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Abstract

A Heron triangle is a triangle that has three rational sides (a, b, c) and a rational area, whereas a perfect
triangle is a Heron triangle that has three rational medians (k, l,m). Finding a perfect triangle was stated
as an open problem by Richard Guy [Unsolved Problems in Number Theory (Springer, New York,
1981)]. Heron triangles with two rational medians are parametrized by the eight curves C1, . . . ,C8
mentioned in Buchholz and Rathbun [‘An infinite set of heron triangles with two rational medians’,
Amer. Math. Monthly 104(2) (1997), 106–115; ‘Heron triangles and elliptic curves’, Bull. Aust. Math.
Soc. 58 (1998), 411–421] and Bácskái et al. [Symmetries of triangles with two rational medians,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.65.6533, 2003]. In this paper, we reveal results
on the curve C4 which has the property of satisfying conditions such that six of seven parameters given
by three sides, two medians and area are rational. Our aim is to perform an extensive search to prove the
nonexistence of a perfect triangle arising from this curve.

2010 Mathematics subject classification: primary 11Y05; secondary 11Y35.
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1. Introduction

Various authors have examined the problem of finding triangles with as many of their
parameters as possible being simultaneously rational. A perfect triangle, as defined by
Guy [13] in Problem D21, is a Heron triangle which also has three rational medians.
Numerous research has been done in the past [9, 10, 14, 16] to find such a triangle;
unfortunately, to date no one has found such a triangle, nor has anyone proved its
nonexistence. However, on the bright side, there are partial results which show that
triangles do exist in which five or six of the seven parameters are rational.

A triangle with sides denoted by (a, b, c) has medians (k, l,m) given by

k = 1
2

√
2b2 + 2c2 − a2,

l = 1
2

√
2c2 + 2a2 − b2,

m = 1
2

√
2a2 + 2b2 − c2.
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[2] Perfect triangles on the curve C4 69

Figure 1. Triangles with sides (2a, 2b, 2c) and medians (k, l,m).

All rational-sided triangles with two rational medians [2] are completely parametrized
by equations given by

a = (−2φθ2 − φ2θ) + (2θφ − φ2) + θ + 1,
b = (φθ2 + 2φ2θ) + (2θφ − θ2) − φ + 1,
c = (φθ2 − φ2θ) + (θ2 + 2θφ + φ2) + θ − φ,

for rational φ and θ such that θ > 0, φ < 1, φ + 2θ > 1. Also, Heron’s formula for
the area, 4, of the triangle (a, b, c) is given by 4 =

√
s(s − a)(s − b)(s − c) where

s = (a + b + c)/2 known as the semiperimeter, as illustrated in Figure 1.
Many interesting questions can be raised about these triangles, and there has been

massive research on several properties of the Heron triangle, see for example [10, 16].
One interesting question is, of course, the existence of a perfect triangle arising from
any known Heron triangle. The search for a perfect triangle requires one to find
rational solutions to the equations defining the area and the medians in terms of the
sides. There are partial results which show that triangles do exist in which six of the
seven parameters are rational. In fact, we know of infinite families of triangles with
three rational sides and one rational median [8]; three integral sides and three integral
medians [11]; three rational sides, two rational medians and rational area [3]; and
rational triangles with three rational sides and rational medians, but not the area [5].

The authors in [4] applied Schubert parameters to generate the values of θ and φ
and plotted these parameters, considered as points corresponding to distinct Heron
triangles with two rational medians, in the θφ-plane. Rather than being randomly
distributed in the region, the points seem to lie on five distinct curves. As a result, it was
easy to isolate the rational coordinates of enough points on each curve to determine
the corresponding equations for C1,C2,C3,C4 and C5. Following on from that, in an
attempt to find all Heron triangles with the property of having three rational medians,
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70 S. Ismail [3]

Bácskái et al. [1] have uncovered additional three curves, C6,C7,C8, apart from the
one found in [4].

The authors show that these families correspond to eight elliptic curves, all
isomorphic to each other. The subsequent exploration of these curves revealed that
constraining the remaining median to be rational required one to find rational points
on genus-seven curves, which by Faltings’s theorem [12] leads to a finite number of
possible solutions, which were left unresolved. Then, in [6], the authors disposed of
the unresolved finite list of solutions in the sense that they found them all and verified
that none of them correspond to a nontrivial Heron triangle with three rational medians,
in other words, a perfect triangle.

In this paper we prove that there does not exist any perfect triangle arising from the
curve C4. The core theorem of this paper is as follows.

Theorem 1.1. There does not exist any perfect triangle arising from the curve C4:
θφ(θ − φ) + θφ + 2(θ − φ) − 1, except possibly for n ≡ 3024 mod 6052.

Here, the word ‘except’ indicates that there may exist one or more further points
on the curve that is of enormous height which could possibly form a perfect triangle.
We establish a new inductive method for applying the Mordell–Weil sieve [7, 15] to
provably find all points on a (complicated) curve of high genus, without necessarily
having to compute its Jacobian or a basis for its Mordell–Weil group. We illustrate with
a difficult curve arising from the question in [13] of the existence of perfect triangles.
We can show that any perfect triangle arising in this instance would have to have side
lengths at least 101010

. The reason why we know this is that we can prove n must be,
say, {−4,−3,−2,−1, 0, 3} mod 106 by explicit calculations and so a counter-example
would have n at least 106, which means the coordinates of (x, y) on the curve would be
approximately exp(1012) in size.

2. A condition for the existence of a perfect triangle

It was shown in [4] that every rational point on C4 such that 0 < θ < 1, 0 < φ < 1 and
2θ + φ > 1 corresponds to a triangle with rational sides, rational area and two rational
medians. The sides of a triangle corresponding to a point (θ, φ) ∈ C4 immediately
imply that the sides and two medians are rational, thus it is only required to check
the area 4 as to whether or not (a, b, c) form a proper triangle [2]. These inequalities
exclude regions in which proper triangles cannot form.

The following theorem is one of our main results in this paper.

Theorem 2.1. Finding a perfect triangle corresponding to an appropriate rational
point on the curve C4 is equivalent to finding an integer n such that Z(nP) = R(x) −
S (x)y where n ∈ Z, (xn, yn) = nP, P = (−21, 324) is an infinite-order generator of the
curve

E : y2 = (x − 15)(x2 + 15x − 3042)

and R(x), S (x) ∈ Z[x] are polynomials of degree 16 and degree 14 defined below.
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[4] Perfect triangles on the curve C4 71

Proof. Since the curve C4 satisfies conditions such that six of seven parameters are
rational (i.e. three rational sides (a, b, c), two rational medians, k and l, and area), we
only need to check if the third median, m, of the equation

4m2 = 4 + 9φ2θ4 − 4φ + 18θφ + 4θ + 6φθ2 − 6φ2θ − 6φθ4 − 22θφ3

+ 6φ2θ2 + 6φ4θ + 9φ4θ2 − 22φθ3 + 18φ3θ2 − 18φ2θ3

+ 18φ3θ3 − 3φ2 − 3θ2 + φ4 + θ4 − 2θ3 + 2φ3

is rational. Since we are searching for rational points on C4, the corresponding
discriminant of C4 with respect to θ, say C, is a square. Therefore all the rational
points which force this correspond to rational points on the elliptic curve

C : v2 = φ4 − 2φ3 + 5φ2 + 8φ + 4.

We want to find rational values φ, θ and m that simultaneously satisfy the curve C4
and the surface 4m2 = f4(φ, θ). Taking the resultant of C4 and f4(φ, θ) with respect to
θ gives

D4 : 16φ4m4 − 8A(φ)m2 + B(φ) = 0. (2.1)

The curve D4 is a curve of genus 7. Thus, by Faltings’s theorem [12], D4 consists of
finitely many rational points. It contains the following 14 rational points:

(φ,m) = {∞, (−1, 0), (−1,±2), (−1/2,±9/8), (0,±9/8), (1,±2), (1,±18), (3,±18)}.

However, the factorization of D4 using the curve C to replace the square root of a
quartic in φ with v gives

φ
(
(16φ4m4 − 8Am2 + B) − 16φ4

(
m2 −

A + 2Fv
4φ4

)(
m2 −

A − 2Fv
4φ4

))
= 0.

Since φ , 0, D4 = 0 and m , 0 (otherwise it will form a degenerate triangle), one of
the two factors on the left-hand side has to be zero. Thus, we have

[4φ4m2 − (A + 2Fv)][4φ4m2 − (A − 2Fv)] = 0,

which implies that either A + 2Fv or A − 2Fv is a nonzero square. Hence if φ , 0,
equation (2.1) has a rational root m if and only if one of A ± 2Fv is a nonzero square.
Also, note that if (φ, v) is a point on C so is (φ,−v), thus without loss of generality the
third median is rational if and only if A + 2Fv is a square.

With a change of variables from C, we obtain the elliptic curve

E : y2 = x3 − 3267x + 45630
= (x − 15)(x2 + 15x − 3042)

via the maps

C → E : x = 3
5φ2 + 24φ + 12v + 24

φ2 , y = 108
−φ3 + 5φ2 + 2φv + 12φ + 4v + 8

φ3 ,

E → C : φ = 12
6 − x

6x − y − 198
, v = 2

x3 − 18x2 + 3267x − 324y − 71658
x3 + 36x2 − 12xy − 5643x + 396y + 84834

.
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72 S. Ismail [5]

The discriminant of E is 214 · 314 · 17, which is zero upon reduction by the primes
2, 3, 17. These are called the primes of bad reduction on E. Furthermore, E(Q) � Z ⊕
Z/2Z with 2-torsion point T = (15, 0) and generator P = (−21, 324). The Cremona
label of E is ‘102a1’. Also, E has points of order 2, T ′ = [ 1

2 (−15 + 27β), 0] and
T ′′ = [ 1

2 (−15 − 27β), 0], where β2 = 17. All the rational points on E can be written
as nP + εT with ε ∈ {0, 1}. Rewriting A + 2Fv in terms of x, y requires that

64

(−12xy + 396y + x3 + 36x2 − 5643x + 84834)2(6x − y − 198)8 (R(x) − S (x) · y)

(2.2)
is a square where

R(x) = 81x16 + 40662x15 + 14353281x14 − 460241028x13 − 644722959186x12

+ 39379675354740x11 + 5212980804862026x10 − 415546630058854656x9

− 8202010485984353739x8 + 1396767997483732402758x7

− 27550698906220673513787x6 − 1044392234943529703379852x5

+ 60770398462922893831446348x4 − 1284453663719469166478575296x3

+ 14183844641879715988450074288x2

− 81800517874945025246941522368x
+ 196162341839727571433321441856

and

S (x) = 3240x14 + 456840x13 + 188268624x12 − 45834271200x11

− 2435651997264x10 + 682353767281968x9 − 7053953405575680x8

− 2553415737499629216x7 + 98906717445152189544x6

+ 1348117411901578667784x5 − 162666175355778441465360x4

+ 4276857451171442758058304x3 − 54456600108308451946891776x2

+ 350065581968511893813480064x − 918312303919436410092339456.

The numerator and denominator of the leading factor of (2.2) are both squares, hence
we are only left to check if R(x) − S (x) · y is a square. For brevity, we denote
Z(nP) = R(xn) − S (xn) · yn. This completes the proof of Theorem 2.1. �

We now have the following corollary.

Corollary 2.2. Let

X = {n ∈ N | Z(nP) = R(xn) − S (xn) · yn = �},

Y = {−4,−3,−2,−1, 0, 3}.

If X = Y, then there are no perfect triangles arising from C4, and the set of rational
points on D4 is precisely

(φ,m) = {∞, (−1, 0), (−1,±2), (−1/2,±9/8), (0,±9/8), (1,±2), (1,±18), (3,±18)}.
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[6] Perfect triangles on the curve C4 73

3. Elimination of lifted multiples of a point

For each of the five problematic values of µ ∈ Y\{−2}, we compute a corresponding
integer δ( µ) which represents the square-free part of Z( µP ⊕ T ′) (see Table 1) with
the property that there exists a prime q such that (δ( µ)/q) = −1. These will be used to
eliminate certain lifted multiples of P. We first have the following definition for the
indicator prime, q.

Definition 3.1. Let k ∈ Z+. We say that q is a 2-torsion prime for k if q , 2, 3, 17 such
that kP̃ , O, T but 2kP̃ = O in E(Fq) where P̃ is the reduction of P onto the curve
E(Fq). This implies that kP̃ = T ′ or T ′′ in E(Fq).

Definition 3.2. Let k ∈ Z+ and µ = Y\{−2}. We say q is an indicator prime for (k, µ) if
q is a 2-torsion prime for k and (δ( µ)/q) = −1.

We are claiming that the only small values of n that make Z(nP) a square are µ ∈ Y =

{−4,−3,−2,−1, 0, 3}. We now have the following theorem that provides conditions
applied to each of the cases in µ ∈ Y\{−2} to ensure the lifting of n ≡ Y\{−2} mod 2tk
to n ≡ Y\{−2} mod 2t+1k eliminating the five so-called problematic values, namely
n ≡ k + µ mod 2t+1k for µ ∈ Y\{−2}. The indicator primes, q, satisfying the hypothesis
of the theorem are precisely the q occurring in the denominator of 2kP̃ but not the
denominator of kP̃ and satisfying x(kP̃) , 15.

Theorem 3.3. Suppose there exists an indicator prime, q. Then for every µ ∈ Y\{−2}
there exists δ( µ) ∈ Z as defined in Table 1 such that (δ( µ)/q) = −1, which implies
Z((2k ⊕ µ)P) , �.

Proof. Suppose q , 2, 3, 17. Let W = kP̃ = (xW , yW). This has exact order 2 and W ,
T . So yW = 0 and xW is a root of (x − 15)(x2 + 15x − 3042) which is xW = 3

2 (−5 ± 9β)
where β2 = 17. The quadratic polynomial x2 + 15x − 3042 has discriminant 36 · 17
and hence splits over Fq for q , 2, 3, 17 if and only if (17/q) = 1, which implies
±q = 1, 2, 4, 8 mod 17.

Let µ ∈ Z and µ , 0. Let µP = (r, s) and Q = (k ⊕ µ)P = (xQ, yQ). Then 2Q̃ = 2µP̃
but Q̃ , µP̃ or µP̃ ⊕ T̃ or else kP̃ = O or T̃ . We let T ′ = ( 3

2 (−5 − 9β), 0) and T ′′ =

( 3
2 (−5 + 9β), 0) be the other 2-torsion points. Thus

Q̃ = µP̃ ⊕ T ′ = (r, s) ⊕ ( 3
2 (−5 − 9β), 0).

Adding this on the curve gives us

xQ̃ =
3

2(r2 + 15r − 3042)
((−5r2 + 4056r − 46755) + 9(r2 − 30r + 2817)β)

and

yQ̃ =
−243s

2(r2 + 15r − 3042)2 (51(r2 − 30r + 2817) − (5r2 − 1302r + 5445)β).
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74 S. Ismail [7]

Table 1. Conditions following from lifting the multiplier.

µ ∈ Y δ( µ) Condition applied on δ( µ) Implication upon lifting

−4 13 · 1789
(

13·1789
q

)
= −1 n . k − 4 mod 2k

−3 5 · 29
(

5·29
q

)
= −1 n . k − 3 mod 2k

−2 — — —

−1 5 · 29
(

5·29
q

)
= −1 n . k − 1 mod 2k

0 13 · 1789
(

13·1789
q

)
= −1 n . k mod 2k

3 5333 · 97324757
(

5333·97324757
q

)
= −1 n . k + 3 mod 2k

Table 2. Z(Q̃) a square for µ ∈ Y .

µ ∈ Y µP ⊕ T ′ Z(nP)

−4
( 4482

361
β +

3489
361

,
−52002

6859
β +

2057238
6859

)
222 · 344 · 19−32 · 13 · 1789 · [−469311139β + 24250687120]2

−3
(
−99

8
β +

93
8
,
−81
16

β −
5049
16

)
2−32 · 334 · 5 · 29 ·

[
−143654012463

2
β +

596091741497
2

]2

−2 (162β + 681,−5994β − 24786) [213 · 322 · 5 · 19 · 379 · 1433 · 1481β + 213 · 323 · 199 · 527732929]2

−1 (−18β + 69,−162β + 918) 224 · 334 · 5 · 29 · [95293 + 23052β]2

0 ( 3
2 (−5 − 9β), 0) 210 · 344 · 13 · 1789 · [21β + 7]2

3
(
−99

8
β +

93
8
,

81
16
β +

5049
16

)
2−32 · 334 · 5333 · 97324757 ·

[ 2188485
2

β +
12121421

2

]2

Substituting xQ̃ and yQ̃ into the expression for Z(Q̃) gives Table 2. We define δ( µ) to
be the square-free part of Z(Q̃). For each of the five problematic values of µ ∈ Y{−2}
we compute a corresponding integer δ( µ) (see Table 2) with the property that there
exists a prime q such that (δ( µ)/q) = −1. These will be used to eliminate certain lifted
multiples of P. Note that µ = −2 does not possess a square-free part.

Now, for every µ ∈ Y\{−2}, we have the implications from δ( µ) as in Table 1. Note
that the conditions of µ = −1 and µ = 0 are similar to µ = −3 and µ = −4. Thus, we
need only look at the conditions of (δ( µ)/q) = −1 for µ ∈ {−1, 0, 3}, which implies that
Z((2k + µ)P) , �. �

We ultimately obtain congruence conditions on n ∈ X and µ ∈ Y\{−2} from the
following theorem.

Theorem 3.4. Let k ∈ Z+. If there exists an indicator prime, q, for (k, µ) then

n ∈ X, µ ∈ Y\{−2} implies n ≡ k + µ mod 2k.
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Proof. Let k ∈ Z+. Then for n ∈ X, µ ∈ Y\{−2} we have n ≡ µ mod 2tk. Conditions
imposed on (δ( µ)/q) = −1 as per Table 1 imply that upon lifting we will have
n ≡ µ mod 2t+1k, eliminating n ≡ 2t + µ mod 2t+1k. �

4. Cases of µ ∈ {−1, 0, 3}

In this section, we will take a look at the conditions applied on (δ( µ)/q) = −1 as
in Table 1. In order to find an indicator prime, q, satisfying Theorem 3.3 we need to
examine the numerator and denominator of x(kP). We let kP = (sk/d2

k , tk/d
3
k ) and let

Bk denote the square-free part of the quadratic univariate part of the elliptic curve E,
namely Bk = s2

k + 15skd2
k − 3042d4

k . To find the primes occurring we can use p-adic
methods. We first have the following lemma which states the form of Bk.

Lemma 4.1. Let Bk = s2
k + 15skd2

k − 3042d4
k with gcd(sk, dk) = 1. Then Bk = (−1)k ·

2αk · 3βk · w2
k where wk is a positive integer with gcd(wk, 2 · 3 · 17) = 1 and αk, βk are

given by

(1)

αk = ord2(Bk) =

2 if 6 - k,
0 otherwise;

(2)

βk = ord3(Bk) =


0 if 8 | k,
4 if 2 | k but 8 - k,
6 if k is odd;

(3) ord17(Bk) = 0.

Note that the sign of Bk is (−1)k, as can be seen by looking at the R-connected
components of elliptic curve E which has two connected components.

We apply this lemma to prove the following theorems for the case µ = {−1,0,3} ∈ Y .
From Table 1, we have the conditions that 5 · 29 , �, 13 · 1789 , � and 5333 ·
97324757 , �, where 5, 29, 13, 1789, 5333, 97324757 ≡ 1 mod 4 (the open square
symbol represents a square number). We have the following lemma to show that there
always exists a prime number, p, such that product of two primes q1, q2 congruent to
1 modulo 4 is not a square.

Lemma 4.2. Let q1, q2 ≡ 1 mod 4 be distinct primes. Suppose N ∈ Z satisfies
gcd(N,2q1q2) = 1 and the Legendre symbol (N/q1) , (N/q2). Then there exists a prime
number, p, such that p | N and (q1 · q2/p) = −1.

This lemma above is handy in proving the following cases of µ ∈ Y\{−2} in the
following theorems. Also, recall that we haveBk = (−1)k · 2αk · 3βk · w2

k , where wk ∈ Z
+
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with gcd(wk, 2 · 3 · 17) = 1. Let PMi (wk) denote the period of wk in Z/NZ. We define

A5 = {k ∈ Z/M1Z | wk = square mod 5 &M1 = P5(wk)},

A29 = {k ∈ Z/M2Z | wk = square mod 29 &M2 = P29(wk)},

A13 = {k ∈ Z/M3Z | wk = square mod 13 &M3 = P13(wk)},

A1789 = {k ∈ Z/M4Z | wk = square mod 1789 &M4 = P1789(wk)},

A5333 = {k ∈ Z/M5Z | wk = square mod 5333 &M5 = P5333(wk)},

A97324757 = {k ∈ Z/M6Z | wk = square mod 97324757 &M6 = P97324757(wk)}.

It follows that the complement set is given by

A∗5 = {k ∈ Z/M1Z\A5},

A∗29 = {k ∈ Z/M2Z\A29},

A∗13 = {k ∈ Z/M3Z\A13},

A∗1789 = {k ∈ Z/M4Z\A1789},

A∗5333 = {k ∈ Z/M5Z\A5333},

A∗97324757 = {k ∈ Z/M6Z\A97324757}.

By building C++ code we have checked that the periodsM1 = 30,M2 = 102,M3 =

30,M4 = 2670,M5 = 750 andM6 = 97306362. We now have the following theorem.

Theorem 4.3. Let k ∈ Z+ satisfying the following congruence condition

{k ≡ A5 mod 30 and k ≡ A∗29 mod 102
or

k ≡ A∗5 mod 30 and k ≡ A29 mod 102},
and

{k ≡ A13 mod 30 and k ≡ A∗1789 mod 2670
or

k ≡ A∗13 mod 30 and k ≡ A1789 mod 2670},
and

{k ≡ A5333 mod 750 and k ≡ A∗97324757 mod 97306362
or

k ≡ A∗5333 mod 750 and k ≡ A97324757 mod 97306362}.

Then there exists an indicator prime q , 2, 3, 17 and {5 · 29 , � mod q, 13 · 1789 ,
� mod q, 5333 · 97324757 , � mod q such that µ = {−4, −3, −1, 0, 3} ∈ Y implies
n . k − 1 mod 2k, n . k − 3 mod 2k, n . k − 4 mod 2k and n . k mod 2k and
n . k + 3 mod 2k.
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5. Existence of a suitable pair (M, k0)

In this section, we will show the existence of a suitable pair (M, k0) based on the
congruence condition as per Theorem 4.3. We now find an initial value, k0, that
satisfies the following definition.

Definition 5.1. Let M ∈ N. Let ∅ , S ⊆ {0, 1, . . . , M − 1}. We say that (M, k0) is a
suitable pair if

(1) 2S ≡ S mod M,
(2) X ≡ Y mod k0 where k0 = min(S), and
(3) for every k ∈ S there exists a universal indicator prime.

We now have the following theorem.

Theorem 5.2. Let M = 2 · 32 · 53 · 17 · 89 · 829 · 6521 = 18403065713250, and let
k0 = 2 · 17 · 89 = 3026. Then there exists a suitable pair (M, k0).

The following theorem follows from the doubling closed set, S, that we obtained
above.

Theorem 5.3. If k ≡ 3026 mod 18403065713250 then there exists a universal indicator
prime, q, in kP satisfying all conditions such that (δ( µ)/q) = −1 for δ(µ) values as per
Table 1.

Note that there could be more than one indicator prime apart from q =

248840234180189 in the denominator of 6052P that satisfies conditions of (δ( µ)/q) =

−1 for δ( µ) as per Table 1. Unfortunately, due to the limitations of large number
factorization, we only found one such indicator prime, q = 248840234180189.
In the next section, we look for the prime divisors, p, of the denominator, dP, where
d | 3026. Then, we find Z(nP) not a square modulo p to perform the elimination.

6. Reducing sets to show n ≡ {−4,−3,−1, 0, 3} mod 3026

We work with the prime divisors of 3026P to show that Z(nP) is not a square
modulo p, which will eliminate certain congruence classes. Our aim is to show that
the only elements that will survive are {3, 3022, 3023, 3024, 3025, 3026} mod 3026,
eliminating the rest of the elements, which is achieved upon looking at multiples of
2 and 3. We have eliminated all elements, leaving only possible solutions given by
n ≡ −4,−3,−2,−1, 0, 3 mod 3026. This huge calculation leads us to show that for all
n ∈ X, X ≡ Y mod 3026. We now have the following theorem.

Theorem 6.1. If there exists a suitable pair (M, k0) then X = Y.

Proof. We prove by induction that X ≡ Y mod 2rk0 for every nonnegative integer r.
The case r = 0 is part (2) of Definition 5.1. Suppose inductively that X ≡ Y mod 2rk0.
Thus

n ∈ X implies n ≡ µ mod 2rk0 for some µ ∈ Y.
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Let n ∈ X. Let k = 2rk0. Then there exists µ ∈ Y such that n ≡ µ or µ + k mod 2k.
By (1) of Definition 5.1, k ∈ S and by (3) there exists an indicator prime q for (k, µ).
Theorem 3.4 rules out n ≡ µ + k mod 2k, so n ≡ µ mod 2k. Since n ∈ X was arbitrary,
X ≡ Y mod 2k which completes the induction. �

Table 1 indicated that there is no condition imposed on (δ(−2)/q) = −1 from
which we were unable to eliminate the lifting of n ≡ 2tk − 2 mod 2t+1k for k ∈ Z+

values. Because we were unable to eliminate this case by applying the methodology
introduced in this paper, numerous other independent methods and ideas were
exploited, but unfortunately they were not strong enough to give a subtle argument
to eliminate the lifting of n ≡ 2tk − 2 mod 2t+1k. This implies that a ‘second ascent’
would be needed to deal with this case. This would be a fundamental base for future
work as it could possibly indicate the existence of one or more further points on the
curve, of enormous height which comes from the congruence n ≡ 3024 mod 3026 that
could possibly give us a perfect triangle, though it seems highly unlikely.

7. Proving Theorem 1.1

We now prove the core theorem of this paper. First, we have the following lemma
which proves that the sets X and Y\{−2} are the same.

Lemma 7.1. Let t ∈ Z. Then X ≡ Y\{−2} mod 3026 · 2t implies X ≡ Y\{−2} mod 3026 ·
2t+1. Thus by induction X = {−4,−3,−1, 0, 3}.

Proof. We have X ≡ Y\{−2} mod 3026. The existence of an indicator prime, q, which
gives (δ( µ)/q) = −1 for δ( µ) as in Table 1, implies that X ≡ Y\{−2} mod 2 · 3026,
eliminating X ≡ {3022, 3023, 3025, 3026, 3029} mod 2t · 3026. Since k0 = 3026 ∈ S,
the closed doubling set, we will have X ≡ Y\{−2} mod 2t+1 · 3026 every time k0 lifts.
Thus by induction X = Y\{−2}. �

Since we have proved that the set X and Y\{−2} are the same, consisting of only five
elements, we conclude by proving the main result of this paper.

Theorem 7.2. There does not exist any perfect triangle arising from the curve C4:
θφ(θ − φ) + θφ + 2(θ − φ) − 1 except possibly for n ≡ 3024 mod 6052.

Here, the word ‘except’ indicates that there may exist one or more further points on
the curve that is of enormous height which could possibly form a perfect triangle.

Proof. From Theorem 2.1, we proved that there exists a perfect triangle on the curve
C4 with φ , 0 if and only if Z(nP) is a square, which is true only for n ∈ X =

{−4,−3,−1, 0, 3}. We now have the following table of n ∈ X and the corresponding
value of φ and m.
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n nP=(x, y) on E corresp. φ m

−4 (339,−6156) − 1
2 ± 9

8 , ±
1
4

√
949

−3 (6, 162) 0 ± 9
8

−2 (51, 108) undefined undefined

−1 (−21,−324) undefined undefined

0 (0, 0) − 4
11

1
10648

√
± 391779925

2

√
6829 + 32625600067

2

−1
10648

√
± 391779925

2

√
6829 + 32625600067

2

3 (6,−162) 0 ± 9
8

In [4] it is proven that a Heron triangle with two rational medians lies only on the
region defined by 0 < θ < 1, 0 < φ < 1 and 2θ + φ > 1. These inequalities exclude
regions in which a proper triangle cannot form. It is clear from the table above that
the corresponding values of φ in each case either lie outside the region defined or are
undefined. This implies that there does not exist any perfect triangle arising from curve
C4 except possibly for the case µ = −2 that gives n ≡ 3024 mod 3026. �
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