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Abstract
We prove that the category of vector bundles over a fixed smooth manifold and its corresponding category
of convenient modules are models for intuitionistic differential linear logic. The exponential modality
is modelled by composing the jet comonad, whose Kleisli category has linear differential operators as
morphisms, with the more familiar distributional comonad, whose Kleisli category has smooth maps as
morphisms. Combining the two comonads gives a new interpretation of the semantics of differential linear
logic where the Kleisli morphisms are smooth local functionals, or equivalently, smooth partial differential
operators, and the codereliction map induces the functional derivative. This points towards a logic, and
hence a computational theory of non-linear partial differential equations and their solutions based on
variational calculus.
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1. Introduction
In this paper, we study differential linear logic (Ehrhard 2018) through the lens of the category of
vector bundles over a smooth manifold. We prove that a number of categories arising from the
category of vector bundles are models for intuitionistic differential linear logic. This is part of a
larger project aimed at understanding the interaction between differentiable programming, based
on differential λ-calculus (Ehrhard and Regnier 2003), and differential linear logic with a view
towards extending these concepts to a language of non-linear partial differential equations. Since
morphisms come from proofs in differential linear logic, and proofs are identified with programs
in differential λ-calculus (via the Curry–Howard correspondence), the denotational semantics
here provide tools for differentiable programming.

From a machine learning perspective, the work here suggests the possibility of a non-linear
‘differential equation search’ using gradient-based optimisation given some input and output
boundary conditions in analogy with continuous ‘function search’, for example, searching among
a subspace of the space of functional programs to find a program satisfying given constraints.
A particular case of the latter is neural architecture search given input–output data pairs. This
data-driven programming has recently received attention in relation to the optimisation of neu-
ral networks with various approaches to making the constituent functional blocks ‘smooth’ (see
Graves et al. 2016; Pham et al. 2018; Zoph and Le 2017 for selected works). More recently,
such tools have been used to solve certain partial differential equations with initial steps towards
equation search (see Lagaris et al. 1998; Long et al. 2019; Weinan et al. 2017 for selected works).

A more foundational approach to these questions, in the spirit of this paper, was recently pro-
posed in Kerjean (2018). With an eye towards non-linear phenomena arising in a diverse range
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of scientific applications, we move beyond vector spaces to families of vector spaces parametrised
by a smooth manifold.

There exist a number of approaches to the categorical semantics of differential linear logic in
the literature. These include Köthe sequence spaces (Ehrhard 2002), finiteness spaces (Ehrhard
2005), convenient vector spaces (Blute et al. 2012), and vector spaces themselves (Clift andMurfet
2017). Our approach begins by considering a smooth generalisation of Clift and Murfet (2017)
where our underlying objects are vector spaces parametrised by a fixed base manifold M. More
precisely, to a formula A in differential linear logic, we associate the sheaf E of sections of a vector
bundle E on M. When E is the trivial line bundle, then the associated denotation is simply the
sheaf C ∞

M of smooth functions onM.
We prove that there are two natural comonads on the category of vector bundles to model

the exponential modality of linear logic. First, there is the jet comonad !j introduced in Marvan
(1986) which sends a sheaf E to the sheaf !jE of infinite jets of local sections of E. An element
of the exponentiation of a formula is an equivalence class of sections of a vector bundle with the
same Taylor expansion at each point ofM. The idea of a syntactic Taylor expansion in linear logic
and λ-calculus through the exponential connective (Ehrhard and Regnier 2003; 2008) is therefore
explicitly present here in the semantics of vector bundles.Working in the general setting of infinite
jets, as opposed to r-jets for a fixed r ∈N, forces us to work in the enlarged category of pro-ind
vector bundles (Güneysu and Pflaum 2017). The objects in this category are (co)filtered objects in
the category of vector bundles onM.

In fact, to leverage better formal and functional analytic properties of vector bundles, especially
in relation to dual objects, we move from pro-ind vector bundles to the category of convenient
C ∞
M -modules. These are C ∞

M -module objects in the category of sheaves of convenient vector
spaces on M. Sheaves of convenient vector spaces (see Frölicher and Kriegl 1988; Kriegl and
Michor 1997 for the theory of convenient spaces) are a class of sheaves of infinite dimensional vec-
tor spaces which are general enough to include sections of an arbitrary vector bundle on a smooth
manifold but which also retain excellent formal properties. For example, the category of such
objects is complete, cocomplete and closed symmetric monoidal. The jet comonad !j descends to
this category.

The jet construction makes direct contact with the theory of linear differential operators and
linear partial differential equations which enables us to understand these concepts within the
setting of differential linear logic. The Kleisli category for the jet comonad is the category of con-
venient vector bundles E onM and whose morphisms !jE → E ′ are linear differential operators.
This category is equivalent to the category of infinitely prolongated linear partial differential equa-
tions with M as its manifold of independent variables. Equivalently, as is always the case for the
Kleisli category of a comonad, the objects are cofree !j-coalgebras. We prove that the category of
convenient C ∞

M -modules with the jet comonad is a symmetric monoidal storage category in the
sense of Blute et al. (2019).

The second comonad we consider will be called the distributional comonad. Providing a sym-
metric monoidal storage category, which is moreover additive in an appropriate sense, with a
codereliction map that models the differential in the context of linear logic, defines a model for
intuitionistic differential linear logic. It has been shown in Blute et al. (2012) that the category of
convenient vector spaces is a model for intuitionistic differential linear logic where the comonad
is the map sending a convenient vector space to the Mackey-closure of the linear span of its
Dirac distributions. When the convenient vector space is finite dimensional, this is simply the
space of distributions with compact support. We extend this result to the category of convenient
C ∞
M -modules and continuous linear morphisms.
The Kleisli category of the distributional comonad !δ is the category of convenient C ∞

M -
modules and smooth morphisms. The codereliction

d̄δ

E : E →!δE
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sends a section s to limh→0
δhs−δ0

h . The differential of a smooth functional F : E → E ′ is then the
linear map

dF : E � (E ⇒ E ′)

sending (s, t) to the functional derivative dF(s, t) of s in the direction t. A familiar example is when
E and E ′ are both the sheaf C ∞

M of smooth functions. Then, F is an element of the continuous
linear dual (C ∞

M )⊥. Using the canonical evaluation pairing, this sheaf is isomorphic to the sheaf of
compactly supported distributional densities onM.

Combining the two comonads !j and !δ , which are proved to compose in the appropriate
sense, becomes quite powerful. We prove that the category of convenient C ∞

M -modules with the
composite comonad !δ◦!j is a model for intuitionistic differential linear logic. The codereliction

d̄ jδ
E : E →!jδE

sends a section s to limh→0
δh(j(s))−δ0

h . In this case, we have a logic of smooth local functionals
where a functional is local if and only if the value of its variables at a point x in M depends only
on its infinite jet at that point. These functionals are also known as Lagrangians and the func-
tional derivative of a Lagrangian L encodes the Euler–Lagrange equations (plus a total derivative).
The functional equation dL= 0 then encodes the space of solutions to the equations of motion.
Morphisms !δ!jE → E ′ from the Kleisli category are interpreted as smooth differential operators.
The interaction between these comonads show how to pass between linear and non-linear objects.
More work is needed to understand the logic rules underlying this structure. For linear partial
differential equations with constant coefficients, this has been explored in Kerjean (2018).

We end the paper by discussing how the above structure arises in the case where our vector
bundle denotation is the trivial line bundle and our local functional is the Lagrangian for a free
or self-interacting scalar field on an arbitrary Riemannian manifold. In this case, its convenient
C ∞
M -module is the sheaf of smooth functions on the manifold, and the variational calculus leads

to the space of solutions to the scalar field equations.

Remark 1. Most categories arising in linear logic (Girard 1987), objects of which include func-
tion spaces, are non-reflexive, i.e., there is no canonical isomorphism between an object and its
double dual. This is also the case in our examples. In Girard (1999), Girard explored the deno-
tational semantics of classical linear logic using the notion of coherent Banach space. Adding
coherence solves the issue of obtaining a monoidal category of reflexive objects. However, one
of the shortcomings of that model is a natural closed structure. Another way of saying this is
that coherent Banach spaces do not form a ∗-autonomous category. Moreover, one cannot take
the ∗-autonomous completion of the category of Banach spaces since they themselves do not
form a closed symmetric monoidal category. One can extend our results to the setting of clas-
sical differential linear logic by taking the ∗-autonomous completion of the closed symmetric
monoidal category of convenient C ∞

M -modules. This completion, whose origins essentially go
back toMackey (1945), is called the Chu-construction (Barr 1991) and is the universal way of over-
coming the problem of reflexivity. This remedy pairs each space with a subspace of its continuous
linear dual in order to obtain the required canonical isomorphism E 
 E ⊥⊥.

Relation to other work
We consider vector bundles over a fixed base manifold M. In the case of the distributional
comonad with M = ∗, our results correspond to those of Blute et al. (2012), i.e., the category of
convenient C ∞

M -modules reduces to the category of convenient vector spaces and the models for
intuitionistic differential linear logic agree.
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When introducing the jet comonad, we have an interpretation of differential operators and
linear partial differential equations within the logic. Similar structure in the form of linear partial
differential operators with constant coefficients has recently been studied in Kerjean (2018) in the
case whereM = ∗ and the fibre over ∗ is Euclidean space Rn.

Combining the two comonads introduces a logical interpretation of non-linear differential
operators. A more general extension to non-linear cases, including the full theory of non-linear
partial differential equations, involves considering morphisms of fibred manifolds. To obtain a
closed symmetric monoidal category in this setting requires moving outside the category of fibred
manifolds and taking advantage of topos-theoretic and homotopical methods. We will not con-
sider this extension here. However, see Khavkine and Schreiber (2017) for the theory of non-linear
partial differential equations in more general synthetic categories.

2. Models for Intuitionistic Differential Linear Logic
In this section, we recall what it means for a category to be a model for intuitionistic differential
linear logic (Ehrhard 2018). To motivate such a definition, we recall some of its basic features.
We emphasise that this is not a complete presentation of the logic. We merely highlight some
properties in order to orient the reader towards the categorical definition at the end of this section.

The syntax for intuitionistic linear logic involves the connectives {×,⊗, !,�} with formulas
A generated by expressions of the form

A ::= � | 1 | A× B | A⊗ B | A� B | !A
where � and 1 are units for × and ⊗, respectively.

Let � and � be a (possibly empty) sequence of formulas A1, . . . ,An. The connectives satisfy
various rules, which can be split between logic rules and structural rules. The logic rules include,
among others, the rules

�,A1,A2,�  B
�,A1 ×A2,�  B

× �,A1,A2,�  B
�,A1 ⊗A2,�  B

⊗ �,A B
� A� B

�

for the additive, multiplicative and implicative connectives. The structural rules are the exchange
rule, identity rule, contraction rule, weakening rule and cut rule.

Differential linear logic symmetrises the contraction, weakening and dereliction rules
�, !A, !A,�  B

�, !A,�  B
c

�,�  B
�, !A,�  B

w
�,A,�  B
�, !A,�  B

d

for the exponential of linear logic, by adding cocontraction, coweakening and codereliction rules
�, !A,�  B

�, !A, !A,�  B
c̄

�, !A,�  B
�,�  B

w̄
�, !A,�  B
�,A,�  B

d̄

respectively. This is a very natural thing to do in light of the symmetry inherent in the full classical
linear logic (Girard 1987) of which intuitionistic linear logic is a restriction thereof.

Given a sequent �  B, a proof of �  B is a series of sequents, beginning with basic axioms,
and following various deduction rules which terminate with the sequent �  B. Two proofs are
said to be equivalent if they are equivalent undercut elimination.

The goal of denotational semantics is to construct a category, a categorical semantics of differ-
ential linear logic in our case, faithfully reflecting this structure. SeeMelliès (2009) for an overview
of the subject. More generally, we should allow multicategories which, like categories, consist of a
collection of objects, but allow multimorphisms from a finite sequence of objects to a single target
object. If we denote by �A� the denotation of a formula A, then �A� is an object of the multi-
category whilst ��� → �B� are multimorphisms for some collection of formulas � (Hyland and
De Paiva 1993). More precisely, the equivalence class of proofs of the sequent �  B under cut
elimination is assigned to the morphism.
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The logical rules for each operation should follow from universal properties in the multicat-
egory. Working in a multicategory ensures that the connectives, together with their complete
coherence data, satisfy a universal property. For example, the tensor product in a general monoidal
category is not universal. It also illuminates the interpretation of the structural rules categorically.
Therefore, the discussion above should suggest, at minimum, the structure of a multicategory
where the additive connective corresponds to the product and the multiplicative connective to the
tensor product.

Forgoing some generality, we will work directly in a symmetric monoidal category Cwith finite
products where the coherence data are contained in explicit proofs. Note that we deliberately stay
close to the notation used for connectives in linear algebra and make no distinction between the
connectives in logic and those in the semantic model. It should be clear from the context if we are
referring to a multiplicative or additive product of formulas in logic or of objects in C.

Before defining what we mean by a model for differential linear logic C, we give an infor-
mal motivation for some of the various other structures on C which make up the definition. The
denotation of implication in differential linear logic will correspond to an internal hom object

�A� B� = �A�� �B� :=Hom(�A�, �B�)

making C a closed symmetric monoidal category with finite products. The contraction and weak-
ening rules show that exponentiated objects �!A� in our category should satisfy coalgebraic rules,
whilst the cocontraction and coweakening rules show that algebraic rules should be satisfied. In
other words, we enter the realm of bialgebras in the categorical semantics of the exponentiated
formulas.

Finally, if we think of maps �A� → �B� as ‘linear’, then the map

i :Hom(�A�, �B�)→Hom(�!A�, �B�)

given by composition with the dereliction map d : �!A� → �A� should be thought of as the inclu-
sion of linear maps into ‘non-linear’ maps. Correspondingly, composition with the codereliction
d̄ : �A� → �!A� induces a map

D :Hom(�!A�, �B�)→Hom(�A�, �B�)

which is interpreted as a linearisation map, i.e., a differential operator. Then, D[f ] is the lin-
ear ‘Jacobian’ transformation. The codereliction should satisfy conditions for D to act like a
differential operator, for example, satisfying the chain rule.

We now make this discussion more formal. In doing so, we drop the bracket notation for the
denotation of a formula for the remainder of this section. The following is just a rewriting of the
conditions found in Section 7 of Blute et al. (2019) for a symmetric monoidal category with finite
products to be a monoidal storage category (also called a (new) Seely category in the literature)
(Bierman 1995; Blute et al. 2009; Melliès 2009).

Definition 2. Let (C,⊗, 1) be a symmetric monoidal category with finite products (×, ∗). A storage
comonad on C is a comonad ! = (!,μ, ε) on C, where μ :! →!! is the comultiplication and ε :! → idC
is the counit, such that:

(1) For all A ∈ C, the object !A is a cocommutative comonoid object in C with comultiplication
cA :!A→!A⊗!A and counit eA :!A→ 1 which are both natural transformations.

(2) For all A ∈ C, the map μA :!A→!!A is a morphism of comonoid objects in C.
(3) For all A, B ∈ C, the induced maps e∗ :!(∗)→ 1 and(!(π1)⊗!(π2)

) ◦ cA×B :!(A× B)→!A⊗!B
are isomorphisms for the projection maps (πi)i∈{1,2}.
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The isomorphisms in Condition 3 of Definition 2 are called Seely isomorphisms.

Definition 3. A symmetric monoidal storage category is a symmetric monoidal category with finite
products and a storage comonad.

Some models of logic can be endowed with n linear exponential comonads for some n ∈N. To
compose comonads, we require extra structure for the composite to remain a comonad. When
n= 2, we have the following definition from Beck (1969).

Definition 4. Let !1 = (!1,μ1, ε1) and !2 = (!2,μ2, ε2) be two comonads on a category C. Then,
a distributive law of !1 over !2 is a natural transformation λ :!2◦!1 →!1◦!2 such that the following
diagrams

!2◦!1◦!1 !1◦!2◦!1 !1◦!1◦!2

!2◦!1 !1◦!2

!2◦!2◦!1 !2◦!1◦!2 !1◦!2◦!2

λ◦!1 !1◦λ

!2◦μ1

λ

μ2◦!1

μ1◦!2

!1◦μ2

!2◦λ λ◦!2

!1

!2◦!1 !1◦!2

!2

ε2◦!1

!2◦ε1

λ

!1◦ε2

ε1◦!2

commute in C.

Let !1 and !2 be endofunctors on C. To simplify notation, set !12 =!2◦!1. If !1 and !2 are
comonads and λ a distributive law of !1 over !2, then there exists a unique composite comonad
!12 = (!12,μ12, ε12) where

μ12 :!12 μ2◦μ1
−−−→!22◦!11 !2◦λ◦!1−−−−→!12◦!12

is the comultiplication and

ε12 :!12 ε2◦ε1−−−→ idC
the counit. Note that the map λ is left implicit in the notation for the composite comonad !12. The
distributive law λ lifts to a morphism of comonads if the diagrams

!12 !21

!12◦!12 !21◦!21
μ12

λ

μ21

λ◦λ

!12 !21

idC

ε12

λ

ε21

commute in C. If the distributive law is an isomorphism, then it is an isomorphism of comonads.
The following gives us the conditions on a category C for a composite comonad on C to be a

storage comonad.

Lemma 5. Let C be a symmetric monoidal category with finite products. If !1 is a product preserving
comonad, !2 a storage comonad and λ a distributive law of !1 over !2 on C, then the composite
comonad !12 is a storage comonad on C.

Proof. From the conditions in the lemma, let !12 be the unique composite comonad. Consider
the storage comonad !2 with comonoid comultiplication c2A and counit e2A. Then the object
!12A :=!2(!1A) is clearly a cocommutative comonoid object in C with comultiplication c12A := c2!1A :
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!12A→!12A⊗!12A and counit e12A := e2!1A :!12A→ 1, and μ12
A :!12A→!12◦!12A is a morphism of

comonoids in C. The Seely isomorphisms follow from the commutative diagrams

!12(A× B) !12(A× B)⊗!12(A× B)

!2(!1A×!1B) !12A⊗!12B
∼

c12A×B

!12(π1)⊗!12(π2)
∼

!12(∗) 1

!2(∗)
∼

e12∗

∼

owing to the fact that !1 preserves finite products, and !2 is a storage comonad satisfying the Seely
isomorphisms, respectively.

Since many of the categories arising in applications are locally presentable (Adámek and
Rosický 1994), including our own, it is useful to include here another characterisation of a
symmetric monoidal storage category.

Proposition 6. Let C be a locally presentable strong symmetric monoidal category with finite prod-
ucts. Then, C is endowed with a storage comonad if and only if there exists a locally presentable
cartesian category D and a colimit preserving symmetric monoidal functor L : D→ C which is
bijective on objects.

Proof. (⇐) By the adjoint functor theorem, the functor L admits a right adjoint R : C→ D and
since L is strong symmetric monoidal then R is lax symmetric monoidal. Thus, L� R defines
a linear–non-linear adjunction in the sense of Melliès (2009). Since L is moreover bijective on
objects, by Proposition 25 of loc.cit, the pair (C, ! := L ◦ R) define a symmetric monoidal storage
category. (⇒) This follows from Proposition 24 of loc.cit..

The category D in Proposition 6 is isomorphic to the Kleisli category C!. In the parlance of
Benton (1994), Melliès (2009), we have a linear–non-linear adjunction which takes the form

C! C
L

R

for the comonad ! = L ◦ R on C.
We need to introduce one more piece of structure which is key to interpreting a model for

differential linear logic as a differential category (Blute et al. 2006), i.e., a structure enabling one
to ‘differentiate’ morphisms. We will call a symmetric monoidal category (C,⊗) a CMon-enriched
symmetric monoidal category if it is enriched over the monoidal category (CMon,+) of commuta-
tive monoids such that the products are compatible in the sense that ( f + g)⊗ h= f ⊗ h+ g ⊗ h
and 0⊗ h= 0 for zero morphisms 0.

Definition 7. A CMon-enriched symmetric monoidal storage category1 is a symmetric monoidal
storage category which is also a CMon-enriched symmetric monoidal category.

By Theorem 7.4 of Blute et al. (2019), CMon-enriched symmetric monoidal storage categories
have finite biproducts and an additive bialgebra modality. So in addition to the cocommutative
coalgebra (!A, cA, eA), we have a commutative monoid object (!A, c̄A, ēA) for all A ∈ C with multi-
plication c̄A :!A⊗!A→!A and unit ēA : 1→!A. The categorical analogue of the codereliction rule
is then the following.
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Definition 8. Let (C, !) be a symmetric monoidal storage category which is also a CMon-enriched
category. A natural transformation

d̄ : idC →!
is called a codereliction if it satisfies the rules :

• (Constant rule) eA ◦ d̄A = 0 :A→ 1.
• (Linear rule) εA ◦ d̄A = idA :A→A.
• (Product rule) cA ◦ d̄A = d̄A ⊗ ēA + ēA ⊗ d̄A :A→!A⊗!A.
• (Chain rule) μA ◦ c̄A ◦ (d̄A ⊗ id!A)= c̄!A ◦ (d̄!A ⊗ μA) ◦ (c̄A ⊗ id!A) ◦ (d̄A ⊗ cA) :A⊗

!A→!!A.

We now state the main overarching definition of this paper.

Definition 9. A model for intuitionistic differential linear logic is a CMon-enriched symmetric
monoidal storage category with a codereliction which is also a closed symmetric monoidal category.

One often finds the notion of a deriving transformation (Blute et al. 2006; Ehrhard 2002) in
place of a codereliction map in studies of differential categories. Every codereliction induces a
deriving transformation. Furthermore, these two structures are equivalent on a CMon-enriched
symmetric monoidal storage category by combining Theorem 6 and Theorem 3 of Blute et al.
(2019). The deriving transformation associated to the codereliction d̄A is given by the composition

∂A :!A⊗A id!A⊗d̄A−−−−→!A⊗!A c̄A−→!A
in C. Then for any morphism f :!A→ B in C, the composite map

df := f ◦ ∂A :!A⊗A→ B
will represent the derivative of f in C.

We define the n-fold derivative by induction : we set ∂0A = id!A and

∂
n+1
A := ∂A ◦ (∂nA ⊗ idA) :!A⊗A⊗n →!A

and define
dnf := f ◦ ∂

n
A :!A⊗A⊗n → B

in C. The notation for intuitionistic implication A⇒ B :=!A� B is now revealing since, by
adjunction, the linear differential operator dn is given by

dn : (A⇒ B)→ (A⊗n � (A⇒ B))
and should be thought of as sending a ‘non-linear’ morphism f to a ‘multi-linear’ morphism dnf :
A⊗n → (A⇒ B). The basic example is the following.

Example 10. Given a smooth function f :Rn →R
m in the category of vector spaces over R, we

have the linear morphism
df := f ◦ ∂Rn :Rn → (Rn ⇒R

m)
given by df (x)(y)= dxf (y)= (Jxf )y where Jxf is the Jacobian of f at x, ie. df (x)(y) is the derivative
of f at x in the direction y. This satisfies the chain rule

dx(g ◦ f )= df (x)(g) ◦ dx( f )
in addition to other basic properties of differentiation contained in the definition of
a codereliction.
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In the following, Example 10 will be generalised to the case where f is a section of an arbitrary
vector bundle over a smooth manifoldM from the point of view of differential linear logic. When
M is a point ∗ and the fibres are all of the form R

n for some n ∈N, we recover the simple example
above.

3. Vector Bundles and the Jet Comonad
We will henceforth work over the field R of real numbers and fix a smooth n-dimensional
manifoldM over R for the remainder of the article.

We consider the geometric approach to the theory of partial differential equations which begins
with the study of jet bundles (Saunders 1989). The r-jet of a function f :M →R at a point x ofM
can be thought of as the coordinate-free Taylor polynomial

(jrx f )(z) : f (x)+ f ′(x)z + . . . + 1
r! f

(r)(x)zr

for a formal variable z. We go beyond functions f , interpreted as sections of the trivial vector
bundle M ×R→M, and consider local sections of a general vector bundle in this paper. The
jet bundle associated to a vector bundle is itself a vector bundle whose coordinates represent the
derivatives of the fibre coordinates.

More precisely, let VBun(M) denote the category of finite rank vector bundles and π : E→M
an object in VBun(M). To the vector bundle E, we associate its vector bundle πr : Jr(E)→M of
r-jets of local sections. For a local section s at x ∈M, its r-jet is denoted jrx(s). Two sections are in
the equivalence class jrx(s) if they have the same rth order Taylor expansion at x.

Consider the sheaf C ∞
M of smooth functions on M and its category Mod(C ∞

M ) of modules.
Then, the functor VBun(M)→Mod(C ∞

M ) sending a vector bundle E to its sheaf of sections
E := �(E) is fully faithful with essential image the category V(M) of locally free sheaves of finite
rank. We also refer to objects in this equivalent category as vector bundles onM.

The category V(M) is a symmetric monoidal category in two ways. First, via the direct sum
E ⊕ E ′ of sheaves, and second, via the tensor product E ⊗C ∞

M
E ′ of sheaves (Serre 1955). We

have canonical isomorphisms

E ⊗C ∞
M

⊕
i

E ′
i 


⊕
i

(E ⊗C ∞
M

E ′
i )

showing that the tensor product distributes over coproducts. If we denote by Hom(E , E ′), the
sheaf of morphisms between E and E ′ which sends U to HomC ∞

M |U (E |U , E ′|U), then there exists
an isomorphism

HomC ∞
M
(F ⊗C ∞

M
E , E ′)
HomC ∞

M
(F , Hom(E , E ′))

whichmakes the category of vector bundles (V(M),⊗,C ∞
M ) a closed additive symmetric monoidal

category for the tensor product. We will also be concerned with the cocartesian monoidal struc-
ture (V(M),⊕, 0) where 0 is the constant sheaf with value {0} which is a zero object of V(M). We
have an isomorphism

E ⊕ E ′ 
 E × E ′

of sheaves.
Let J r(E ) denote the sheaf of sections of Jr(E) on M. Given a section s of πr|U , the r-jet

prolongation of s is the smooth section
jr(s) :U → Jr(E)

of πr such that jr(s)(x)= jrx(s) for all x in U ⊆M. Then jr : E → J r(E ) is a morphism of sheaves
of sets. Consider the endofunctor !jr :V(M)→V(M) sending E to J r(E ) and a morphism f :
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E → E ′ to its r-jet prolongation J r( f ) : J r(E )→ J r(E ′) which elementwise sends jr(s) to
jr( f ◦ s). We will often make the abuse of writing s ∈ E for a local section in E |U .

Recall that a category I is said to be cofiltered (Artin et al. 1972) if it is non-empty; for any
pair of objects i and j in I, there exists an object k together with morphisms k→ i and k→ j;
and for every pair of morphisms f and g with the same source and target, there exists a mor-
phism h such that f ◦ h= g ◦ h. A cofiltered diagram in a category C is a functor X : I → C indexed
by a cofiltered category. The category Pro(C) of pro-objects in C has cofiltered diagrams in C as
objects, and for two objects X : I → C and Y : I′ → C, morphisms defined by HomPro(C)(X, Y) :=
limi′∈I′colimi∈IHom(Xi, Yi′).

Let E be a vector bundle onM. We denote by

J (E )= “lim”
r∈N (J r(E ))

the pro-object

· · · → J r+1(E )
πr+1,r−−−→ J r(E )→ · · · → J 1(E )

π1,0−−→ J 0(E )= E

in the category V(M) of vector bundles onM. Here πr+1,r : J r+1(E )→ J r(E ) is the canonical
projection.

Given a pro-vector bundle E : I →V(M), the infinite jet bundle of E is the pro-object J (E ) :
N
op × I →V(M) given by “lim”r,i(J r(Ei)) in V(M). Then the infinite jet prolongation j : E →

J (E ) lifts to a morphism of pro-sheaves. We have an induced endofunctor !j : Pro(V(M))→
Pro(V(M)) sending E to J (E ) induced from infinite prolongation.

The dual of a pro-object in the category V(M) of vector bundles is an ind-object. The category
of ind-objects in V(M) will be denoted Ind(V(M))= Pro(V(M)op)op. If E is a vector bundle, then
the dual J (E )⊥ :=HomC ∞

M
(J (E ),C ∞

M ) is an ind-object in V(M). Here HomC ∞
M

denotes the
sheaf of continuous linear maps.When E is an ind-object inV(M), thenJ (E ) is a pro-ind-object
in V(M).

Definition 11. A pro-ind vector bundle is an object in the category PI(M) := Pro(Ind(V(M))) of
pro-ind-objects in V(M).

We will often identify a vector bundle with its image under the fully faithful map i :V(M)→
PI(M) where V(M)
 Pro(V(M))∩ Ind(V(M))⊂ PI(M) is an equivalence of categories.

Remark 12. Pro and Ind objects are often used in practice as presentations of infinite dimensional
objects (Artin et al. 1972; Grothendieck 1960). For example, the category of vector spaces Vect is
equivalent to the category Ind(Vectfin) of ind-objects in the category Vectfin of finite dimensional
vector spaces. Alternatively, the category Pro(Aff finS ) of pro-objects in the category Aff finS of affine
schemes of finite type over a quasi-separated base scheme S is equivalent to the category AffS of
all affine schemes.

We have an endofunctor

!j : PI(M)→ PI(M)

on the category PI(M) given by infinite prolongation.

Lemma 13. The endofunctor !j is a comonad on the category PI(M).
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Proof. We have a natural comultiplication map μj :!j →!j!j which object-wise μ
j
E :!jE →!j!jE

sends jx(s) to jx(j(s)) and a natural counit map εj :!j → id which object-wise ε
j
E :!jE → E sends

jx(s) to s(x). The commutativity of the relevant diagrams can be easily verified.

Remark 14. Currently !jE and its continuous linear dual !jE ⊥ are defined as formal filtered limits
and colimits. This will be remedied in Section 4 by introducing functional analytic tools.

Remark 15. The observation that the infinite jet functor defines a comonad in the smooth set-
ting goes back to Marvan (1986). A far reaching generalisation, encompassing many examples, is
contained in Khavkine and Schreiber (2017).

Let PI(M)!j denote the Kleisli category of the comonad !j. We have a linear–non-linear
adjunction

PI(M)!j PI(M)
X

U

where !j = X ◦U. The left adjoint X sends a pro-ind-vector bundle E to !jE and a morphism
F :!jE → E ′ to !j(F) ◦ μ

j
E :!jE →!jE ′. The right adjoint is an identity on objects and sends a

morphism G : E → E ′ to G ◦ ε
j
E = ε

j
E ′◦!j(G) :!jE → E ′ as a morphism in PI(M). The unit of the

adjunction on E is simply the morphism ηE = id!jE : E →!jE , and the counit is given by ε
j
E .

We now give several interpretations of PI(M)!j which includes the theory of linear differen-
tial operators, D-modules, !j-coalgebras and linear partial differential equations. Let E and E ′
be vector bundles on M and Diff r(E , E ′) the sheaf of linear partial differential operators. It
sends U ⊆M to the C ∞

M (U)-module whose elements are morphisms PU : E (U)→ E ′(U) given
by
∑

|α|≤r aα ◦ ∂α for any trivialisation where aα ∈HomC ∞
M (U)(E (U), E ′(U)). The functor

Diff r(E ,−) :V(M)→ Set
is representable by the vector bundle J r(E ). The isomorphism

HomV(M)(J r(E ), E ′)
Diff r(E , E ′)
is given by the map F �→ F̂ := F ◦ jr . The ind-object Diff(E , E ′) := “colim”r∈NDiff r(E , E ′) given
by the natural inclusions induce an isomorphism

Diff(E , E ′)
 “colim”
r∈N

HomV(M)(J r(E ), E ′)
HomPI(M)(“lim”
r∈N J r(E ), E ′)

and so Diff(E , E ′) is represented by J (E ) in PI(M). The result of this discussion is that we can
identify the image of the functorU :V(M)⊂ PI(M)→ PI(M)!j in the Kleisli category of !j with the
category of vector bundles onM with linear partial differential operators as morphisms.

Let F̂ : E → E ′ be a rth order differential operator. We associate to F̂ its corresponding bundle
map F : J (E )→ E ′ and vice versa. Given a qth order differential operator Ĝ between E ′ and E ′′,
composition with F̂ is given by

G ◦ F : J r+q(E )
μ
r,q
E−−→ J qJ r(E )

J q◦F−−−→ J q(E ′) G−→ E ′′

where μ
r,q
E is the injection sending jr+q

x (s) to jqx jr(s) (and so μ = μ∞,∞). When they are both of
infinite order, we obtain a linear differential operator Ĝ ◦ F̂ : E → E ′′ and Kleisli composition is
well defined.

The Kleisli category of the jet comonad has a natural interpretation in the language of
D-modules (Kashiwara 2003). This extension is as follows. LetDM(E , E ) denote the sheaf of linear
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differential operators onM and
D∞
M :=Diff(C ∞

M , C ∞
M )

the sheaf of linear differential operators between the sheaf of smooth functions. This is a sheaf
of non-commutative C ∞

M -algebras with product given by composition. We denote the symmetric
monoidal category of D-modules by

Mod(D∞
M ) :=ModD∞

M
(Mod(C ∞

M ))

where the symmetric monoidal structure is given by tensoring over C ∞
M . If E is a vector bundle,

then endowing E with a D-module structure is equivalent to the choice of flat connection

∇ : E → �1
M ⊗C ∞

M
E

on E which characterises D-modules with an underlying locally free C ∞
M -module.

The sheaf J (E ) is endowed with a canonical D-module structure, the flat connection given
by defining a section ξ in J (E ) to be flat if ξ = j(s) for some s ∈ E , i.e., horizontal sections of the
connection are infinite prolongations of sections of E . This is also called the Cartan connection.
Explicitly, after choosing coordinates x1, . . . , xn on U ⊆M and a trivialisation U × E0 of E, we
have

J (E )(U)= C ∞
M (U)⊗R R[[x1, . . . , xn]]⊗R E0

and the flat connection is given by ∇( f ⊗ g ⊗ v)= df ⊗ g ⊗ v+∑
i f dxi ⊗ ∂

∂xi g ⊗ v.
Alternatively, it is defined through the Cartan distribution of tangent planes to sections of the
form j(s). This is themapμ

∞,1
E : J (E )→ J 1J (E ) which is spanned by vector fields of the form

Di = ∂

∂xi
+
∑
k,I

ukIi
∂

∂ukI

for fibre coordinates uk and a multi-index I. Finally, there exists a bijection
HomD∞

M
(J (E ),J (E ′))
Diff(E , E ′)

which induces a fully faithful functor J : PI(M)!j → Pro(Ind(Mod(D∞
M ))) sending E to J (E ).

Remark 16. For the multicategory interpretation of the Kleisli category, one takes the multicate-
gory of vector bundles and polydifferential operators

PolyDiff(E1 ⊗ . . . ⊗ En, E ′) :=Diff(E1,C ∞
M )⊗C ∞

M
. . . ⊗C ∞

M
Diff(En, C ∞

M )⊗C ∞
M

E ′

where the action of C ∞
M on Diff(Ei, C ∞

M ) is given by left multiplication ( fD)(s) := f (Ds) for s ∈ Ei.
There exists a bijection

HomD∞
M
(J (E1)⊗C ∞

M
. . . ⊗C ∞

M
J (En),J (E ′))
 PolyDiff(E1 ⊗ . . . ⊗ En, E ′)

where the left-hand side denotes morphisms which are continuous.

Another interpretation of PI(M)!j is as a full subcategory of the Eilenberg–Moore category of
!j-coalgebras. A !j-coalgebra for the comonad !j is a pair (E , νE ) where E is a pro-ind vector bundle
and νE : E →!jE is a morphism of pro-ind vector bundles such that εE ◦ νE = idE andμE ◦ νE =
!j(νE ) ◦ νE . A morphism between !j-coalgebras (E , νE ) and (E ′, ν′

E ) is a morphism f : E → E ′ of
pro-ind vector bundles such that !j( f ) ◦ νE = ν′

E ◦ f . The category of !j-coalgebras, often called
the Eilenberg–Moore category, will be denoted PI(M)!j .

The Eilenberg–Moore category of !j is equivalent to a certain category of partial differential
equations introduced inVinogradov (1980) (see alsoMarvan 1986).We first recall some geometric
definitions (Pommaret and Lichnerowicz 1978).
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Definition 17. Let π : E→M be a vector bundle. A rth order partial differential equation on E is
a fibred submanifold of πr : Jr(E)→M. An inhomogeneous linear partial differential equation is
an affine subbundle of πr. A homogeneous linear partial differential equation is a vector subbundle
of πr.

Let Hr be a rth order linear partial differential equation. In the homogenous case, there exists
a vector bundle E′ = coker(Hr) on M and a morphism of vector bundles f : Jr(E)→ E′ such
that Hr = ker ( f ). This corresponds to the standard interpretation f (xi, uα , uα

I )= 0 where uα are
coordinates in the fibre of E. A linear partial differential equation will be henceforth consid-
ered homogenous unless otherwise specified. A (local) solution of a rth order partial differential
equation Hr is a section s of πr|U such that jrs(x) ∈Hr for all x ∈U.

The qth order prolongation of h :Hr ⊆ Jr(E) is the pullback

Hr,q Jr+q(E)

Jq(Hr) JqJr(E)

μ
r,q
E

Jq(h)

in the category of vector bundles. The infinite prolongation H ⊆ J(E) of Hr is the pro-object

· · · →Hr,k+1 π r
k+1,k−−−→Hr,k → · · · →Hr,1 π r

0,1−−→Hr,0 =Hr ⊆ Jr(E)
in the category of vector bundles. It can be interpreted as Hr together with its system of total
derivatives. A morphism between infinitely prolongated linear equations is a morphism of pro-
vector bundles.

These constructions are clearly extended to the case where E itself is a pro-ind-vector bundle.
We obtain a category LPDE(M) of infinitely prolongated linear partial differential equations.

Remark 18. In this geometric formulation of partial differential equations, infinitesimal symme-
tries are given by tangent vector fields on the jet bundle whose flows preserve this submanifold
(Olver 2012; Pommaret and Lichnerowicz 1978).

The sheaf interpretation of this result is as follows. The vector bundleHr induces a sheafH r of
solutions and Hr,q a prolongated sheaf H r,q ⊂ J q+r(E ) of solutions. The infinite prolongation
H ⊆ J (E ) is a pro-object in the category of vector bundlesV(M) overM. If E is a pro-ind vector
bundle, then the same is so for H . There is an equivalence H 
 H r of sheaves, i.e., a section of
E is a solution of Hr if and only if it is a solution of the prolonged equation H.

We call the map h : H →!jE simply the sheaf of solutions. Given two sheaves of solutions
h : H →!jE and h′ : H ′ →!jE ′, a morphism γ : h→ h′ is a commutative diagram

H !jE

H ′ !jE ′

h

h′

in PI(M). We denote by Soln(M) the category of sheaves of solutions and morphisms between
them.

Proposition 19. There exists a chain of equivalences LPDE(M)
 Soln(M)
 PI(M)!j of categories.

Proof. This can be deduced from Propositions 2.4 and 2.5 of Marvan (1986) so we only
sketch the proof. The first equivalence is clear. For the second, consider the sheaf of solutions
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hr : H r →!jrE to a rth order linear partial differential equation Hr ⊆ Jr(E) and its corresponding
infinite prolongation h : H →!jE . Consider the diagram

!jH r !j!jrE

H !jE

!j!jH r !j!j!jrE

!jH !j!jE

!j(hr)

μH r
μ!jrE

h∗

h

h̃

μ
∞,r
E

μE

!j!j(hr)
!jh∗

!j(h)

!jμ∞,r
E

in PI(M) where h∗ is the morphism making the square in the top face commute and h̃ is the
morphismmaking the resulting full diagram commute.We have a functor ˜(·) sending the solution
sheaf h to the pair (H , h̃ : H →!jH ), and this pair can be shown to be a !j-coalgebra. The right
adjoint functor sends a !j-coalgebra (E , ν : E →!jE ) to the solution sheaf ν : E ⊂!jE satisfying
μE =!j(ν) which is infinitely prolonged. Then composition with ˜(·) gives an adjoint equivalence.

There exists a natural inclusion
PI(M)!j ↪→ PI(M)!j

sending a pro-ind vector bundle E to (!jE ,μj
E ) and a differential operator F :!jE → E ′ to the

composition !j(F) ◦ μ
j
E :!jE →!jE ′. The essential image of this inclusion is the full subcategory

of !j-coalgebras spanned by cofree !j-coalgebras. This follows from the fact that the Kleisli cate-
gory of any comonad is equivalent to the subcategory of cofree coalgebras of the comonad in the
Eilenberg–Moore category. Owing to Proposition 19, objects in PI(M)!j can be identified with the
sheaf of solutions to a cofree infinitely prolongated linear partial differential equation.

The category PI(M) is not a symmetric monoidal storage category with the monoidal struc-
ture given by the tensor product, since the comonad !j does not satisfy the Seely isomorphisms.
However, for the cocartesian monoidal structure, it is satisfied.

Proposition 20. The category of pro-ind vector bundles onM with the jet comonad !j is a symmetric
monoidal storage category for the cocartesian monoidal structure.

Proof. The category (V(M),⊕, 0) of smooth vector bundles is a symmetric monoidal category and
so we can deduce that the category PI(M) pro-ind objects in V(M) is also symmetric monoidal.
Let E , E ′ ∈ PI(M) and s be a local section of E . By Lemma 13, !j is a comonad. Since ⊕ is also a
product, every object of PI(M) has a unique comonoid structure given by the diagonal map which
is cocommutative. Moreover, any morphism in PI(M) is automatically a comonoid morphism.
Therefore, for a comonoid (!jE , cE , eE ), the comultiplication is given by

cE :!jE →!jE ×!jE ,
the counit is given by eE :!jE → 0 which sends j(s) to zero, and μE :!jE →!j!jE is a morphism of
comonoid objects. Furthermore, the morphism(!j(π0)⊕!j(π1)

) ◦ cE ×E ′ :!j(E × E ′)→!jE ⊕!jE ′
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is an isomorphism in PI(M) since !j(E × E ′)
!j(E ⊕ E ′) and j(s+ s′)
 j(s)+ j(s′). Finally, the
morphism

e :!j(∗)→ 0

is an isomorphism since the terminal object ∗ in PI(M) is the pro-ind zero vector bundle 0 and
it is clear that !j(0)
 0. As a result, !j is a storage comonad and PI(M) is a symmetric monoidal
storage category.

Example 21. (Connections). In analogy with a codereliction, we introduce a map

�1
E : E →!j1E

in V(M) which is natural in E , such that the linear rule ε
j
E ◦ �1

E = idE is satisfied for the comonad
!j1 . This is simply a (linear) connection. Indeed, consider the canonical map j1 : E → J 1(E ) of
sheaves. Elements in the kernel of this map can be written as df ⊗ s. The covariant derivative
associated to �1

E is then the (non C ∞
M -linear) map

∇ : E → �(�1 ⊗R E)

satisfying the Leibniz rule

∇( fs)= f∇(s)+ df ⊗ s

where �1 is the vector bundle of one forms on M. In local coordinates (xi, uk, uki ) ◦ �1
E =

(xi, uk, �k
i ), its local expression is ∇ = dxi ⊗ (∂i + �k

i ∂k). More generally, higher-order connec-
tions �k

E :!jk−1E →!jkE can be defined (Libermann 1964).

Example 22. (Tangent vector fields). Let E= TM be the tangent bundle and E = X the sheaf
of vector fields onM. Consider the sequent !A B in linear logic with denotation �−�M given by a
first-order map F : �!A�M =!j1X ⊂!jX → �B�M = E ′. Given a vector field s :U → TU onU ⊂M,
we have the first jet

j1(s) :U → J1(TU)⊂ J(TU)

to s and a commutative diagram

!jXU

∗ XU E ′
U

ε
j
XU

FU
j1(s)

s F̂U

in PI(M). Here F̂U : XU → E ′
U , where F̂U(s)
 FU(j1(s)), is the first-order linear differential

operator associated to FU .

4. Convenient Sheaves and the Distributional Comonad
Up until now, we have considered the category of pro-ind objects in V(M). However, there is
another approach which takes advantage of functional analytic properties of the space of sections
of a vector bundle. In particular, the category of pro-ind-vector bundles has several poor formal
properties arising from the category V(M). This can be remedied by embedding PI(M) into an
appropriate category. We accomplish this by endowing all our function spaces with a complete
bornological structure (Hogbe-Nlend 1977), or equivalently, a convenient vector space structure
(Frölicher and Kriegl 1988; Kriegl and Michor 1997).
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There are a number of equivalent ways one can define the category of convenient vector spaces
(Kriegl and Michor 1997). Our choice is the following. Let Born denote the category of (convex)
bornological vector spaces and bounded linear morphisms and LCTVS the category of locally
convex topological vector spaces and continuous linear morphisms. Consider the adjunction

Born LCTVS

γ

β

where γ is left adjoint to the functor β associating to a locally convex topological vector space
the bornological vector space with its von-Neumann bornology. The functor γ is fully faithful.
Therefore, we have an isomorphism V 
 β ◦ γ (V) in Born, i.e., every bornological vector space is
isomorphic to a vector space whose bornology comes from some locally convex topological vector
space. The equivalent category of topological bornological vector spaces will be denoted TBorn. A
topological bornological vector space V is said to be c∞-complete if a curve c :R→V is smooth
if and only if for every bounded linear functional f :V →R, the composition f ◦ c :R→R is
smooth.

We will define the category Conv of convenient vector spaces to be the full subcategory of
TBorn spanned by c∞-complete objects. The inclusion functor from Conv to the category TBorn
has a left adjoint

c∞ : TBorn→Conv
called the c∞-completion.

The category Conv is a closed symmetric monoidal category. We will be careful to distinguish
the structure on various function spaces. For convenient vector spacesV andW, thenHom(V ,W)
will denote the set of morphisms, HomR(V ,W) the R-vector space of R-linear morphisms and
Hom(V ,W) the convenient vector space of continuousR-linear morphisms. We use the notation
V∨ :=HomR(V ,R) for the linear dual ofV andV⊥ :=Hom(V ,R) for the continuous linear dual.

Let π : E→M be a vector bundle on M. For any U ⊆M, we endow the vector space E (U) of
sections of E with the structure of a convenient vector space induced from the nuclear Fréchet
topology of uniform convergence on compact subsets in all derivatives separately. This makes E a
sheaf of convenient vector spaces onM. The same holds for the cosheaf Ec of compactly supported
sections of E. See Lemma 5.1.1 of Costello and Gwilliam (2016) for a formal proof.

In particular, C ∞
M is a sheaf of convenient vector spaces and moreover a sheaf of convenient

algebras. An algebra is said to be convenient if it is a commutative monoid object in the symmet-
ric monoidal category Conv. This makes E a C ∞

M -module object in the category ShConvk(M) of
sheaves of convenient vector spaces. The category of convenient C ∞

M -modules will be denoted by
ConMod(C ∞

M ) :=ModC ∞
M
(ShConvk(M)).

We have a fully faithful inclusion
i : PI(M)→ConMod(C ∞

M )
of categories. The inclusion sends a pro-ind vector bundle ‘lim’r∈N‘colimq∈N’E to the gen-
uine limit limr∈Ncolimq∈NE in ConMod(C ∞

M ). This limit is well defined since the category of
convenient C ∞

M -modules is complete and cocomplete.
The category ConMod(C ∞

M ) is a closed symmetric monoidal category with tensor product
⊗C ∞

M
which we simply denote by ⊗. The C ∞

M -module of continuous linear morphisms between
two C ∞

M -modules E and E ′ will be denoted HomC ∞
M
(E , E ′).

We now describe some important examples of (co)sheaves of convenient spaces. Let T ∞ be
the convenient sheaf of distributions onM and denote by

E := E ⊗C ∞
M

T ∞
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the convenient sheaf of distributional sections of E on M. Let T ∞
c be the convenient cosheaf of

compactly supported distributions onM and

E c := Ec ⊗C ∞
c T ∞

c

the convenient cosheaf of compactly supported distributional sections of E on M. We let
Dens(M) := ∧nT∗M ⊗ oM denote the vector bundle of densities onM, where oM is the orientation
line bundle and DensM the convenient sheaf of sections of Dens(M).

Let E ∀ denote the convenient sheaf of sections of the vector bundle E∀ = E∨ ⊗Dens(M) on
M, where E∨ is the fibrewise linear dual. Likewise, let E ∀

c denote the convenient cosheaf of
compactly supported sections of E∨ ⊗Dens(M) on M. We define E ⊥ :=HomC ∞

M
(E ,C ∞

M ) and
E ⊥
c :=HomC ∞

M
(Ec,C ∞

M ) to be the continuous linear duals endowed with the strong topology of
uniform convergence on bounded subsets.

The fibrewise evaluation pairing between E and E∨ induces a morphism fib(−,−) : E∀ ⊗ E→
Dens(M) of vector bundles which extends to a pairing

evU : E ∀
c (U)× E (U)→ C ∞

M (U)

of convenientC ∞
M (U)-modules given by sending a pair (ω, s) onU ⊆M to the integral

∫
U fib(ω, s).

This construction induces isomorphisms

E ⊥(U)
 E ∀
c (U) E ⊥

c (U)
 E ∀(U)

of convenient C ∞
M (U)-modules.

Let V be a convenient vector space. A curve c :R→V is said to be smooth if all derivatives
of c exist in the underlying topological space of V . The set of smooth curves in V is denoted CV .
A morphism f :V →W of convenient vector spaces is said to be smooth if f (CV )⊆ CW . Finally,
a morphism f : E → E ′ between convenient C ∞

M -modules is smooth if E (U)→ E ′(U) is smooth
for all U ⊆M. We denote by Homsm

C ∞
M
(E , E ′) the C ∞

M -module of smooth morphisms and

E ∗ :=Homsm
C ∞
M
(E ,C ∞

M )

the smooth dual.
Let ConModsm(C ∞

M ) denote the closed symmetric monoidal category of convenient C ∞
M -

modules and smooth morphisms. We deduce from Corollary 2.11 of Kriegl and Michor (1997)
that a linear map between convenient C ∞

M -modules is smooth if and only if it is a bornological
morphism. Therefore, we have a natural forgetful functor

U :ConMod(C ∞
M )→ConModsm(C ∞

M )

which is the identity on objects and forgets the linear structure.
We now define a number of different functionals on the space of sections of a vector bundle.

Definition 23. Let E be a vector bundle on M. A linear functional on E is an element of the
continuous linear dual E ⊥. A smooth functional on E is an element of the smooth dual E ∗.

Example 24. (Polynomial functions). An intermediate class of smooth functionals are polyno-
mials. The algebra of polynomial functions on E is given by

OE := SymC ∞
M
(E ⊥)=

∞⊕
n=0

((E ⊥)⊗n)Sn 

∞⊕
n=0

((E ∀
c )

⊗n)Sn
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where the subscript Sn refers to taking coinvariants with respect to the action of the symmetric
group on the n-fold tensor product. The algebra of polynomial functions on Ec is given by

OEc := SymC ∞
M
(E ⊥

c )=
∞⊕
n=0

((E ⊥
c )⊗n)Sn 


∞⊕
n=0

((E ∀)⊗n)Sn .

Example 25 (Formal power series). A larger class of smooth functionals are those given by
formal power series. That is, the completed symmetric algebra

ÔE := ŜymC ∞
M
(E ⊥)=

∞∏
n=0

((E ⊥)⊗n)Sn 

∞∏
n=0

((E ∀
c )

⊗n)Sn

and that on compactly supported sections

ÔEc := ŜymC ∞
M
(E ⊥

c )=
∞∏
n=0

((E ⊥
c )⊗n)Sn 


∞∏
n=0

((E ∀)⊗n)Sn .

This leads to natural inclusions E ⊥ ⊂ OE ⊂ ÔE ⊂ E ∗ of sheaves and similarly for compactly sup-
ported sections. See Kerjean and Tasson (2018) for a detailed discussion of polynomials and power
series in a similar context.

We now describe a comonad which we call the distributional comonad which is a generali-
sation of that contained in Blute et al. (2012) to the setting of C ∞

M -modules. Consider the Dirac
distributional density map

δ : E → (E ∗)⊥

sending a section s to δs : F �→ F(s) where F is a smooth functional. We denote by !δE the
c∞-closure of the linear span of δ(E ) in (E ∗)⊥.

Lemma 26. The endofunctor !δ induces a comonad on ConMod(C ∞
M ).

Proof. We have an inclusion Conv→ TBorn of closed symmetric monoidal categories which
induces an inclusion ConMod(C ∞

M )→ TBMod(C ∞
M ) of C ∞

M -modules where
TBMod(C ∞

M ) :=ModC ∞
M
(ShTBorn(M)).

The left adjoint γ : TBMod(C ∞
M )→ConMod(C ∞

M ) of this inclusion is a composition of separa-
tion and completion functors.

We have a natural comultiplication map μδ :!δ →!δ!δ which object-wise μδ
E :!δE →!δ!δE

extends linearly themap δs �→ δδs and applies the separation and completion functor γ . The counit
map εδ :!δ → id object-wise εδ

E :!δE → E extends linearly the map δs �→ s and applies the functor
γ . The commutativity of the relevant diagrams can be easily verified.

We have a linear–non-linear adjunction

ConMod(C ∞
M )!δ ConMod(C ∞

M )

X

U

and a symmetric monoidal comonad !δ = X ◦U which we call the distributional comonad. The
functor X sends a C ∞

M -module E to the c∞-closure of the linear span of δ(E ), and U is a bijection
on objects.
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Proposition 27. There exists an equivalence

ConMod(C ∞
M )!δ 
ConModsm(C ∞

M )

of categories.

Proof. The Dirac distributional density map is smooth. It suffices to check the condition object-
wise and so the result follows from Lemma 5.1 of Blute et al. (2012).

Consider the sequent !A B in differential linear logic with denotation �−�M given by the
functional F : �!A�M =!δE → �B�M = E ′ and the diagram

!δE

∗ E E ′
εδ
E

Fδs

s Fsm

of convenient C ∞
M -modules. From Proposition 27, we have the smooth functional Fsm : E → E ′

with Fsm(s)
 F(δs) associated to F. We also define a map d̄δ

E : E →!δE for the distributional
comonad, following (Blute et al. 2012) by

d̄δ

E (s)= lim
h→0

δhs − δ0
h

where s ∈ E , 0 is the zero section and h the constant sheaf.

Theorem. The category of convenient C ∞
M -modules with the distributional comonad !δ and map d̄δ

is a model for intuitionistic differential linear logic.

Proof. The category of convenient vector spaces is locally presentable (Wallbridge 2015) and
closed symmetric monoidal (Kriegl andMichor 1997). Sheaves with values in a locally presentable
closed symmetric monoidal category themselves form a locally presentable closed symmetric
monoidal category, as domodules over a commutativemonoid object in such a category of sheaves
(Mesablishvili 2014). Therefore, the category of convenient C ∞

M -modules is locally presentable
closed symmetric monoidal. It is moreover an additive and therefore CMon-enriched, symmetric
monoidal category.

By Lemma 26, the functor !δ is a comonad. For each object E in ConMod(C ∞
M ), we define a

cocommutative comonoid object (!δE , cE , eE ) using the maps eE : δs �→ 1 and

cE : δs �→ δs ⊗ δs,

and then extending linearly and applying the separation and completion functor γ (see the proof
of Lemma 26). Also, since the diagrams

δs δs ⊗ δs

δδs δδs ⊗ δδs

cE

μE μE ⊗μE

c!δE

δs δδs

1

μE

eE e!δE

commute, μE :!δE →!δ!δE a morphism of comonoid objects in ConMod(C ∞
M ). Let E and E ′ be

convenient C ∞
M -modules. Then,

!δ(E × E ′)
!δE ⊗!δE ′

is an isomorphism of sheaves by extending the fibrewise statement of Proposition 5.2.4 of
Frölicher and Kriegl (1988) and Proposition 5.6 of Blute et al. (2012).
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It remains to show that the map d̄δ satisfies the conditions to be a codereliction. First, the
diagram

E !δE

E ′ !δE ′

d̄δ

E

F !δ(F)
d̄δ

E ′

commutes since limh→0
δhF(s)−δ0

h = limh→0
δF(hs)−δF(0)

h owing to the property that F is a morphism
ofC ∞

M -modules (explicitly, hs(x)= h(x)s(x) and F(hs)(x)= h(x)F(s)(x)). Therefore, d̄δ is a natural
transformation. By Theorem 6 and Corollary 4 of Blute et al. (2019), it now suffices to show that
the linear and chain rules of Definition 8 are satisfied. The left-hand side of the linear rule εE ◦ d̄δ

E
given by

s �→ lim
h→0

δhs − δ0
h

�→ lim
h→0

(
1
h
(hs− 0)

)
= s

coincides with the identity due to continuity of εE . The multiplication map of the monoid
object in the bialgebra structure is given by c̄E : δs ⊗ δt �→ δs+t and then extending linearly and
applying γ . Therefore, the left-hand side μE ◦ c̄E ◦ (d̄E ⊗ id!δE ) of the chain rule gives

s⊗ δt �→
(
lim
h→0

δhs − δ0
h

)
⊗ δt �→ lim

h→0

δhs+t − δt
h

�→ lim
h→0

δδhs+t − δδt

h

which corresponds to the right-hand side c̄!δE ◦ (d̄!δE ⊗ μ!δE ) ◦ (c̄E ⊗ id!δE ) ◦ (d̄E ⊗ cE ) by

s⊗ δt �→
(
lim
h→0

δhs − δ0
h

)
⊗ (δt ⊗ δt) �→

(
lim
h→0

δhs+t − δt
h

)
⊗ δt �→

(
lim

h′,h→0

δ( h′h (δhs+t−δt))
− δδ0

h′

)
⊗ δδt �→ lim

h′,h→0

δ( h′h (δhs+t−δt)+δt)
− δδt

h′

using associativity of the tensor product and then taking the limit h= h′ → 0 along the
diagonal.

We will call d̄δ the distributional codereliction. Let F :!δE → E ′ be a morphism in
ConMod(C ∞

M ). The deriving transformation ∂E :!δE ⊗ E →!δE is given by

∂E : δs ⊗ t
(id⊗d̄δ

E )�−−−−→ δs ⊗
(
lim
h→0

δht − δ0
h

)
c̄E�−→ lim

h→0

δs+ht − δs
h

and the derivative dF := F ◦ ∂E :!δE ⊗ E → E ′ of F in ConMod(C ∞
M ) is

dF : δs ⊗ t �→ lim
h→0

F(δs+ht)− F(δs)
h

for local sections s, t ∈ E . Using the adjunction of Proposition 27, we have, by abuse of notation,
an operator

d :Homsm
C ∞
M
(E , E ′)→HomC ∞

M
(E , HomC ∞

M
(E , E ′))

defined by

dFsm(s, t)= lim
h→0

Fsm(s+ ht)− Fsm(s)
h

= d
dh

∣∣∣∣
h=0

Fsm(s+ ht).
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This derivative operator is linear and bounded, and dFsm(s, t) is the functional derivative at the
section s of E in the direction of the section t. When E ′ = C ∞

M , another common notation for
dFsm(s, t) is

dFsm(s, t)=
∫
U

δFsm

δs
(x)t(x)dx

for U ⊆M.

5. Comonad Composition and Non-linearity
In Section 4, we have shown that the category of convenient C ∞

M -modules is a model for intu-
itionistic differential linear logic using the distributional comonad !δ . Combining this result with
the extension of the model in Section 3 to this same category, we obtain a compatible model based
on composition with the infinite jet comonad, i.e., these two comonads interact in a natural way
so that their composition induces a model for intuitionistic differential linear logic.

First, we update the finite jet functor by lifting it to an endofunctor !jr :ConMod(C ∞
M )→

ConMod(C ∞
M ) and leverage the convenient structure to define

J (E ) := lim
r∈N(J

r(E ))

as a genuine limit in ConMod(C ∞
M ). The infinite prolongation thus induces an endofunctor

!j :ConMod(C ∞
M )→ConMod(C ∞

M )

on the category of convenient C ∞
M -modules. The following result is clear from Lemma 13.

Corollary 28. The endofunctor !j is a comonad on ConMod(C ∞
M ).

The category ConMod(C ∞
M ) is endowed with a cocartesian monoidal structure with monoidal

product ⊕ and unit 0. We have a linear–non-linear adjunction

ConMod(C ∞
M )!j ConMod(C ∞

M )

X

U

and a symmetric monoidal comonad !j = X ◦U which we call the jet comonad. Here X sends a
C ∞
M -module E to J (E ) and the right adjoint U is an object bijection. The jet codereliction d̄ j

extends to a natural transformation on ConMod(C ∞
M ). A corollary of Theorem 20 is now the

following.

Corollary 29. The category of convenient C ∞
M -modules with the jet comonad !j is a symmetric

monoidal storage category for the cocartesian monoidal structure.

Owing to the discussion in Section 3, we have an isomorphism

HomConModsm(C ∞
M )(J (E ), E ′)
Diff sm(E , E ′)

where the right-hand side denotes the set of smooth partial differential operators.
We now define a number of different functionals on the space of jets of sections of a vector

bundle.

https://doi.org/10.1017/S0960129520000249 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129520000249


886 J. Wallbridge

Definition 30. Let E be a vector bundle on M. A local linear functional on E is an element of the
continuous linear dual (!jE )⊥. A local smooth functional on E is an element of the smooth dual
(!jE )∗.

Local smooth functionals are also called Lagrangians in certain applications. Lagrangians
given by formal power series are particularly important in the study of perturbative classical and
quantum field theories. This is demonstrated in the following example.

Example 31. Building on Example 25, the algebra of formal power series of local linear
functionals is given by

O loc
E := ŜymC ∞

M
(!jE ⊥)

elements of which will be called Lagrangian densities. More explicitly, we identify the nth compo-
nent of a Lagrangian density onM with a compactly supported distributional section of the bundle
(J(E)∀)�n on Mn. Since local linear functionals depend only on the local nature of a section s at
each point, i.e., its jet, then we can interpret its nth component as a finite sum of densities of
the form (D1s)(D2s) . . . (Dns)d� where each Di : E → C ∞

M is a differential operator. The natural
inclusion

ιU : O loc
E (U)→ ÔE (U)

given by integration ιU(L) : s �→
∫
U L(s) defines the action SU := ιU(L) : E (U)→R of the

Lagrangian distributional density L.

Remark 32. Note that the section s in Example 31 should be nilpotent since in most cases the infi-
nite sum will not converge. Alternatively, we could define a Lagrangian density to be an element
L in O loc

E which factors through
∏r

n=0 ((!jE ⊥)⊗n)Sn for some finite r.

From Example 31, a Lagrangian sends a section s in E (U) to a formal power series in these
variables, a density which, when evaluated on a point in U depends only on the infinite jet at that
point.

We endow !jE with its canonical D∞
M -module structure. This is the canonical flat connec-

tion given by the Cartan distribution of Section 3. Then, the convenient C ∞
M -module !jE ⊥ =

HomC ∞
M
(!jE ,C ∞

M ) has a canonical D∞
M -module structure. Therefore, a local functional is a D∞

M -
module. Again, every element L of this module takes a section s of E (U) and returns a smooth
function L(s) in C ∞

M (U) with the property that L(s)(x) depends only on the ∞-jet of s at x ∈U.
Now that the jet comonad is understood as a comonad on the category of convenient C ∞

M -
modules, we combine this result with the distributional comonad of Section 4. Pre-composition
with !j gives the module !jδE :=!δ◦!jE . So !jδE is the c∞-closure of the linear span of δ(!jE ) in
(!jE ∗)⊥. The two comonads interact in the expected way.

Lemma 33. The composite comonad !jδ is a storage comonad.

Proof. There is a canonical distributive law of !j over !δ since, by definition, operators act on dis-
tributions as 〈s, j(δ)〉 := 〈j(s), δ〉 and therefore !δj 
!jδ is an isomorphism of comonads. The result
now follows from Lemma 5.

The comonad !jδ will be called the jet-distributional comonad. Now consider the map
d̄ jδ : id→!jδ given by

d̄ jδ
E (s)= lim

h→0

δh(j(s)) − δ0

h
for s ∈ E .
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Theorem. The category of convenientC ∞
M -modules with the jet-distributional comonad !jδ andmap

d̄ jδ is a model for intuitionistic differential linear logic.

Proof. By Lemma 33, the jet-distributional comonad is a storage comonad. The remainder of
the proof is obtained by applying the corresponding proof in Theorem 4 to the convenient C ∞

M -
module !jE .

The map d̄ jδ : id→!jδ will be called the jet-distributional codereliction. We have a linear–non-
linear adjunction

ConMod(C ∞
M )!jδ ConMod(C ∞

M )

X

U

where the functor X sends an object E to the c∞-closure of the linear span of δ(J (E )) and the
functor U is a bijection on objects. Objects on the left-hand side are convenient vector bundles
and whose morphisms, owing to Proposition 27, include non-linear partial differential operators
F̂sm : E → E ′. Indeed, let F :!jδE → E ′ be a morphism of C ∞

M -modules and consider the diagram

!jδE

!jE

∗ E E ′

εδ!jE F

ε
j
E

Fsmj(s)

δj(s)

s F̂sm

in ConMod(C ∞
M ). We have F(δj(s))
 Fsm(j(s))
 F̂sm(s). Moreover, taking advantage of the closed

structure and using the notation of linear logic, we have a commutative diagram

!jδE � E ′ !δE � E ′

!jE � E ′ E � E ′

◦j

◦dδ

E ◦dδ

E

◦j

sending the convenient C ∞
M -module of smooth local functionals to the convenient C ∞

M -module
of linear functionals.

The deriving transformation ∂E :!jδE ⊗ E →!jδE is defined as the composite

∂E : δj(s) ⊗ t
(id⊗d̄ jδ

E )�−−−−→ δj(s) ⊗
(
lim
h→0

δh(j(t)) − δ0

h

)
c̄E�−→ lim

h→0

δ(j(s)+h(j(t))) − δj(s)

h

and the derivative dF := F ◦ ∂E :!jδE ⊗ E → E ′ of F :!jδE → E ′ in ConMod(C ∞
M ) is given as

dF : δj(s) ⊗ t �→ lim
h→0

F(δj(s)+hj(t))− F(δj(s))
h

.

By abuse of notation, we have an operator on smooth differential operators

d :Diff sm(E , E ′)→Hom(E ,DM(E , E ′))
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defined by

d̂Fsm(s, t)= lim
h→0

F̂sm(s+ ht)− F̂sm(s)
h

= d
dh

∣∣∣∣
h=0

F̂sm
(
s+ ht)

which is linear and bounded, i.e., d̂Fsm(s, t) is the derivative of the smooth local functional F̂sm at
s in the direction t = ds.

When our sheaf is finite dimensional, we have the following more explicit description of non-
linear local functionals.

Example 34. Let E be a finite dimensional convenient C ∞
M -module. Then, there exists an

isomorphism

!jrδE 
 (!jrE ∗)⊥

of convenient C ∞
M -modules. This can be deduced from Corollary 5.1.8 of Frölicher and Kriegl

(1988).

When our smooth functionals are given by formal power series, we also have a more explicit
description. We endow DensM with its right D∞

M -module structure. Then, a local density on
U ⊆M with respect to E is an element ωU ⊗ L in the space

O loc
E (U) 
 DensM(U)⊗C ∞

M (U) ŜymR
(!jE (U)∨)

with its canonical D∞
M (U)-module structure where !jE (U)∨ =Hom(!jE (U),C ∞

M (U)). In other
words, the element ωU ⊗ L sends a section s in E (U) to a distributional density ωU ⊗ L(s) on U
such that (ωU ⊗ L(s))(x) depends only on the ∞-jet of s at x ∈U.

We obtain a sheaf O loc
E onM which is moreover a C ∞

M -module. It is a subsheaf O loc
E ⊂!jE ∗ and

the c∞-closure of the linear span of δ(!jE ) in (!jE ∗)⊥ factors through (O loc
E )⊥. This is a subspace

of !jδE (U). This restricted delta distribution δ sends j(s) to

δj(s) : ωU ⊗ L �→
∫
U
L(j(s))ωU

where L is a formal power series. In local coordinates on U ⊆M, and using integration by parts,
we have

dS(s)= d
∫
U
L(j(s))ωU =

∫
U
elα(L)dsα ∧ ωU +DαVα

for some total derivative DαVα where elα =∑
I (−D)I ∂

∂uα
I
is the Euler–Lagrange operator. Here

(−D)I = (−Di1 )(−Di2 ) . . . for the multi-index I.
Therefore, a Lagrangian is only defined up to a total derivative for compactly supported

sections. This can be exploited by forming the tensor product

Ored
E 
 DensM ⊗D∞

M
Ŝym

R
(!jE ∨)

over D∞
M . Therefore, dS(s)= 0 if and only if the section s satisfies the Euler–Lagrange equations

elα(L(j(s)))= 0. Symmetries of the action can also be interpreted as vector fields on the jet bundle
(cf. Remark 18).

We end by giving a concrete application of this construction.

Example 35 (Free and interacting scalar fields). Fix a n-dimensional compact Riemannianman-
ifold (M, g). Consider the sheaf E of sections of the trivial bundle π : E :=M ×R→M, i.e., E is
simply the sheaf C ∞

M of smooth functions onM. There exists an isomorphism (!jC ∞
M )⊥ 
 D∞

M of
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(left) D∞
M -modules. The elements L̂ in (!jC ∞

M )⊥ are spanned by elements of the form φ(xi)∂I for
xi ∈M and a partial differential operator ∂I depending on a multi-index I.

Let φ ∈ C ∞
M (M) be a scalar field. We consider the special forms of L̂ given by

L̂(j(φ))= φDφ, L̂(j(φ))= φDφ + ηφ, L(δj(φ))= φDφ +V(φ)

where the Laplacian D is the differential operator D : C ∞
M (M)→ C ∞

M (M) sending φ to �gφ, and
the density is the canonical volume form. The first two functionals are linear local functionals,
whereas the last functional is merely smooth in general. The functional derivative of the local
action functional S associated to L is

dS(φ)=
∫
M
d̂Lsm(φ)ωM =

∫
M
el(̂Lsm(φ))dφ volg

where, for local coordinates (xi, φ, φi), the Euler–Lagrange equations are

el(̂Lsm(φ))= ∂ L̂sm

∂φ
− ∂

∂xi

(
∂ L̂sm

∂φi

)
.

The principle of least action dS= 0, or equivalently el(̂Lsm(φ))= 0, leads to the partial differential
equations

�gφ = 0, �gφ = η, �gφ = −V ′(φ)

which are the Laplace, Poisson and non-linear Poisson equations, respectively. These define a
vector subbundle, affine subbundle and fibred submanifold of J2(M ×R), respectively.

To see this, let (xi, φ, φi, φij) be coordinates on J2(M ×R) and consider the function
f (xi, φ, φi, φij)=∑

1≤i≤n φii on J2(M ×R). The preimage of 0, η(x), and −V ′(φ) with respect to f
define a fibred submanifoldH2 ⊆ J2(M ×R). Taking the infinite prolongation of the equationH2,
we obtain the equation H which, assuming H2 is regular, is a pro-ind vector subbundle, pro-ind
affine subbundle and pro-ind fibered submanifold of J(M ×R), respectively. A local section φ of
π :M ×R→M is a solution of these equations if and only if j2φ(xi) ∈ H 2 
 H .

6. Conclusion
We have shown that the category of convenient sheaves is a model for intuitionistic differen-
tial linear logic. Using the jet comonad for the exponential modality gives an interpretation
of linear differential operators, and hence linear partial differential equations, in linear logic.
Alternatively, using the distributional comonad for the exponential gives an interpretation of
smooth morphisms between objects in these categories. Composing these comonads provides an
interpretation of non-linear differential operators and the variational calculus of smooth local
functionals within linear logic.

Some interesting questions remain open. The most pressing item is to elucidate the internal
logic of the model in order to provide a computational interpretation of its structure within dif-
ferential λ-calculus. Indeed, the Kleisli category of a model for intuitionistic differential linear
logic is a cartesian closed differential category, and it is these categories, introduced in Bucciarelli
et al. (2010) as differential λ-categories, that are models of the simply typed differential λ-calculus.
See Manzonetto (2012), Blute et al. (2015) for more details.

Other interesting questions include the extension to classical differential linear logic (Girard
1987), the exploration of antiderivatives and integration from the perspective of Ehrhard (2018),
Cockett and Lemay (2019) and the application of reverse-mode differentiation from Cockett et al.
(2020). Finally, we would like an expansion of the category of vector bundles to include ‘non-
smooth’ structures. This requires the introduction of tools from synthetic and derived differential
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geometry. These more elaborate structures are needed to make sense of non-linear partial differ-
ential equations and their moduli space of solutions within the context of models of differential
linear logic.

Acknowledgements. The author would like to thank Kazuo Yano and Daniel Murfet for their comments. The author also
thanks the anonymous referees whose comments led to significant improvements to the paper.

Note
1 These categories are called additive monoidal storage categories in Blute et al. (2006; 2019).We have decided to use the above
more descriptive terminology and retain the standard use of additivity (Mac Lane 1971). In particular, an additive category is
enriched over the monoidal category Ab of abelian groups.
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Ramalho, T., Agapiou, J., Puigdoménech Badia, A., Hermann, K. M., Zwols, Y., Ostrovski, G., Cain, A., King, H.,
Summerfield, C., Blunsom, P., Kavukcuoglu, K., Hassabis, D. (2016). Hybrid computing using a neural network with
dynamic external memory. Nature 538 471–476.

Grothendieck, A. (1960). Technique de descente et théoremes d’existence en géométrie algébrique. II. le théoreme d’existence
en théorie formelle des modules. Séminaire Bourbaki 5 369–390.

Güneysu, B. and Pflaum, M. J. (2017). The profinite dimensional manifold structure of formal solution spaces of formally
integrable pdes. Symmetry, Integrability and Geometry: Methods and Applications 13 1–44.

Hogbe-Nlend, H. (1977). Bornologies and Functional Analysis, Mathematics Studies 26, North-Holland, Amsterdam.
Hyland, M. and De Paiva, V. (1993). Full intuitionistic linear logic. Annals of Pure and Applied Logic 64 (3) 273–291.
Kashiwara, M. (2003). D-Modules and Microlocal Calculus, Translations of Mathematical Monographs 217, American

Mathematical Society, Providence, Rhode Island.
Kerjean, M. (2018). A logical account for linear partial differential equations. In: Proceedings of the 33rd Annual ACM/IEEE

Symposium on Logic in Computer Science, ACM, 589–598.
Kerjean, M. and Tasson, C. (2018). Mackey-complete spaces and power series–a topological model of differential linear logic.

Mathematical Structures in Computer Science 28 (4) 472–507.
Khavkine, I. and Schreiber, U. (2017). Synthetic geometry of differential equations: I. jets and comonad structure. arXiv

preprint arXiv:1701.06238.
Kriegl, A. and Michor, P. W. (1997). The Convenient Setting of Global Analysis, Mathematical Surveys and Monographs 53,

American Mathematical Society.
Lagaris, I. E., Likas, A. and Fotiadis, D. I. (1998). Artificial neural networks for solving ordinary and partial differential

equations. IEEE Transactions on Neural Networks 9 (5) 987–1000.
Libermann, P. (1964). Sur la géométrie des prolongements des espaces fibrés vectoriels. Annales de l’institut Fourier 14 (1)

145–172.
Long, Z., Lu, Y. and Dong, B. (2019). Pde-net 2.0: Learning pdes from data with a numeric-symbolic hybrid deep network.

Journal of Computational Physics 399 108925.
Mac Lane, S. (1971).Categories for theWorkingMathematician, Graduate Texts inMathematics 5, Springer-Verlag, NewYork.
Mackey, G. W. (1945). On infinite-dimensional linear spaces. Transactions of the American Mathematical Society 57 155–207.
Manzonetto, G. (2012). What is a categorical model of the differential and the resource λ-calculi?Mathematical Structures in

Computer Science 22 (3) 451–520.
Marvan, M. (1987). A note on the category of partial differential equations. In: Differential Geometry and Its Applications,

Proceedings of International Conference, Proc. Conf. Brno, 1986, J.E. Purkyně University, Brno 235–244.
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