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A uniform hypergraph H is called k-Ramsey for a hypergraph F if, no matter how one

colours the edges of H with k colours, there is always a monochromatic copy of F . We say

that H is k-Ramsey-minimal for F if H is k-Ramsey for F but every proper subhypergraph

of H is not. Burr, Erdős and Lovasz studied various parameters of Ramsey-minimal graphs.

In this paper we initiate the study of minimum degrees and codegrees of Ramsey-minimal

3-uniform hypergraphs. We show that the smallest minimum vertex degree over all k-

Ramsey-minimal 3-uniform hypergraphs for K
(3)
t is exponential in some polynomial in

k and t. We also study the smallest possible minimum codegree over 2-Ramsey-minimal

3-uniform hypergraphs.

2010 Mathematics subject classification: Primary 05D10

Secondary 05D40

1. Introduction and new results

A graph G is said to be Ramsey for a graph F if, no matter how one colours the

edges of G with two colours, say red and blue, there is a monochromatic copy of F . A

classical result of Ramsey [14] states that for every F there is an integer n such that Kn is

Ramsey for F . Moreover, generalizations to more than two colours and to hypergraphs

hold as well [14]. If G is Ramsey for F but every proper subgraph of G is not Ramsey

for F , then we say that G is Ramsey-minimal for F . We denote by Mk(F) the set of

minimal graphs G with the property that no matter how one colours the edges of G with

* After this paper was accepted and processed, we managed to obtain BEL-gadgets for uniformities r � 4.

This work will appear elsewhere.
† An extended abstract of this paper appears in the proceedings of EuroComb 2015 [3].
§ Supported by DFG grant PE 2299/1-1.
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k colours, there is a monochromatic copy of F in it, and refer to these as k-Ramsey-

minimal graphs for F . There are many challenging open questions concerning the study

of various parameters of k-Ramsey-minimal graphs for various F . The most studied ones

are the classical (vertex) Ramsey number rk(F) := minG∈Mk(F) v(G) and the size Ramsey

number r̂k(F) := minG∈Mk(F) e(G), where v(G) is the number of vertices in G and e(G) is

its number of edges. To determine the classical Ramsey number r2(Kt) is a notoriously

difficult problem and essentially the best known bounds are 2(1+o(1))t/2 and 2(2+o(1))t due to

Spencer [16] and Conlon [4].

Burr, Erdős and Lovász [1] were the first to study other possible parameters of the

class M2(Kt). In particular they determined the minimum degree

s2(Kt) := min
G∈M2(Kt)

δ(G) = (t− 1)2,

which looks surprising given the exponential bound on the minimum degree of Kn with

n = r2(Kt) (it is not difficult to see that Kn ∈ M2(Kt)). Extending their results, Fox,

Grinshpun, Liebenau, Person and Szabó [10] studied the minimum degree

sk(Kt) := min
G∈Mk(Kt)

δ(G)

for more colours showing a general bound on sk(Kt) � 8(t− 1)6k3 and proving quasi-

quadratic bounds in k on sk(Kt) for fixed t. Further results concerning Ramsey-minimal

graphs were studied in [2, 9, 11, 15, 17].

Here we initiate the study of Ramsey-minimal 3-uniform hypergraphs and provide first

bounds on various types of minimum degree for Ramsey-minimal hypergraphs. Generally,

an r-uniform hypergraph H is a tuple (V , E) with vertex set V and E ⊆
(
V
r

)
being its edge

set. Ramsey’s theorem holds for r-uniform hypergraphs as well, as shown originally by

Ramsey himself [14]. We write G −→ (F)k if G is k-Ramsey for F , that is, if no matter

how one colours the edges of the r-uniform hypergraph G, there is a monochromatic

copy of F . We denote by K
(r)
t the complete r-uniform hypergraph with t vertices, that

is, K (r)
t = ([t],

(
[t]
r

)
). The hypergraph Ramsey number rk(F) is the smallest n such that

K (r)
n −→ (F)k . While in the graph case the known bounds on r2(Kt) are only polynomially

far apart, already in the case of 3-uniform hypergraphs the bounds on r2(K (3)
t ) differ by

one exponent, 2c1t
2 � r2(K (3)

t ) � 22c2t for some absolute positive constants c1 and c2, and

a similar situation occurs for higher uniformities. For further information on Ramsey

numbers we refer the reader to the standard book on Ramsey theory [12] and for newer

results to the survey by Conlon, Fox and Sudakov [5].

Given � ∈ [r − 1], we define the degree deg(S) of an �-set S in an r-uniform hypergraph

H = (V , E) as the number of edges that contain S , and we define the minimum �-

degree δ�(H) := minS∈(V�)
deg(S). For two vertices u and v we simply write deg(u, v) for

deg({u, v}), sometimes referred to as the codegree of u and v. Similar to the graph case,

we extend verbatim the notion of Ramsey-minimal graphs to Ramsey-minimal r-uniform

hypergraphs in a natural way. That is, Mk(F) is the set of all k-Ramsey-minimal r-uniform

hypergraphs H , that is, consisting of those H with H −→ (F)k but H ′ �−→ (F)k for all
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H ′ � H . We define

sk,�(K
(r)
t ) := min

H∈Mk(K
(r)
t )

δ�(H), (1.1)

which extends the introduced graph parameter sk(Kt). It will be shown in fact that

s2,2(K (3)
t ) is zero, and thus it makes sense to ask for the second smallest value of the

minimum �-degree. This motivates the following parameter s′
k,�(K

(r)
t ):

s′
k,�(K

(r)
t ) := min

H∈Mk(K
(r)
t )

(
min

{
degH (S) : S ∈

(
V (H)

�

)
, degH (S) > 0

})
.

We prove the following results on the minimum degree and codegree of Ramsey-minimal

3-uniform hypergraphs for cliques K (3)
t .

Theorem 1.1. The following holds for all t � 4 and k � 2:

r̂k(Kt−1) � sk,1(K (3)
t ) � k20kt4 . (1.2)

The lower bound r̂k(Kt−1) is the size-Ramsey number for Kt−1 and it was shown by

Erdős, Faudree, Rousseau and Schelp [7] that r̂k(K�) =
(
rk(K�)

2

)
. Using the lower bound on

rk(K�) � 2(1−o(1))/4k� (see, e.g., [5]) we obtain

sk,1(K (3)
t ) � 2

1
2 kt(1−o(1)).

Theorem 1.2. Let t � 4 be an integer. Then

s2,2(K (3)
t ) = 0 and s′

2,2(K (3)
t ) = (t− 2)2.

Note that with s′
2,2 we ask for the smallest positive codegree, while for s2,2 we also

allow the codegree to be zero. This in particular means that in any 2-Ramsey-minimal

hypergraph H for K (3)
t we have that a pair of vertices u and v are either not contained

in a common edge or have codegree at least (t− 2)2. This might look surprising at first

sight, since taking K (3)
n with n = r2(K (3)

t ) and then deleting all edges that contain two

distinguished vertices gives a non-Ramsey hypergraph.

Methods. The methods we are going to use are generalizations of signal senders introduced

first by Burr, Erdős and Lovász in [1], and generalized later by Burr, Nešetřil and Rödl [2]

and by Rödl and Siggers [15], that we combine with probabilistic arguments analysing

certain properties of random 3-uniform hypergraphs.

Organization of the paper. In Section 2 we generalize existence results for ‘almost’ Ramsey

graphs, that is, graphs whose edge colourings without a monochromatic copy of some

complete graph Kt impose certain colour patterns, first introduced for hypergraphs by

Burr, Erdős and Lovász [1]. Then in Section 3 we study the vertex degree for k-Ramsey-

minimal 3-uniform hypergraphs for K (3)
t , while in Section 4 we look into the case of

codegrees in 2-Ramsey-minimal 3-uniform hypergraphs for K (3)
t .
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2. BEL-gadgets for 3-uniform hypergraphs

For a given hypergraph H = (V , E), the link of a vertex v ∈ V , denoted by link(v), consists

of the edges of H that contain v, minus the vertex v itself (thus, these form an (r − 1)-

uniform hypergraph). Formally, the edge set of link(v) is {e \ {v} : v ∈ e ∈ E}. In this

paper we will be dealing exclusively with 3-uniform hypergraphs, thus the links of their

vertices are just the edges of some graph.

First we show a lemma that asserts the existence of a 3-uniform hypergraph H and two

edges f, e ∈ E(H) with |f ∩ e| = 2 and e(H[e ∪ f]) = 2 so that H is not k-Ramsey for K (3)
t ,

with the property that any k-colouring of E(H) without a monochromatic K (3)
t colours

the edges e and f differently. We will refer to such hypergraphs that impose a certain

structure on K
(3)
t -free colourings as BEL-gadgets. Moreover, we occasionally refer in the

following to a colouring without a monochromatic copy of F as an F-free colouring.

Lemma 2.1. Let t � 4 and k � 2 be integers. Then there exist a 3-uniform hypergraph

H and two edges eH, fH ∈ E(H) with |fH ∩ eH| = 2 and e(H[eH ∪ fH]) = 2 such that the

following properties hold:

(1) H �−→ (K (3)
t )k ,

(2) for every k-colouring c of E(H) which avoids monochromatic copies of K (3)
t , we have that

c(eH) �= c(fH).

Proof. Set m = rk(K
(3)
t ) and define a hypergraph F ′ on the vertex set [m] as follows.

Delete from K (3)
m all edges that contain vertices m− 1 and m. It is easy to see that

then F ′
�−→ (K (3)

t )k . Indeed, fix a k-colouring of E(K (3)
m−1) without a monochromatic K (3)

t ,

then extend this colouring to E(F ′) by colouring each edge (x, y, m) with the colour of

(x, y, m− 1). Since every copy of K (3)
t in F ′ may contain at most one of the vertices m− 1

and m, we see that F ′
�−→ (K (3)

t )k .

Define

Fi := ([m], E(F ′) ∪ {{j, m− 1, m} : j � i})

and set F := F�, where � is maximal such that F� is not k-Ramsey for K (3)
t but F�+1 is

(this is possible since Fm−2 = K (3)
m is k-Ramsey for K (3)

t by the choice of m = rk(K
(3)
t )).

For a colouring ψ : E(F) → [k] without a monochromatic copy of K (3)
t we define an

admissible pattern (a1, . . . , ak), where ai denotes the number of edges in the colour i

containing both vertices m− 1 and m. Moreover, we let P denote the set of all admissible

patterns. In particular, by the choice of � we have that P �= ∅.

Note that
∑

i∈[k] ai = � for every (a1, . . . , ak) ∈ P , and ac �∈ {0, �} for every c ∈ [k]. Indeed

if, say, there is a pattern (a1, . . . , ak) ∈ P with aj = 0 for some j ∈ [k], then we could take

a corresponding k-colouring of the edges of F� avoiding monochromatic copies of K (3)
t

with pattern (a1, . . . , ak), which we would then extend to a k-colouring of E(F�+1) without

a monochromatic copy of K (3)
t just by colouring the edge {�+ 1, m− 1, m} with colour

j. Indeed, this new edge cannot participate in a monochromatic copy of K (3)
t in this

colouring, as its colour is j, while all other edges containing both m− 1 and m have

colours different from j. But this contradicts the definition of �.
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Moreover, note that the following holds. If ϕ : [�] → [k] is a colouring of the first �

vertices of F such that (|ϕ−1(1)|, . . . , |ϕ−1(k)|) ∈ P , then there exists a colouring c : E(F) →
[k] avoiding monochromatic copies of K (3)

t such that c(i, m− 1, m) = ϕ(i) for every i ∈ [�].

Now, let H be an �-uniform hypergraph. We say that a colouring ψ : V (H) → [k]

is admissible if, for every edge e ∈ E(H), we have (c1, . . . , ck) ∈ P , where ci denotes the

number of vertices in e coloured i.

Now we proceed analogously to Claim 2 from [1]. We find an �-uniform hypergraph H∗

with girth(H∗) � 3 (this means that any two distinct edges e and f satisfy |e ∩ f| � 1) and

two vertices x, y ∈ V (H∗) with degH∗ (x, y) = 0 such that there exist admissible colourings

for H∗, and in every such colouring the colour of x differs from the colour of y.

For completeness we provide this elegant argument here. We start with an �-uniform

hypergraph H with girth(H) � 3 and chromatic number χ(H) � k + 1. It was shown by

Erdős and Hajnal [8] that such hypergraphs exist.

Since every k-colouring of the vertices of H yields a monochromatic edge, while

(�, 0, . . . , 0), . . . , (0, . . . , 0, �) /∈ P , H does not have admissible colourings. Now, we can take

a subhypergraph H ′ of H which is minimal (with respect to the number of edges) for the

property of not having admissible k-colourings. For an arbitrary edge f = {x1, . . . , x�} ∈
H ′ and arbitrary vertices y1, . . . , y� �∈ V (H ′), we define a sequence of hypergraphs Hi

on V (H ′) ∪ {y1, . . . , yi} with Hi = H ′ − f + fi, where fi = {y1, . . . , yi, xi+1, . . . , x�}. By the

definition, H0 = H ′ does not have admissible colourings while H� does, so there is a

minimal index i ∈ [�] such that Hi−1 does not have admissible colourings but Hi does.

We now set H∗ = Hi and x := xi, y := yi. It is clear that girth(H∗) � 3, degH∗ (x, y) = 0

and that H∗ has admissible colourings. Moreover, for any such admissible k-colouring, x

and y need to have distinct colours, for otherwise, taking an admissible colouring of Hi

with x and y coloured the same and then identifying x with y would yield an admissible

colouring of Hi−1, a contradiction.

Finally, we define a 3-uniform hypergraph H as follows. First we introduce for each

e ∈ E(H∗) a set

Ve := e ∪ {m− 1, m} ∪ ({e} × {�+ 1, . . . , m− 2}),

and then we define a 3-uniform hypergraph Fe which is a copy of F = F� that contains

all vertices from e as follows:

Fe :=

(
Ve,

(
Ve

3

)
\ {{(e, i), m− 1, m} : i = �+ 1, . . . , m− 2}

)
.

The hypergraph H is then the union over all Fe: H := ∪e∈E(H∗)Fe. In other words, we

obtain H by placing Fe, a copy of F , for each edge e ∈ E(H∗) so that the vertices {1, . . . , �}
of F are identified with e. Further, we set eH = {m− 1, m, x} and fH = {m− 1, m, y}.

Before showing that H, eH and fH fulfil requirements (1) and (2), we establish the

following claim.

Claim 2.2. Any copy K of K (3)
t in H is contained in Fe for some e ∈ E(H∗).
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To prove the claim, we assume first that V (K) \ ({m− 1, m} ∪ V (H∗)) �= ∅ holds. Thus

K contains a vertex of the form (e, s) for some e ∈ E(H∗) and s ∈ [�]. The link of (e, s)

is a graph on m− 1 vertices whose vertex set is Ve \ {(e, s)}, by construction of H. This,

with H[Ve] = Fe, then implies that K ⊆ Fe.

From now on we may assume that V (K) ⊆ V (H∗) ∪ {m− 1, m}. First we assume that

K ∼= K
(3)
4 and m− 1, m ∈ V (K). Thus, the remaining two vertices, call them a and b,

must lie in some edge e ∈ E(H∗) (since {m, a, b} is an edge in H
[
V (H∗) ∪ {m− 1, m}

]
),

which implies K ⊆ Fe. Finally, we may assume that |V (K) ∩ V (H∗)| � 3, and setting

S := V (K) ∩ V (H∗) we have K[S] ∼= K (3)
s , s � 3. Since H

[
V (H∗)

]
consists of cliques K (3)

�

that intersect in at most one vertex as girth(H∗) � 3, this implies that S has to be contained

in some e ∈ E(H∗). Again this yields K ⊆ Fe, which completes the proof of the claim.

Continuing with the proof of Lemma 2.1, we first recall that we defined eH = {m−
1, m, x} and fH = {m− 1, m, y}. By construction of H and since degH∗(x, y) = 0, it is clear

that {x, y, m− 1} and {x, y, m} are non-edges in H. We now prove that this choice of H,

eH and fH fulfils requirements (1) and (2) of our lemma.

(1) By construction there exists an admissible colouring c : V (H∗) → [k]. Note that two

hypergraphs Fe and Ff for distinct e, f ∈ E(H∗) have in common both vertices m− 1 and

m and additionally at most one further vertex v (and if so also the edge {v, m− 1, m}),

by construction and since girth(H∗) � 3. Since H consists of copies of F that intersect

pairwise in at most one edge (containing both vertices m− 1 and m), we can find colourings

of these copies without monochromatic K (3)
t so that these colourings agree on common

edges {v, m− 1, m}. Indeed, for every edge e ∈ E(H∗) we have an admissible colour pattern

(d1, . . . , dk) ∈ P which depends on c. Thus, there exists a colouring ϕe : E(Fe) → [k] without

monochromatic K (3)
t so that ϕe({v, m− 1, m}) = c(v) for all v ∈ e.

We need to show that the union of ϕe over all e ∈ E(H∗) gives us a k-colouring ϕ of

E(H) without monochromatic copies of K (3)
t . By Claim 2.2, any copy of K (3)

t is contained

in Fe for some e ∈ E(H∗). Since E(Fe) does not contain any monochromatic K (3)
t under

ϕe, requirement (1) is verified.

(2) Now, let c : E(H) → [k] be a colouring on the edge set of H which avoids mono-

chromatic copies of K (3)
t . Define ϕ : V (H∗) → [k] with ϕ(v) := c({v, m− 1, m}). Then ϕ

is an admissible colouring of H∗ and thus, by the properties of H∗ we know that

c(eH) = ϕ(x) �= ϕ(y) = c(fH).

Now we prove a lemma that allows us to obtain a ‘rainbow star’.

Lemma 2.3. Let t � 4 and k � 2 be integers. Then there exist a 3-uniform hypergraph H,

a 2-element set S ⊆ V (H) and edges e1, . . . , ek ∈ E(H) with ei ∩ ej = S (for all i �= j ∈ [k]),

| ∪i∈[k] ei| = k + 2 and e(H[∪i∈[k]ei]) = k such that the following properties hold:

(1) H �−→ (K (3)
t )k ,

(2) for every k-colouring c of E(H) which avoids monochromatic copies of K (3)
t we have that

{c(ei) : i ∈ [k]} = [k], that is, the colours of the ei are all distinct.
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Proof. Take
(
k
2

)
vertex-disjoint copies (Hij)1�i<j�k of the hypergraph H′ as guaranteed

to us by Lemma 2.1, and let eij and fij be the corresponding edges of H′ that satisfy

property (2) of Lemma 2.1. We start with the hypergraph H on the vertex set [k + 2] and

with edge set {{i, k + 1, k + 2} : i ∈ [k]}, and we set S := {k + 1, k + 2}.

We construct the hypergraph H as follows. For each i < j ∈ [k] we identify the vertices

k + 1 and k + 2 (arbitrarily) with the two vertices from Cij := eij ∩ fij and the only vertex

from eij \ Cij is identified with i while the only vertex from fij \ Cij is identified with j.

Otherwise the hypergraphs Hij do not intersect each other in further vertices. We claim

that the properties from Lemma 2.3 are satisfied. Indeed, since Hij �−→ (K (3)
t )k and by

the symmetry of the colours, we can assume that there is a K
(3)
t -free colouring ϕij of

Hij such that ϕ(eij) = i and ϕ(fij) = j (and i < j). We obtain the colouring ϕ of H by

colouring the corresponding edges according to appropriate ϕij . This is possible since the

edge {i, k + 1, k + 2} is identified with eij and f�i for � < i < j, and these are coloured

with the colour i. The colouring ϕ is K (3)
t -free, since each copy of K (3)

t is contained in one

of the Hij . To see property (2), we use property (2) of Lemma 2.1, which asserts that in

any K (3)
t -free colouring of H the edges {i, k + 1, k + 2} and {j, k + 1, k + 2} are coloured

differently (with i < j).

The next lemma allows us to construct a BEL-gadget that colours two edges the same.

Lemma 2.4. Let t � 4 and k � 2 be integers. Then there exist a 3-uniform hypergraph H
and edges e and f with |e ∩ f| = 2 and e(H[e ∪ f]) = 2 such that the following properties

hold:

(1) H �−→ (K (3)
t )k ,

(2) for every k-colouring c of E(H) which avoids monochromatic copies of K (3)
t we have that

c(e) = c(f).

Proof. We take two vertex-disjoint copies of H1 and H2 as asserted by Lemma 2.3,

along with the corresponding edges e1,1, . . . , e1,k for H1 and e2,1, . . . , e2,k for H2 respectively.

Recall that there exist S1 and S2 such that e�,i ∩ e�,j = S� for all i < j ∈ [k] and � ∈ [2].

We obtain the hypergraph H by identifying the edge e1,i with e2,i for all 2 � i � k such

that the vertices from S1 are identified with those from S2.

We set e := e1,1 and f := e2,1 and claim that H fulfils the requirements. By the symmetry

of the colours, we may assume that e�,i may be coloured with the colour i for all i ∈ [k]

and � ∈ [2], and then we may extend the colouring by colouring the (otherwise disjoint)

copies H1 and H2 separately. Since any copy of K (3)
t is contained fully either in H1 or

in H2, we see H �−→ (K (3)
t )k . On the other hand, any K

(3)
t -free colouring ϕ of H is a

K
(3)
t -free colouring of H1 and H2, and from the properties from Lemma 2.3 we have that

the edges e�,1, . . . , e�,k are coloured differently for each � ∈ [2] and, by the construction,

ϕ(e1,i) = ϕ(e2,i) for all 2 � i � k. Thus, we also have ϕ(e1,1) = ϕ(e2,1).

We introduce the following definition of a path in hypergraphs. In an r-uniform path

(or path for short) with t edges e1, . . . , et the vertices of ∪i∈[t]ei are ordered linearly and
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the edges are consecutive segments with the property that ei ∩ ei+1 �= ∅ for all i ∈ [t− 1].

We will refer to the edges e1 and et as ends of such a path. In particular, in our notation

the path is a vertex-connected subhypergraph of a so-called tight path on the vertex set

∪i∈[t]ei (where in a tight path it is |ei ∩ ei+1| = r − 1).

Further, we say that two edges e and f have distance distH (e, f) := s in H if any

r-uniform path in H with ends e and f contains at least s vertices and there exists at least

one such path with exactly s vertices. We call a path from e to f with distH (e, f) vertices

a shortest path. If no such path exists, we set distH (e, f) := ∞.

Finally, we construct BEL-gadgets with monochromatic edges in every K
(3)
t -free col-

ouring that are ‘far’ from each other according to our notion of distance.

Lemma 2.5. Let s, t � 4 and k � 2 be integers. There exist a 3-uniform hypergraph H and

two edges e, f ∈ E(H) such that the following properties hold:

(1) H �−→ (K (3)
t )k ,

(2) e and f have distance at least s, and

(3) for every k-colouring ϕ on E(H) which avoids monochromatic copies of K (3)
t we have

that ϕ(e) = ϕ(f).

Proof. First we construct a hypergraph H which is not k-Ramsey for K (3)
t , but contains

two edges e and f at distance 5 that are coloured the same by any k-colouring of

E(H) without monochromatic K
(3)
t . We apply Lemma 2.4 twice and obtain 3-uniform

hypergraphs H1 with edges eH1
= {a, b, x1} and fH1

= {a, b, y1} and H2 with edges eH2
=

{c, d, x2} and fH2
= {c, d, y2} respectively. Furthermore, we may assume V (H1) ∩ V (H2) =

∅. We define a new hypergraph H by taking both H1 and H2 and identifying y1 with

d, b with c, and a with y2. Observe that in H any copy of K (3)
t is completely contained

within one of the Hi. This implies that H �→ (K (3)
t )k . Indeed, according to Lemma 2.1 we

can colour H1 and H2 without monochromatic K (3)
t . Moreover, by swapping the colours

appropriately if necessary, we may do so that the edges fH1
∈ E(H1) and fH2

∈ E(H2)

receive the same colour. This gives us a K (3)
t -free colouring of E(H).

Next we use property (2) of Lemma 2.4, which asserts that any K
(3)
t -free colouring

colours the edges {a, b, x1} and {a, b, y1} the same, and the colours of {c, d, x2} and

{c, d, y2} are the same as well. Since {a, b, y1} = {c, d, y2} in H, the edges f := {c, d, x2} and

e := {a, b, x1} are coloured the same through any K (3)
t -free colouring of H. We have thus

arrived at a hypergraph H that satisfies the following properties:

(a) there are two edges e and f at distance 5,

(b) H �−→ (K (3)
t )k ,

(c) for every k-colouring c on E(H) which avoids monochromatic copies of K (3)
t , we have

that c(e) = c(f).

Next we proceed iteratively. We take two isomorphic hypergraphs H1 and H2, along with

edges e1, f1 and e2, f2 respectively, which satisfy (b) and (c). Assuming that distH1
(e1, f1) =

d = distH2
(e2, f2) for some d � 5, we now aim to construct a hypergraph H ′, along with

edges e, f, such that (b) and (c) hold and distH ′ (e, f) � d+ 1. For the construction, we
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identify the edge f1 with e2 such that none of the vertices of e1 and f2 are identified, and

we set e = e1 and f = f2. In this way properties (b) and (c) are naturally preserved in H ′.

Thus, it remains to show that the distance between e1 and f2 is at least d+ 1 in H ′. Let

v1, . . . , v� be the vertices of a shortest path from e1 to f2 in H ′ in linear order, that is,

{v1, v2, v3} = e1 and {v�−2, v�−1, v�} = f2.

Let i � 4 be the smallest index such that vi �∈ V (H1). If i < d− 1, then we have vi−1 ∈ f1

and if {vi−3, vi−2, vi−1} �∈ E(H1) holds then we additionally have {vi−4, vi−3, vi−2} ∈ E(H1)

and vi−2 ∈ f1. In any case we would obtain a 3-path from e1 to f1 with at most d− 1

vertices, which consists of some edges of P contained in {v1, . . . , vi−1} and the edge f1, a

contradiction to distH1
(e1, f1) = d. Thus we may assume i � d− 1. If additionally d > 5,

then it follows that none of the vertices from f2 are among {v1, . . . , vi−1}, resulting in

distH ′ (e1, f2) � d+ 1. If d = 5, then since none of the vertices of e1 and f2 are identified,

distH ′ (e1, f2) � 6 > d.

Finally we are in position to build non-Ramsey hypergraphs which assert more structure

in any K (3)
t -free colouring.

Theorem 2.6. Let k � 2 and t � 4 be integers. Let H be a 3-uniform hypergraph with

H �−→ (K (3)
t )k and let c : E(H) → [k] be a k-colouring which avoids monochromatic copies

of K (3)
t . Then, there exists a 3-uniform hypergraph H with the following properties:

(1) H �−→ (K (3)
t )k ,

(2) H contains H as an induced subhypergraph, and

(3) for every colouring ϕ : E(H) → [k] without a monochromatic copy of K (3)
t , the colouring

of H under ϕ agrees with the colouring c, up to a permutation of the k colours.

(4) If there are two vertices a, b ∈ V (H) with degH (a, b) = 0, then degH(a, b) = 0 as well.

(5) If |V (H)| � 4 then for every vertex x ∈ V (H) \ V (H) there exists a vertex y ∈ V (H)

such that degH(x, y) = 0.

Proof. Let a hypergraph H and a K (3)
t -free colouring c be given according to the theorem.

We take a hypergraph H′ as asserted by Lemma 2.3, along with the edges e′
1, . . . , e

′
k , such

that V (H) ∩ V (H′) = ∅. Moreover, let H ′ be given according to Lemma 2.5, along with

edges e′ and f′ of distance at least 7. Then, for every edge g ∈ E(H), we take a copy Hg

of the hypergraph H ′ on a set of new vertices, along with edges eg and fg representing e′

and f′. We identify the edge g with eg , and if g is coloured i under the colouring c then

we identify fg with e′
i. We denote the obtained hypergraph by H.

We verify the desired properties one by one.

(1) It is easily seen that every copy F of K
(3)
t is contained either in H or in H′

or in some Hg with g ∈ E(H). Indeed, if such a copy contains a vertex x ∈ V (Hg) \
(eg ∪ fg) for some g ∈ E(H), then every other vertex v ∈ V (F) needs to share an edge

with x, which by construction needs to be part of Hg . Thus, V (F) ⊆ V (Hg) and

F ⊆ H[V (Hg)] = Hg . Otherwise, F contains no such vertices x, and therefore V (F) ⊆
V (H) ∪ V (H′). By construction of H we know that distHg (eg, fg) � 7 for all g ∈ E(H) and
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thus degH[V (H)∪V (H′)](u, v) = 0 for every u ∈ V (H) and v ∈ V (H′), which yields F ⊆ H or

F ⊆ H′.

Now we colour E(H) according to c. As V (H) ∩ V (H′) = ∅ we can easily extend c to a

K
(3)
t -free colouring of E(H) ∪ E(H′) such that e′

i is coloured i for each i ∈ [k]. Here we use

that by Lemma 2.3, the edges e′
1, . . . , e

′
k have different colours in any K (3)

t -free colouring.

Moreover, observe that for every g ∈ E(H) we then have that eg and fg receive the same

colour.

Next we can extend the above colouring to a K (3)
t -free colouring of E(H), by Lemma 2.5

and since the Hg have only already coloured edges from {e′
1, . . . , e

′
k} in common. Thus,

H �−→ (K (3)
t )k .

(2) H occurs as an induced subhypergraph in H since distHg (eg, fg) � 6, and thus eg ∩ fg =

∅ for all g ∈ E(H).

(3) Given any K
(3)
t -free colouring ϕ of H, it holds by Lemma 2.3 that e′

1, . . . , e
′
k are

coloured differently. Moreover, by Lemma 2.5, the edges fg and eg are coloured the same

(for each g ∈ e(H)) in such a way that the ith colour class of H under c obtains the colour

ϕ(e′
i) for each i ∈ [k].

(4) Suppose that degH (a, b) = 0 for some two distinct vertices a, b ∈ V (H). By construction,

any two of the auxiliary hypergraphs (i.e., H′, H , Hg) overlap only in one edge (if at all).

This way it follows that degH(a, b) = 0.

(5) Finally, take some x ∈ V (H) \ V (H). If x ∈ V (H′) \ (∪g∈E(H)V (Hg)), then degH(x, y) =

0 for all y ∈ V (H). If x ∈ V (Hg) for some g ∈ E(H), then again, by construction of H, we

have that x �∈ g ⊆ V (H) and therefore every y ∈ V (H) \ g satisfies degH(x, y) = 0.

3. Minimum degrees of Ramsey-minimal 3-uniform hypergraphs

Before we prove Theorem 1.1, we first show the existence of an appropriate BEL-gadget

which will be crucial for the upper bound (1.2) in Theorem 1.1. It is useful to think of a

monochromatic clique K (3)
t as a structure that consists of two monochromatic cliques on

the same vertex set: the graph Kt−1 and the 3-uniform hypergraph K (3)
t−1, where the edges

of Kt−1 ‘encode’ the link of the tth vertex. The following lemma will almost immediately

imply the upper bound in Theorem 1.1 in that it asserts the existence of a colour pattern

on some 3-uniform hypergraph H , where any colouring of the edges of the complete

graph on the same vertex set V (H) yields a monochromatic graph clique F = Kt−1, which

is ‘supported’ by the K (3)
t−1 of the same colour in the coloured H and on the vertex set

V (F).

Lemma 3.1. Let t � 4 and k � 2 be integers. There is a 3-uniform hypergraph H on n =

k10kt4 vertices, which can be written as an edge-disjoint union of k 3-uniform hypergraphs

H1, . . . , Hk with the following properties:

(a) for every i ∈ [k], Hi contains no copies of K (3)
t , and
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(b) for any colouring c of the edges of the complete graph Kn with k colours, there exists

a colour x ∈ [k] and k sets S1, . . . , Sk that induce copies of Kt−1 in colour x under the

colouring c such that H1[S1] ∼= · · · ∼= Hk[Sk] ∼= K
(3)
t−1.

Before we proceed, we state a simple quantitative version of Ramsey’s theorem.

Fact 3.2. Let n � rk(�). Then, in any k-colouring of E(Kn) there are at least

n�

k(rk(�))�

monochromatic copies of K� in the same colour.

Proof. Fix an arbitrary red–blue colouring ϕ of E(Kn). First observe that we find in

any subset of rk(�) vertices of Kn a monochromatic K�. We estimate pairs of subsets of

[n] of the form (R,L) with |R| = rk(�), |L| = � and L ⊆ R such that all edges from
(
L
2

)
are coloured the same. As a lower bound we obtain

(
n

rk(�)

)
, while the upper bound is the

number of monochromatic copies of K� under ϕ times the number of rk(�)-sets containing

a particular copy (which is
(

n−�
rk(�)−�

)
). This yields that there are at least(

n− �

rk(�) − �

)−1(
n

rk(�)

)
=

n · . . . · (n− �+ 1)

rk(�) · . . . · (rk(�) − �+ 1)
�

(
n

rk(�)

)�

monochromatic K�. At least 1/k proportion of them must be in the same colour. Hence

the claim follows.

The random 3-uniform hypergraph H (3)(n, p) is the probability space of all labelled

3-uniform hypergraphs on the vertex set [n] where each edge exists with probability p

independently of the other edges. The rough idea of the proof of Lemma 3.1 is to take k

random hypergraphs of appropriate density on the same vertex set and then show that

even after deleting common edges and edges that lie in copies of K (3)
t , we are left with k

edge-disjoint hypergraphs that satisfy condition (b). We now turn to the details.

Proof of Lemma 3.1. We choose with foresight

p := C · n
−6

(t−1)(t−2) , where C := k100k/t and n = k10kt4 . (3.1)

We use the simple upper bound rk(t) � kkt−2k+1 and we define f(t) := k−kt2 so that, with

Fact 3.2, there are at least f(t) · nt−1 monochromatic copies of Kt−1 in one of the colours

in any k-colouring of the edges of Kn.

We take k independent random 3-uniform hypergraphs H ′
1, . . . , H

′
k ∼ H (3)(n, p), i ∈ [k],

on the vertex set [n], and we observe first that

E(e(H ′
i ∩H ′

j)) =

(
n

3

)
p2, E(e(H ′

i )) =

(
n

3

)
p and

E(number of copies of K (3)
t in H ′

i ) =

(
n

t

)
p(

t
3)

for all i �= j ∈ [k].
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For i ∈ [k], we let E ′
i denote the (random) set of edges in H ′

i that belong either to

some copy of K (3)
t in H ′

i or to the edge set of some hypergraph H ′
j , j ∈ [k] \ {i}. We

set Hi := H ′
i \ E ′

i . Obviously, H1, . . . , Hk satisfy (a). To prove the lemma, it thus remains

to show that (b) is satisfied with positive probability. This will be immediate from the

following two claims, proved below.

Claim 3.3. With probability larger than 3/5, the following holds. Each H ′
i contains at most

0.2f(t)nt−1p(
t−1

3 ) copies of K (3)
t−1 that contain an edge from E ′

i .

Claim 3.4. The following holds with probability at least 2/3. For every colouring ψ :

E(Kn) → [k] there is a colour x such that for every i ∈ [k], there are at least 0.5f(t)nt−1p(
t−1

3 )

monochromatic copies F of Kt−1 in colour x with
(
V (F)

3

)
⊆ E(H ′

i ).

With positive probability the conclusions of Claims 3.3 and 3.4 hold. So fix H ′
1, . . . , H

′
k

that satisfy the conclusions of these claims. Recall that Hi = H ′
i \ E ′

i and we only need

to verify (b) as H1, . . . , Hk obviously satisfy (a). Let ψ : E(Kn) → [k] be an arbitrary

colouring. Claim 3.4 asserts that there is a colour x such that for every i ∈ [k], there

are at least 0.5f(t)nt−1p(
t−1

3 ) monochromatic copies F of Kt−1 in colour x and such that(
V (F)

3

)
⊆ E(H ′

i ). By Claim 3.3, for each i ∈ [k], at most 0.2f(t)nt−1p(
t−1

3 ) of these copies

satisfy
(
V (F)

3

)
�⊆ E(Hi), and thus condition (b) is satisfied.

3.1. Proofs of Claims 3.3 and 3.4

Proof of Claim 3.3. Fix an i ∈ [k]. We first consider the number X of copies of K (3)
t−1 in

H ′
i that contain an edge e which is part of some copy of K (3)

t in H ′
i . For a pair (T1, T2) of

subsets of [n] with |T1| = t− 1 and |T2| = t we define the indicator variable I(T1 ,T2) by

I(T1 ,T2) :=

{
1 if H ′

i [T1] ∼= K
(3)
t−1 and H ′

i [T2] ∼= K
(3)
t ,

0 else,

and observe that

X �
t−1∑
s=3

∑
(T1 ,T2):

|T1∩T2|=s

I(T1 ,T2). (3.2)

By linearity of expectation it follows that

E(X) �
t−1∑
s=3

nt−1 ·
(
t− 1

s

)
· nt−s · p(

t−1
3 )+(t3)−(s3) � 2tn2t−1p(

t−1
3 )+(t3)

t−1∑
s=3

n−sp−(s3). (3.3)

Each term above is dominated by the sum of its first and last summand. Indeed, let

g(s) := n−sp−(s3); then for 3 � s � t− 2 we have

g(3)

g(s)
= ns−3 · p(

s
3)−1 =

[
np

s2+2
6

]s−3

�
[
np

s(s+1)
6

]s−3

�
[
np

(t−1)(t−2)
6

]s−3

� 1.

Thus, we obtain

E(X) � 2tn2t−1p(
t−1

3 )+(t3) · t · (g(3) + g(t− 1)).
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And we further upper-bound E(X) with (3.1) by

E(X) � t2tnt−1p(
t−1

3 )(ntp(t3)n−3p−1 + ntp(
t
3)n−t+1p−(t−1

3 )) (3.4)

(3.1)
= t2tnt−1p(

t−1
3 )(C(t3)n−3p−1 + n−2C(t−1

2 ))
(3.1)

� t2tnt−1p(
t−1

3 )(k50kt2/3 + k50kt
)
n−2

(3.1)

� 2t+log2 t+1k50kt2/3k−20kt4nt−1p(
t−1

3 ) � 1

50k
f(t)nt−1p(

t−1
3 ).

So, by Markov’s inequality, with probability at least 1 − 1
5k

we have

X � 0.1f(t)nt−1p(
t−1

3 ).

Next, consider the number Y of copies of K (3)
t−1 in H ′

i that contain an edge e from the

intersection E(H ′
i ) ∩ E(H ′

j) for a fixed j �= i. For a subset S ∈
(

[n]
t−1

)
and an edge e ∈

(
S
3

)
,

let

I(S,e) :=

{
1 if H ′

i [S] ∼= K
(3)
t−1 and e ∈ E(H ′

j),

0 else,

so that Y �
∑

(S,e) I(S,e). Then

E(Y ) � nt−1

(
t− 1

3

)
· p(

t−1
3 )+1 (3.1)

= nt−1p(
t−1

3 )
(
t− 1

3

)
k100k/tk− 60kt4

(t−1)(t−2)

� nt−1p(
t−1

3 )t3k25kk−60kt2 � 1

50k3
f(t)nt−1p(

t−1
3 ).

By Markov’s inequality, with probability at least 1 − 1
5k2 we then have

Y � 1

10k
f(t)nt−1p(

t−1
3 ).

In particular, with probability at least 3/5 it holds for all i ∈ [k] that H ′
i contains at

most 0.2 · f(t) · nt−1p(
t−1

3 ) copies of K (3)
t−1 that contain an edge from E ′

i . Therefore the claim

follows.

Proof of Claim 3.4. Fix an i ∈ [k]. Let ψ : E(Kn) → [k] be an arbitrary colouring. Then

there is a colour x such that there are at least f(t)nt−1 monochromatic copies of Kt−1

under colouring ψ which all have the same colour x (by Fact 3.2). We fix a family

F = {F1, . . . , Fm} of exactly m = f(t)nt−1 such copies (say lexicographically smallest ones).

Now, let XF ,i denote the number of such Fj ∈ F with
(
V (Fj )

3

)
⊆ E(H ′

i ). For every Fj ∈ F
let

XFj,i =

{
1 if

(
V (Fj )

3

)
⊆ E(H ′

i ),

0 else,

and observe that XF ,i =
∑

F∈F XF,i. We define

λ := E(XF ,i) = f(t)nt−1 · p(
t−1

3 ).
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Observe that by exploiting the choice of p and n in (3.1) we obtain

λ = k−kt2nt−1C(t−1
3 )n−t+3 = k−kt2k50k(t−1)(t−2)(t−3)/(3t)n2. (3.5)

Let

Δi :=
∑

F,F ′∈F
(V (F)

3 )∩(V (F′)
3 ) �=∅

E(XF,iXF ′ ,i).

Next we estimate Δi as follows (since each XF,i counts a copy of the complete 3-uniform

hypergraph on the vertex set V (F), we can classify pairs of these copies according to the

number s of common vertices):

Δi � |F |
t−1∑
s=3

(
t− 1

s

)
nt−1−sp2(t−1

3 )−(s3) � f(t) · n2t−2p2(t−1
3 )2t

t−1∑
s=3

n−sp−(s3),

and thus exactly as in the previous claim, Claim 3.3, we estimate the sum by

t
(
n−3p−1 + n−t+1p−(t−1

3 )),
which leads to the upper bound

Δi � t2tλ
(
nt−1p(

t−1
3 )n−3p−1 + nt−1p(

t−1
3 )n−t+1p−(t−1

3 )) (3.6)

= t2tλ
(
C(t−1

3 )(pn)−1 + 1
) (3.1)

= 2t+log2 tλ
(
k

100k
t

[
(t−1

3 )−1
]
k−10kt4+ 60kt4

(t−1)(t−2) + 1
)

� 22tλ.

Now with Janson’s inequality (see, e.g., Theorem 2.14 in [13]) we obtain

P(XF ,i � 0.5λ) � exp(−λ2/(8Δi))
(3.6)

� exp(−2−2t−3λ)

(3.5)

� exp(−2−2t−3k−kt2+50k(t−1)(t−2)(t−3)/(3t)n2)

� exp(−2−2t−3k−kt2+50kt2/32n2) � exp(−k−2t−3+9t2/8n2)

� exp(−k7n2).

This tells us that for the colour x with probability at least 1 − k exp(−k7n2) all graphs H ′
i ,

i ∈ [k], contain at least

0.5 · f(t) · nt−1p(
t−1

3 )

copies F of Kt−1 in colour x and with(
V (F)

3

)
⊆ E(H ′

i ).

Since there are k(
n
2) different colourings of E(Kn), we may apply the union bound to see

that the probability that there is a colouring ψ : E(Kn) → {red, blue} not satisfying the

claim is at most k(
n
2) · k exp(−k7n2) < 1/3.

3.2. Proof of Theorem 1.1

A lower bound on sk,1(K (3)
t ). The proof of the lower bound is easy. In fact, it follows

from the bound on the Ramsey number rk(Kt) � 2
1
4 kt(1−o(1)), and is as follows. Take a
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k-Ramsey-minimal hypergraph H for K (3)
t such that δ(H) = sk,1(K (3)

t ) and let v ∈ V (H)

be a vertex of minimum degree. By minimality of H, we have H \ {v} �−→ (K (3)
t )k and fix

an edge colouring ϕ that certifies this. Since H −→ (K (3)
t )k it follows that the link graph

linkH(v) is Ramsey: linkH(v) −→ (Kt−1)k . Therefore,

sk,1(K (3)
t ) = deg(v) � r̂k(Kt−1) =

(
rk(Kt−1)

2

)
� 2

1
2 kt(1−o(1)),

where r̂k(K�) is the size-Ramsey number for K�, and it was shown by Erdős, Faudree,

Rousseau and Schelp [7] that r̂k(K�) =
(
rk(K�)

2

)
.

An upper bound on sk,1(K (3)
t ). LetH be the 3-uniform hypergraph as asserted by Lemma 3.1

along with the hypergraphs H1, . . . , Hk that satisfy conditions (a) and (b). We fix the

following K (3)
t -free k-colouring c of E(H): we colour all edges from Hi with colour i ∈ [k].

Further, let H′ be the hypergraph guaranteed by Theorem 2.6 for given H and c. We

define the hypergraph H by adding to H′ a new vertex v whose link is

linkH(v) :=

(
V (H)

2

)
.

So degH(v) =
(
n
2

)
< k20kt4 as asserted by Lemma 3.1. In the following we argue that H′

�−→
(K (3)

t )k but H −→ (K (3)
t )k . It then follows immediately that every Ramsey subhypergraph

of H (in particular Ramsey-minimal subhypergraph of H) for K (3)
t needs to contain the

vertex v, whose degree is less than k20kt4 . Thus, once these two properties are proved, the

upper bound follows.

In fact, H′
�−→ (K (3)

t )k is asserted by Theorem 2.6. So, we only need to focus on showing

that H −→ (K (3)
t )k . For contradiction, suppose that there is a colouring ϕ : E(H) → [k]

without monochromatic copies of K (3)
t . We then know by property (3) of Theorem 2.6 that

E(H1), . . . , E(Hk) are all coloured monochromatically, but in different colours. Without

loss of generality we may assume that, for each i ∈ [k], Hi is coloured with the colour i.

Now, we define a colouring

ψ :

(
V (H)

2

)
→ [k]

with ψ({u1, u2}) = ϕ({u1, u2, v}). Then, according to Lemma 3.1 there is a colour x and the

sets

S1, . . . , Sk ∈
(
V (H)

t− 1

)

such that
(
S1

2

)
, . . . ,

(
Sk
k

)
are monochromatic under ψ in colour x, while for every i ∈ [k] we

have that H[Si] ∼= K
(3)
t−1 is coloured i. But this implies immediately that we have found a

monochromatic clique H[Sx ∪ {v}] ∼= K
(3)
t in colour x, a contradiction.

4. Minimum codegrees of Ramsey-minimal 3-uniform hypergraphs

In this section we prove Theorem 1.2 by showing that s2,2(K (3)
t ) = 0 and that s′

2,2(K (3)
t ) =

(t− 2)2. Our proof strategy is similar to that of [1, 10]: for the lower bound we provide
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an ad hoc argument, while for the upper bound we employ BEL-gadgets, Theorem 2.6,

combined with a natural construction that we ‘plant’ via a BEL-gadget (which is an

almost Ramsey hypergraph).

Proof of Theorem 1.2

Lower bound argument for s′
2,2. We first prove that s′

2,2(K (3)
t ) � (t− 2)2. Take a minimal 2-

Ramsey hypergraph H for K (3)
t . Fix any two vertices u and v ∈ V (H) with degH (u, v) > 0.

We aim to show that degH (u, v) � (t− 2)2. So, assume the opposite, that is, degH (u, v) <

(t− 2)2.

Let H ′ be the subhypergraph obtained from H by deleting all edges containing both

vertices u and v. Since H is Ramsey-minimal, H ′
�−→ (K (3)

t )2. Thus, there is a colouring c

with red and blue of E(H ′) which does not create a monochromatic copy of K (3)
t . Define

N(u, v) := {w ∈ V (H) : {u, v, w} ∈ E(H)},

and thus degH (u, v) = |N(u, v)|. Take a longest sequence B1, . . . , Bk of vertex disjoint sets

of size t− 2 in N(u, v), such that both Bi ∪ {u} and Bi ∪ {v} span only blue edges under

the colouring c in H . By assumption on the codegree degH (u, v), we know that k < t− 2.

Next we can extend the colouring c as follows. For each edge e = {u, v, w} ∈ E(H)

with w ∈
⋃
Bi we set c(e) = red, while for all other edges e = {u, v, w} ∈ E(H) we set

c(e) = blue. We claim that under this colouring there is no monochromatic copy of K (3)
t in

H . Indeed, if there were a monochromatic subgraph F isomorphic to K (3)
t , then necessarily

u, v ∈ V (F) (since E(H ′) were coloured without monochromatic K (3)
t ). If F is red, then by

construction F can have at most one vertex from each of the sets Bi and no vertex from

N(u, v) \
⋃
Bi, so |V (F)| < t, a contradiction. If F is blue, then it cannot contain vertices

from
⋃
Bi, and therefore

V (F) ⊆ (N(u, v) \
⋃
Bi) ∪ {u, v}.

But then we could extend the sequence of the Bi by the set V (F) \ {u, v}, in contradiction

to its maximality. Therefore, under the assumption degH (u, v) < (t− 2)2 we conclude that

H �→ (K (3)
t )2, a contradiction. Thus, we need to have degH (u, v) � (t− 2)2 for every u, v ∈ V

with degH (u, v) > 0. Therefore, s′
2,2(K (3)

t ) � (t− 2)2.

Upper bound argument for s′
2,2. First we provide a hypergraph H with a prescribed

colouring of E(H) without a monochromatic K
(3)
t . We set V (H) := [(t− 2)2] ∪ {a, b}

and we further partition the vertices of [(t− 2)2] into (t− 2) equal-sized sets V1, . . . , Vt−2.

Next we choose the edges for H as follows:

E(H) :=

t−2⋃
i=1

(
Vi

3

)
∪

{
e ∪ {w} : e ∈

(
Vi

2

)
for some i ∈ [t− 2], w ∈ {a, b}

}
(4.1)

∪
{
f : f ∈

(
[(t− 2)2]

3

)
, |f ∩ Vi| � 1 ∀i ∈ [t− 2]

}

∪
{
e ∪ {w} : e ∈

(
[(t− 2)2]

2

)
, |e ∩ Vi| � 1 ∀i ∈ [t− 2], w ∈ {a, b}

}
.
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Thus, H is obtained from the clique K (3)

(t−2)2+2
on the vertex set

⋃
Vi ∪ {a, b}, where we

delete all edges that contain both a and b and moreover we delete all edges that cross

exactly two different Vi and contain neither a nor b. Next we provide a red–blue colouring

c of the edges of H as follows: the edges contained in Vi ∪ {a} and in Vi ∪ {b} for

i ∈ [t− 2] are coloured blue, while the other edges of H are coloured red – thus the

edges in the first line of (4.1) are coloured blue, while the edges defined in the second

and third line of (4.1) are coloured red. It is immediate that such a colouring does not

yield a monochromatic copy of K (3)
t . Indeed, a blue copy of K (3)

s cannot use vertices from

different sets Vi and, since degH (a, b) = 0, it also cannot contain both vertices a, b, which

gives s � t− 1. Similarly, a red copy of K (3)
s can use at most one vertex from each Vi and,

as degH (a, b) = 0, it also cannot contain both vertices a, b, which again gives s � t− 1.

Applying Theorem 2.6 to the coloured hypergraph H for this colouring c, we obtain

a 3-uniform hypergraph H which contains H as an induced hypergraph, which is not

2-Ramsey for K (3)
t and such that any red–blue K (3)

t -free colouring ϕ of E(H) agrees on

E(H) with the colouring c up to permutation of the two colours. Also, Theorem 2.6

asserts that degH(a, b) = 0. Next we define H′ by adding to H all (t− 2)2 edges {a, b, u}
where u ∈ [(t− 2)2].

Let us see why H′ −→ (K (3)
t )2. Fix any colouring ϕ of E(H′) and assume that no copy of

K
(3)
t is monochromatic in H′ under ϕ. Since H ⊆ H′, it follows that the colour pattern c as

described above (up to permutation) is enforced in H . Assume without loss of generality

that E(H) is coloured according to c. Then if there is a set Vi such that all edges {v, a, b}
are coloured blue for all v ∈ Vi this would yield a blue copy of K (3)

t . So, assume that for

every Vi there is at least one edge {vi, a, b} which is coloured red for some vi ∈ Vi. Then

{a, b, v1, . . . , vt−2} forms a red clique K (3)
t . Thus, in any case, we find a monochromatic copy

of K (3)
t , that is, H −→ (K (3)

t )2. Moreover, since H is not 2-Ramsey for K (3)
t , any minimal

2-Ramsey subhypergraph of H′ must contain edges that contain both a and b. This shows

s′
2,2(K (3)

t ) � (t− 2)2.

In fact, note that by the previous discussion of the lower bound on s′2,2, any such

minimal 2-Ramsey subhypergraph of H′ must contain all the (t− 2)2 edges that contain

both a and b. This will be important in the following proof.

Showing s2,2(K (3)
t ) = 0. This looks surprising at first sight since taking K (3)

n with n =

r2(K (3)
t ) and then deleting all edges that contain two distinguished vertices gives a non-

Ramsey hypergraph (which suggests s2,2(K (3)
t ) > 0). However, this is not the case, and it

will follow from the above construction of the hypergraph H′.

As argued above, any Ramsey-minimal subhypergraph of H′ for K (3)
t has to contain

all (t− 2)2 edges that contain a and b. Thus, any such minimal hypergraph H′′ contains

all vertices of H . Next we argue that H′′[V (H)] �−→ (K (3)
t )2. Indeed, by construction of

H′, we observe that H′[V (H)] ⊇ H′′[V (H)] contains exactly (t− 2) + (t− 2)t−2 copies of

K
(3)
t , namely exactly (t− 2) ones that are induced on Vi ∪ {a, b} for some i ∈ [t− 2], and

(t− 2)t−2 ones that contain one vertex from each of the Vi and additionally a and b. There

are no further copies of K (3)
t since H[

⋃
Vi] contains only copies of K (3)

t−2 which either cross

all the Vi or are equal to some H[Vi]. It is now easy to see that H′[V (H)] �−→ (K (3)
t )2, as
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follows. We can colour the edges of H′′[V (H)] uniformly at random with colours red and

blue. Then, the expected number of monochromatic copies of K (3)
t is

[(t− 2) + (t− 2)t−2] · 21−(t3) < 1,

as t � 4, that is, there exists a 2-colouring which avoids monochromatic copies of K (3)
t .

Thus, H′′ has to contain at least one further vertex x �∈ V (H). Then, since |V (H)| =

(t− 2)2 + 2 � 6, it follows by property (5) of Theorem 2.6 that there exists a vertex

y ∈ V (H) such that 0 = degH′ (x, y) � degH′′ (x, y). Therefore, s2,2(K (3)
t ) = 0.

5. Concluding remarks

In this paper we studied the smallest minimum degree and codegree of Ramsey-minimal

3-uniform hypergraphs for complete hypergraphs K (3)
t , t � 4. In particular we showed that

the smallest minimum degree s2,1(K (3)
t ) of minimal 2-Ramsey 3-uniform hypergraph lies

between 2t and 240t4 . It would be interesting to determine the right order of the exponent.

We leave the study of Ramsey-minimal r-uniform hypergraphs for r � 4 to future work

and confine ourselves in the following discussion to some speculations about possible

values of sk,�(K
(r)
t ) and of s′

k,�(K
(r)
t ).

5.1. BEL-gadgets for uniformities r � 4

It does not seem that the BEL-gadgets for 3-uniform hypergraphs are easily generalizable

to higher uniformities. Very roughly speaking, while proving a key lemma, Lemma 2.1,

about the existence of hypergraphs all of whose K (3)
t -free colourings colour two particular

edges differently, we heavily relied on the fact that the hypergraph H , which we obtain

from K (3)
m where m = rk(K

(3)
t ) and where we remove all the edges of the form {i, m− 1, m},

is not k-Ramsey for K (3)
t , that is, H �−→ (K (3)

t )k . This allowed us to add some edges back

and concentrate our attention on the colour of the edges {i, m− 1, m}, bringing us back to

the similar case for graphs. If we would like to carry out a similar argument, then it would

be helpful to know whether the hypergraph H that we obtain from K (r)
m with m = rk(K

(r)
t )

by deleting all edges that contain fixed (r − 1) vertices, say, m− r + 2, m− r + 3, . . . , m, is

k-Ramsey. However, this seems hopeless at the moment, as we do not even know if the

hypergraph K (r)
m is k-Ramsey-minimal for K (r)

t , where m = rk(K
(r)
t ). However, we believe

that gadgets similar to those in Lemma 2.1 should be possible to obtain by other means.

5.2. Possible values of sk,�(K
(r)
t ) and of s′

k,�(K
(r)
t )

As we already mentioned, it appears surprising that s2,2(K (3)
t ) = 0, that is, there exists a

2-Ramsey-minimal hypergraph H for K (3)
t with two vertices whose codegree is zero. We

believe that the same should be the case for more colours and higher uniformity.

Problem 5.1. Let r � 3, t � r + 1 and 2 � � � r − 1. Show that sk,�(K
(r)
t ) = 0.

Note that the case r = 3, t � 4 and � = 2 is our Theorem 1.2. Also, given that in the

graph case s2,1(Kt) = (t− 1)2 and the smallest non-zero codegree s′
2,2(K (3)

t ) = (t− 2)2, we

believe that it should be generalizable to higher uniformities as follows.
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Problem 5.2. Let r � 4, t � r + 1. Show that s′2,r−1(K (r)
t ) = (t+ 1 − r)2.

Note that this clearly generalizes the cases s2,1(Kt) = (t− 1)2 and s′
2,2(K (3)

t ) = (t− 2)2.

Moreover, if a BEL-gadget similar to that in Theorem 2.6 exists, then Problem 5.2 follows

by a similar construction and the argument given in the proof of Theorem 1.2.

Finally, we think that it is interesting to generalize the vertex degree case to higher

uniformities. We believe that the following should hold.

Problem 5.3. Let r � 4. Show that sk,1(K (r)
t ) = rk

(
K

(r−1)
t−1

)c(k,t)
, where c(k, t) is some polyno-

mial in k and t.

Theorem 1.1 shows that c(k, t) is a polynomial in k and t. Further, by a similar lower

bound argument, we have that sk,1(K (r)
t ) � r̂k(K

(r−1)
t−1 ), the corresponding size-Ramsey

number, which can be easily shown to be at least
(
rk(K

(r−1)
t−1 )
2

)
. For a slightly better lower

bound in the case of 3-uniform hypergraphs we refer to a recent paper by Dudek, La

Fleur, Mubayi and Rödl [6].
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[1] Burr, S. A., Erdős, P. and Lovász, L. (1976) On graphs of Ramsey type. Ars Combin. 1 167–190.
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