅
and |H(r)| = 1, then r is a fact. A rule r is safe if each variable of r has an occurrence

in B+(r)1. For a rule r, we denote as headvar(r), bodyvar(r), and var(r), the set of

variables occurring in H(r), B(r), and r, respectively. An ASP program is a finite set

P of safe rules. A program (a rule and a literal) is ground if it contains no variables. A

predicate is defined by a rule r if it occurs in H(r). A predicate defined only by facts is

an EDB predicate, the remaining are IDB predicates. The set of all facts in P is denoted

by Facts(P); the set of instances of all EDB predicates in P is denoted by EDB(P).

Given a program P , the Herbrand universe of P , denoted by UP , consists of all ground

terms that can be built combining constants and function symbols appearing in P . The

Herbrand base of P , denoted by BP , is the set of all ground atoms obtainable from the

atoms of P by replacing variables with elements from UP . A substitution for a rule r ∈ P

1 We remark that this definition of safety is specific for the syntax considered herein. For a complete
definition we refer the reader to Calimeri et al. (2013).

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

606 F. Calimeri et al.

is a mapping from the set of variables of r to the set UP of ground terms. A ground

instance of a rule r is obtained by applying a substitution to r. The full instantiation

Ground(P) of P is defined as the set of all ground instances of its rules over UP . An

interpretation I for P is a subset of BP . A positive literal a (resp., a negative literal

not a) is true w.r.t. I if a ∈ I (resp., a /∈ I); it is false otherwise. Given a ground rule

r, we say that r is satisfied w.r.t. I if some atom appearing in H(r) is true w.r.t. I or

some literal appearing in B(r) is false w.r.t. I. Given a program P , we say that I is a

model of P , iff all rules in Ground(P) are satisfied w.r.t. I. A model M is minimal if

there is no model N for P such that N ⊂ M . The Gelfond-Lifschitz reduct (Gelfond

and Lifschitz 1991) of P , w.r.t. an interpretation I, is the positive ground program P I

obtained from Ground(P) by: (i) deleting all rules having a negative literal false w.r.t. I;

(ii) deleting all negative literals from the remaining rules. I ⊆ BP is an answer set for

a program P iff I is a minimal model for P I . The set of all answer sets for P is denoted

by AS(P).

2.2 ASP computation

The high expressiveness of ASP comes at the price of a high computational cost in the

worst case (Eiter et al. 1997; Leone et al. 2006), which makes the implementation of

efficient ASP systems a difficult task. Thanks to the effort by a scientific community

that grew over time, there are nowadays a number of systems that support ASP and its

variants (Simons et al. 2002; Ward and Schlipf 2004; Janhunen et al. 2006; Giunchiglia

et al. 2006; Gebser et al. 2012; Alviano et al. 2015; Leone et al. 2006; Gebser et al. 2014;

Palù et al. 2009; Lefèvre et al. 2017; Dao-Tran et al. 2012; Weinzierl 2017).

The well-established, mainstream approach for the evaluation of ASP programs

(Kaufmann et al. 2016) relies on two phases, usually referred to as instantiation or

grounding, and solving or answer sets search, respectively. Given a (non-ground) ASP

program P , grounding consists of producing a propositional theory GP semantically

equivalent to P , that is, such that GP does not contain any variable, but has the same

answer sets as P . Given that, in the worst case, the solving stage may take up to expo-

nential time in the size of GP (Ben-Eliyahu and Dechter 1994; Ben-Eliyahu-Zohary and

Palopoli 1997), modern ASP systems employ intelligent grounding procedures so that

GP is significantly smaller than the full instantiation Ground(P). Once the program GP

has been computed, solving takes place, taking as input GP and computing its answer

sets by means of propositional algorithms. The majority of current ASP implementations

follows this two-phase computation, either by explicitly relying on stand-alone grounders

(Syrjänen 2001; Faber et al. 2012; Gebser et al. 2011) and solvers (Simons et al. 2002;

Ward and Schlipf 2004; Janhunen et al. 2006; Giunchiglia et al. 2006; Gebser et al. 2012;

Alviano et al. 2015), or integrating the modules into monolithic systems (Gebser et al.

2014; Leone et al. 2006; Alviano et al. 2017). Notably, given that both phases are, in

general, computationally expensive (Eiter et al. 1997; Dantsin et al. 2001), efficient ASP

implementations depend on proper optimization of both.

Alternative solutions (Palù et al. 2009; Lefèvre et al. 2017; Dao-Tran et al. 2012;

Weinzierl 2017) adopt a lazy grounding technique, in which grounding and solving steps

are interleaved, and rules are grounded on-demand during solving. These systems try

to overcome the so called grounding bottleneck that occurs on problems for which the

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 607

instantiation is inherently so huge that its actual materialization is not suitable in prac-

tice. For this reason, this approach looks promising; however, current implementations

do not match, in the general case, performance of the more “traditional” systems that

proved instead to be reliable and well-performing in a wider range of scenarios.

Notably, the herein presented technique, introduced in Section 3, is general enough to

be adopted with both approaches, by defining suitable heuristics and properly customiz-

ing its integration.

2.3 Tree decompositions for rewriting ASP rules

Hypergraphs are useful for describing the structure of many computational problems;

furthermore, it is possible to decompose them into different parts, so that the solution(s)

of problems can be obtained by a polynomial divide-and-conquer algorithm that properly

exploits this division (Gottlob et al. 2001; 2005). Such ideas can guide a rewriting of an

ASP program: indeed, a logic rule can be represented as a hypergraph (Morak andWoltran

2012), and hence properly decomposed.

Discussing in detail how tree decompositions can be computed and rewritings induced

is out of the scope of this paper; indeed, our main goal is to find a way for correctly

identifying in advance in which cases their application pays off in terms of efficiency,

while dealing with ASP rules. However, in order to ease the reading, in the following,

we briefly recall an intuitive description of some crucial notions for the ASP context; for

further details, we refer the reader to Bichler et al. (2016a) and the existing literature.

A (undirected) hypergraph is a generalization of a (undirected) graph in which an edge

can join two or more vertices. An ASP rule r can be represented as a hypergraph HG(r) by

adding a hyperedge for each literal l ∈ B(r)∪H(r) containing the variables appearing in l.

A tree decomposition of a hypergraph HG(r) (see Robertson and Seymour 1986; Gottlob

et al. 2016) is a tuple (TD(r), χ), where TD(r) = (V (TD(r)), E(TD(r))) is a tree and

χ : V (TD(r)) → 2V (HG(r)) is a function associating a set of vertices χ(t) ⊆ V (HG(r))

to each vertex t of the decomposition tree TD(r), such that for each e ∈ E(HG(r)),

there is a node t ∈ V (TD(r)) such that e ⊆ χ(t), and for each v ∈ V (HG(r)), the set

{t ∈ V (TD(r))|v ∈ χ(t)} is connected in TD(r). Intuitively, a tree decomposition TD(r)

of HG(r) is a tree such that each vertex is associated to a bag, that is, a set of nodes

of HG(r), and such that each hyperedge of HG(r) is covered by some bag, and for each

node of HG(r), all vertices of TD(r) whose bag contains it induce a connected subtree

of TD(r).

A tree decomposition TD(r) can be used in order to produce a set of rules that rewrites

r; such set is called rule decomposition, and denoted by RD(r). In particular, RD(r)

contains a (newly generated) rule for each vertex v of TD(r), on the basis of the included

variables. Roughly, each literal l in the body of r, such that the set of variables in l is

contained in v, is added to the body of the rule generated for v. Eventually, some optional

rules may be added to RD(r) in order to guarantee safety. Note that, since different

choices for handling safety can be performed, the way in which a tree decomposition

is converted into a rule decomposition might be not unique. Moreover, interestingly, in

general, more than one decomposition is possible for each rule.

The following running example, which we will refer to throughout the paper, illustrates

this mechanism.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

608 F. Calimeri et al.

(a) (b) (c)

{P,Y,Z,S,X}

{D,P,Y,Z}

{D,Y,Z,S,X}

{D,P,S,X}

X

S

P D

Z

Y

Fig. 1. Decomposing a rule.

Example 1

Let us consider the rule:

r1 : p(X,Y, Z, S) :- s(S), a(X,Y, S − 1), c(D,Y, Z), f(X,P, S − 1), P >= D.

from the encoding of the problem Nomystery from the 6th ASP competition (see

Section 5), where, for the sake of readability, predicates and variables have been renamed.

Figure 1 depicts the conversion of r1 into the hypergraphHG(r1), along with two possible

decompositions: TD1(r1) and TD2(r1), that induce two different rewritings. According

to TD1(r1), r1 can be rewritten into the set of rules RD1(r1):

r2 : p(X,Y, Z, S) :- s(S), a(X,Y, S − 1), f(X,P, S − 1), fresh pred 1(P, Y, Z).

r3 : fresh pred 1(P, Y, Z) :- c(D,Y, Z), P >= D, fresh pred 2(P).

r4 : fresh pred 2(P) :- s(S), f(, P, S − 1).

In particular, the rule r2 features the same head of r1 and as body the literals needed

in order to cover the node of TD1(r1) containing the variables {P, Y, Z, S,X}; r3 features

as head the fresh predicate fresh pred 1 that links it to r2 and collects in its body a set

of literals covering the variables {D,P, Y, Z} appearing in the other node of TD1(r1);

eventually, r4 is needed to ensure safety of r3: the atom fresh pred 2(P) is added in the

body of r3 and to the head of r4, whose body features a set of literals coming from r1
and covers P (note that in this case the set is unique). Note that, a different rewriting

could be obtained by differently handling safety of r3; for instance, one could avoid to

introduce r4 and, instead, add the literals s(S), and f(, P, S − 1) to the body of r3.

Similarly, according to TD2(r1), r1 can be rewritten into RD2(r1) as follows:

r5 : p(X,Y, Z, S) :- a(X,Y, S − 1), c(D,Y, Z), fresh pred 1(D,S,X).

r6 : fresh pred 1(D,S,X) :- s(S), f(X,P, S − 1), P >= D, fresh pred 2(D).

r7 : fresh pred 2(D) :- c(D, ,).

3 A heuristic-guided decomposition algorithm

In the previous section, we recalled how tree decomposition of hypergraphs can be used

in order to guide rewritings of ASP rules. Interestingly, the lpopt (Bichler et al. 2016a)

preprocessor is a proposal in this direction that rewrites an ASP program before it is fed

to an ASP system.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 609

Fig. 2. The algorithm SmartDecomposition and the GenerateRuleDecompositons

function.

As previously noted, for each rule, several different rule decompositions might exist.

However, when fed to a real ASP system, different yet equivalent rewritings require,

in general, significantly different evaluation times. Thus, proper means for reasonably

and effectively choose the “best” rewriting are crucial; furthermore, it might be the case

that, whatever the choice, sticking to the original, unrewritten rule, is still preferable.

Hence, a black-box approach, such as the one of lpopt , makes it difficult to effectively

take advantage from the decomposition rewritings; this is clearly noticeable by looking

at experiments, as discussed in Section 5.

In this section, we introduce a smart decomposition algorithm that aims at addressing

the above issues; it is designed to be integrated into an ASP system, and uses informa-

tion available during the computation to predict, according to proper criteria, whether

decomposing will pay off or not; moreover, it chooses the most promising decomposi-

tion, among the several possible ones. In the following, we first describe the method in

its general form that can be easily adapted to different real systems; a complete actual

implementation, specialized for the DLV system, is presented later on.

The abstract algorithm SmartDecomposition is shown in Figure 2; we indicate as

tree decomposition an actual tree decomposition of a hypergraph, while with rule decom-

position, we denote the conversion of a tree decomposition into a set of ASP rules. Given

a (non-ground) input rule r, the algorithm first heuristically computes, by means of the

Estimate function, a value er that estimates how much the presence of r in the program

impacts on the whole computation; then, the function GenerateRuleDecompositons

computes a set of possible rule decompositions RDS, from which ChooseBestDecom-

position selects the best RD ∈ RDS; hence, the function EstimateDecomposition

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

610 F. Calimeri et al.

computes the value eRD that estimates the impact of having RD in place of r in the

input program. Eventually, the function DecompositionIsPreferable is in charge

of comparing er and eRD and deciding if decomposing is convenient. We remark that

functions Estimate, ChooseBestDecomposition, EstimateDecomposition, and

DecompositionIsPreferable are left unimplemented, as they are completely cus-

tomizable; they must be implemented by defining proper criteria that take into account

features and information within the specific evaluation procedure, and the actual ASP

system, the algorithm is being integrated into.

Figure 2 reports also the implementation of function GenerateRuleDecomposi-

tons. Here, ToHypergraph converts a input rule r into a hypergraph HG, which is

iteratively analyzed in order to produce possible tree decompositions, by means of the

function GenerateTreeDecompositions. Also these stages can be customized in an

actual implementation, according to different criteria and the features of the system at

hand; for space reasons, we refrain from going into details that are not relevant for the

description of the approach. The function ToRules, given a tree decomposition TD and

a rule r, converts TD into a rule decomposition RD for r. In particular, for each node in

TD, it adds a new logic rule to RD, possibly along with some additional auxiliary rules

needed for ensuring safety. The process is, again, customizable, and should be defined

according to the function ToHypergraph.

The general definition of the algorithm provided so far is independent from any actual

implementation, and its behavior can significantly change depending on the customiza-

tion choices, as discussed above. However, in order to give an intuition on how it works,

we make use of our running example for illustrating a plausible execution.

Example 2

Given rule r1 of Example 1, let us imagine that the function GenerateRuleDecom-

positions computes the tree decompositions TD1(r1) and TD2(r1) and then, by means

of ToRules, the set of rule decompositions consisting of RD1(r1) and RD2(r1) is gen-

erated. Note that r4 and r7 are added for ensuring safety of rules r3 and r6, respectively.

Next step consists of the choice between RD1(r1) and RD2(r1) for the best promising

decomposition, according to the actual criteria of choice. Supposing that it is RD1(r1),

DecompositionIsPreferable compares the estimated impacts er1 and eRD1(r1), in

order to decide if keeping r or substituting it with RD1(r1).

4 Integrating the SMARTDECOMPOSITION algorithm into a real system: the

DLV case

In this section, we illustrate how the general SmartDecomposition algorithm of Sec-

tion 3 can be customized in order to be integrated into an actual ASP implementation.

Interestingly, such customization can be tailored with different purposes, for both the

two-phase-based and the lazy-grounding-based systems, for optimizing solving or instan-

tiation performance, according to different criteria (times, size, structure, etc.). In this

work, we focus on the widespread DLV system (Alviano et al. 2017; Leone et al. 2006),

which complies to the two-phase strategy, with the explicit aim of optimizing performance

of its grounding subsystem I -DLV (Calimeri et al. 2017b). A detailed description of the

I -DLV computation is out of the scope of this work (the interested reader is referred to

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 611

Calimeri et al. (2017b)); however, for the sake of readability, we briefly recall the basics

of its machinery.

Given an ASP program P :

1. P is parsed, and the extensional database (EDB) is built.

2. Each rule in P is analyzed, and possibly rewritten according to different strategies

for optimization purposes; the result constitutes the intensional database (IDB).

3. Dependencies among IDB rules and predicates are examined; such dependencies

induce the splitting of P into modules, and a suitable processing ordering is com-

puted so that an incremental evaluation is possible according to the definitions in

Faber et al. (2012).

4. The program is grounded one module at a time by means of a proper adaptation of

a semi-näıve schema (Faber et al. 2012; Ullman 1988) that evaluates each rule in a

module according to a rule instantiation procedure that in turn produces its ground

instances. Rules within a module can be recursive or not. While for the former ones,

the procedure might be iteratively invoked, for the not recursive rules a single call

of the rule instantiation procedure is enough to produce all their ground instances.

5. The collection of the ground rules generated from all IDB rules composes, along

with EDB(P), the resulting ground program GP .

The core of the I -DLV computation is the rule instantiation process mentioned in

step 4 of the sketch above, which constitutes one of the more computationally heavy

tasks. Basically, when grounding a rule r of P , instead of replacing bodyvar(r) with

every possible constant appearing in P , the rule instantiation iteratively substitutes the

variables in each body literal with constants appearing in the corresponding predicate

extension. A predicate extension of a predicate p is the set of all ground atoms having p

as predicate. More in detail, given a rule r and the set of extensions of its body predi-

cates, the rule instantiation produces ground instances of r by iterating on positive body

literals2 and looking for all possible valid substitutions. Intuitively, this phase resembles

the evaluation of relational joins on the positive body literals, where predicate extensions

can be seen as tables whose tuples consist of the ground instances. Once a valid substi-

tution is found for all variables in bodyvar(r), it is applied to headvar(r) in order to

obtain a totally ground rule, that is, a ground instance of r, say r′. This possibly leads to

the generation of new ground atoms occurring in the head of r′; such new ground atoms

are added to the corresponding predicate extensions. It is worth noting that, the set of

all predicate extensions is built dynamically starting from ground atoms appearing in

Facts(P) and then, adding each new ground atom coming from heads of the produced

ground rules; the chosen evaluation order plays a key role in this respect as it ensures that

when evaluating a rule r, the extensions of all body predicates needed for instantiating

r have been fully generated.

Besides the basic schema herein sketched, I -DLV employs smart optimization tech-

niques, geared towards the efficient production of a ground program that is considerably

smaller, still preserving the semantics. Roughly, when a rule is going to be instantiated,

I -DLV firstly performs a pre-processing that might lead some adjustments over the

2 Because of the safety condition, in order to generate a completely ground instance of r, it is enough
to have a substitution for the variables occurring in the positive literals.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

612 F. Calimeri et al.

Fig. 3. Estimate and EstimateDecomposition as implemented in I -DLV .

rule to different extents, and after that the actual rule instantiation takes place, a post-

processing refines the output. Some optimizations, such as, for instance, join-ordering

strategies, operate in the pre-processing phase; some explicitly take place during the

actual instantiation process, such as non-chronological backtracking; some operate across

the two phases, such as indexing techniques for a quick instances retrieval; others take

place in the post-processing step, such as the simplification that removes ground rules

and literals in the bodies that do not contribute to the semantics.

The SmartDecomposition algorithm implementation herein described works in the

pre-processing phase.

We provide next some details on how we defined the functions that have been left

unimplemented in the general description of Section 3 (Estimate, ChooseBestDe-

composition, EstimateDecomposition, and DecompositionIsPreferable), along

with the proposed heuristics, and discuss further implementation issues.

4.1 The ESTIMATE function

The function Estimate (Figure 3) heuristically measures the cost of instantiating a rule

r before it is actually grounded. To this aim, we propose a heuristics inspired by the

ones introduced in the database field (Ullman 1988) and adopted in Leone et al. (2001)

to estimate the size of a join operation. In particular, it relies on statistics over body

predicates, such as size of extensions and argument selectivities; we readapted it in order

to estimate the cost of grounding a rule as the total number of operations needed in

order to perform the task, rather than estimate the size of the join of its body literals.

Let a = p(t1, . . . , tn) be an atom; we denote by var(a) the set of variables occurring in a,

while T (a) represents the number of different tuples for a in the ground extension of p.

Moreover, for each variable X ∈ var(a), we denote by V (X, a) the selectivity of X in a,

that is, the number of distinct values in the field corresponding to X over the ground

extension of p. Given a rule r, let 〈a1, . . . , am〉 be the ordered list of atoms appearing in

B(r), for m > 1. Initially, the cost of grounding r, denoted by er, is set to T (a1), then

the following formula is iteratively applied up to the last atom in the body in order to

obtain the total estimation cost for r. More in detail, let us suppose that we estimated

the cost of joining the atoms 〈a1, . . . , aj〉 for j ∈ {1, . . . ,m}, and consequently we want to

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 613

estimate the cost of joining the next atom aj+1; if we denote by Aj the relation obtained

by joining all j atoms in 〈a1, . . . , aj〉, then:

eAj��aj+1
=

T (aj+1)∏

X∈idx(var(Aj)∩var(aj+1))

V (X, aj+1)
·

∏

X∈(var(Aj)∩var(aj+1))

V (X,Aj)

dom(X)
, (1)

where dom(X) is the maximum selectivity of X computed among the atoms in B(r) con-

taining X as variable, and idx(var(Aj)∩ var(aj+1)) is the set of the indexing arguments

of aj+1. We note that, at each step, once the atom aj+1 has been considered, V (X,Aj+1),

representing the selectivity of X in the virtual relation obtained at step j + 1, has to be

estimated in order to be used at next steps:

V (X,Aj+1) = V (X,Aj) · V (X, aj+1)

dom(X)
if X ∈ var(Aj)

V (X,Aj+1) = V (X, aj+1) otherwise.

(2)

Intuitively, the formula tries to determine the cost of grounding r, by estimating the

total number of operations to be performed. In particular, the first factor is intended

to estimate how many instances for aj+1 have to be considered, while the second factor

represents the reduction in the search space implied by aj+1. To obtain a realistic esti-

mate, the presence of indexing techniques, used in I -DLV to reduce the number of such

operations (Calimeri et al. 2017b), has been taken into account.

Example 3

Let us consider the rule:

r1 : p(X,Y, Z, S) :- s(S), a(X,Y, S − 1), c(D,Y, Z), f(X,P, S − 1), P >= D

of Example 1, and let us assume that we are dealing with an instance that contains the

facts3:

s(1..5). a(1..5, 1..5, 1..5). c(1..5, 1..5, 1..5). f(1..5, 1..5, 1..5).

The Estimate function first estimates, by means of Formula (1), the cost of computing

the joins Ai. In this case, denoting by a1 = s(S), a2 = a(X,Y, S − 1), a3 = c(D,Y, Z),

and so on, we have that A1 = s(S) and A2 = A1 �� a(X,Y, S− 1), and it is estimated as:

eA1��a2
=

T (a2)

V (S, a2)
· V (S,A1)

dom(S)
=

125

5
· 5
5
= 25 = eA2

.

Then, the formula is used again in order to estimate the cost of the join A3 between

A2 and a3, and so on up to the last join A4. At each step, size and variable selectivities

for each ai are known, while such data for the intermediate relations Ai are estimated.

The size of A2 is estimated as eA2
, and selectivities of all variables appearing in A2 (i.e.,

X,Y , and S) are estimated, according to Formula (2), as:

- V (X,A2) = 5 (indeed, X /∈ var(A1))

- V (Y,A2) = 5 (indeed, Y /∈ var(A1))

- V (S,A2) = V (S,A1) · V (S,a2)
dom(S) = 5 (indeed, S ∈ var(A1)).

The process is similarly iterated until the end of the body, from left to right.

3 According to ASP-Core-2 syntax, the term (1..k) stands for all values from 1 to k.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

614 F. Calimeri et al.

4.2 The ESTIMATEDECOMPOSITION function

The EstimateDecomposition function is illustrated in Figure 3: after some pre-

processing steps, it computes the cost of a given decomposition as the sum of the cost of

each rule in it. Let r be a rule and RD = {r1, . . . , rn} be a rule decomposition for r. In

order to estimate the cost of grounding RD, one must estimate the cost of grounding all

rules in RD. For each ri ∈ RD, the estimate is performed by means of Formula (1). Nev-

ertheless, it is worth noting that each ri, in addition to predicates originally appearing in

r, denoted as known predicates, may contain some fresh predicates, generated during the

decomposition. Concerning known predicates, thanks to the rule instantiation ordering

followed by I -DLV , as already pointed out in Section 4, extension size and selectiv-

ity needed for computing the formula are directly available: hence, there is no need for

estimations. On the contrary, for fresh predicates, that have been “locally” introduced

and do not appear in any of the rules in the original input program, such data are not

available, and must be estimated. To this aim, the dependencies among the rules in RD

are analyzed, and an ordering that guarantees a correct instantiation is determined. Such

dependencies come out from the definitions in Faber et al. (2012): rules depending only

on known predicates can be grounded first, while rules depending also on new predicates

can be grounded only once the rules that define them have been instantiated. Assuming

that for the set RD a correct instantiation order is represented by 〈r1, . . . , rn〉, for each
r′ in this ordered list, if H(r′) = p′(t1, . . . , tk) for k ≥ 1, and if p′ is a fresh predicate,

we estimate: (i) the size of the ground extension of p′, denoted T (p′), by means of a for-

mula conceived for estimating the size of a join relation, based on criteria that are well

established in the database field and reported in Leone et al. (2001); (ii) the selectivity

of each argument as k
√

T (p′). Therefore, the procedure PreProcess invoked in Esti-

mateDecomposition (see Figure 3) amounts to preprocess the rules in RD according

to a valid grounding order 〈r1, . . . , rn〉 to obtain the extension sizes and the argument

selectivities for involved fresh predicates, based on the above mentioned formula. Once

estimates for fresh predicates are available, the actual estimate of grounding RD can be

performed.

Example 4

Let us consider again the rule r1 of our running Example 1 and its decomposition

RD1(r1):

r2 : p(X,Y, Z, S) :- s(S), a(X,Y, S − 1), f(X,P, S − 1), fresh pred 1(P, Y, Z).

r3 : fresh pred 1(P, Y, Z) :- c(D,Y, Z), P >= D, fresh pred 2(P).

r4 : fresh pred 2(P) :- s(S), f(, P, S − 1).

In order to compute eRD1(r1), we first need to determine a correct evaluation order of

the rules in RD1(r1); the only valid one is 〈r4, r3, r2〉. Indeed, r4 has only known predi-

cates in its body, thus can be evaluated first; the body of r3 contains, besides to known

predicates, fresh pred 2, whose estimates will be available just after the evaluation of

r4; eventually, r2 depends also on fresh pred 1, whose estimates will be available right

after the evaluation of r3. Once the estimates for the fresh predicates fresh pred 1 and

fresh pred 2 are obtained, they are used for computing er4 , er3 and er2 with Formula (1),

and then for obtaining eRD1(r1) = er2 + er3 + er4 .

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 615

4.3 The CHOOSEBESTDECOMPOSITION and DECOMPOSITIONISPREFERABLE

functions

The function ChooseBestDecomposition estimates the costs of all decompositions of

a rule r by means of EstimateDecomposition, and returns the one with the smallest

estimated cost; let us denote it by RD. The function DecompositionIsPreferable

is then in charge of deciding whether RD will substitute r, by relying on er and eRD,

that are the estimated costs associated with r and RD, respectively. More in detail, it

computes the ratio er/eRD. Intuitively, when the ratio er/eRD ≥ 1, decomposing r

is convenient; nevertheless, it is worth remembering that the costs are estimated, and,

in particular, as discussed in Section 4.2, the estimate of the cost of a decomposition

requires to estimate also the extension of some additional predicates introduced by the

rewriting, thus possibly making the estimate less accurate. This leads sometimes to cases

in which the decomposition is preferable even when er/eRD < 1. One can try to improve

the estimations, in the first place; however, an error margin will always be present. For

this reason, in order to reduce the impact of such issue, we decided to experimentally test

the effects of the choices under several values of the ratio, and found that decomposition

is preferable when er/eRD ≥ 0.5, that has also been set as a default threshold in our

implementation; of course, the user can play with this at will. We plan to further improve

the choice of the threshold by taking advantage from automatic and more advanced

methods, such as machine learning-guided techniques.

Example 5

Let us consider again our running Example 1. At the final step, three possible alternatives

are evaluated: (i) leave the rule r1 as it is (i.e., r1 is not decomposed), (ii) choose RD1(r1)

or (iii) choose RD2(r1). Since the nature of the heuristics we implemented into I -DLV

have the aim of optimizing the grounding process, estimations tightly depend on the

instance at hand; hence, choices will possibly vary from instance to instance.

Let us assume that the current instance contains the same facts reported in Example 3.

Then, the costs of instantiating RD1(r1) or RD2(r1) are computed according to what

discussed in Section 4.2: without reporting all intermediate calculations, we have eRD1(r1)

= 122, 945, while eRD2(r1) = 53, 075. In this case, the best decomposition is obviously

RD2(r1), and it is compared with the option of grounding r1 as non-decomposed. Again,

without reporting all intermediate calculations, we have that the cost er1 of grounding r1
amounts to 390, 625; hence, the ratio er1/eRD2(r1) is computed as 7.36, and, given that

it is greater than 0.5, we prefer to substitute the original rule with the decomposition

RD2(r1) (see discussion above).

Interestingly, with a different input instance, things might change. For instance, if the

set of input facts for f changed to f(1..20, 1..20, 1..5)., the decomposition RD1(r1) would

be preferred.

4.4 Fine-tuning and further implementation issues

In order to implement the SmartDecomposition algorithm, one might rely on lpopt

in order to obtain a rule decomposition for each rule in the program; in particular, this

would lead to a straightforward implementation of ToHypergraph and ToRules, the

functions that convert a rule into a hypergraph and a tree decomposition into a rule

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

616 F. Calimeri et al.

decomposition, respectively. Nevertheless, in order to better take advantage from the

features of I -DLV and do not interfere with its existing optimizations, we designed

ad-hoc versions for such functions.

For instance, I -DLV supports the whole ASP-Core-2 language, which contains

advanced constructs like aggregates, choice rules, and queries; our implementation, even

if resembling the one of lpopt , introduces custom extensions explicitly tailored to I -DLV

optimizations, and some updates in the way the aforementioned linguistic extensions

are handled. It is worth noting that, when dealing with rules containing aggregate lit-

erals or choice atoms (Calimeri et al. 2013), I -DLV rewrites them: briefly, each con-

junction of literals in aggregate and/or choice elements is replaced by a fresh atom,

and an auxiliary rule is added to preserve semantics; this ensures more efficiency and

transparency with respect to I -DLV grounding machinery and its native optimization

techniques. As a result, the SmartDecomposition algorithm, that takes place after

such rewritings, does not need to explicitly take care of internal conjunctions of aggre-

gates or choice constructs; on the contrary, lpopt possibly decomposes also such internal

conjunctions.

Differently from lpopt , I -DLV explicitly handles queries, and employs the magic sets

rewriting technique (Alviano et al. 2012) to boost query answering; in our approach,

SmartDecomposition is applied after the magic rewriting has occurred, so that

decompositions are applied also to resulting magic rules. In addition, given that I -DLV

performs other rewritings on the input rules for optimization purposes, the function

ToRules is in charge of performing such already existing rewriting tasks also on the

rules resulting from the decompositions.

Another relevant issue is related to the safety of the rules generated in a decomposition.

Indeed, due to the abstract nature of SmartDecomposition, we cannot assume that

they are safe, since this depends on the schemas selected for converting a rule into a

hypergraph, and a tree decomposition into a set of rules. Hence, the ToRules function

must properly take this into account, as briefly noted in Section 3. In particular, our

implementation, given a rule r and an associated tree decomposition TD, after a rule r′

corresponding to a node in TD has been generated, checks its safety. If r′ is unsafe, and
UV is the set of unsafe variables in r′, an atom a over a fresh predicate p, that contains

the variables in UV as terms, is added to B(r′) and a new rule r′′ is generated, having

a as head; a set of literals L binding the variables in UV is extracted from B(r) and

added to B(r′′). Interestingly, the choice of the literals to be inserted in L is in general

not unique, as different combinations of literals might bind the same set of variables;

for instance, one might even directly add L to B(r′) without generating r′′; however,
this might introduce further variables in B(r′), and alter the original join operations

in it. For this reason, in our implementation, we decided to still add r′′, and while

choosing a possible binding, for each variable V ∈ UV , we try to keep the number of

literals taken from B(r) small, also preferring to pick positive literals with small ground

extensions.

More in detail, given a variable V ∈ UV , we look for a “standard” positive literal l

that binds V and features as terms only variables, constants, or functional terms: the

rationale behind such choice is that no additional literals will be needed to guarantee the

safety of l itself. If more than one such literals exists, we select the one with the smallest

extension size; if no one is available, we pick up the first suitable literal according to the

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 617

following predefined priority order: classical literals featuring other kind of terms (such

as arithmetic terms), built-in atoms, and aggregate literals, respectively. Intuitively, for

such literals, additional ones from B(r) may in turn be needed to ensure their safety.

Interestingly, the choice of saviour literals is more careful than what it would be obtained

by using lpopt as a black box, as in this case, the choice could not rely on information

that is available only from within the instantiation process.

The current implementation of function GenerateTreeDecompositions, which,

given a hypergraph HG, is in charge of returning a set of tree decompositions TDS, relies

on the open-source C++ library htd (Abseher et al. 2017)4, an efficient and flexible library

for computing customized tree and hypertree decompositions; in our implementation, we

used the most recent version available at the time of writing. The library features several

methods for computing tree decompositions according to different heuristics described

in the literature; we took advantage from this, and our implementation allows the user

to deviate from the default method via a command-line option. Interestingly, the htd

library features also a fitness mechanism for “ranking” decompositions according to a

user-provided fitness function. In our setting, we made use of such mechanism in order

to associate a cost estimation relying on Formula (1) (see Section 4.1) to a computed de-

composition; hence, in the decomposition selection phase, I -DLV generates a number of

tree decompositions and selects the best one as the one the lowest instantiation cost, ac-

cording to our criteria. This constitutes another important difference w.r.t. the approach

of lpopt , that instead, makes use of the same generation tool in order to obtain just one

decomposition per each rule with no evaluation at all. Obviously, handling the fitness

mechanism can imply some overhead w.r.t. the choice of computing only one, unevalu-

ated, decomposition. For this reason, in our approach, decompositions are requested and

evaluated one at a time and, in order to limit the impact of such phase on performance,

I -DLV by default stops the generation of additional tree decompositions after three con-

secutive generations that do not show improvements in the fitness values, and never looks

for more than a total of five generations. These limits have been set by experimentally

observing that the consecutive decompositions generated by htd present no performance

improvements with higher values; however, they can be customized by means of

command-line options. The selected decomposition is then compared against the original

rule in order to check whether it is convenient to actually decompose or not, as described

in Section 4.1.

An additional expedient to limit overheads consists in disabling the fitness mechanism

in the case of rules featuring very long bodies; indeed, computing multiple decomposi-

tions may be particularly costly for such rules (see Section 5). Therefore, we set a limit to

body length so that, when it is exceeded, the fitness mechanism is automatically disabled

and just one decomposition is generated and checked against the original rule. Again,

we set a default value experimentally; by default, the limit is set to 10 literals per body,

but it can be changed by means of a command-line option. In this respect, a possible

improvement of our technique, which will be the subject of future work, consists in prop-

erly generating a unique, presumably “good” enough, decomposition, thus preventing

the expensive production of multiple ones.

4 https://github.com/mabseher/htd

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://github.com/mabseher/htd
https://doi.org/10.1017/S1471068419000036

618 F. Calimeri et al.

5 Experimental evaluation

We carried out a thorough experimental activity aimed at assessing the impact of Smart-

Decomposition on the grounding performance of I -DLV , analyzing the effectiveness

of the proposed heuristics, and also at having a first glance on the effect of the produced

instantiation over state-of-the-art ASP solvers. For the sake of readability, we discuss

next only a significant subset of the experiments that have been carried out; additional

experiments are illustrated in Appendices in the Supplementary Material.

5.1 Benchmarks and results

All the experiments reported in this section and in the following have been performed on a

NUMA machine equipped with two 2.8 GHz AMD Opteron 6320 and 128 GiB of main mem-

ory, running Linux Ubuntu 14.04.4 (kernel ver. 3.19.0-25). Binaries have been gener-

ated by the GNU C++ compiler 5.4.0. We allotted 15 GiB and 600 s to each system per each

single run, as memory and time limits. Three versions of I -DLV have been compared:

(i) I -DLV without any decomposition, (ii) lpopt (version 2.2) combined in pipeline with

I -DLV (i.e., a black-box usage of lpopt), and (iii) I -DLV sd, that is, I -DLV empowered

with the herein introduced version of SmartDecomposition.

As for benchmarks, we first considered the whole 6th ASP Competition suite (Gebser

et al. 2015), the latest available at the time of writing; for each problem, the average

time over the 20 selected instances of the official Competition runs is reported; in order

to produce replicable results, the random seed used by lpopt for heuristics has been set

to 0 for system (ii).

Results are reported in Table 1, showing the number of grounded instances within the

allotted time along with the average time spent. The symbol US in the table indicates that

a configuration does not support the syntax of the encoding for corresponding domain;

in particular, this happens in the case of domains featuring queries, as system (ii) is not

able to process them because of the lack of support for queries from lpopt .

Results of the “blind usage” of lpopt (system (ii)) are conflicting: for instance, in

some cases, it enjoys a great gain w.r.t. the version of I -DLV without decomposition, in

particular, while dealing with the Permutation Pattern Matching problem, yet showing

great losses in other cases, such as Knight Tour With Holes, where instantiating rules

resulting from the decomposition requires more time w.r.t. the input ones. On the

other hand, from Table 1, it is easy to see that the SmartDecomposition algorithm

allows I -DLV sd to always match or overcome I -DLV performances, still enjoying

relevant improvements when decomposition is actually convenient (up to 96.7% in the

case of Permutation Pattern Matching), and avoiding negative effects of the black-box

decomposition mechanism, as in the case of Knight Tour With Holes. In addition, we

note also that the I -DLV sd is able to limit the overhead w.r.t. I -DLV : indeed, it is

negligible even in cases where decomposition does not pay; the same does not hold for

system (ii) which suffers from the useless additional invocation of lpopt in all cases when

the input program cannot be decomposed (see, e.g., Maximal Clique).

As a remark, what we expected here is that, while dealing with such benchmarks whose

encodings coming from the ASP competition are already highly optimized, I -DLV sd per-

formed similarly to I -DLV (with no decompositions) in all cases where decomposition

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 619

Table 1. Sixth Competition (20 instances per problem) – Grounding Benchmarks:

number of grounded instances and average running times (in seconds).

I -DLV lpopt | I -DLV I -DLV sd I -DLV sd gap

Problem #grnd time #grnd time #grnd time absolute %

Abstract dialectical
frameworks

20 0.12 20 0.12 20 0.12 0.00 0

Combined configuration 20 13.58 20 13.39 20 13.15 0.24 2
Complex optimization 20 57.56 20 60.72 20 57.24 0.32 1
Connected still life 20 0.10 20 0.10 20 0.10 0.00 0
Consistent query answering 20 76.44 0 US 20 77.00 −0.57 −1
Crossing minimization 20 0.10 20 0.10 20 0.10 0.00 0
Graceful graphs 20 0.30 20 0.31 20 0.30 0.00 0
Graph coloring 20 0.10 20 0.10 20 0.10 0.00 0
Incremental scheduling 20 16.07 20 15.74 20 16.21 −0.47 −3
Knight tour with holes 20 1.83 20 5.98 20 1.84 −0.01 −1
Labyrinth 20 1.97 20 1.83 20 2.02 −0.18 −10
Maximal clique 20 4.93 20 21.60 20 4.96 −0.03 −1
MaxSAT 20 3.85 20 8.87 20 3.86 −0.01 0
Minimal diagnosis 20 5.09 20 4.30 20 4.22 0.07 2
Nomistery 20 3.45 20 1.94 20 3.63 −1.68 −87
Partner units 20 0.46 20 0.47 20 0.47 0.00 0
Permutation pattern

matching
20 130.47 20 4.35 20 4.21 0.14 3

Qualitative spatial
reasoning

20 5.44 20 5.50 20 5.44 0.00 0

Reachability 20 126.54 0 US 20 126.14 0.40 0
Ricochet robots 20 0.36 20 0.39 20 0.39 −0.03 −9
Sokoban 20 1.21 20 1.23 20 1.22 −0.01 −1
Stable marriage 20 118.55 20 125.78 20 119.53 −0.99 −1
Steiner tree 20 29.00 20 28.92 20 29.11 −0.19 −1
Strategic companies 20 0.19 0 US 20 0.20 0.00 −1
System synthesis 20 1.09 20 1.15 20 1.08 0.01 1
Valves location problem 20 2.52 20 2.53 20 2.54 −0.02 −1
Video streaming 20 0.10 20 0.10 20 0.10 0.00 0
Visit-all 20 1,18 20 0,44 20 0,48 −0,04 −9

Total grounded instances 560/560 500/560 560/560

US indicates that the corresponding configurations do not support the adopted syntax.

is not convenient, and similarly to system (ii) otherwise. In order to assess this, we com-

puted absolute and relative differences in term of times between I -DLV sd and the best

performing among the other two configurations, for each benchmark; data are reported in

the two rightmost columns of Table 1. As it can be observed, apart from negligible fluc-

tuations and with the only relevant exception consisting of Nomystery, our expectations

have been met: absolute differences are close to zero, meaning that I -DLV sd behavior

is systematically comparable with the best one among the other two. The special case of

Nomystery is discussed later in this section.

An additional view of the general picture coming from this set of benchmarks is given

by the plot in Figure 4, built over the same data of Table 1 except for the three domains

featuring queries, that, as already mentioned, are unsupported by system (ii). The plot

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

620 F. Calimeri et al.

Fig. 4. Sixth Competition – Grounding Benchmarks (excluding domains featuring queries):
grounded instances over time (in seconds).

Fig. 5. 2QBF – Grounding Benchmarks: grounded instances over time (in seconds).

allows us to appreciate the advantage granted by the decomposition rewriting, as both

systems (ii) and (iii) clearly outperform system (i), and to note that the performance

reached thanks to the SmartDecomposition algorithm is consistently better than what

achieved via the unconditional use of decomposition.

Furthermore, we considered an additional set of benchmarks that have been already

used in Bichler et al. (2016b) in order to test the efficiency of ASP-solvers paired with lpopt

over challenging programs. In particular, in Bichler et al. (2016b), some publicly available

QBF instances have been ported to ASP, according to a conversion strategy that produces

programs featuring a complex structure and very long rules. This test-suite includes 200

ASP programs, each one corresponding to a different 2QBF instance. The results are de-

picted in Figure 5: the number of grounded instances is on the x -axis while running times

(in seconds) are on the y-axis; the total number of successfully grounded instances per

each tested configuration is reported in Table 2. First of all, we note that while dealing

with these problems, applying a decomposition on decomposable rules is always a good

choice; indeed, when no decomposition is performed the number of grounded instances is

significantly smaller and running times are higher w.r.t. configurations adopting decom-

position techniques. Moreover, the heuristics guiding SmartDecomposition in I -DLV

work properly, estimating the decompositions as convenient, and I -DLV sd automatically

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 621

Table 2. 2QBF – Grounding Benchmarks: number of total grounded instances.

I -DLV lpopt | I -DLV I -DLV sd

8 82 96

disables, internally, the fitness mechanism because the body size of rules is higher than

the fixed limit, thus reducing the risk of high overheads (cf. Section 4.4). In general,

lpopt |I -DLV and I -DLV sd enjoy similar performance, and I -DLV sd behaves as the

best performing version. Although both versions decompose the same rules, I -DLV sd

benefits from a tight integration of the decomposition mechanism into the evaluation

process that allows to better interact with the other optimization strategies of I -DLV

and possibly lead to different choices in decompositions. Finally, on the technical side,

we note that, lpopt and I -DLV sd rely on different versions of the htd library versions.

In summary, results of experiments clearly show the effectiveness of the herein proposed

approach. Some further considerations can be done about implementation and integration

into a system like I -DLV . Besides merely technical aspects, it is worth remembering

that, as already mentioned, I -DLV is packed with a large number of optimizations; this

means that a rewriting-based technique such as the SmartDecomposition algorithm

might have non-trivial interactions with them. Our experiments show that, in general,

these interactions lead to performance gains, as it is clear while looking, for instance, at

the QBF problem; nevertheless, a few isolated cases go towards different outcomes. In

particular, looking at Table 1, we find that Nomystery and, even if to a smaller extent,

Labyrinth, apparently benefit more from the black-box usage than from the heuristic-

guided one. However, this is not the case: we investigated and found that the reason is

not related to the choices made according to the heuristics, but rather to the mentioned

interaction with other internal rewritings performed by I -DLV before the decomposition

stage (for more details, we refer the reader to Calimeri et al. (2017b)); a more detailed

study of such interaction will be subject of future works.

5.2 On the effectiveness of the heuristics

In order to better understand the actual effects on grounding performance of the Smart-

Decomposition algorithm as guided by the proposed heuristics, we computed some

relevant statistics starting from the data obtained from experiments over all domains

considered in our experimental activities, thus including, besides those described in

Section 5.1, those described in Appendices in the Supplementary Material; we aggre-

gate them over specific set of instances, as described next, and report the results in a

table comparing the behaviors of I -DLV and I -DLV sd. In particular, Table 3 shows

two sets of data: the first refers to the whole collection of problem domains, while the

second to the subset of “affected domains,” that is, problems where significant differences

on performance are reported, either positive or negative5. The first two columns report

5 A problem domain is here considered as “affected” if either the number of instances grounded by the
two systems differ, or, in case the number is the same, difference in average grounding times between
the two systems is either above +10% or below −10%.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

622 F. Calimeri et al.

Table 3. Detailed comparison of I -DLVsd against I -DLV.

I -DLV I -DLV sd I -DLV sd gain (%)

All problems #solved instances 1688 1787 6
Average time 22.26 15.39 31
timeouts 113 19 83
memouts 5 0 100

Affected problems # solved instances 392 491 25
Average time 40.10 10.28 74
timeouts 103 9 91
memouts 5 0 100

performance of the two system configurations, respectively, while the third reports the

percentage gain achieved by I -DLV sd thanks to the SmartDecomposition algorithm.

It is easy to see that the positive impact of the technique on grounding performance,

on the overall (i.e., over all problems), is significant: a hundred of additional grounded

instances (+6%), more than 80% of timeouts avoided, and no more instances remain

unsolved because of the excessive amount of required memory. The impact is even more

evident if we consider that average times are computed only over the set of instances

that are solved by both I -DLV sd and I -DLV ; still, the performance gain turns out to

be over 30%.

When we focus on the set of affected problems, the benefits of the proposed techniques

are even more evident; we just note here as the gain in average grounding times, still

computed only over the set of instances that are grounded by both systems, is almost

75%.

5.3 Impact of I-DLVSD on ASP solvers

We proved above how a smart decomposition strategy significantly improves the perfor-

mance of a grounder like I -DLV ; interestingly, such improvements on the instantiation

process are relevant from many perspectives. First of all, as already mentioned in the

introduction, a grounder like I -DLV is actually a full-fledged deductive database sys-

tem, that can profitably employed in many real-world domains for non-trivially querying

knowledge bases of various nature, ranging from traditional relational to ontology-based

ones. In these contexts, typically, programs to be evaluated turn out to be normal and

stratified, and thus, completely solvable by a proper grounder. In all such cases, given

that solving phase is not needed, each improvement on the grounding side trivially implies

improvements on the whole ASP computation. In addition, the proposed technique can

be of great help in all those cases where, given the nature of standard ASP evaluation

strategy, the ground program can be so huge that it constitutes a bottleneck. The Smart-

Decomposition algorithm can be useful for mitigating this issue, allowing to actually

instantiate programs that cannot be grounded without: let us think, for instance, of the

2QBF domain discussed in Section 5.1. Furthermore, even if the proposed technique aims

at improving grounding, it has a positive impact also on solving times, thus allowing to

improve the performance of the whole computational process. To evaluate such impact,

we performed an additional experimental analysis; in particular, we combined the same

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 623

Fig. 6. Sixth Competition – Solving Benchmarks: solved instances over time (in seconds).

three versions of I -DLV used in Section 5.1 with the two mainstream ASP solvers clasp

(Gebser et al. 2015) (version 5.2.1) and wasp (Alviano et al. 2015) (version 2.1), and

tested the six resulting configurations over the 6th ASP Competition benchmarks.

Average times and number of solved instances within the allotted time are reported

in Table 4, where time outs and cases of unsupported syntax are denoted by TO and

US, respectively. First of all, we observe that both solvers, when coupled with I -DLV sd,

show, in general, improved performance and solve a larger number of instances, w.r.t. the

configurations with I -DLV ; on the contrary, the “blind usage” of lpopt leads, in general,

to a loss of performance for both solvers: in spite of the gain in some cases, the total

number of solved instances within the suite is significantly lower. A different perspective

of the results is provided in Figure 6, showing solved instances over time (in seconds),

where the benefits of the proposed techniques are very clear for both tested solvers.

Improvements in the overall ASP computation observable when I -DLV sd is used are

not only caused by improvements on grounding times; indeed, there are also cases in which

solving times get better even if there is no evident gain in grounding times. This is due

to the fact that the rewriting causes changes in the “form” and the size of the generated

instantiation, thus often inducing positive effects on the solving side. Furthermore, it can

be observed that on a same domain, the effects of the decomposition on the two solvers

are different: in some cases, benefits enjoyed by a solver are not reported for the other one

(see, for instance, Incremental Scheduling). This suggests that the heuristics guiding the

smart decomposition herein proposed, that already shows a general positive impact on

both mainstream solvers, could be further fine-tuned once a specific solver to be coupled

to I -DLV sd is chosen, by taking into account also its specific characteristics.

6 Conclusion

We introduced SmartDecomposition, a novel technique for automatically optimizing

ASP programs by means of decomposition-guided rewritings. The algorithm is designed

to be adapted to different ASP implementations; furthermore, it can be customized with

heuristics of choice for discerning among possible decompositions for each input rule,

and determining whether applying the selected decomposition appears to be actually a

“smart” choice.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

624
F
.
C
a
lim

eri
et

a
l.

Table 4. 6th Competition (20 instances per problem) – Solving Benchmarks: number of solved instances and average running times (in

seconds). Time out and unsupported syntax issues are denoted by TO and US, respectively.

I -DLV |clasp lpopt |I -DLV |clasp I -DLV sd |clasp I -DLV |wasp lpopt |I -DLV |wasp I -DLV sd |wasp
Problem #solved time #solved time #solved time #solved time #solved time #solved time

Abstract dialectical frameworks 20 6.88 20 7.36 20 6.89 11 33.26 11 22.38 11 32.21

Combined configuration 8 148.64 9 176.67 10 182.41 1 311.89 0 TO 0 TO

Complex optimization 18 149.84 19 167.58 18 149.44 6 150.30 5 99.05 6 148.00

Connected Still Life 6 220.70 6 243.05 6 222.12 12 55.02 12 78.03 12 55.47

Consistent query answering 20 87.05 0 US 20 87.39 18 87.47 0 US 18 88.05

Crossing minimization 7 53.02 6 64.23 7 56.79 19 3.50 19 2.40 19 5.58

Graceful graphs 9 141.77 10 130.97 9 140.44 6 174.17 4 122.14 6 171.42

Graph coloring 15 162.25 15 171.39 15 160.44 8 133.71 7 217.23 8 133.34

Incremental scheduling 13 90.62 11 39.16 14 128.81 8 155.20 5 137.74 6 124.89

Knight tour with holes 11 55.76 10 26.90 11 56.04 10 35.50 8 63.97 10 35.67

Labyrinth 12 63.19 11 120.09 12 67.25 11 104.73 10 168.65 11 106.71

Maximal clique 0 TO 0 TO 0 TO 9 353.03 9 353.63 9 352.56

MaxSAT 7 39.67 7 46.81 7 39.77 19 91.01 19 95.82 19 91.49

Minimal diagnosis 20 8.90 20 8.46 20 8.32 20 30.77 20 29.38 20 25.95

Nomystery 8 138.64 9 103.16 7 203.32 8 37.32 9 33.34 7 167.59

Partner units 14 19.81 14 20.29 14 20.26 5 116.99 10 168.07 10 168.24

Permutation pattern matching 11 164.63 17 152.47 20 15.62 20 182.53 10 279.70 20 23.36

Qualitative spatial seasoning 20 125.13 20 125.75 20 124.97 13 145.50 13 145.23 13 145.67

Reachability 20 137.55 0 US 20 137.53 6 138.40 0 US 6 139.17

Ricochet robots 9 67.84 12 109.32 12 188.07 7 206.86 8 87.95 9 134.22

Sokoban 8 73.95 9 82.45 8 76.90 8 86.00 9 64.59 8 88.25

Stable marriage 5 389.26 7 341.43 5 387.85 7 410.46 7 427.66 7 431.15

Steiner tree 3 243.89 3 244.89 3 242.45 1 131.66 1 131.75 1 131.80

Strategic companies 17 119.63 0 US 17 122.24 7 31.38 0 US 7 30.95

System synthesis 0 TO 0 TO 0 TO 0 TO 0 TO 0 TO

Valves location problem 16 43.09 16 26.09 16 43.05 15 40.93 15 39.27 15 41.32

Video streaming 13 61.84 10 75.70 13 61.63 9 9.15 0 TO 9 9.03

Visit-all 8 16.90 8 15.22 8 15.21 8 62.11 8 61.28 8 60.06

Total Solved Instances 318/560 269/560 332/560 272/560 219/560 275/560

https://doi.org/10.1017/S1471068419000036 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 625

In addition, we embedded a version of SmartDecomposition in the ASP system

DLV , and in particular in its grounding module I -DLV . We introduced heuristics crite-

ria for selecting decompositions that consider not only the non-ground structure of the

program at hand, but also the instance it is coupled to. We experimentally tested our

approach, and results are very promising: the proposed technique improves grounding

performance, and highlights a positive impact, in general, also on the solving side. This

is confirmed also by the results of the seventh ASP Competition (Gebser et al. 2017): here

the winner was a system combining the version of I -DLV implementing the preliminary

decomposition rewriting described in Calimeri et al. (2017a) with an automatic solver

selector (Fuscà et al. 2017) that inductively chooses the best solver depending on some

inherent features of the instantiation produced.

The I -DLV system incorporating the technique herein described can be downloaded

from https://github.com/DeMaCS-UNICAL/I-DLV/wiki, where a user guide is also

reported addressing, among others, the options related to the techniques described in

the present work.

As future work, we plan to investigate on further strategies for generating decomposi-

tions, starting from a more fine-grained analysis along with existing ones. For instance,

we note that current decompositions tend to split up a rule as much as possible, and

in some cases, this might require fresh predicates featuring significantly large extensions

that could have a noticeable impact on performance; hence, given a set of bags composing

a tree decomposition, one could check whether collapsing some bags produces some ben-

efits with this respect. In addition, we also plan to take advantage from automatic and

more advanced methods, such as machine learning mechanisms, in order to better tailor

decomposition criteria and threshold values to the scenario at hand. Furthermore, we

want to design a version of SmartDecomposition specifically geared towards solvers,

with the aim of further automatically optimizing the whole ASP computational process.

A starting point to this direction can be the recent work of Bliem et al. (2017), where it

emerged that the performance of modern solvers are highly influenced by the tree-width

of the input program; thus, this represents a starting point to explore the potential of

our technique on the solving step.

Supplementary material

To view supplementary material for this article, please visit https://dx.doi.org/10.

1017/S1471068419000036.

References

Abseher, M., Musliu, N. and Woltran, S. 2017. htd – A free, open-source framework
for (customized) tree decompositions and beyond. In Proceedings of Integration of AI and
OR Techniques in Constraint Programming – 14th International Conference, CPAIOR 2017,
Padua, Italy, June 5–8, 2017, D. Salvagnin and M. Lombardi, Eds. Lecture Notes in Computer
Science, vol. 10335. Springer, 376–386.

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P. and Zangari, J. 2017. The ASP system DLV2. In Proceedings of Logic Program-
ming and Nonmonotonic Reasoning – 14th International Conference, LPNMR 2017, Espoo,
Finland, July 3–6, 2017, M. Balduccini and T. Janhunen, Eds. Lecture Notes in Computer
Science, vol. 10377. Springer, 215–221.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://github.com/DeMaCS-UNICAL/I-DLV/wiki
https://dx.doi.org/10.1017/S1471068419000036.
https://dx.doi.org/10.1017/S1471068419000036.
https://doi.org/10.1017/S1471068419000036

626 F. Calimeri et al.

Alviano, M., Dodaro, C., Leone, N. and Ricca, F. 2015. Advances in WASP. In Pro-
ceedings of Logic Programming and Nonmonotonic Reasoning – 13th International Confer-
ence, LPNMR 2015, Lexington, KY, USA, September 27–30, 2015, F. Calimeri, G. Ianni and
M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 40–54.

Alviano, M., Faber, W., Greco, G. and Leone, N. 2012. Magic sets for disjunctive datalog
programs. Artificial Intelligence 187, 156–192.

Ben-Eliyahu, R. and Dechter, R. 1994. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence 12, 1–2, 53–87.

Ben-Eliyahu-Zohary, R. and Palopoli, L. 1997. Reasoning with minimal models: Efficient
algorithms and applications. Artificial Intelligence 96, 2, 421–449.

Bichler, M., Morak, M. and Woltran, S. 2016a. lpopt: A rule optimization tool for answer
set programming. In Logic-Based Program Synthesis and Transformation – 26th International
Symposium, LOPSTR 2016, Edinburgh, UK, September 6–8, 2016, Revised Selected Papers,
M. V. Hermenegildo and P. López-Garćıa, Eds. Lecture Notes in Computer Science, vol. 10184.
Springer, 114–130.

Bichler, M., Morak, M. and Woltran, S. 2016b. The power of non-ground rules in answer
set programming. Theory and Practice of Logic Programming 16, 5–6, 552–569.

Bliem, B., Moldovan, M., Morak, M. and Woltran, S. 2017. The impact of treewidth on
ASP grounding and solving. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, C. Sierra,
Ed. ijcai.org, 852–858.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Calimeri, F., Faber, W.,Gebser, M., Ianni, G.,Kaminski, R.,Krennwallner, T., Leone,
N., Ricca, F. and Schaub, T. 2013. ASP-Core-2: 4th ASP competition official input lan-
guage format. https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf.

Calimeri, F., Fuscà, D., Perri, S. and Zangari, J. 2017a. The ASP instantiator I-DLV. In
PAoASP. Espoo, Finland.

Calimeri, F., Fuscà, D., Perri, S. and Zangari, J. 2017b. I-DLV: the new intelligent
grounder of DLV. Intelligenza Artificiale 11, 1, 5–20.

Calimeri, F., Gebser, M., Maratea, M. and Ricca, F. 2016. Design and results of the fifth
answer set programming competition. Artificial Intelligence 231, 151–181.

Calimeri, F., Perri, S. and Ricca, F. 2008. Experimenting with parallelism for the instan-
tiation of ASP programs. Journal of Algorithms 63, 1–3, 34–54.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive
power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Dao-Tran, M., Eiter, T., Fink, M., Weidinger, G. and Weinzierl, A. 2012. Omiga : An
open minded grounding on-the-fly answer set solver. In Proceedings of Logics in Artificial
Intelligence – 13th European Conference, JELIA 2012, Toulouse, France, September 26–28,
2012., L. F. del Cerro, A. Herzig and J. Mengin, Eds. Lecture Notes in Computer Science,
vol. 7519. Springer, 480–483.

Eiter, T., Gottlob, G. and Mannila, H. 1997. Disjunctive datalog. ACM Transactions on
Database Systems 22, 3, 364–418.

Eiter, T., Kaminski, T. and Weinzierl, A. 2017. Lazy-grounding for answer set programs
with external source access. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, C. Sierra,
Ed. ijcai.org, 1015–1022.

Faber, W., Leone, N. and Perri, S. 2012. The intelligent grounder of DLV. In Correct
Reasoning – Essays on Logic-Based AI in Honour of Vladimir Lifschitz. Lecture Notes in
Computer Science, vol. 7265, Springer 247–264.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf
https://doi.org/10.1017/S1471068419000036

Optimizing Answer Set Computation via Heuristic-Based Decomposition 627

Fuscà, D., Calimeri, F., Zangari, J. and Perri, S. 2017. I-DLV+MS: preliminary report on
an automatic ASP solver selector. In Proceedings of the 24th RCRA International Workshop
on Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
2017 co-located with the 16th International Conference of the Italian Association for Artificial
Intelligence (AI*IA 2017), Bari, Italy, November 14–15, 2017., M. Maratea and I. Serina,
Eds. CEUR Workshop Proceedings, vol. 2011. CEUR-WS.org, 26–32.

Gebser, M., Kaminski, R., Kaufmann, B., Romero, J. and Schaub, T. 2015. Progress
in clasp series 3. In Proceedings of Logic Programming and Nonmonotonic Reasoning –13th
International Conference, LPNMR 2015, Lexington, KY, USA, September 27–30, 2015,
F. Calimeri, G. Ianni and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol.
9345. Springer, 368–383.

Gebser, M., Kaminski, R., Kaufmann, B. and Schaub, T. 2014. Clingo = ASP + control:
Preliminary report. CoRR abs/1405.3694.

Gebser, M., Kaminski, R., König, A. and Schaub, T. 2011. Advances in gringo series 3. In
Proceedings of Logic Programming and Nonmonotonic Reasoning – 11th International Con-
ference, LPNMR 2011, Vancouver, Canada, May 16–19, 2011 , J. P. Delgrande and W. Faber,
Eds. Lecture Notes in Computer Science, vol. 6645. Springer, 345–351.

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89.

Gebser, M., Maratea, M. and Ricca, F. 2015. The design of the sixth answer set pro-
gramming competition – report. In Proceedings of Logic Programming and Nonmonotonic
Reasoning – 13th International Conference, LPNMR 2015, Lexington, KY, USA, September
27–30, 2015, F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in Computer
Science, vol. 9345. Springer, 531–544.

Gebser, M., Maratea, M. and Ricca, F. 2016. What’s hot in the answer set program-
ming competition. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12–17, 2016, Phoenix, Arizona, USA, D. Schuurmans and M. P. Wellman, Eds.
AAAI Press, 4327–4329.

Gebser, M., Maratea, M. and Ricca, F. 2017. The design of the seventh answer set program-
ming competition. In Logic Programming and Nonmonotonic Reasoning – 14th International
Conference, LPNMR 2017, Espoo, Finland, July 3–6, 2017, M. Balduccini and T. Janhunen,
Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 3–9.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Giunchiglia, E., Lierler, Y. and Maratea, M. 2006. Answer set programming based on
propositional satisfiability. Journal of Automated Reasoning 36, 4, 345–377.

Gottlob, G., Greco, G., Leone, N. and Scarcello, F. 2016. Hypertree decompositions:
Questions and answers. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Sympo-
sium on Principles of Database Systems, PODS 2016, San Francisco, CA, USA, June 26–July
01, 2016, T. Milo and W. Tan, Eds. ACM, 57–74.

Gottlob, G., Grohe, M., Musliu, N., Samer, M. and Scarcello, F. 2005. Hypertree
decompositions: Structure, algorithms, and applications. In Graph-Theoretic Concepts in
Computer Science, 31st International Workshop, WG 2005, Metz, France, June 23–25, 2005,
Revised Selected Papers, D. Kratsch, Ed. Lecture Notes in Computer Science, vol. 3787.
Springer, 1–15.

Gottlob, G., Leone, N. and Scarcello, F. 2001. Hypertree decompositions: A survey.
In Proceedings of Mathematical Foundations of Computer Science 2001, 26th International
Symposium, MFCS 2001 Marianske Lazne, Czech Republic, August 27–31, 2001, J. Sgall,
A. Pultr, and P. Kolman, Eds. Lecture Notes in Computer Science, vol. 2136. Springer, 37–57.

Janhunen, T.,Niemelä, I., Seipel, D., Simons, P. and You, J. 2006. Unfolding partiality and
disjunctions in stable model semantics. ACM Transactions on Computational Logic 7, 1, 1–37.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

628 F. Calimeri et al.

Kaufmann, B., Leone, N., Perri, S. and Schaub, T. 2016. Grounding and solving in answer
set programming. AI Magazine 37, 3, 25–32.

Lefèvre, C., Béatrix, C., Stéphan, I. and Garcia, L. 2017. Asperix, a first-order forward
chaining approach for answer set computing. Theory and Practice of Logic Programming 17, 3,
266–310.

Leone, N., Perri, S. and Scarcello, F. 2001. Improving ASP instantiators by join-ordering
methods. In Proceedings of Logic Programming and Nonmonotonic Reasoning, 6th Inter-
national Conference, LPNMR 2001, Vienna, Austria, September 17–19, 2001, T. Eiter,
W. Faber, and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 2173. Springer,
280–294.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S. and Scarcello,

F. 2006. The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic 7, 3, 499–562.

Lifschitz, V. 1999. Answer set planning. In Logic Programming: The 1999 International
Conference, Las Cruces, New Mexico, USA, November 29 – December 4, 1999, D. D. Schreye,
Ed. MIT Press, 23–37.

Morak, M. and Woltran, S. 2012. Preprocessing of complex non-ground rules in answer
set programming. In Technical Communications of the 28th International Conference on
Logic Programming, ICLP 2012, September 4–8, 2012, Budapest, Hungary, A. Dovier and
V. S. Costa, Eds. LIPIcs, vol. 17. Schloss Dagstuhl – Leibniz–Zentrum fuer Informatik,
247–258.

Palù, A. D., Dovier, A., Pontelli, E. and Rossi, G. 2009. GASP: answer set programming
with lazy grounding. Fundamenta Informaticae 96, 3, 297–322.

Perri, S., Ricca, F. and Sirianni, M. 2013. Parallel instantiation of ASP programs:
techniques and experiments. TPLP 13, 2, 253–278.

Perri, S., Scarcello, F., Catalano, G. and Leone, N. 2007. Enhancing DLV instantiator by
backjumping techniques. Annals of Mathematics and Artificial Intelligence 51, 2–4, 195–228.

Robertson, N. and Seymour, P. D. 1986. Graph minors. II. algorithmic aspects of tree-width.
J. Algorithms 7, 3, 309–322.

Simona, P., and Zangari, J. 2018. Optimizing answer set computation via heuristic-based
decomposition. In Practical Aspects of Declarative Languages - 20th International Sympo-
sium, PADL 2018, Los Angeles, CA, USA, January 8-9, 2018, Proceedings, F. Calimeri,
K. W. Hamlen, and N. Leone, Eds. Lecture Notes in Computer Science, vol. 10702. Springer,
135–151.

Simons, P., Niemelä, I. and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artificial Intelligence 138, 1–2, 181–234.

Syrjänen, T. 2001. Omega-restricted logic programs. In Proceedings of Logic Programming and
Nonmonotonic Reasoning, 6th International Conference, LPNMR 2001, Vienna, Austria,
September 17–19, 2001, T. Eiter, W. Faber and M. Truszczynski, Eds. Lecture Notes in
Computer Science, vol. 2173. Springer, 267–279.

Ullman, J. D. 1988. Principles of Database and Knowledge-Base Systems, Volume I. Principles
of computer science series, vol. 14. Computer Science Press.

Ward, J. and Schlipf, J. S. 2004. Answer set programming with clause learning. In Pro-
ceedings of Logic Programming and Nonmonotonic Reasoning, 7th International Conference,
LPNMR 2004, Fort Lauderdale, FL, USA, January 6–8, 2004, V. Lifschitz and I. Niemelä,
Eds. Lecture Notes in Computer Science, vol. 2923. Springer, 302–313.

Weinzierl, A. 2017. Blending lazy-grounding and CDNL search for answer-set solving.
In Proceedings of Logic Programming and Nonmonotonic Reasoning – 14th International
Conference, LPNMR 2017, Espoo, Finland, July 3–6, 2017, M. Balduccini and T. Janhunen,
Eds. Lecture Notes in Computer Science, vol. 10377. Springer, 191–204.

https://doi.org/10.1017/S1471068419000036 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000036

	Introduction
	Preliminaries
	Answer Set Programming
	ASP computation
	Tree decompositions for rewriting ASP rules

	A heuristic-guided decomposition algorithm
	Integrating the SMARTDECOMPOSITION algorithm into a real system: the DLV case
	The ESTIMATE function
	The ESTIMATEDECOMPOSITION function
	The CHOOSEBESTDECOMPOSITION and DECOMPOSITIONISPREFERABLE functions
	Fine-tuning and further implementation issues

	Experimental evaluation
	Benchmarks and results
	On the effectiveness of the heuristics
	Impact of I-DLVbold0mu mumu SDSDSDSDSDSD on ASP solvers

	Conclusion
	References

