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In this paper, a closed-form pricing formula in the form of an infinite series for European

call options is derived for the Heston stochastic volatility model under a chosen martingale

measure. Given that markets with the stochastic volatility are incomplete, there exists a

number of equivalent martingale measures and consequently investors face a problem of

making a choice of appropriate measure when they price options. The one we adopt here is

the so-called minimal entropy martingale measure shown to be related to the expected utility

maximization theory (Frittelli 2000 Math. Finance 10(1), 39–52) and the financial rationality

for choosing this measure will be further illustrated in this paper. A great advantage of

our newly-derived pricing formula is that the convergence of the solution in series form

can be proved theoretically; such a proof of the convergence is also complemented by

some numerical examples to demonstrate the speed of convergence. To further show the

validity of our formula, a comparison of prices calculated through the newly derived

formula is made with those obtained directly from the Monte Carlo simulation as well

as those from solving the PDE (partial differential equation) with the finite difference method.

Key words: Series expansion, Minimal entropy martingale measure, Expected utility maxim-

ization, Convergence

1 Introduction

Although Black & Scholes [5] made a great contribution to the area of option pricing by

proposing a simple and closed-form pricing formula for European options in 1973, their

assumption for the log-returns of the underlying asset to follow a normal distribution

proves to be an over simplification in some cases (it cannot capture the features like

skewness [21] and fat-tails [23] exhibited by the real market data), which may lead to the

problem of mispricing. As a result, many modifications to the Black–Scholes model have

been proposed, including one of the most well-known ways by relaxing the assumption

of the constant volatility due to the observed “volatility smile” from market data [10].

In the literature, there are mainly two kinds of non-constant volatility models, i.e.

local volatility and stochastic volatility model. Local volatility models were adopted by

Dupire [11], Derman & Kani [9] and Rubinstein [24] and the volatility in their models

was defined as a deterministic function of asset price and time. Although this kind of

model appears to have certain advantages since it may relieve some computational burden
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and fit well with a given market, it was shown that local volatility model is not as flexible

as the stochastic volatility models [10] and it is even suggested in Hagan et al. [14]

that the “smile dynamics” are poorly predicted by the local volatility model. Such kind

of observations have made stochastic volatility models much more popular over local

volatility models.

Stochastic volatility was first systematically studied by Scott [28] who numerically solved

the option pricing problem with Monte Carlo simulations. It was further investigated by

Hull & White [17] and Stein & Stein [31]; the former proposed a series approximation

solution and the latter presented a closed-form formula for European option price.

Unfortunately, their models are not satisfying since some drawbacks do exist. For example,

the stochastic volatility process of Hull & White model does not possess the mean-reverting

property, which is at odds with observations from many empirical studies [2], while the

volatility cannot always remain positive under some parameter settings of Stein & Stein

model.

A breakthrough took place in 1993 when Heston [15] incorporated a specific model

with the stochastic volatility possessing the mean-reverting and non-negative properties

and derived a closed-form pricing formula based on the Fourier transform technique.

However, despite its great success, one should notice that the pricing formula obtained

by Heston is not the only price formula under the proposed model. This is because the

market described by the Heston model is actually incomplete as a result of introducing

stochastic volatility and thus derivative pricing is no longer independent of investors’ risk

preference. Thus, different choice of equivalent martingale measures will lead to different

risk-neutral prices. There are then two issues one may face; (a) we need a reasonable

principle to select an appropriate martingale measure, and (b) we need to overcome the

difficulty of deriving a closed-form pricing formula associated with the chosen martingale

measure.

In fact, there are several different martingale measures, such as minimal martingale

measure [25], variance-optimal measure [20, 26], minimal reverse entropy martingale

measure [27] and so on. The minimal entropy martingale measure considered here is one

of them and is chosen by minimizing the relative entropy between the pricing measures

and the physical measure. A financial interpretation for choosing the minimal entropy

martingale measure was originally given in [12], which is related to the concept of expected

utility maximization, and will be further illustrated later in this paper showing that

choosing the minimal entropy martingale measure is equivalent to attaining the maximum

expected utility, an action axiom in finance. Unfortunately, to the best of our knowledge,

only numerical methods are applied to option pricing under this particular measure, and

a closed-form pricing formula has hitherto not been found. A great advantage of having

analytical closed-form formula in terms of option pricing is that considerable amount of

time and effort can be spared when these formula are involved in the determination of

model parameters; a feature that none of numerical pricing approaches could match. This

is the main thrust behind our effort of searching for a closed-form solution of the Heston

stochastic volatility model under the minimal entropy martingale measure.

Entropy is a concept originated from thermodynamics [7] and it has been applied to

portfolio selection and asset pricing by a number of different authors, such as Philippatos

& Wilson [22], who were believed to be the first to apply this concept to portfolio
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selection and adopted it as a measure of risk, and Buchen & Kelly [6], who estimated the

distribution of the underlying from a set of option prices with the principle of maximum

entropy. In contrast, we adopt the concept but use it in the context of pricing options

in an incomplete market. Let us consider a stochastic process S = (St)t�0 defined on a

probability space (Ω, F, P) and adapted to the filtration F = (Ft)t�0. The relative entropy

H(Q, P ) of an equivalent martingale measure Q for S is then defined as:

H(Q, P ) =

⎧⎨
⎩E

[
dQ

dP
ln

(
dQ

dP

)]
, Q � P ,

+∞, otherwise,

where E represents the expectation operator under measure P . We denote M as the set

of martingale measures and Qe as the minimal entropy martingale measure satisfying

H(Qe, P ) = minQ∈MH(Q, P ).

It is proved by Frittelli [12] that a unique minimal entropy martingale measure equivalent

to P exists under the assumption that there is an equivalent martingale measure Q0 such

that H(Q0, P ) < +∞. Under this assumption, Hobson [16] managed to obtain an explicit

expression of the dynamics for the underlying price and the volatility under the minimal

entropy martingale measure with some particular settings. Following him, we take zero

interest rate as a leading order approximation. This is a reasonable approximation because

the tenor of most exchange-traded options is often less than three months, which means

the risk-free interest rate (often approximated by Treasury Bill Rates) should be quite

low [1], and the changes in the value of the interest rate has little influence on option

prices [30]. In this case, although the new PDE (partial differential equation) system

governing the option price contains variable coefficients as a result of the introduction of

time-dependent drift term in the volatility process, which has made the task of finding

closed-form solutions much more difficult, we still managed to find a closed-form pricing

formula in series form together with a lower bound for the radius of convergence. In

addition, two numerical examples are provided to further demonstrate the speed of

convergence of the series solution. To further validate the newly derived pricing formula,

we have also carried out additional comparison of the results produced with the new

formula and those directly obtained from solving the PDE with the finite difference

method (FDM) and from solving the SDE (stochastic differential equation) with Monte

Carlo simulation.

The rest of the paper is organized as follows. In Section 2, we will provide the financial

meaning of the minimal entropy martingale measure. In Section 3, we will first briefly

introduce the model we adopt and then derive a series solution to our PDE governing the

European option price. Also, the convergence of our solution will be proved theoretically

by giving a lower bound for the radius of convergence. In Section 4, the speed of

convergence will be tested numerically, after which our formula is further verified by

making comparison with the results obtained by the FDM and Monte Carlo simulation.

Concluding remarks are given in the last section.
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2 Financial explanation for minimal entropy martingale measure

In this section, we will briefly review the relationship between minimizing the relative

entropy and maximizing the expected exponential utility, which is actually one of the

most important areas of research on the minimal entropy martingale measure.

According to the existing literature, Frittelli [12] and Bellini & Frittelli [3] provided

an elaborate illustration about the link between the minimal entropy martingale measure

and maximum expected utility. By setting wT be the attainable terminal wealth and the

utility function be exponential, i.e.

u(x) = −e−x, (2.1)

the results were presented as

H(Q, P ) = sup
wT ∈L∞:e−rT EQ(wT )�0

u−1(EP [u(wT )]), (2.2)

which implies that the relative entropy is indeed the maximum certainty equivalent [19],

u−1(EP [u(wT )]), of attainable wealth wT with prices less than or equal to zero. Then

the characteristics of the density of the minimal entropy martingale measure were given,

showing the equivalence between maximization of the expected utility and adopting the

minimal entropy martingale measure. In addition, Delbaen et al. [8] obtained a more

generalized result, which considers a self-financing strategy and an extra contingent claim,

further demonstrating that maximizing the expected utility is equivalent to minimizing

the relative entropy with an exponential utility function specified as

u(x) = 1 − e−αx, α > 0. (2.3)

Moreover, how to construct an optimal strategy for a utility optimization problem through

the dual problem of martingale measures was also documented in [33]. It should also

be noticed that the minimal entropy martingale measure is quite useful when pricing

contingent claims with utility indifference approaches [18, 32].

After the financial justification for choosing the minimal entropy martingale measure

is illustrated, we are now ready to price European call options under this particular

martingale measure, which will be presented in the next Section.

3 Closed-form formula

In this section, we will firstly specify our model under the physical measure and then

pricing dynamics will be proposed by means of measure transformation. After the model

is established, the derivation of a closed-form pricing formula for European call options

is provided based on the series expansion.

Let St be the underlying asset price and vt be the volatility, the dynamics under the

physical measure are specified as follows:

dSt

St
= μvtdt +

√
vtdBt,

dvt = k(θ − vt)dt + β
√
vtdWt,
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where Bt and Wt are two standard Brownian motions with correlation ρ. It is obvious

that this market is incomplete, where a claim cannot be perfectly replicated, and there

exists a set of equivalent martingale measures and correspondingly arbitrage-free prices.

As a result, we need to choose an appropriate equivalent martingale measure for pricing

contingent claims. Over the years, many principles have been developed, such as the

minimal martingale measure [25], under which the price of “risk premium” is zero, and

variance-optimal measure [20, 26], which is connected with quadratic utility function.

The minimal entropy martingale measure adopted in this paper is reasonable to choose

according to the utility maximization argument in Section 2. Furthermore, no one has

derived a closed-form solution under this measure. As a result, following [16], if we set

Wt = ρBt +
√

1 − ρ2Ct, (3.1)

where Bt and Ct are two independent Brownian motions, the dynamics under the minimal

entropy martingale measure Q can be obtained by the following transformation

dB
Q
t = dBt + μv

√
vtdt,

dC
Q
t = dCt +

1

β
√

1 − ρ2
λ(τ)

√
vtdt,

where τ = T − t and λ(τ) = 2Δ tanh(Δτ+b)−k−ρβμ. Here Δ =

√
1

4
k2 +

1

2
kρβμ +

1

4
β2μ2

and b = tanh−1(
1

2

k + βρμ

Δ
). Therefore, the corresponding expression for the dynamics

can be derived as

dSt

St
=

√
vtdB

Q
t ,

dvt = [k(θ − vt) − βρμvt − λ(τ)vt]dt + β
√
vtdW

Q
t . (3.2)

Let U(S, v, t) be the European call option price written on the underlying asset St, then

according to the Feynman–Kac theorem [29], we can easily show that U(S, v, t) satisfies

the PDE

1

2
vS2 ∂2U

∂S2
+ ρσvS

∂2U

∂S∂v
+

1

2
σ2v

∂2U

∂v2
,

+ [k(θ − v) − βρμv − λ(τ)v]
∂U

∂v
+

∂U

∂t
= 0, (3.3)

with terminal condition:

U(S, v, T ) = max(S − K, 0), (3.4)

and boundary conditions:

U(0, v, t) = 0, lim
S→+∞

U(S, v, t) = S,

U(S,∞, t) = S, lim
v→0

U(S, v, t) = max(S − K, 0).

Here, the reason for the option price to be equal to the payoff function at v = 0 is
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illustrated in [34]. On the other hand, U(S, v, t) can also be equivalently calculated as

U(S, v, t) = e−r(T−t)EQ[(ST − K)+|St = S],

= SEQ[e−r(T−t) ST

S
I{ST>K}|St = S] − Ke−r(T−t)EQ[I{ST>K}|St = S].

To seek a solution in an affine form later, we can let U(S, v, t) take the form of

U(S, v, t) = SP1(x, v, t) − Ke−r(T−t)P2(x, v, t). (3.5)

Substituting equation (3.5) into (3.3) and applying transformation of x = ln(S) yield the

following PDE

1

2
v

∂2Pj

∂x2
+ ρσv

∂2Pj

∂x∂v
+

1

2
σ2v

∂2Pj

∂v2
+ ljv

∂Pj

∂x
,

+ [k(θ − v) − βρμv − λ(τ)v + mjv]
∂Pj

∂v
+

∂Pj

∂t
= 0, (3.6)

for j = 1, 2, where l1 =
1

2
, l2 = −1

2
, m1 = ρσ, m2 = 0. Now the terminal conditions for Pj

become

Pj(x, v, T ; ln[K]) = I{x�ln[K]}.

Let us denote y = ln[K] and assume that fj(x, v, t;φ) be the conditional characteristic

function of xT , i.e.

fj(x, v, t;φ) = EQ[eiφxT |xt = x, vt = v]. (3.7)

It is not difficult to deduce that fj(x, v, t;φ) satisfies the same PDE as Pj(x, v, t; y) and

thus we obtain

1

2
v

∂2fj

∂x2
+ ρσv

∂2fj

∂x∂v
+

1

2
σ2v

∂2fj

∂v2
+ ljv

∂fj
∂x

,

+ [k(θ − v) − βρμv − λ(τ)v + mjv]
∂fj
∂v

+
∂fj
∂t

= 0, (3.8)

with known terminal condition fj(x, v, T ;φ) = eiφx. Considering the results in [15], it is

natural for us to assume that there exists an affine structure solution to PDE (3.8) as

fj = eC(τ;φ)+D(τ;φ)v+iφx. (3.9)

Hereafter, i denotes the imaginary unit. Therefore, by substituting (3.9) into (3.8), we can

obtain the following equation after some calculation

{
1

2
σ2D2 + [iρσφ − k + mj − βρμ − λ(τ)]D + (lj iφ − 1

2
φ2) − D

′
(τ)

}
v + [kθD − C

′
(τ)] = 0,

(3.10)

which implies that the coefficients of vn should be set to be zero for every n respectively

since v is arbitrary. As a result, we have the following two ODEs (ordinary differential
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equations)

D
′
(τ) =

1

2
σ2D2 + [iρσφ − k + mj − βρμ − λ(τ)]D +

(
lj iφ − 1

2
φ2

)
, (3.11)

C
′
(τ) = kθD, (3.12)

with initial condition C(0) = D(0) = 0. It is obvious that if we can derive the solution of

D(τ;φ), then C(τ;φ) will be obtained straightforwardly by direct integration. As a result,

what we need to do is to focus on D(τ;φ). Actually, it should be noticed that ODE (3.11)

is actually a Riccati Equation with variable coefficients, which brings extra burden in

finding a closed-form solution for it.

We set q0 = lj iφ − 1

2
φ2, q1 = iρσφ − k + mj − βρμ − λ(τ) and q2 =

1

2
σ2. After this

crucial change of the variables, it is easy to find that q1 can be further simplified as

q1 = iρσφ + mj − 2Δ tanh(Δτ + b).

By applying the transformation of D = − u
′

q2u
, the Riccati equation becomes a second-

order linear ODE with variable coefficients as

u
′′ − q1u

′
+ q0q2u = 0, (3.13)

with u
′
(0) = 0. Although this kind of ODE can be easily solved when its coefficients are

all constant, it still poses an obstacle when its coefficients are a function of the variable τ

as the case we end up with in (3.13). By setting

u =

∞∑
n=0

anτ
n, (3.14)

we obtain

u
′
=

∞∑
n=0

(n + 1)an+1τ
n,

u
′′

=

∞∑
n=0

(n + 1)(n + 2)an+2τ
n. (3.15)

What we need to do now is to expand tanh(Δτ+ b) as a series with respect to τ. However,

the coefficients of the series would be very complicated and the property of convergence

can hardly be studied as far as the Taylor series for tanh(x) is concerned, which is a major

reason for us to seek alternative ways.

Since ex can be expanded as

ex =

∞∑
n=0

xn

n!
, (3.16)

and the RHS (right hand side) of equation (3.16) is a power series, whose radius of
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convergence for any given x can be calculated as

lim
n→∞

∣∣∣∣ 1
n!
xn

1
(n+1)!

xn+1

∣∣∣∣ = lim
n→∞

|n + 1

x
| = +∞, (3.17)

we rewrite tanh(x) as

tanh(x) =
e2x − 1

e2x + 1
, (3.18)

since equation (3.17) means that equation (3.16) holds for any x. As a result, ODE (3.13)

can be rearranged as

(e2b·e2Δτ+1)u
′′ −[(iρσφ+mj−2Δ)e2be2Δτ+(iρσφ+mj+2Δ)]u

′
+(e2b·e2Δτ+1)q0q2u = 0. (3.19)

According to equation (3.16) we know that

e2Δτ =

∞∑
n=0

cnτ
n, (3.20)

where cn =
1

n!
(2Δ)n. Therefore, applying equations (3.15) and (3.20) into (3.19) yields

(
e2b

∞∑
n=0

cnτ
n + 1

) ∞∑
n=0

(n + 1)(n + 2)an+2τ
n +

(
e2b

∞∑
n=0

cnτ
n + 1

)
q0q2

∞∑
n=0

anτ
n,

−
[
(iρσφ + mj − 2Δ)e2b

∞∑
n=0

cnτ
n +

(
iρσφ + mj + 2Δ

)] ∞∑
n=0

(n + 1)an+1τ
n = 0. (3.21)

As equation (3.21) should hold for any τ, the coefficients of {τk, ∀k � 0} should be equal

to zero and thus we have

(k + 1)(k + 2)ak+2 + e2b
k∑

i=0

[(k − i + 2)(k − i + 1)ak−i+2ci] + I2 − I1 = 0, (3.22)

for k � 0, where

I1 = {(iρσφ + mj − 2Δ)e2b
k∑

i=0

[(k − i + 1)ak−i+1ci] + (iρσφ + mj + 2Δ)(k + 1)ak+1} = 0,

I2 = e2bq0q2

k∑
i=0

(ak−ici) + q0q2ak.

As a result, {ak+2, k � 0} can be easily obtained once {an, n = 0, 1, 2, . . . , k + 1} according

to the following equation derived from equation (3.22)

ak+2 =
I1 − I2 − e2b

∑k
i=1[(k − i + 1)(k − i + 2)ak−i+2ci]

(e2b + 1)(k + 2)(k + 1)
, k � 0. (3.23)

One may think that D(τ;φ) has been solved by now. However, we only have a1 = 0

https://doi.org/10.1017/S0956792515000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000510


Pricing European options with stochastic volatility 241

from u
′
(0) = D(0) = 0, which keeps {ak+2, k � 0} still unknown without the value of a0.

Fortunately, D(τ;φ) takes the form as

D(τ) = − 1

q2
·
∑∞

n=0(n + 1)an+1τ
n∑∞

n=0 anτ
n

, (3.24)

which means that we do not have to derive an since D(τ) can be further represented by

D(τ) = − 1

q2
·
∑∞

n=0(n + 1) an+1

a0
τn∑∞

n=0
an
a0
τn

. (3.25)

It should be noticed that if we define

âk =
ak

a0
, k � 0, (3.26)

all {âk, k � 0} can be immediately derived due to the expression

âk+2 =
Î1 − Î2 − e2b

∑k
i=1[(k − i + 1)(k − i + 2)âk−i+2ci]

(e2b + 1)(k + 2)(k + 1)
, k � 0, (3.27)

with â0 = 1, â1 = 0. Here, Î1 and Î2 can be respectively expressed as

Î1 = {(iρσφ + mj − 2Δ)e2b
k∑

i=0

[(k − i + 1)âk−i+1ci] + (iρσφ + mj + 2Δ)(k + 1)âk+1},

Î2 = e2bq0q2

k∑
i=0

(âk−ici) + q0q2âk.

Therefore, we have finally arrived at the desired result with

D(τ) = − 1

q2
·
∑∞

n=0(n + 1)ân+1τ
n∑∞

n=0 ânτ
n

, (3.28)

according to equation (3.25). As for C(τ;φ), it is calculated from

C(τ) =

∫ τ

0

kθD(t)dt. (3.29)

since D(τ;φ) has been worked out. As stated previously, fj is the conditional characteristic

function of xT , thus Pj can be derived according to the Gil–Pelaez Theorem [13] once fj
is obtained as follows:

Pj =
1

2
+

1

π

∫ +∞

0

Re

[
e−iφ ln[K]fj

iφ

]
dφ. (3.30)

By now a formula in series expansion for the price of European call options is derived

and can be calculated by equation (3.5).

Once a series solution is obtained, it is natural for us to consider its convergence.

Although the convoluted and recursive structure of equation (3.27) posed an obstacle
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when we tried to prove its convergence theoretically, we finally figured out an alternative

way. In fact, the series solution is introduced when we seek solutions to ODE (3.13)

and thus our final formula will converge if this series solution converges. Therefore, we

provide the radius of convergence for the series solution in the following proposition.

Proposition 3.1 The series solution u =

∞∑
n=0

anτ
n will always converge if

τ �
1

Δ

√
b2 +

π2

4
. (3.31)

Proof According to one existing theory that the radius of convergence of the series

solution to a second order linear ODE near an ordinary point is at least as large as the

distance from the ordinary point to the nearest singularity of the ODE [4], all we need to

do for our model is to find the nearest singularity to zero of (3.13). Now if we let

F1(τ) = (iρσφ + mj)(e
2(Δτ+b) + 1) − 2Δ(e2(Δτ+b) − 1),

F2(τ) = e2(Δτ+b) + 1,

it is not difficult to verify that F1(τ) and F2(τ) are both analytic in the entire complex

domain. Furthermore, as we notice that q1 equals F1(τ)/F2(τ) and q0q2 is a constant, all

singularities can be obtained when we set F2(τ) = 0 and are specified as follows:

τk = − b

Δ
+ i

(2k + 1)π

2Δ
, k = 0, 1, 2 . . . (3.32)

Therefore, the nearest singularity to zero is − b

Δ
+ i

π

2Δ
and it is actually a simple pole.

This implies that the radius of convergence is at least
1

Δ

√
b2 +

π2

4
, which has completed

the proof. �

Except the radius of convergence, the speed of convergence is also an important

factor for the series solution and should be examined. Moreover, we will further check

the validity of our pricing formula by comparing European option prices calculated by

pricing formula (3.5) with those obtained directly from the SDE (3.2) controlling the

dynamics with Monte Carlo simulation and from the PDE (3.3) governing the option

price with FDM to further demonstrate the speed of convergence and accuracy. These

two issues will be shown in the next Section.

4 Numerical examples and discussions

In this section, two different examples will be given respectively to show the convergence

and the validity of our pricing formula. Of course, the parameters used are chosen under

the restriction (3.31).
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Figure 1. Convergence of pur price in the first example. Parameters are ρ = −0.5, k = 2, θ =

0.1, β = 0.1, u = 4, τ = 0.5, v = 0.1, K = 100. (a) Value of G(S, t, v; n + 1) − G(S, t, v; n), 3 � n � 49.

(b) Option price when number of terms chosen to be 15 and 16.

As shown from the derivation process in Section 3 that the obtained pricing formula

(3.5) can be expressed as

U(S, t, v) = lim
n→∞

G(S, t, v; n), (4.1)

where n represents the number of terms we use in calculating the option price, the

convergence of our formula can be shown if there exists N and K ∈ (0, 1) such that when

n > N, the following is valid

|G(S, t, v; n + 2) − G(S, t, v; n + 1)| � K|G(S, t, v; n + 1) − G(S, t, v; n)|, (4.2)

according to the compression conditions for sequences. As a result, when G(S, t, v; n +

1) − G(S, t, v; n)� 0, the following is the only one that need to be considered to check the

convergence of the solution

lim
n→∞

∣∣∣∣G(S, t, v; n + 2) − G(S, t, v; n + 1)

G(S, t, v; n + 1) − G(S, t, v; n)

∣∣∣∣ = 0. (4.3)

In contrast, when G(S, t, v; n+1)−G(S, t, v; n) = 0 holds for all n > N, the solution should

be regarded as converged. In the following, the values of G(S, t, v; n) are all calculated in

the order of 10−16.

As is shown in Figure 1(a), the value of G(S, t, v; n + 1) − G(S, t, v; n) decreases rapidly

when n increases and it becomes zero when n reaches eight, independent of whether the

option is “in the money”, “at the money” or “out of money”. Moreover, it should be

noted that the speed of convergence for “in the money” option is slower than that for

“out of money” option. To exhibit the convergence of the series solution more clearly,

Figure 1(b) displays two option prices corresponding to the cases with 15 terms and 16

terms of the series solution picked respectively when S is set to be 100. What we can

observe first is that the calculated option price is a monotonic increasing function of time

to expiration. Furthermore, two different curves are pictured with a difference of 10−5

https://doi.org/10.1017/S0956792515000510 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000510


244 X.-J. He and S.-P. Zhu

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2%

0.4%

0.6%

0.8%

1.0%

1.2%

1.4%

1.6%

1.8%

Time to expiration

Re
la

tiv
e 

er
ro

r

 

 
S=90
S=100
S=110

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1%

0.2%

0.3%

0.4%

0.5%

0.6%

0.7%

0.8%

Time to expiration

Re
la

tiv
e 

di
ffe

re
nc

e

 

 
S=90
S=100
S=110

(b)

Figure 2. Comparison of our price with those obtained by other numerical methods in the first

example. Parameters are ρ = −0.5, k = 2, θ = 0.1, β = 0.1, u = 4, v = 0.1, K = 100. (a) Our price

versus FDM price. (b) Our price versus Monte Carlo price.

order, which can be tolerated when operating in financial markets and thus the 15-term

price can be regarded as the converged option price.

What we can see in Figure 2(a) is the relative difference between our price calculated by

20 terms in the series solution and FDM price, which is calculated by the explicit scheme.

We try to make the results of comparison more convincing by setting S = 90, 100, 110

respectively. The maximum difference shown in this sub-figure is less than 1.8%, which

could certainly be accepted in real markets. Figure 2(b) further show that our price is quite

accurate since there are only no more than 0.8% difference when our price is compared

with Monte Carlo price, which is calculated with 5,00,000 simulations. When these two

sub-figures are viewed together, it should be noticed that prices for “out of money” option

exhibit higher relative difference than those for options in other positions as expected

since prices are smaller for “out of money” call options. On the other hand, as for the

speed of calculation, it only takes 2.77 seconds to work out a converged 15-term price

with the closed-form solution, while it costs 639.66 seconds for Monte Carlo simulation

and 909.21 seconds for finite different method with the same set of parameters. This

implies that working with our closed-form formula can be really time-saving compared

with those numerical methods.

Since only one example given by the same set of parameters may not be sufficient to

lead to reliable conclusions, another example is chosen. The values of parameters are

selected to be quite different from those in the first example to show that it converges

for a wide range of parameters as long as the parameters are chosen within the radius of

convergence (3.31). As a result, we again calculate the value of |G(S, t, v; n+1)−G(S, t, v; n)|
when n increases from 13 to 49, which is shown in Figure 3(a). It is obvious that our price

still converges in either moneyness of options, although the converging rate is slower than

that in the first example. It should also be noticed that the converging speed for “in the

money” options is slowest. Figure 3(b) is the one showing how close it is for the price

of 25-team and 26-term picked in the series of our solution. Apparently, the order of

difference is again only 10−5, which means that prices of more than 25 terms can be seen

as converged.
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Figure 3. Convergence of pur price in the second example. Parameters are ρ = 0.5, k = 5, θ =

0.01, β = 0.05, u = 0.8, v = 0.2, τ = 0.5, K = 100. (a) Value of G(S, t, v; n+1)−G(S, t, v; n), 13 � n � 49.

(b) Option price when number of terms chosen to be 25 and 26.
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Figure 4. Comparison of our price with those obtained by other numerical methods in the second

example. Parameters are ρ = 0.5, k = 5, θ = 0.01, β = 0.05, u = 0.8, v = 0.2, K = 100. (a) Our price

versus FDM price. (b) Our price versus Monte Carlo price.

Comparison with prices obtained through other numerical methods for this case is

also given in Figure 4. This time the relative difference between our price and FDM

price is narrowed down to maximum 1.2% while the distance between our price and

Monte Carlo price is still less than 0.8%. Besides, one can still observe that option prices

calculated by the closed-form pricing formula have lower relative difference with those

obtained through both of the numerical methods when the initial underlying price is no

less than the strike price. It should be pointed out that although 25 terms are needed for

a converged price, the time it consumes to figure out one price in this case is still very

low, at about 4.72 seconds, which is less than
1

120
of the time that the two numerical

methods require. This can significantly raise the efficiency of option pricing in real

markets.
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5 Conclusion

In this paper, a closed-form pricing formula for European options is obtained under the

minimal entropy martingale measure in the Heston stochastic volatility model with several

particular settings. This is a reasonable choice since the specific equivalent martingale

measure can be connected with the principle of maximum expected utility. A great

advantage of our newly-derived pricing formula is that the convergence of the solution

in series form can be proved theoretically; such a proof of the convergence has also been

complemented by some numerical examples to demonstrate the speed of convergence.

Our numerical evidence has further substantiated that the series solution indeed converges

very rapidly; when the relative differences with respect to FDM prices and MC prices

are maintained to be no more than 1.8% and 0.8% respectively, the computational cost

associated with adopting the closed-form solution is less than 1% of those associated

with purely numerical methods such as the FDM and MC methods.
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