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Let pc(Qn) and pc(Z
n) denote the critical values for nearest-neighbour bond percolation

on the n-cube Qn = {0, 1}n and on Zn, respectively. Let Ω = n for G = Qn and Ω = 2n for

G = Zn denote the degree of G. We use the lace expansion to prove that for both G = Qn

and G = Zn,

pc(G) = Ω−1 + Ω−2 +
7

2
Ω−3 + O(Ω−4).

This extends by two terms the result pc(Qn) = Ω−1 + O(Ω−2) of Borgs, Chayes, van der

Hofstad, Slade and Spencer, and provides a simplified proof of a previous result of Hara

and Slade for Zn.

1. Main result

We consider bond percolation on Zn with edge set consisting of pairs {x, y} of vertices in Zn

with ‖x− y‖1 = 1, where ‖w‖1 =
∑n

j=1 |wj | for w ∈ Zn. Bonds (edges) are independently

occupied with probability p and vacant with probability 1− p. We also consider bond

percolation on the n-cube Qn, which has vertex set {0, 1}n and edge set consisting of pairs

{x, y} of vertices in {0, 1}n with ‖x− y‖1 = 1, where we regard Qn as an additive group

with addition component-wise modulo 2. Again bonds are independently occupied with

probability p and vacant with probability 1− p. We write G in place of Qn and Zn when

we wish to refer to both models simultaneously. We write Ω for the degree of G, so that

Ω = 2n for Zn and Ω = n for Qn.

Given a vertex x of G, let C(x) denote the connected component of x, i.e., the set of

vertices y such that y is connected to x by a path consisting of occupied bonds. For the

case of Zn, the critical value is given by

pc(Z
n) = inf{p : ∃ an infinite connected component a.s.}. (1.1)
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Let |C(x)| denote the cardinality of C(x), and let χ(p) = Ep|C(0)| denote the expected size

of the component containing the origin. Results of [1, 20] imply that

pc(Z
n) = sup{p : χ(p) < ∞} (1.2)

is an equivalent definition of the critical value.

For percolation on a finite graph G, such as Qn, the above characterizations of pc(G)

are inapplicable: there can be no infinite component and χ(p) is at finite for all p. In

[8, 9, 10] (in particular, see [10]), it was shown that there is a small positive constant λ0

such that the critical value pc(Qn) = pc(Qn; λ0) for the n-cube is defined implicitly by

χ(pc(Qn)) = λ02n/3. (1.3)

Given λ0, (1.3) uniquely specifies pc(Qn), since χ(p) is a polynomial in p that increases

from χ(0) = 1 to χ(1) = 2n.

Our main result is the following theorem.

Theorem 1.1.

(i) For G = Zn,

pc(Z
n) =

1

2n
+

1

(2n)2
+

7

2

1

(2n)3
+ O

(
1

(2n)4

)
as n→∞. (1.4)

(ii) For Qn, fix constants c, c′ independent of n, and choose p such that χ(p) ∈ [cn3, c′n−62n]

(e.g., p = pc(Qn; λ0) for large n). Then

p =
1

n
+

1

n2
+

7

2

1

n3
+ O

(
1

n4

)
as n→ ∞. (1.5)

The constant in the error term depends on c, c′, but does not depend otherwise on p.

By Theorem 1.1, the expansions of pc(G) in powers of Ω−1 are the same for Qn and

Zn, up to and including order Ω−3. Higher-order coefficients could be computed using

our methods, but the labour cost increases sharply with each subsequent term. Although

we stop short of computing the coefficient of Ω−4, we expect that the coefficients for Qn

and Zn will differ at this order. In [18], for both Qn and Zn, we prove the existence of

asymptotic expansions for pc(G) to all orders in Ω−1, without computing the numerical

values of the coefficients.

For Qn, it was shown by Ajtai, Komlós and Szemerédi [3] that pc(Qn) > n−1(1 + ε)

for every fixed ε > 0 (although the above definition of pc(Qn) did not appear until [8]).

Bollobás, Kohayakawa and �Luczak [7] improved this to pc(Qn) ∈ [ 1−e−o(n)

n−1
, 1
n

+ 60 (log n)3

n2 ].

Theorem 1.1 extends the very recent result pc(Qn) = n−1 + O(n−2) of [8, 9] by two terms.

Bollobás, Kohayakawa and �Luczak [7] raised the question of whether the critical value

might be equal to 1
n−1

, but we see from (1.5) that pc(Qn) = 1
n−1

+ 5
2
n−3 + O(n−4).

For Zn, Theorem 1.1 is identical to a result of Hara and Slade [16, 17]. Earlier, Bollobás

and Kohayakawa [6], Gordon [13], Kesten [19] and Hara and Slade [15] obtained the first

term in (1.4) for Zn with error terms O((log n)2n−2), O(n−65/64), O((log log n)2(n log n)−1)

and O(n−2), respectively. Recently, Alon, Benjamini and Stacey [4] gave an alternate proof
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that pc(Zn) is asymptotic to (2n)−1 as n→∞. The expansion

pc(Z
n) =

1

2n
+

1

(2n)2
+

7

2(2n)3
+

16

(2n)4
+

103

(2n)5
+ · · · (1.6)

was reported in [12], but with no rigorous bound on the remainder.

We remark that for oriented percolation on Zn, defined in such a way that the forward

degree is n, it was proved in [11] that the critical value obeys the bounds

1

n
+

1

2

1

n3
+ o

(
1

n3

)
� pc(oriented Zn) � 1

n
+

1

n3
+ O

(
1

n4

)
. (1.7)

Our method is based on the lace expansion and applies the general approach of [16, 17]

that was used to prove Theorem 1.1(i) for Zn, but our method here is simpler and applies

to Zn and Qn simultaneously.

Remark. For Qn, it is a direct consequence of [18, Proposition 1.2] that if there is some

sequence p (depending on n) with χ(p) ∈ [cn3, c′n−62n] such that p = n−1 + n−2 + 7
2
n−3 +

O(n−4), then the same asymptotic formula holds for all such p. Thus it suffices to prove

(1.5) for a single such sequence p. We fix some sequence fn such that limn→∞ fnn
−M = ∞

for every positive integer M and such that limn→∞ fne
−αn = 0 for every α > 0. We define

p̄ by χ(p̄) = fn, and observe that eventually χ(p̄) ∈ [cn3, c′n−62n]. For G = Qn, it therefore

suffices to prove that p̄ has the expansion (1.5). We will use the notation

p̄c = p̄c(G) =

{
p̄ (G = Qn),

pc(Zn) (G = Zn).
(1.8)

2. Application of the lace expansion

For Qn or Zn with n large, the lace expansion [15] gives rise to an identity

χ(p) =
1 + Π̂p

1− Ωp[1 + Π̂p]
, (2.1)

where Π̂p is a function that is finite for p � pc(G). Although we do not display the

dependence explicitly in the notation, Π̂p does depend on the graph Qn or Zn. The

identity (2.1) is valid for p � pc(G). For a derivation of the lace expansion, see, e.g., [9,

Section 3]. It follows from (2.1) that

Ωp =
1

1 + Π̂p

− χ(p)−1. (2.2)

The function Π̂p has the form

Π̂p =

∞∑
N=0

(−1)NΠ̂(N)

p , (2.3)

with

|Π̂(N)

p | �
(
C

Ω

)N∨1

uniformly in p � p̄c. (2.4)

The bounds (2.4) have different proofs for Qn and Zn, and we first discuss Qn.
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For Qn, the formula (2.1) and the bounds (2.4) are given in [9, (6.1)] and [9, Lemma 5.4],

respectively (with our Π̂p written as Π̂p(0)). In more detail, we define the parameter λ

in [9, Lemma 5.4] by λ = fn2
−n/3, which is exponentially small in n by definition of fn.

Then [9, Lemma 5.4] states that Π̂(N)

p � [const(λ3 ∨ β)]N∨1 for p � p̄c(Qn), where β can be

chosen proportional to n−1 by [9, Proposition 2.1]. (Note that the hypothesis f(p) � K

in [9, Lemma 5.4] is proved in [9, Section 5] for p � pc(Qn) with K = 3.) It follows from

(2.2) that

np̄c(Qn) =
1

1 + Π̂p̄c(Qn)

+ O(f−1
n ). (2.5)

The second term on the right-hand side of (2.5) can be neglected in the proof of

Theorem 1.1. Equations (2.3)–(2.5) give p̄c(Qn) = n−1 + O(n−2).

For Zn, (2.1) and (2.4) follow from results in [15, Section 4.3.2]. (Note the notational

difference that, in [15], our Π̂(N)

p is called ĝN(0) and that Π̂(N)

p in [15] is something different.)

Since χ(pc(Zn)) = ∞, it follows from (2.2) that

2npc(Z
n) =

1

1 + Π̂pc(Zn)

. (2.6)

With (2.3)–(2.4), this implies that pc(Zn) = (2n)−1 + O(n−2).

The identities (2.5) and (2.6) give implicit equations for p̄c which we analyse recursively.

To prove Theorem 1.1 using these equations, we will apply the following proposition. In

its statement, we write

Ω′ =

{
n− 1 for Qn,

2n− 2 for Zn.
(2.7)

Proposition 2.1. For G = Zn and G = Qn, uniformly in p � p̄c(G),

Π̂(0)

p =
3

2
ΩΩ′p4 + O(Ω−3), (2.8)

Π̂(1)

p = Ωp2 + 4ΩΩ′p4 + O(Ω−3), (2.9)

Π̂(2)

p = Ωp3 + Ω(Ω− 1)p4 + O(Ω−3), (2.10)
∞∑

N=3

Π̂(N)

p = O(Ω−3). (2.11)

We show now that Proposition 2.1 implies Theorem 1.1. It follows from Ωp̄c(G) =

1 + O(Ω−1) (as noted below (2.5) and (2.6)), (2.3), and Proposition 2.1 that

Π̂p̄c(G) = − 1

Ω
+ O(Ω−2). (2.12)

With (2.5)–(2.6), this implies that

Ωp̄c(G) = 1 +
1

Ω
+ O(Ω−2). (2.13)
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Using this in the bounds of Proposition 2.1, along with (2.3), gives

Π̂p̄c(G) =
3

2Ω2
− Ω

(
1

Ω
+

1

Ω2

)2

− 4

Ω2
+

1

Ω2
+

1

Ω2
+ O(Ω−3)

= − 1

Ω
− 5

2Ω2
+ O(Ω−3). (2.14)

Substitution of this improvement of (2.12) into (2.5)–(2.6) then gives

Ωp̄c(G) = 1 +
1

Ω
+

7

2Ω2
+ O(Ω−3). (2.15)

Thus, to prove Theorem 1.1 it suffices to prove Proposition 2.1. Since (2.11) is a consequence

of (2.4), we must prove (2.8)–(2.10). Precise definitions of Π̂(N)

p , for N = 0, 1, 2, will be given

in Section 4.

3. Preliminaries

Before proving Proposition 2.1, we recall and extend some estimates from [9, 15].

Let D(x) = Ω−1 if x is adjacent to 0, and D(x) = 0 otherwise. Thus D(y − x) is the

transition probability for simple random walk on G to make a step from x to y. Let

τp(y − x) = Pp(x↔ y) denote the two-point function. For i � 0, we denote by

{x↔
i
y} (3.1)

the event that x is connected to y by an occupied (self-avoiding) path of length at least i,

and define

τ(i)

p (x, y) = P(x↔
i
y). (3.2)

We define the Fourier transform of an absolutely summable function f on the vertex

set V of G by

f̂(k) =
∑
x∈V

f(x)eik·x (k ∈ V∗), (3.3)

where V∗ = {0, π}n for Qn and V∗ = [−π, π]n for Zn. We write the inverse Fourier transform

as

f(x) =

∫
f̂(k)e−ik·x, (3.4)

where we use the convenient notation∫
ĝ(k) =

{
2−n

∑
k∈{0,π}n ĝ(k) (G = Qn),∫

[−π,π]n
ĝ(k) dnk

(2π)n
(G = Zn).

(3.5)

Let

(f ∗ g)(x) =
∑
y∈V

f(y)g(x− y) (3.6)

denote convolution, and let f∗i denote the convolution of i factors of f.
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Recall from [2] that τ̂p(k) � 0 for all k. For i, j nonnegative integers, let

T (i,j)

p =

∫
|D̂(k)|iτ̂p(k)j , (3.7)

Tp = sup
x

(pΩ)(D ∗ τ∗3p )(x). (3.8)

We will use the following lemma, which provides minor extensions of results of [9, 15].

The lemma will also be useful in [18].

Lemma 3.1. For G = Zn and G = Qn, there are constants Ki,j and K (independent of Ω)

such that, for all p � p̄c(G),

T (i,j)

p � Ki,jΩ
−i/2 (i, j � 0), (3.9)

Tp � KΩ−1, (3.10)

sup
x

τ(i)

p (x) �
{
KΩ−1 (i = 1),

2iKi,1Ω−i/2 (i � 2).
(3.11)

The above bounds are valid for n � 1 for Qn, and for n larger than an absolute constant for

Zn, except that (3.9) also requires n � 2j + 1 for Zn.

Proof. We prove the bounds (3.9)–(3.11) in sequence.

Proof of (3.9). We first prove that for Zn and Qn, and for positive integers i, there is a

positive ai such that ∫
D̂(k)2i � ai

Ωi
. (3.12)

The left-hand side is equal to the probability that a random walk that starts at the origin

returns to the origin after 2i steps, and is therefore equal to Ω−2i times the number of

walks that make the transition from 0 to 0 in 2i steps. Each such walk must take an

even number of steps in each coordinate direction, so it must lie within a subspace of

dimension � � min{i, n}. If we fix the subspace, then each step in the subspace can be

chosen from at most 2� different directions (for Qn, from � directions). Thus, there are at

most (2�)2i walks in the subspace. Since the number of subspaces of fixed dimension � is

given by
(
n
�

)
� n�/�!, we obtain the bound

i∑
�=1

1

�!
n�(2�)2i � nii2i

i∑
�=1

1

�!
22i (3.13)

for the number of walks that make the transition from 0 to 0 in 2i steps. Multiplying by

Ω−2i to convert the number of walks into a probability leads to (3.12). This proves (3.9)

for j = 0 and i even. For j = 0 and i odd, we apply the Cauchy–Schwarz inequality in the

form
∫
|D̂(k)|i � (

∫
|D̂(k)|2i)1/2, and (3.9) then follows also for i odd. This proves (3.9) for

the case j = 0, so we now assume j � 1.
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Fix an even integer s = s(j) such that t = s/(s− 1) obeys jt < j + 1
2
. By Hölder’s

inequality,

T (i,j)

p �
(∫

D̂(k)is
)1/s(∫

τ̂p(k)jt
)1/t

. (3.14)

By (3.12), it suffices to show that
∫
τ̂p(k)jt is bounded by a constant depending on j. We

give separate arguments for this, for Zn and Qn.

For Zn, the infrared bound [15, (4.7)] implies that τ̂p(k) � 2[1− D̂(k)]−1 for sufficiently

large n, uniformly in p � pc(Zn). Thus,∫
τ̂p(k)jt � 2jt

∫
1

[1− D̂(k)]jt
. (3.15)

For A > 0 and m > 0,

1

Am
=

1

Γ(m)

∫ ∞

0

um−1e−uAdu, (3.16)

so that ∫
1

[1− D̂(k)]jt
=

1

Γ(jt)

∫ ∞

0

du ujt−1

(∫ π

−π
e−un

−1(1−cos θ) dθ

2π

)n

. (3.17)

The right-hand side is non-increasing in n, since ‖f‖p � ‖f‖q for 0 < p � q � ∞ on a

probability space. Since

1− D̂(k) =

n∑
j=1

(1− cos kj) � 2

π2

|k|2
n

, (3.18)

and since 2jt < 2j + 1, the integral on the left-hand side of (3.17) is finite when n = 2j + 1.

This completes the proof for Zn.

For Qn, we use the fact that τ̂p(0) = χ(p) to see that∫
τ̂p(k)jt = 2−nχ(p)jt + 2−n

∑
k∈{0,π}n:k �=0

τ̂p(k)jt. (3.19)

The first term on the right-hand side is at most 2−nχ(p̄c(Qn))
jt = 2−nfjtn , which is

exponentially small. For the second term, we recall from [9, Theorem 6.1] that τ̂p(k) �
[1 + O(n−1)][1− D̂(k)]−1, so it suffices to prove that

2−n
∑

k∈{0,π}n:k �=0

1

[1− D̂(k)]jt
(3.20)

is bounded uniformly in n � 1.

For this, we let m(k) denote the number of nonzero components of k. We fix an

ε > 0 and divide the sum according to whether m(k) � εn or m(k) > εn. An elementary

computation (see [9, Section 2.2.1]) gives 1− D̂(k) = 2m(k)/n. Therefore, the contribution

to (3.20) due to m(k) > εn is bounded by a constant depending only on ε and j. On the
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other hand, for k �= 0, we use 1− D̂(k) = 2m(k)/n � 2/n to see that

2−n
∑

k∈{0,π}n:0<m(k)�εn

1

[1− D̂(k)]jt
� 2−jtnjt2−n

∑
k∈{0,π}n:0<m(k)�εn

1

= 2−jtnjt2−n
εn∑

m=1

(
n

m

)

� 2−jtnjtP(X � εn), (3.21)

where X is a binomial random variable with parameters (n, 1/2). Since E[X] = n/2,

the right-hand side of (3.21) is exponentially small in n as n→∞ if we choose ε < 1
2
, by

standard large deviation bounds for the binomial distribution (see, e.g., [5, Theorem A.1.1]).

This completes the proof for Qn.

Proof of (3.10). We repeat the argument of [9, Lemma 5.5] for Qn, which applies ver-

batim for Zn. It follows from the BK (van den Berg-Kesten) inequality that if x �= 0 then

τp(x) � pΩ(D ∗ τp)(x). (3.22)

Using this, we conclude that

pΩ(D ∗ τ∗3p )(x) � pΩD(x) + 3(pΩ)2(D∗2 ∗ τ∗3p )(x), (3.23)

where the first term is the contribution where each of the three two-point functions τp(u)

in τ∗3p is evaluated at u = 0, and the second term takes into account the case where at

least one of the three displacements is nonzero. Since p � p̄c = Ω−1 + O(Ω−2) � 2Ω−1 for

large Ω, this gives

Tp � 2Ω−1 + 12T (2,3)

p � (2 + 12K2,3)Ω−1 = KΩ−1, (3.24)

where in the first inequality we used (3.4) to rewrite the second term of (3.23).

Proof of (3.11). For i � 1, the BK inequality can be applied as in the proof of (3.22) to

obtain

τ(i)

p (x) � (pΩ)i(D∗i ∗ τp)(x). (3.25)

It follows from (3.4) and (3.25) that

sup
x

τ(i)

p (x) � sup
x

(pΩ)i
∫

D̂(k)iτ̂p(k)e−ik·x � (pΩ)iT (i,1)

p � 2iKi,1Ω−i/2, (3.26)

where we have used the fact that pΩ � 2 for Ω sufficiently large. For i = 1, this can be

improved by observing that, for Ω sufficiently large,

τ(1)

p (x) � pΩD(x) + τ(2)

p (x) � 2Ω−1 + 2K2,1Ω−1. (3.27)
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4. Proof of Proposition 2.1

We now complete the proof of Proposition 2.1, by proving (2.8), (2.9), (2.10), in Sections 4.1,

4.2, 4.3, respectively. Throughout this section we fix p � p̄c(G).

4.1. Expansion for Π̂(0)

p

Given a configuration, we say that x is doubly connected to y, and we write x⇔ y, if

x = y or if there are at least two bond-disjoint paths from x to y consisting of occupied

bonds. For � � 4, an �-cycle is a set of bonds that can be written as {{vi−1, vi}}1�i�� with

v� = v0, and a cycle is an �-cycle for some � � 4. By definition,

Π̂(0)

p =
∑
x �=0

Pp(0⇔ x) =
∑
x �=0

Pp(∃ occupied cycle containing 0, x). (4.1)

We decompose the summand into (a) the probability that there exists an occupied 4-cycle

containing 0, x, plus (b) the probability that there exists an occupied cycle of length at

least 6 containing 0, x and no occupied 4-cycle containing 0, x.

The contribution to Π̂(0)

p due to (a) is bounded above by summing p4 over x �= 0 and

over 4-cycles containing 0, x. The number of 4-cycles containing 0 is 1
2
ΩΩ′, and each such

cycle has three possibilities for x. Therefore,

contribution due to (a) � 3

2
ΩΩ′p4. (4.2)

For a lower bound, we apply inclusion-exclusion and subtract from this upper bound

the sum of p7 over x �= 0 and over pairs of 4-cycles, each containing 0, x. In this case,

x must be a neighbour of 0, and p7 is the probability of simultaneous occupation of

the two 4-cycles. There are order Ω3 such pairs of 4-cycles. Since we already know that

p̄c(G) � O(Ω−1), this gives

contribution due to (a) =
3

2
ΩΩ′p4 + O(Ω3p7) =

3

2
ΩΩ′p4 + O(Ω−4). (4.3)

For the contribution due to (b), we use Lemma 4.1 below. Given increasing events E, F ,

we use the standard notation E ◦ F to denote the event that E and F occur disjointly.

Roughly speaking, E ◦ F is the set of bond configurations for which there exist two disjoint

sets of occupied bonds such that the first set guarantees the occurrence of E and the second

guarantees the occurrence of F . The BK inequality asserts that P(E ◦ F) � P(E)P(F), for

increasing events E and F . (See [14, Section 2.3] for a proof, and for a precise definition

of E ◦ F .)

Lemma 4.1. Let p � p̄c(G). Let Π(0,�)

p (x) denote the probability that there is an occupied

cycle containing 0, x, of length � or longer. Then for � � 4 and for Ω sufficiently large (not

depending on �), ∑
x �=0

Π(0,�)

p (x) � (�− 1)2�K�,2Ω−�/2. (4.4)

Proof. Let � � 4, and suppose there exists an occupied cycle containing 0, x, of length

� or longer. Then there is a j ∈ {1, . . . , �− 1} such that {0↔
j
x} ◦ {0←−−→

�−j
x} occurs.
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Therefore, by the BK inequality,

Π(0,�)

p (x) �
�−1∑
j=1

τ(j)

p (x)τ(�−j)
p (x). (4.5)

By (3.25), by the fact that pΩ � 2 for Ω sufficiently large, and by (3.9), it follows that∑
x �=0

Π(0,�)

p (x) � (�− 1)2�(D∗� ∗ τ∗2p )(0) � (�− 1)2�T (�,2)

p � (�− 1)2�K�,2Ω−�/2, (4.6)

as required.

The contribution due to case (b) is therefore at most
∑

x �=0 Π(0,6)

p (x) � O(Ω−3), and hence

Π̂(0)

p =
3

2
ΩΩ′p4 + O(Ω−3), (4.7)

which proves (2.8).

4.2. Expansion for Π̂(1)

p

To define Π̂(1)

p , we need the following definitions.

Definition. (i) Given a bond configuration, vertices x, y, and a set A of vertices of G, we

say x and y are connected through A, and write x
A↔ y, if every occupied path connecting

x to y has at least one bond with an endpoint in A.

(ii) Given a bond configuration, and a bond b, we define C̃b(x) to be the set of vertices

connected to x in the new configuration obtained by setting b to be vacant.

(iii) Given a bond configuration and vertices x, y, we say that the directed bond (u, v) is

pivotal for x↔ y if (a) x↔ y occurs when the bond {u, v} is set occupied, and (b) when

{u, v} is set vacant x↔ y does not occur, but x↔ u and v ↔ y do occur (enforcing use of

(u, v) in a particular direction). Note that there is a distinction between the events {(u, v)
is pivotal for x↔ y} and {(v, u) is pivotal for x↔ y} = {(u, v) is pivotal for y ↔ x}.

Let

E ′(v, x;A) = {v A↔ x} ∩ {� pivotal (u′, v′) for v ↔ x s.t. v
A↔ u′}. (4.8)

We will refer to the ‘no pivotal’ condition of the second event on the right-hand side of

(4.8) as the ‘NP’ condition.

By definition,

Π̂(1)

p =
∑
x

p
∑
(u,v)

E0

[
I[0⇔ u]P1(E ′(v, x; C̃ (u,v)

0 (0)))
]
, (4.9)

where the sum over (u, v) is a sum over directed bonds. On the right-hand side, the cluster

C̃
(u,v)
0 (0) is random with respect to the expectation E0, so that C̃ (u,v)

0 (0) should be regarded

as a fixed set inside the probability P1. The latter introduces a second percolation model

which depends on the original percolation model via the set C̃
(u,v)
0 (0). We use subscripts
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for C̃ and expectations, to indicate to which expectation C̃ belongs, and refer to the bond

configuration corresponding to expectation j as the ‘level-j’ configuration. We also write

Fj to indicate an event F at level j. Then (4.9) can be written as

Π̂(1)

p =
∑
x

p
∑
(u,v)

P(1)
(
{0⇔ u}0 ∩ E ′(v, x; C̃ (u,v)

0 (0))1

)
, (4.10)

where P(1) represents the joint expectation of the percolation models at levels 0 and 1.

We begin with a minor extension of a standard estimate for Π̂(1)

p (see [9, Section 4] for a

related discussion with our present notation). Making the abbreviation C̃0 = C̃
(u,v)
0 (0), we

may insert within the square brackets on the right-hand side of (4.10) the disjoint union

(
{u = 0} ∩ {x ∈ C̃0}

) •⋃ (
{u = 0} ∩ {x�∈C̃0}

) •⋃
{u �= 0}. (4.11)

The first term is the leading term and the other two produce error terms.

We first show that the term {u �= 0} produces an error term. We define the events

F0(0, u, w, z) = {0↔ u} ◦ {0↔ w} ◦ {w ↔ u} ◦ {w ↔ z}, (4.12)

F1(v, t, z, x) = {v ↔ t} ◦ {t↔ z} ◦ {t↔ x} ◦ {z ↔ x}. (4.13)

Note that F1(v, t, z, x) = F0(x, z, t, v). Recalling the definition of {x↔
j
y} from (3.1), we also

define

F (j)

0 (0, u, w, z) =
⋃

j1+j2+j3=j

{0←−→
j1

u} ◦ {0←−→
j2

w} ◦ {w ←−→
j3

u} ◦ {w ↔ z}, (4.14)

F (j)

1 (v, t, z, x) =
⋃

j1+j2+j3=j

{v ↔ t} ◦ {t←−→
j1

z} ◦ {t←−→
j2

x} ◦ {z ←−→
j3

x}. (4.15)

For u �= 0, it can be seen from the fact that u and 0 are in a level-0 cycle of length at

least 4 that

{0⇔ u �= 0}0 ∩ E ′(v, x; C̃0)1 ⊂
⋃
t,w,z

(
F (4)

0 (0, u, w, z)0 ∩ F1(v, t, z, x)1

)
, (4.16)

and hence this contribution to Π̂(1)

p is at most

p
∑

x,(u,v),t,w,z

Pp(F
(4)

0 (0, u, w, z))Pp(F1(v, t, z, x)). (4.17)

Let

A3(t, z, x) = τp(x− t)τp(z − t)τp(z − x), (4.18)

A(j)

3 (t, z, x) =
∑

j1+j2+j3=j

τ(j1)

p (x− t)τ(j2)

p (z − t)τ(j3)

p (z − x), (4.19)

B1(w, u, z, t) = (pΩD ∗ τp)(t− u)τp(z − w). (4.20)

By the BK inequality, (4.17) is at most∑
u,w

A(4)

3 (0, u, w)
∑
t,z

B1(w, u, z, t)
∑
x

A3(t, z, x). (4.21)
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Replacing w, z, t, x by w = w′ + u, z = z′ + u, t = t′ + u, x = x′ + u, and using symmetry,

this is equal to ∑
u,w′

A(4)

3 (0, u, w′)
∑
t′ ,z′

B1(w′, 0, z′, t′)
∑
x′

A3(t′, z′, x′). (4.22)

We note that B1(w′, 0, z′, t′) = B1(−t′,−t′, z′ − w′ − t′, 0), and set z′′ = z′ − t′, x′′ = x′ − t′

and then t′′ = −t′ to rewrite (4.22) as∑
u,w′

A(4)

3 (0, u, w′)
∑
t′′ ,z′′

B1(t′′, t′′, z′′ − w′, 0)
∑
x′′

A3(0, z′′, x′′)

�
(∑

u,w′

A(4)

3 (0, u, w′)

)(
sup
a

∑
t′′

B1(t′′, t′′, a, 0)

)(∑
z′′ ,x′′

A3(0, z′′, x′′)

)
. (4.23)

By (3.8) and the fact that τp(u) � (τp ∗ τp)(u),

sup
a

∑
t′′

B1(t′′, t′′, a, 0) = sup
a

(pΩD ∗ τp ∗ τp)(a) � Tp. (4.24)

Also, ∑
z′′ ,x′′

A3(0, z′′, x′′) = (τp ∗ τp ∗ τp)(0) = T (0,3)

p , (4.25)

and, using (3.25) and pΩ � 2,∑
u,w′

A(4)

3 (0, u, w′) =
∑

j1+j2+j3=4

(τ(j1)

p ∗ τ(j2)

p ∗ τ(j3)

p )(0) = O(T (4,3)). (4.26)

Therefore, (4.23) is bounded above by O(T (4,3)

p TpT
(0,3)

p ), which is O(Ω−3) by (3.9) and (3.10).

Similarly, an upper bound O(Ω−3) can be obtained for the contribution due to {u =

0} ∩ {x�∈C̃0}, starting from the observation that

{u = 0} ∩ {x�∈C̃0} ∩ E ′(v, x; C̃0)1 ⊂
⋃

t,w,z:z �=x

(
F0(0, 0, 0, z)0 ∩ F (4)

1 (v, t, z, x)1

)
. (4.27)

The inclusion (4.27) follows from the fact that if x�∈C̃0, then to obtain a nonzero

contribution to P1(E ′(v, x; C̃0)), x must be in a level-1 occupied cycle of length at least 4

which contains a vertex z ∈ C̃0.

We are left to consider the leading term∑
x

p
∑
(0,v)

P(1)
(
{x ∈ C̃

(0,v)
0 (0)} ∩ E ′(v, x; C̃ (0,v)

0 (0))1

)
. (4.28)

See Figure 1 for a depiction of the event appearing in (4.28).

The event in (4.28) is a subset of the event {x ∈ C̃0} ∩ {v ↔ x}1. Let �0 be the length

of a shortest level-0 occupied path from 0 to x (not using the bond {0, v}0), and let �1

be the length of a shortest level-1 occupied path from v to x. Then either �0 + �1 � 4,

or {0←−→
i0

x}0 ∩ {v ←−→
i1

x}1 occurs with i0 + i1 = 5. This decomposition is not disjoint, as

the latter possibility does not imply that the former does not occur, but this is fine

for an upper bound. By (3.25) and (3.9), the contribution due to the latter case is
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Figure 1. Depiction of the event appearing in (4.28). Line 0 corresponds to a connection in level 0

and line 1 to a connection in level 1.

bounded above by

5∑
i0=0

∑
x

p
∑
(0,v)

τ(i0)

p (x)τ(5−i0)

p (x− v) =

5∑
i0=0

(pΩD ∗ τ(i0)

p ∗ τ(5−i0)

p )(0)

� 6(pΩ)6T (6,2)

p = O(Ω−3), (4.29)

so this is an error term.

Since v and 0 have opposite parity, if there is a level-0 connection from 0 to x of length

�0 and a level-1 connection from v to x of length �1, then �0 + �1 must be odd. Thus,

we are left to deal with the cases �0 + �1 = 1 and �0 + �1 = 3, and we consider these

separately.

Case of �0 + �1 = 1. If �1 = 0, then x = v ∈ C̃
(0,v)
0 (0), which forces �0 � 3. This is incon-

sistent with �0 + �1 = 1 and therefore need not be considered here. We may therefore

assume that �0 = 0 and �1 = 1, so that x = 0, {0, v}1 is occupied, and, to satisfy the NP

condition of (4.8), v �∈C̃ (0,v)
0 (0). We use inclusion-exclusion on the latter, writing

I[v �∈C̃ (0,v)
0 (0)] = 1− I[v ∈ C̃

(0,v)
0 (0)]. (4.30)

The first term contributes

p
∑
(0,v)

p = Ωp2. (4.31)

The second term requires a level-0 connection from 0 to v of length 3 or more, which has

probability τ(3)

p (v), so that by (3.25) and (3.9), the second term contributes

p
∑
(0,v)

pτ(3)

p (v) = p(pΩ)(D ∗ τ(3)

p )(0) � p(pΩ)4T (4,1) = O(Ω−3), (4.32)

and hence is an error term. Thus, the case �0 + �1 = 1 contributes

Ωp2 + O(Ω−3). (4.33)

Case of �0 + �1 = 3. There are four possibilities: �1 = 0, 1, 2, 3. If �1 = 0 then x = v, the

NP condition is trivially satisfied, and there is an occupied level-0 path from 0 to v of

length 3 (which is the minimum possible since the bond {0, v}0 cannot be used). This

contribution is

ΩΩ′p4 + O(Ω3p7) = ΩΩ′p4 + O(Ω−4), (4.34)

where we have used inclusion-exclusion in a manner similar to that of the argument

used for (4.2)–(4.3). In more detail, the first term in (4.34) accounts for the sum of the
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probability of an occupied level-0 path of length 3 from 0 to v, while the second term

accounts for overcounting due to simultaneous occupation of more than one such path.

For �1 = 1, 2, 3, we note that

{x ∈ C̃0} ∩ E ′(v, x; C̃0)1 = {x ∈ C̃0} ∩ {v ↔ x}1 ∩ NP, (4.35)

and use I[NP] = 1− I[NPc], to conclude that

I[x ∈ C̃0]I[E ′(v, x; C̃0)1] = I[x ∈ C̃0]I[{v ↔ x}1]− I[x ∈ C̃0]I[{v ↔ x}1]I[NPc]. (4.36)

We first consider the first term on the right-hand side of (4.36). In the following, we

write e to denote a neighbour of 0 that is not ±v, and which will ultimately be summed

over. We again apply an inclusion-exclusion argument similar to that used for (4.34), but

do not discuss its details.

The case �1 = 1 corresponds to �0 = 2, so that x = v + e, with the three bonds {0, e}0,

{e, x}0, {x, v}1 each occupied. This contributes ΩΩ′p4. Note that in the related configuration

in which e = v, so that {0, v}0, {v, x}0, {x, v}1 are each occupied, the level-0 path {0, v}0,

{v, x}0 from 0 to x uses the bond {0, v}0, and therefore need not be considered. For Zn,

the configurations with x = 2v or x = −v contribute O(Ωp4) = O(Ω−3) which is an error

term.

The case �1 = 2 corresponds to �0 = 1, so that x = e, either with the three bonds

{0, x}0, {x, x + v}1, {x + v, v}1 each occupied, or with the three bonds {0, x}0, {0, x}1,

{0, v}1 each occupied. This contributes 2ΩΩ′p4. For Zn, the configuration with x = −v and

with {0,−v}0, {0, v}1, {0,−v}1 each occupied contributes O(Ωp4) = O(Ω−3) and thus is an

error term.

The case �1 = 3 corresponds to �0 = 0, so that x = 0, with the three bonds {0, e}1,

{e, e + v}1, {e + v, v}1 each occupied. This contributes ΩΩ′p4.

In summary, the �1 = 0 contribution, plus the first term on the right-hand side of (4.36)

with �1 = 1, 2, 3, contribute

5ΩΩ′p4 + O(Ω−3). (4.37)

Next, we consider the effect of the second term in (4.36), for �1 = 1, 2, 3.

For �1 = 1, we have seen above that, to leading order, {0, e}0, {e, x}0, {x, v}1 are

each occupied. The only possible pivotal bond for the level-1 connection from v to x

is therefore (v, x)1, and thus the failure of NP requires v ∈ C̃0. This requires a level-0

connection, disjoint from the bonds {0, e}0 and {e, x}0, which joins either 0 to v, e to v, or

x to v. This adds an additional factor O(Ω−1) and hence produces an error term.

For �1 = 2, we have seen above that there are two cases to consider. Suppose first

that x = e and {0, x}0, {x, x + v}1, {x + v, v}1 are each occupied. The only possible pivotal

bonds for the level-1 connection from v to x are (v, x + v)1 and (x + v, x)1. Violation of NP

therefore requires that either (v, x + v)1 is pivotal and v ∈ C̃0, or (x + v, v)1 is pivotal and

x + v ∈ C̃0. In either of these cases, the condition that C̃0 contain an additional vertex is

a higher-order effect and leads to an error term O(Ω−3).

The remaining case for �1 = 2 has x = e and {0, x}0, {0, x}1, {0, v}1 each occupied. The

only possible pivotal bonds for the level-1 connection from v to x are (v, 0)1 and (0, x)1.

Violation of NP therefore requires that either (v, 0)1 is pivotal and v ∈ C̃0, or (0, x)1 is
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Figure 2. The standard diagrams bounding Π(2)
p . All vertices other than 0 are summed over the vertex

set V of G, lines represent factors of τp, and vertical bars represent factors pΩD.

pivotal and 0 ∈ C̃0. The first of these cases leads to an error term as above. For the second

case, 0 ∈ C̃0 is automatic, and inclusion-exclusion applied to the requirement that (0, v)1

is pivotal leads to a net contribution for �1 = 2 of −ΩΩ′p4 + O(Ω−3).

Finally, we consider �1 = 3. In this case, x = 0, and {0, e}1, {e, e + v}1, {e + v, v}1 are

each occupied. The only possible violations of NP are: (v, v + e)1 is pivotal for the

connection from v to x = 0 and v ∈ C̃0, or (v + e, e)1 is pivotal and v + e ∈ C̃0, or (e, 0)1

is pivotal and e ∈ C̃0. In any of these three cases, the condition that C̃0 must contain the

additional vertex requires extra connections that produce an error term O(Ω−3) overall,

using reasoning analogous to that employed above.

We have thus shown that the case �0 + �1 = 3 yields a net contribution

5ΩΩ′p4 − ΩΩ′p4 + O(Ω−3) = 4ΩΩ′p4 + O(Ω−3). (4.38)

In summary, combining (4.33) and (4.38), we have proved (2.9), namely

Π̂(1)

p = Ωp2 + 4ΩΩ′p4 + O(Ω−3). (4.39)

4.3. Expansion for Π̂(2)

p

By definition,

Π̂(2)

p =
∑
x

∑
(u0 ,v0)

∑
(u1 ,v1)

p2E0

[
I[0⇔ u0]E1

[
I[E ′(v0, u1; C̃0)]E2I[E ′(v1, x; C̃1)]

]]
, (4.40)

where we have made the abbreviations C̃0 = C̃
(u0 ,v0)
0 (0) and C̃1 = C̃

(u1 ,v1)
1 (v0). A standard

estimate for Π̂(2)

p is

0 � Π̂(2)

p � 2T (0,3)

p (TpT
(0,3)

p )2 (4.41)

(see, e.g., [9, Section 4.2]; one factor 2 in [9, Proposition 4.1] is easily dropped for N = 2).

This estimate arises from the upper bound for Π̂(2)

p depicted in Figure 2. The factor 2 is

due to the fact that there are two terms in the upper bound. The two factors Tp in each

term arise from the two diagram loops containing lines with vertical bars, and the three

factors T (0,3)

p arise from the other three diagram loops.

We claim that contributions to Π̂(2)

p in which u0 �= 0, or u1 �∈C̃0, or x�∈C̃1 produce an

error term of order O(Ω−4). This follows from routine estimates, along the lines of those

used in Section 4.2, to conclude that we could assume there that u = 0 and x ∈ C̃0. These

estimates, which we do not write down here in detail, show for example that if u0 �= 0,

then the factor T (0,3)

p , arising from the leftmost diagram loop can be replaced by a constant

multiple of T (4,3)

p . By (3.9) and (3.10), this leads to a bound O(Ω−4), which is an error

https://doi.org/10.1017/S0963548306007498 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548306007498


710 R. van der Hofstad and G. Slade

Figure 3. Diagrammatic representation of the event (4.43). Line 0 corresponds to a connection in level 0,

lines 1, 2, 3 correspond to connections in level 1 and line 4 to a connection in level 2.

term. Similarly, if u1 �∈C̃ (0,v0)
0 (0), then the event E ′(v0, u1; C̃ (0,v0)

0 (0)) requires that u1 must be

in an occupied level-1 cycle of length at least 4. In this case, we may again use standard

estimates to replace a factor T (0,3)

p in (4.41), arising from the leftmost diagram loop in

Figure 2 containing u1, by a constant multiple of T (4,3)

p , and again this contribution is

O(Ω−4). Finally, the same situation arises when x�∈C̃ (u1 ,v1)
0 (v0), in which case we can replace

the factor T (0,3)

p arising from the rightmost diagram loop by a constant multiple of T (4,3)

p ,

and again this contribution is O(Ω−4). Thus, we are now left to analyse∑
x

∑
(0,v0)

∑
(u1 ,v1)

p2P(2)
(
{u1 ∈ C̃0} ∩ {x ∈ C̃1} ∩ E ′(v0, u1; C̃0)1 ∩ E ′(v1, x; C̃1)2

)
, (4.42)

where we write P(2) for the joint probability of levels 0, 1 and 2. Let G denote the

intersection of events on the right-hand side of (4.42).

The event G on the right-hand side of (4.42) is contained in the event

{0↔ u1}0 ∩
⋃
z∈G

{{v0 ↔ z} ◦ {z ↔ u1} ◦ {z ↔ x}}1 ∩ {v1 ↔ x}2, (4.43)

which is depicted in Figure 3. For any choice of j0, j1, j2, j3, j4, a subset of (4.43) is the

event

{0←−→
j0

u1}0 ∩
⋃
z∈G

{{v0 ←−→
j1

z} ◦ {z ←−→
j2

u1} ◦ {z ←−→
j3

x}}1 ∩ {v1 ←−→
j4

x}2. (4.44)

Since v0 has odd parity, and since u1 and v1 have opposite parity, we may assume that

j0 + j1 + j2 and j2 + j3 + j4 are both odd. If j0 + j1 + j2 � 3, then a standard diagrammatic

estimate gives O(T (4,3)

p Tp) = O(Ω−3) for the contribution of (4.44). Similarly, if j2 + j3 +

j4 � 3, then again a standard diagrammatic estimate gives an upper bound O(TpT
(4,3)

p ) =

O(Ω−3). Note that if u1 �= 0, then we may assume that j0 + j1 + j2 � 3, which gives an

error term.

Thus, we may assume that G occurs, that u1 = 0, and that there is a z such that the

connections of Figure 3 occur with lines of length �0 = 0, �1, �2, �3, �4, where

�1 + �2 = 1, (4.45)

�2 + �3 + �4 = 1. (4.46)

This gives three possibilities for (�0, �1, �2, �3, �4), namely

(0, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (4.47)

and it suffices to compute the contribution from each of these cases. As will be apparent

in the following, these three possibilities correspond to distinct configurations.
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Case of (0, 0, 1, 0, 0). In this case, u0 = u1 = 0, z = x = v1 = v0, and the bond {v0, u1}1 is

occupied. We examine the constraints imposed by the event G of (4.42). The events {u1 ∈
C̃0} and {x ∈ C̃1} occur trivially. For the event E ′(v0, u1; C̃0)1, we note that {v0

C̃0↔ u1}1 =

{v0
C̃0↔ 0}1 occurs. Violation of the NP condition requires {0↔

3
v0}0, and this contributes

at most
∑

(0,v0) p
3τ(3)

p (v0) � p2(pΩ)4T (4,1) � O(Ω−4). Thus, up to an error term, we may

assume that E ′(v0, u1; C̃0)1 occurs. Finally, the event E ′(v1, x; C̃1)2 occurs trivially, since

v1 = x ∈ C̃1. This case contributes

Ωp3 + O(Ω−3). (4.48)

Case of (0, 1, 0, 1, 0). In this case, u1 = 0, z = u1, v1 = x. Also, the fact that x ∈ C̃1 implies

that there must be an occupied level-1 path from v0 to z = u1 to x = v1 that does not

use the bond (u1, v1)1. This implies that the event {u1↔
3
v1}1 occurs, and hence this case

contributes an error term because it corresponds to (4.44) with j3 = 3.

Case of (0, 1, 0, 0, 1). In this case, x = z = u1 = u0 = 0, and the bonds {0, v0}1, {0, v1}2 are

occupied. We denote the neighbours of 0 by el (l = 1, . . . ,Ω), so that v0 = ei and v1 = ej
for some i, j. We examine the constraints imposed by the event G of (4.42). The event

{u1 ∈ C̃0} is satisfied trivially, since u1 = 0. For the event {x ∈ C̃1}, we consider separately

the cases i = j (i.e., v0 = v1) and i �= j (i.e., v0 �= v1). If i = j, then {x ∈ C̃1} requires that

{v0↔
3
x}1, so this is an error term of order O(Ω2p7) = O(Ω−5). If i �= j, then {x ∈ C̃1} is

achieved by the bond {x, v0}1 = {0, v0}1. Thus, we assume henceforth that i �= j.

For the E ′ events, we first note that {v0
C̃0↔ u1}1 occurs, since u1 = 0, {0, v0}1 is occupied,

and 0 ∈ C̃0. Also, {v1
C̃1↔ x}2 occurs, since x = 0, {0, v1}2 is occupied, and 0 ∈ C̃1 (when

i �= j). We will argue below that the NP condition in each E ′ event can be neglected, up

to an error term. Assuming this, this case contributes

p
∑
(0,v0)

p
∑

(0,v1): v1 �=v0

p2 + O(Ω−3) = Ω(Ω− 1)p4 + O(Ω−3). (4.49)

Next, we investigate the effect of the NP condition neglected above. If the NP condition

is violated for E ′(v0, u1; C̃0)1 = E ′(v0, 0; C̃0)1, then the bond (v0, 0)1 must be pivotal for the

level-1 connection from v0 to 0, and moreover v0 ∈ C̃0 = C̃
(0,v0)
0 (0) must occur. The latter

gives an additional factor τ(3)

p (v0) � O(Ω−3/2), and hence this contributes an error term.

Finally, if the NP condition is violated for E ′(v1, x; C̃1)2 = E ′(v1, 0; C̃1)2, then the bond

(v1, 0)2 must be pivotal for the level-2 connection from v1 to 0, and also v1 ∈ C̃1 = C̃
(0,v1)
1 (v0)

must occur. The latter gives an additional factor τ(2)

p (v1 − v0) � O(Ω−1), and hence this

contributes an error term.

Combining (4.48)–(4.49), we have

Π̂(2)

p = Ωp3 + Ω(Ω− 1)p4 + O(Ω−3), (4.50)

which is (2.10).
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5. Conclusions

We have used the lace expansion to prove that pc(G) = Ω−1 + Ω−2 + 7
2
Ω−3 + O(Ω−4) for

G = Zn and G = Qn. This extends by two terms the result pc(Qn) = n−1 + O(n−2) of [9],

and gives a simplified proof of a result of [16, 17] for Zn.

Our proof is essentially mechanical, and with sufficient labour could be directly extended

to compute higher coefficients. In particular, it would be interesting to compute the

coefficient of Ω−4, which we expect will be different for Zn and Qn.

We expect that our method can also be applied to other finite graphs for which the

lace expansion has been proved to converge in [9]. A specific example is the Hamming

cube, which has vertex set {0, 1, . . . , s}n with s � 1 fixed, and edge set consisting of pairs

of vertices which differ in exactly one component. For s = 1, the Hamming cube is the

n-cube. For s � 2, the Hamming cube contains cycles of length 3 (in contrast to Zn and

Qn), and it would be interesting to study their effect on the expansion coefficients.
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