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A generalised quasilinear (GQL) approximation (Marston et al., Phys. Rev. Lett., vol. 116,
2016, 104502) is applied to turbulent channel flow at Reτ � 1700 (Reτ is the friction
Reynolds number), with emphasis on the energy transfer in the streamwise wavenumber
space. The flow is decomposed into low- and high-streamwise-wavenumber groups, the
former of which is solved by considering the full nonlinear equations whereas the latter
is obtained from the linearised equations around the former. The performance of the
GQL approximation is subsequently compared with that of a QL model (Thomas et al.,
Phys. Fluids, vol. 26, 2014, 105112), in which the low-wavenumber group only contains
zero streamwise wavenumber. It is found that the QL model exhibits a considerably
reduced multi-scale behaviour at the given moderately high Reynolds number. This is
improved significantly by the GQL approximation which incorporates only a few more
streamwise Fourier modes into the low-wavenumber group, and it reasonably well recovers
the distance-from-the-wall scaling in the turbulence statistics and spectra. Finally, it is
proposed that the energy transfer from the low- to the high-wavenumber group in the GQL
approximation, referred to as the ‘scattering’ mechanism, depends on the neutrally stable
leading Lyapunov spectrum of the linearised equations for the high-wavenumber group.
In particular, it is shown that if the threshold wavenumber distinguishing the two groups
is sufficiently high, the scattering mechanism can be completely absent due to the linear
nature of the equations for the high-wavenumber group.
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1. Introduction

It is well known that in canonical wall-bounded turbulent shear flows such as Couette,
pipe, channel and boundary-layer flows, linear instability does not arise from the typical
mean velocity. This is also true for their laminar base flow at transitional Reynolds
numbers. However, even if all infinitesimal disturbances have to eventually decay due
to the linear stability of the laminar flow, perturbations can still grow transiently in
time and can be amplified by external forcing due to the non-normal nature of the
linearised Navier–Stokes equations. The importance of transient growth as the mechanism
of developing disturbances was first proposed in Farrell (1984) for the three-dimensional
baroclinic turbulence of midlatitude atmospheric flow. Subsequently, this growth has been
quantified by the computation of optimal transient growth, optimal harmonic response
(resolvent analysis) and stochastic response (controllability gramian) (e.g. Farrell 1988;
Butler & Farrell 1993; Farrell & Ioannou 1993b; Reddy & Henningson 1993; Trefethen
et al. 1993; Schmid & Henningson 1994; Bamieh & Dahleh 2001; Jovanović & Bamieh
2005), and it forms an important element in the subcritical transition to turbulence. Over
the last two decades, a number of studies have also shown that energy-containing motions
(coherent structures) in turbulent flows could well be described with a suitable refinement
of the analysis tools for the linearised Navier–Stokes equations, as they share the same
amplification mechanism as that of the flow structures observed in transition (e.g. Farrell &
Ioannou 1993a; Kim & Lim 2000; del Álamo & Jiménez 2006; Cossu, Pujals & Depardon
2009; Hwang & Cossu 2010a; McKeon & Sharma 2010; Zare, Jovanović & Georgiou
2017).

Despite this progress, the linearly stable nature of the typical mean velocity in
wall-bounded turbulent flows implies that solely the linearised Navier–Stokes equations
are not able to describe sustaining velocity fluctuations. Therefore, some minimal
amount of nonlinearity must be retained in the mathematical description for the
self-sustaining turbulent fluid motion. Towards this quest, various forms of ‘quasilinear
(QL) approximations’ have recently been proposed. Common to all, this approach
introduces a decomposition of the given flow into two groups: one in which all nonlinear
terms are kept and the other in which all self-interactions are ignored or suitably
modelled. The resulting equations for the first group are unchanged from the original,
while those for the second become equivalent to a linearisation around the first group,
often with an additional ad hoc model (e.g. stochastic forcing). The earliest work may
be found from Malkus (1954, 1956) and Herring (1963, 1964, 1966) where the ‘marginal
stability’ criterion was applied to the second group for the closure of the formulation.
Modern variants of the QL framework have been proposed for many different flows with
various types of suitable models for the self-interaction term of the second group (e.g.
stochastic forcing, eddy viscosity, etc.): for example, stochastic structural stability theory
(Farrell & Ioannou 2003, 2007, 2012), direct statistical simulation (Marston, Conover &
Tobias 2008; Tobias & Marston 2013), self-consistent approximation for linearly unstable
flows (Mantič-Lugo, Arratia & Gallaire 2014; Mantič-Lugo & Gallaire 2016), minimal
QL approximation augmented with an eddy-viscosity model (Hwang & Eckhardt 2020;
Skouloudis & Hwang 2021), restricted nonlinear model (RNL) (Thomas et al. 2014,
2015; Farrell, Gayme & Ioannou 2017; Pausch et al. 2019; Hernández & Hwang 2020)
and generalised quasilinear (GQL) approximations (Bakas & Ioannou 2013, 2014; Bakas,
Constantinou & Ioannou 2015; Constantinou 2015; Marston, Chini & Tobias 2016; Tobias
& Marston 2017) in the context of atmospheric turbulence.

The starting point of the present study is the RNL approach, which we refer to as the ‘QL
model’ hereafter. This model decomposes the given velocity into a streamwise mean and
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the rest. As in a typical QL approximation, the former group considers the full nonlinear
equations, whereas the latter group is approximated with the linearised equations about the
former. This model has been shown to be successful for a reduced description of turbulence
in wall-bounded shear flows especially at low Reynolds numbers (Thomas et al. 2014,
2015; Pausch et al. 2019), as it was designed to capture the key dynamics of coherent
structures described by the so-called ‘self-sustaining process’ of the flows (Hamilton,
Kim & Waleffe 1995; Waleffe 1997): i.e. the two-way interaction between ‘streamwise
elongated’ structure of streamwise velocity (streaks) and its ‘streamwise wavy’ instability
involved in the generation of cross-streamwise velocities (waves and rolls). In the QL
model, the elongated streaks are captured by the streamwise mean, and the streamwise
undulating instability is captured by the linearised equations. Despite the success of the
QL model (Thomas et al. 2014, 2015; Farrell et al. 2016; Pausch et al. 2019; Hernández
& Hwang 2020), it remains to be understood whether this approach would be suitable to
flows at high Reynolds numbers without any further refinement, as the fluid motions in
such a regime would involve vigorous nonlinear and non-local interactions across a very
wide range of length and time scales.

Recently, Hernández & Hwang (2020) examined the wavenumber-space energy transfer
of the QL model in uniform shear turbulence to understand its effect on energy cascade.
It was found that in the QL model the energy cascade in the streamwise direction
was inhibited by construction, resulting in highly elevated spectral energy intensity
residing only at the streamwise integral length scale. Only a small number of streamwise
Fourier modes therefore remain active and these are driven by the instability of the
streamwise-averaged flow, in agreement with previous findings (Thomas et al. 2014,
2015; Farrell et al. 2016; Tobias & Marston 2017). Importantly, in this study, the QL
approximation was found to significantly damage the slow pressure. This consequently
inhibits the related pressure strain which transfers the turbulent kinetic energy (TKE)
produced at the streamwise component to the cross-streamwise components, resulting in
the anisotropic fluid motions of the QL model across the entire length scales (i.e. from the
integral to the Kolmogorov scale).

In uniform shear turbulence, the existence of a self-sustaining process at single integral
length scale (Sekimoto, Dong & Jiménez 2016; Yang, Willis & Hwang 2018) renders it
an appealing platform to study the QL model especially in relation to energy cascade.
However, in wall-bounded turbulent shear flow, such a self-sustaining process emerges
at multiple scales, as the integral length scale of the flow varies continuously with the
distance from the wall (Flores & Jiménez 2010; Hwang & Cossu 2010b, 2011; Hwang
2015; Hwang & Bengana 2016). Furthermore, there is a growing body of recent evidence
suggesting that the interactions between the self-sustaining processes at different length
scales are crucial to understand the statistical and dynamical behaviours of the flow (Cho,
Hwang & Choi 2018; Doohan, Willis & Hwang 2019; Lee & Moser 2019). Given the
increasing complexities at high Reynolds numbers, it is important to understand what
kind of physical processes are precisely captured by the QL model and whether there
is a way to improve the approximation further. Indeed, the recent application of the QL
model to a moderate Reynolds number (Reτ � 940, where Reτ is the friction Reynolds
number) showed non-negligible differences to direct numerical simulation (DNS) in the
mean velocity and turbulence intensities (Farrell et al. 2016). Importantly, the streamwise
wavenumber spectra of the velocity fluctuations of the QL model did not show any
robust self-similar scaling with respect to the distance from the wall, expected from the
logarithmic mean velocity (Hwang & Lee 2020).

To address this issue, the scope of the present study is to apply the GQL approximation
(Constantinou 2015; Marston et al. 2016; Tobias & Marston 2017) to turbulent channel flow
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at a sufficiently high Reynolds number (Reτ � 1700). Here, we employ the terminology
‘GQL’ to differentiate from the ‘QL’ in recent studies (Pausch et al. 2019; Hernández &
Hwang 2020), following the works by Marston et al. (2016) and Tobias & Marston (2017).
The GQL approximation is much more flexible than the QL model, and it decomposes
the flow into two groups, the former of which contains a set of low-wavenumber Fourier
modes and the latter are composed of the other high-wavenumber modes. The former
low-wavenumber group is then solved by considering the full nonlinear equations, while
the latter high-wavenumber group is obtained from the linearised equations around the
former. In one limit where the low-wavenumber group is restricted to be composed of the
Fourier modes for streamwise uniform flow, the approximation becomes identical to the
QL model. In the other limit where the low-wavenumber group can be set to cover all
wavenumbers, it simply becomes a DNS. It is therefore expected that the application of
the GQL approximation would improve the statistical and dynamical features of turbulence
from the QL model, as has indeed been demonstrated for zonal jets (Marston et al. 2016)
and rotating Couette flow (Tobias & Marston 2017).

The GQL approximation was originally proposed to improve the QL model (i.e.
DSS; Marston et al. 2008; Tobias & Marston 2013) in the context of astrophysical and
geophysical fluid dynamics (Marston et al. 2016). As for wall-bounded turbulence, perhaps
its true value would more lie in the suppression of particular nonlinear mechanisms in a
‘controlled’ manner, especially given that various forms of large-eddy simulation (LES)
have been used successfully over many years in this type of flow. Indeed, the GQL
approximation inhibits some specific energy transfer mechanisms to the high-wavenumber
group which take place through the nonlinear interactions within the low-wavenumber
group and within the high-wavenumber group (Marston et al. 2016). This feature offers
a new opportunity for the study of wall-bounded turbulence, as the GQL approximation
can be used as a robust interventional tool to systematically examine nonlinear inter- and
intra-scale interactions, probably the most poorly understood processes in wall-bounded
turbulence at high Reynolds numbers.

For this purpose, the following two types of GQL approximations are considered in the
present and the companion study (Hernández, Yang & Hwang 2021), respectively: (1) the
low-wavenumber-mode group is given by the plane Fourier modes for |kx| ≤ kx,c (kx is
the streamwise Fourier wavenumber and kx,c the corresponding threshold wavenumber for
the decomposition) (present study); (2) the low-wavenumber-mode group is composed of
the plane Fourier modes for |kz| ≤ kz,c (kz is the spanwise Fourier wavenumber and kz,c
the corresponding threshold wavenumber for the decomposition) (Hernández et al. 2021).
The former case is to primarily examine the interactions between the energy-containing
streamwise waves, which have been understood to originate from the streak instability
and/or transient growth mechanisms in the self-sustaining processes at different length
scales (Park, Hwang & Cossu 2011; Alizard 2015; Cassinelli, de Giovanetti & Hwang
2017; de Giovanetti, Sung & Hwang 2017; Lozano-Durán et al. 2021), as well as the
energy cascade in the streamwise wavenumber space. This is also a direct extension of
the previous studies of the QL model (Thomas et al. 2014, 2015; Farrell et al. 2017; Pausch
et al. 2019; Hernández & Hwang 2020) using the GQL approximation, as the QL model
offers the dynamics of such energy-containing streamwise waves in a minimal manner.
The latter case is more directly related to the scale interaction and energy transfer between
the self-sustaining processes at different integral length scales, the issues of which have
been studied recently by Cho et al. (2018) and Doohan, Willis & Hwang (2021). The
spanwise length scale has been understood to represent the size of coherent structures
sustained by the self-sustaining process (Hwang 2015). It is therefore hoped that the GQL
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approximation offers a new perspective for these issues, while confirming the previous
findings obtained by ‘non-intrusive’ analysis (e.g. Cho et al. 2018; Doohan et al. 2021).

This paper, which is the first of the two companion papers, is organised as follows. The
GQL model is introduced in § 2, where its spectral energy budget is formulated. In § 3,
the statistics and spectra of the GQL model for channel flow are compared with those
of a wall-resolved LES. The energy-budget and pressure-strain spectra are also presented
there with a detailed analysis to explain the statistical features of the GQL model. Further
discussion is given in § 4 especially on the multi-scale behaviours of the QL and GQL
models and on the mechanism of energy transfer to the high-wavenumber group in the
QL/GQL models. Finally, the paper concludes in § 5 with some remarks.

2. Problem formulation

2.1. Generalised quasilinear approximation
We consider a pressure-driven plane channel flow, where the density and kinematic
viscosity of the fluid are given by ρ and ν, respectively. The time is denoted by t and the
space is denoted by x = (x, y, z), with x, y and z being the streamwise, wall-normal and
spanwise directions, respectively. The lower and upper walls of the channel are located
at y = 0, 2h. For the GQL approximation, the velocity u is decomposed into two groups
using a discrete Fourier transform in the streamwise and spanwise directions:

u = U l + uh, (2.1a)

where

U l =
Mz,F∑

n=−Mz,F

Mx,F∑
m=−Mx,F

ûm,n exp(i(mkx,0x + nkz,0z)) (2.1b)

and uh is given from (2.1a). Here, ûm,n is the discrete Fourier mode of the velocity, kx,0 and
kz,0 are the fundamental streamwise and spanwise wavenumbers for the given horizontal
computational domain (see § 2.4 for further computational details) and Mx,F and Mz,F
define the threshold streamwise and spanwise wavenumbers for the decomposition such
that kx,c = Mx,Fkx,0 and kz,c = Mz,Fkz,0.

With the decomposition in (2.1), two related projection operators are defined such that

Pl[u] ≡ U l, Ph[u] ≡ u − U l = uh, (2.2a,b)

and they satisfy the following properties:

Pl[·] + Ph[·] = I[·], (2.3a)

Pl[Pl[·]] = Pl[·], Ph[Ph[·]] = Ph[·], (2.3b)

Pl[Ph[·]] = Ph[Pl[·]] = 0, (2.3c)

where I[·] is the identity operator. We note that the projection operators are linear like
the Fourier transform, implying that their application to linear terms does not yield any
change in their original form. Using the definition and the properties listed in (2.2a,b) and
(2.3), the Navier–Stokes equations are first projected onto the Pl (or low-wavenumber) and
Ph (or high-wavenumber) subspaces. The subsequent linearisation of the equations for uh
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about U l leads to the GQL system of interest, i.e.

∂U l∂t + Pl[(U l · ∇)U l] = − 1
ρ

∇Pl + ν∇2U l + Pl[∇ · τ SGS] − Pl [(uh · ∇) uh]

(2.4a)

and

∂uh∂t + Ph[(uh · ∇)U l] + Ph[(U l · ∇)uh] = − 1
ρ

∇ph + ν∇2uh + Ph[∇ · τ SGS],

(2.4b)

where Pl and ph are defined to enforce ∇ · U l = 0 and ∇ · uh = 0, respectively, with
p = Pl + ph. Here, we note that the terms Pl[(U l · ∇)uh] and Pl[(uh · ∇)U l] have
been neglected in (2.4a), so that the energy averaged over the entire flow domain is
conserved. The numerical simulations in this study are performed using LES. Therefore,
the subgrid-scale stress (SGS) tensor, given by τ SGS = −(uu − uu), appears in (2.4),
where the overbar (·̄) denotes the application of the grid filter given by the numerical
discretisation of the equations (see § 2.4). The SGS tensor for the present LES here
employs a mixing-length-type model

τ SGS = νt(∇u + ∇uT), (2.5)

where the eddy viscosity νt was employed from the model proposed by Vreman (2004).
This model was developed to closely match the theoretically predicted algebraic properties
of subgrid-scale dissipation from a database of flows. In particular, the dissipation by the
eddy viscosity vanishes in the near-wall region, not requiring any special treatment such as
utilisation of a wall-damping function. The model has shown a performance comparable
to that of the standard dynamic Smagorinsky model (e.g. Germano et al. 1991), and the
value for the model constant used in this work is C = 0.03 (see also Vreman (2004) for
the details).

The GQL approximation here can also be simplified to the QL approximation if
Mx,F = 0 and Mz,F = Nz,F (Nz,F is the total number of the spanwise Fourier modes used
for simulation). In this case, the first two terms in the second line of (2.4a) disappear,
resulting in equations identical to those in previous studies (Thomas et al. 2014, 2015;
Farrell et al. 2017; Pausch et al. 2019; Hernández & Hwang 2020). On the contrary, if
Mx,F = Nx,F and Mz,F = Nz,F are set (Nx,F is the total number of the streamwise Fourier
modes used for simulation), uh = 0, ph = 0 and Ph[·] = 0. Therefore, (2.4a) becomes
identical to the equations used for the LES in this study.

2.2. Reynolds decomposition
To analyse the turbulence statistics of the GQL system and the original full system, we
consider the Reynolds decomposition of the velocity u = (u, v, w):

u = U + u′, (2.6)

in which U(≡ 〈u〉x,z,t) = (U( y), 0, 0) is the mean velocity with 〈·〉x,z,t being an average
in t, x and z directions. We note that this decomposition is merely introduced for the
statistical analysis of LES, QL and GQL models. It is different from (2.1) introduced
for the GQL approximation, and should not be confused with (2.1) implemented for the

936 A33-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

59
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.59


Generalised quasilinear approximations of turbulent flow

QL/GQL approximations. The equations for turbulent fluctuations are given by

∂u′∂t + (U · ∇)u′ + (u′ · ∇)U = − 1
ρ

∇p′ + ν∇2u′ + ∇ · τ ′
SGS

− (u′ · ∇)u′ + 〈(u′ · ∇)u′〉x,z,t. (2.7)

For the GQL approximation to (2.7), the turbulent velocity fluctuation is further
decomposed into the low- and high-wavenumber components as in (2.1a):

u′ = ul + uh. (2.8)

Using the definition and the properties listed in (2.2a,b) and (2.3), the projection of the
equations for turbulent fluctuation onto the Pl and Ph subspaces leads to the following
momentum equations:

∂ul

∂t
+ (ul · ∇) U + (U · ∇) ul = − 1

ρ
∇pl + ν∇2ul + Pl[∇ · τ ′

SGS]

− Pl [(ul · ∇) ul] − Pl [(uh · ∇) uh] + 〈(ul · ∇)ul〉x,z,t + 〈(uh · ∇)uh〉x,z,t

− Pl [(ul · ∇) uh] − Pl [(uh · ∇) ul] + 〈(ul · ∇)uh〉x,z,t + 〈(uh · ∇)ul〉x,z,t (2.9a)

and

∂uh

∂t
+ Ph [(uh · ∇) (U + ul)] + Ph [((U + ul) · ∇) uh] = − 1

ρ
∇ph + ν∇2uh

+ Ph[∇ · τ ′
SGS] − Ph [(ul · ∇) ul] − Ph [(uh · ∇) uh] , (2.9b)

where pl and ph are defined to enforce ∇ · ul = 0 and ∇ · uh = 0, respectively, with
p′ = pl + ph. For the QL and GQL approximations in (2.4), all the terms in the last line
of (2.9a) and the self-interaction terms Ph[(ul · ∇)ul] and Ph[(uh · ∇)uh] in (2.9b) are
ignored from (2.4).

2.3. Spectral energetics
To study the effect of the GQL approximation on the inter- and intra-scale energy transfer
of the given flow, here we consider the energy transfer in the Fourier space as was recently
studied by Cho et al. (2018). For this formulation, it is more convenient to consider a
one-dimensional continuous Fourier transform than the discrete version in (2.1b):

u′
j(t, r) =

∫ ∞

−∞
û′

j(t, k) eikrdk (2.10)

for j = 1, 2, 3, where ·̂ denotes the Fourier-transformed coefficient, (u′
1, u′

2, u′
3) =

(u′, v′, w′), r (= x or z) is the streamwise or spanwise coordinate and k (= kx or kz) is the
corresponding wavenumber. We then take the Fourier transformation (2.10) to (2.7), and
multiply it by the complex conjugate of û′

i(k). By taking an average in time and the planar
direction along which the Fourier transform is not taken (denoted by r⊥), the following
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energy balance in the Fourier space for the GQL approximation is obtained:〈
∂ ê(k)

∂t

〉
r⊥,t︸ ︷︷ ︸

=0

=
〈
Re

{
−û′∗(k)v̂′(k)

dU
dy

}〉
r⊥,t︸ ︷︷ ︸

P̂( y,k)

+
〈
−ν

∂ û′
i
∗
(k)

∂xj

∂ û′
i(k)

∂xj

〉
r⊥,t︸ ︷︷ ︸

ε̂( y,k)

+
〈
Re

{
−û′

i
∗
(k)

(
∂

∂xj

(
̂τ ′

ij,SGS(k)
))}〉

r⊥,t︸ ︷︷ ︸
ε̂SGS( y,k)

+
〈

Re

{
d
dy

(
p̂′(k)v̂′∗(k)

ρ

)}〉
r⊥,t︸ ︷︷ ︸

T̂p( y,k)

+
〈
Re

{
−û′

i
∗
(k)

(
∂

∂xj

(
û′

iu
′
j(k) − Ph

[
̂u′
h,iu

′
h,j(k)

]
− Ph

[
̂u′

l,iu
′
l,j(k)

]
︸ ︷︷ ︸

T̂turb( y,k)

−Pl

[
̂u′

l,iu
′
h,j(k)

]
− Pl

[
̂u′

h,iu
′
l,j(k)

]))}〉
r⊥,t︸ ︷︷ ︸

T̂turb( y,k)

+
〈
ν

d2ê(k)
dy2

〉
r⊥,t︸ ︷︷ ︸

T̂ν( y,k)

, (2.11)

where (x1, x2, x3) = (x, y, z), ê(k) = (|û′(k)|2 + |v̂′(k)|2 + |ŵ′(k)|2)/2, the superscript
(·)∗ indicates the complex conjugate and Re{·} the real part. In (2.11) the left-hand side
is the rate of each streamwise/spanwise Fourier mode of TKE, which should vanish in
a statistically steady flow. The terms on the right-hand side are the rate of turbulence
production P̂( y, k), viscous dissipation ε̂( y, k), SGS dissipation ε̂SGS( y, k), pressure
transport T̂p( y, k), turbulent transport T̂turb( y, k) and viscous transport T̂ν( y, k).

Equation (2.11) can be further split into each component for the componentwise TKE
budget. In this case, the energy transport by pressure strain appears:

Π̂x( y, k) =
〈

Re

{
p̂′(k)

ρ
∂ û′∗(k)∂x

}〉
r⊥,t

, Π̂y( y, k) =
〈

Re

{
p̂′(k)

ρ
∂v̂′∗(k)∂y

}〉
r⊥,t

,

Π̂z( y, k) =
〈

Re

{
p̂′(k)

ρ
∂ŵ′∗(k)∂z

}〉
r⊥,t

,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.12)

where Π̂x, Π̂y and Π̂z are one-dimensional spectra of the streamwise, wall-normal and
spanwise components of pressure strain, respectively. As discussed in detail in previous
studies (Mizuno 2016; Cho et al. 2018; Lee & Moser 2019; Hernández & Hwang 2020),
the pressure-strain terms play an important role in the TKE distribution to the individual
velocity components. In parallel shear flows, the turbulent production (source term) only
takes place in the streamwise component, but not in the wall-normal or in the spanwise
components. The pressure-strain terms subsequently transfer the energy produced in the
streamwise component to the other two components, as can be understood from the relation

Π̂x( y, k) + Π̂y( y, k) + Π̂z( y, k) = 0 (2.13)

due to the continuity equation. If the isotropy of fluid motions at dissipation scale is
assumed (Kolmogorov 1941), this implies that the pressure-strain terms must mediate the
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Generalised quasilinear approximations of turbulent flow

Case Re Reτ Lx/h Lz/h Δ+
x Δ+

z Mx,F λx,c/h λ+x,c Nx × Ny × Nz

LES 55 555 1673 π π/2 61.6 30.8 42 — — 128 × 129 × 128
QL 55 555 1513 π π/2 55.6 27.8 0 0 0 128 × 129 × 128
GQL1 55 555 1687 π π/2 62.0 31.0 1 3.14 5300 128 × 129 × 128
GQL5 55 555 1714 π π/2 63.1 31.6 5 0.63 1060 128 × 129 × 128
GQL25 55 555 1728 π π/2 63.6 31.8 25 0.13 212 128 × 129 × 128

Table 1. Simulation parameters in the present study. Parameters Lx/h, Ly/h and Lz/h indicate the domain
size in the x, y and z directions, respectively. Here, Re = U0h/ν and Reτ = uτ h/ν, where U0 and uτ are the
centreline velocity of the corresponding laminar base flow and the wall shear (or friction) velocity, respectively.
The grid spacings in the x and z directions are Δ+

x and Δ+
z (after aliasing). Wavelength λx,c is the threshold

streamwise wavelength, and Nx, Ny and Nz are the number of grid points in the x, y and z directions, respectively.

conversion of highly anisotropic large scale into isotropic small scale during the energy
cascade.

2.4. Numerical simulations
The LESs for the full and the GQL equations are carried out by imposing constant mass
flux across the channel. The numerical solver used in this study is diablo (Bewley 2014),
the use of which has been verified by a number of previous studies (e.g. Yang et al.
2018; Doohan et al. 2019; Hernández & Hwang 2020). In this solver, the streamwise
and spanwise directions are discretised using Fourier series with 2/3 rule for dealiasing,
and the wall-normal direction is discretised using the second-order central difference.
The time integration is conducted semi-implicitly based on the fractional-step method
(Kim & Moin 1985). All the viscous terms are implicitly advanced with the second-order
Crank–Nicolson method, while the rest of the nonlinear advection terms are explicitly
integrated with a low-storage third-order Runge–Kutta method. The present LES has
previously been validated over a range of Reynolds numbers from Reτ ≈ 1000 to Reτ ≈
4000 (de Giovanetti, Hwang & Choi 2016; de Giovanetti et al. 2017).

Table 1 summarises the parameters for the simulations performed in this study.
The Reynolds number for all the considered cases is Re = U0h/ν = 55 555 (U0 is the
centreline velocity of the laminar base flow of each simulation). The computations are
carried out in the minimal unit for large-scale self-sustaining process with Lx/h = π,
Lz/h = π/2 (Hwang & Cossu 2010b; Hwang & Bengana 2016), which are identical to
those in Farrell et al. (2017). We note that the fundamental streamwise wavenumber kx,0
(≡ 2π/Lx) in this domain primarily resolves the streak instability (or transient growth)
wave emerging from the large-scale self-sustaining process (de Giovanetti et al. 2017). For
the QL and GQL approximations, the number of streamwise Fourier modes used in the
Pl-subspace group of the velocity is varied from the minimum (Mx,F = 0) to the maximum
number used for the original full LES (Mx,F = 42), while Mz,F is kept at that in the full
LES. The threshold streamwise wavelength for the decomposition of the velocity into the
two groups in (2.1) is given by λx,c = 2π/kx,c with kx,c = 2πMx,F/Lx.

3. Results

3.1. Turbulence statistics and spectra
The first- and second-order turbulence statistics as a function of the wall-normal direction
y+ are plotted in figure 1 (the superscript (·)+ denotes normalisation by viscous inner
scale). The DNS statistics from Hoyas & Jiménez (2008) at Reτ = 2003, plotted with
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Figure 1. First- and second-order turbulence statistics for the present LES, DNS at Reτ = 2003 (Hoyas
& Jiménez 2008), QL, GQL1, GQL5 and GQL25 cases: (a) u+

rms( y+); (b) v+
rms( y+); (c) U+( y+); (d)

〈u′v′〉+x,z,t( y+).

dashed line, agree generally well with those of the present LES. The statistics of the
QL case (i.e. λx,c = ∞) are the most anisotropic in comparison with the reference LES.
In particular, u+

rms (figure 1a) and U+ (figure 1c) are larger than those of the reference
LES, whilst v+

rms (figure 1b), w+
rms (not shown) and 〈u′v′〉+x,z,t are smaller. This behaviour

agrees well with that reported by Thomas et al. (2014) and Farrell et al. (2016). By further
incorporating the next immediate Fourier streamwise mode into the Pl-subspace group
(i.e. GQL1 case), we observe that the magnitude of the near-wall streamwise velocity
peak is considerably reduced, whilst v+

rms, w+
rms and 〈u′v′〉+x,z,t become slightly larger than

those of the reference LES. Importantly, the inner-scaled mean velocity U+ now provides
a much better approximation to that of the reference LES than the QL case, even though
only one more streamwise Fourier mode is incorporated into the Pl-subspace group. We
note that the QL case shows a substantial depletion of −〈u′v′〉+x,z,t in the near-wall region
(y+ ≤ 30) compared with that of the other GQL and LES cases (figure 1d). From the
following integral form of the mean streamwise momentum equation,

U+( y+) = y+−( y+)2

2Reτ

+
∫ y+

0
〈u′v′〉+x,z,tdy+, (3.1)

where the vanishing near-wall contribution of the SGS model is ignored, the smaller value
in −〈u′v′〉+x,z,t should lead to a large value of U+ in the near-wall region, consistent with
the mean velocity in figure 1(c). As more streamwise Fourier modes are included in the
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Generalised quasilinear approximations of turbulent flow

Pl-subspace group, all the turbulence statistics converge to those of the full LES (GQL1,
GQL5 and GQL25 cases in figure 1). Finally, the statistics of the GQL25 case give the
closest match to those of the reference LES, as expected.

Figure 2 compares the premultiplied spanwise wavenumber spectra of streamwise
(figure 2a,c,e,g,i) and wall-normal (figure 2b,d, f,h,j) velocities of the reference LES with
those of the QL and GQL cases. The spectra of the LES show the typical features of
energy-containing motions in turbulent channel flow (e.g. Hwang 2015): the spanwise
wavenumber spectra of streamwise velocity are aligned along a linear ridge y ≈ 0.1λz
throughout the logarithmic region, indicating the linear growth of the spanwise integral
length scale with the distance from the wall. At the bottom end of this ridge (y+ ≈ 10 and
λ+z ≈ 100), we find a local maximum with the spanwise spacing of the near-wall streaks
(Kline et al. 1967). At the top end (y = 0.1h and λz = 1h), we find another local maximum
whose spanwise wavelength is reminiscent of the spanwise length scale of large- and
very-large-scale motions (Kovasznay, Kibens & Blackwelder 1970; del Álamo & Jiménez
2003). The existence of the aforementioned linearly scaling ridge connecting the two local
maxima has been understood as confirmation of the attached eddy hypothesis (Townsend
1976). It was also shown that the size of each of the attached eddies is characterised by
its spanwise length scale, as was demonstrated in Hwang (2015). Similarly, the spanwise
wavenumber spectra of wall-normal velocity are found to be aligned along a linear ridge
y ≈ 0.5λz (figure 2).

As indicated earlier for the statistics, the QL case shows an increased energy in some part
of the streamwise velocity spectra compared with the LES case. This is particularly notable
at λ+z ≈ 300 (λz/h ≈ 0.2), while the spectra at the other wavelengths show reduced
energy (figure 2c). On the contrary, the energy in the spanwise wavenumber spectra
of wall-normal velocity is found to be decreased at most of the spanwise wavelengths,
and little energy is seen for λ+z � 100 (figure 2d). The reduced energy in the spectra
of both streamwise and wall-normal velocities for λ+z � 100 implies that there will be
a significant reduction in the Reynolds shear stress, since the Reynolds shear stress is
simply a correlation between the streamwise and wall-normal velocities. This explains the
lack of Reynolds shear stress of the QL case in the near-wall region (figure 1d). As more
streamwise Fourier modes are included in the Pl-subspace group (i.e. GQL1, GQL5 and
GQL25), the peak location in the streamwise velocity spectra gradually moves towards
(λ+z , y+) ≈ (100, 10) along the linear ridge y = 0.1λz, while the outer part of the spectra
also becomes more energetic. In the case of the wall-normal velocity spectra, this leads the
spectra to span more towards the wall along the linear ridge y = 0.5λz. Finally, the spectra
of GQL25 are found to be fairly similar to those of the reference LES.

The premultiplied streamwise wavenumber spectra of streamwise and wall-normal
velocities are shown in figure 3 for the LES and GQL cases. The streamwise wavenumber
spectra of the LES case also show the typical features of energy-containing motions in
turbulent channel flow. Hwang (2015) showed that the energy-containing motions at a
given spanwise length scale are composed of two components: a long streaky structure
mainly carrying streamwise TKE and a short and tall vortex packet carrying TKE at all
the velocity components. This bimodal structure guides the observation of the different
features of the spectra: the linear ridges y ≈ 0.35λx (upper line) and y ≈ 0.01λx (lower
line) are plotted in figure 3. The streamwise velocity spectra appear to be very energetic
along y ≈ 0.01λx, the ridge corresponding to the aforementioned long streaky structure
(figure 3a), although this behaviour is not very clearly seen for large λx due to the small
computational domain of the present simulations in the streamwise direction – note that,
in this case, a significant amount of spectral intensity is carried by zero streamwise
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Figure 2. Premultiplied spanwise wavenumber spectra of streamwise k+
z Φ+

uu( y+, λ+z ) (a,c,e,g,i) and
wall-normal k+

z Φ+
vv( y+, λ+z ) (b,d, f,h,j) velocity for (a,b) LES, (c,d) QL, (e, f ) GQL1, (g,h) GQL5 and (i,j)

GQL25 cases.
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Generalised quasilinear approximations of turbulent flow

wavenumbers due to the streaks extending over the entire streamwise domain (i.e. λx = ∞;
see Hwang (2015) for the cases with a sufficiently large streamwise domain). The spectra
also show a non-negligible amount of energy along y ≈ 0.35λx, corresponding to the
vortex packet (Hwang 2015), and the wall-normal velocity spectra are very well aligned
with this ridge.

Compared with the reference LES, the QL case shows that the energy in both streamwise
and wall-normal velocity spectra is concentrated in the streamwise Fourier modes at λ+x �
700 and exhibits poor correlation with the two linear ridges, y ≈ 0.35λx and y ≈ 0.01λx,
as was shown in Farrell et al. (2016). This behaviour is also consistent with previous
observations (e.g. Thomas et al. 2014, 2015; Farrell et al. 2016; Tobias & Marston 2017;
Hernández & Hwang 2020), where only a reasonably small number of the streamwise
Fourier modes are active in the QL case. It has been claimed that this feature is the
basis for the significantly reduced computational cost of the QL model, as many Fourier
modes would not be needed for the QL model in the streamwise direction. However, it is
evident that this feature could conversely become a non-trivial limitation of the QL model
especially at high Reynolds numbers, as it destroys the fundamental scaling behaviour
of the streamwise wavenumber spectra in the logarithmic region. As the streamwise
Fourier modes are further incorporated into the Pl-subspace group through the GQL
approximation (figure 3e–j; i.e. GQL1, GQL5 and GQL25), the two spectra begin to show
more energy at smaller λx along the linear ridges. As a consequence, in the GQL1 and
GQL5 cases, the near-wall region is better resolved and the spectra reach out to smaller
scales down to λ+x ≈ 200. The spectra of the GQL25 case greatly resemble those of the
LES case but for a detail. It is interesting to note that the spectra do not extend below
λx,c in this case, implying that the velocity field in the Ph-subspace group yields the
trivial solution. This issue has been found to be intricately linked to the nature of the
GQL approximation, and it is discussed in detail in § 4.2.

3.2. Spectral energy transfer
Now, we study the spectral energy transfer in the LES, QL and GQL cases. The energy
transfer in the spectral space has recently been examined in detail in the studies of Cho
et al. (2018) and Lee & Moser (2019), where pressure and viscous transport spectra
are shown to be negligibly small in the logarithmic and outer regions. Also, given
that the present study is based on LES, the analysis in this section is focused on
the production and turbulent transport spectra only. The premultiplied one-dimensional
spanwise wavenumber spectra of the production and turbulent transport of each case are
plotted in figure 4. The spectra of the LES case (figure 4a,b) show the typical features of
turbulent channel flow (Cho et al. 2018). The turbulent production spectra in figure 4(a)
are almost uniformly distributed along the ridge y ≈ 0.2λz, especially over the range of
the spanwise wavelength corresponding to the logarithmic layer (300δν � λz � 1h, where
δν = ν/uτ ). The production also shows a spectral energy peak at λ+z = 100 and y+ = 15.
The premultiplied turbulent transport spectra (figure 4b) show positive and negative
regions due to the energy-conservative nature of the nonlinear terms in the Navier–Stokes
equations (Cho et al. 2018). The negative turbulent transport (blue contours in figure 4b)
is almost balanced with the (positive) production in the logarithmic and outer layers, and
the positive turbulent transport appears along a ridge indicating the Kolmogorov scale
(i.e. λz ≈ 57η, where η is the Kolmogorov scale). Finally, the turbulent transport spectra
are weakly positive in the region very close to the wall (y+ < 10) over a wide range of
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Figure 3. Premultiplied streamwise wavenumber spectra of streamwise k+
x Φ+

uu( y+, λ+x ) (a,c,e,g,i) and
wall-normal k+

x Φ+
vv( y+, λ+x ) (b,d, f,h,j) velocity for (a,b) LES, (c,d) QL, (e, f ) GQL1, (g,h) GQL5 and

(i,j) GQL25 cases. Here, the vertical line represents the streamwise cut-off wavelength (λx,c) dividing the
Ph-subspace (left) and Pl-subspace (right) regions.
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the spanwise wavelength scales (200δν � λz � 1h) and this is due to an inverse energy
transfer from small to large scales (Cho et al. 2018; Doohan et al. 2021).

Although the spectra of the QL case are well aligned along a linear ridge associated
with the logarithmic mean velocity (i.e. y ∼ λz), consistent with Farrell et al. (2016),
they show increased intensity and a production peak which has switched to λ+z ≈
300. The range of spanwise wavelengths covered by the production spectra is further
reduced, featuring little spectral intensity at small scales (λ+z � 100) and a significant
lack of it at large scales (λz/h � 1). The linear scaling of λ+z with y+ seems to have
almost disappeared. Furthermore, the region of negative turbulent transport has shrunk
to spanwise wavelengths in the range λ+z ≈ 100–1000. The near-wall region of weakly
positive turbulent transport is found to grow to larger spanwise scales in the QL model,
despite the lack of spectral intensity in the outer region. This suggests that the near-wall
positive turbulent transport at large λz in the original full LES case is at least not from
the large-scale structures, since the QL model exhibits considerably weak energy and
production spectra. Given the more energetic near-wall production of the QL model at
λ+z ≈ 300, this behaviour is consistent with the explanation given by Cho et al. (2018),
who showed that this near-wall positive turbulent transport originates from smaller scale
by visualising the related triadic wave interactions, but in contradiction to the argument
in Kawata & Tsukahara (2021) that the spanwise inter-scale transport is mainly related to
the individual dynamics of each scale. Once again, by allowing more streamwise modes
to interact nonlinearly, the resulting spectra start to recover the original range of spanwise
wavelengths, the scaling with y and the original position of the peak in the GQL1, GQL5
and GQL25 cases. The spectra of the GQL25 case provide an excellent match with those
of LES.

The premultiplied streamwise wavenumber spectra of the energy budget are shown
in figure 5. The spectra of LES show the typical features of energy cascade. However,
similarly to the streamwise velocity spectra (figure 3), the production and turbulent
transport spectra do not seem to be aligned along any ridge due to the small streamwise
box size employed in this study at a relatively low Reynolds number (for the case with a
long streamwise domain at Reτ � 5200, see Lee & Moser (2019) and Hwang & Lee (2020)
where the production and turbulent transport streamwise wavenumber spectra are shown
to scale well with the distance from the wall y). The production spectra in figure 5(a) still
show a spectral intensity peak at λ+x ≈ 1000 and y+ ≈ 20 and a non-negligible amount of
energy is also observed around y = 0.35λx, along which the wall-normal velocity spectra
are found to be aligned very well (figure 3b). The turbulent transport spectra in figure 5(b)
show a region of positive values along the ridge corresponding to viscous dissipation
(λx = 57η) and a region of negative values corresponding to the streamwise production
intensity peak (λ+x ≈ 1000).

As expected, the QL model does not exhibit the typical features of the energy cascade
observed in the LES case. In figure 5(c), the production spectra show no energy intensity
for wavelengths below λ+x = 700, and the spectra are highly localised. The transport
spectra are significantly different from those of the LES case: the negative region of the
spectra is displaced to higher wavelengths and reduced to the y+ ≈ 20 and y+ ≈ 500
locations, while the positive regions appear immediately below and between them –
note that the positive region of the turbulent transport spectra was located at λ+x �
700 in the LES case, which has been suppressed in the QL model, and the turbulent
transport has reorganised itself to redistribute the energy injected by the streamwise
production and lost by the viscous dissipation. Given the linear nature of (2.9b), it may
not be surprising to see the significantly damaged energy cascade in the streamwise
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Figure 4. Premultiplied spanwise wavenumber spectra of production k+
z y+P̂+( y+, λ+z ) (a,c,e,g,i) and

turbulent transport k+
z y+T̂+

turb( y+, λ+z ) (b,d, f,h,j) for (a,b) LES, (c,d) QL, (e, f ) GQL1, (g,h) GQL5 and (i,j)
GQL25 cases.
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Figure 5. Premultiplied streamwise wavenumber spectra of production k+
x y+P̂+( y+, λ+x ) (a,c,e,g,i) and

turbulent transport k+
x y+T̂+

turb( y+, λ+x ) (b,d, f,h,j) for (a,b) LES, (c,d) QL, (e, f ) GQL1, (g,h) GQL5 and
(i,j) GQL25 cases. Here, the vertical line represents the streamwise cut-off wavelength (λx,c) dividing the
Ph-subspace (left) and Pl-subspace (right) regions.
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Figure 6. Premultiplied spanwise wavenumber spectra of k+
z y+Π̂+

yz ( y+) for different wavenumbers (a) kzh =
4 and (b) kzh = 20 corresponding to λz/h = π/2 and λz/h = 0.31, respectively, for the LES, QL, GQL1, GQL5
and GQL25 cases.

wavenumber space. However, it should be mentioned that the length-scale selection
process in the streamwise wavenumber spectra has been understood to be related to the
streak instability and/or the related transient growth (Schoppa & Hussain 2002; Park et al.
2011; Alizard 2015; Cassinelli et al. 2017; de Giovanetti et al. 2017). Such a mechanism
can evidently be resolved by the linearised equations for the Ph subspace in the QL
model (e.g. Thomas et al. 2014; Farrell et al. 2017; Pausch et al. 2019), which only lacks
the nonlinear regeneration mechanism of streamwise vortices (e.g. the nonlinear vortex
stretching mechanism proposed by Schoppa & Hussain (2002)) involving the activation
of large pressure-strain transport by ‘slow pressure’ in the context of the ‘self-sustaining
process’ (Hernández & Hwang 2020). Indeed, in uniform shear turbulence where the
self-sustaining process exists only at single length scale, the intensity distribution of the
streamwise turbulent transport spectra of the QL model was found to behave consistently
with these previous findings (Hernández & Hwang 2020). In this sense, the behaviour of
the streamwise wavenumber spectra of turbulent transport in the QL model is not entirely
expected because they do not exhibit a distance-from-the-wall scaling that would stem
from the streak (modal/parametric) instability and/or transient growth (see § 4.1 for a
further discussion). This behaviour is gradually reverted when λx,c is decreased with the
GQL approximations: the GQL1 case already exhibits streamwise spectra reaching down
to λ+x ≈ 300, and it goes on for the GQL5 and GQL25 cases. The vertical dashed line in
each figure represents the streamwise wavenumber cut-off dividing the Pl-subspace (right)
and Ph-subspace (left) groups, and it is therefore clear that by increasing the number of
modes allowed to interact nonlinearly (i.e. the GQL cases), the Ph-subspace region of the
spectra starts to show a better match to the original LES spectra, developing a healthier
cascade in the streamwise direction (GQL5 and GQL25 cases). Once again, a complete
lack of energy is observed in the Ph-subspace region of the streamwise wavenumber space
for the GQL25 case, as in figure 3(i,j). This issue is discussed in detail in § 4.2.

3.3. Componentwise energy transport and pressure strain
The pressure-strain spectra are also studied to understand the mechanism of
componentwise TKE distribution in the GQL model. Figure 7 shows the spanwise
wavenumber spectra of the pressure strain for LES, QL and GQL cases. A negative Π̂x and
mainly positive Π̂y and Π̂z (combined into Π̂yz = Π̂y + Π̂z) can be observed throughout
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Figure 7. Premultiplied spanwise wavenumber spectra of k+
z y+Π̂+

x ( y+, λ+z ) (a,c,e,g,i) and
k+

z y+Π̂+
yz ( y+, λ+z ) (b,d, f,h,j) for (a,b) LES, (c,d) QL, (e, f ) GQL1, (g,h) GQL5 and (i,j) GQL25 cases.
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the spanwise scales for all cases. This tendency is consistent with that of Cho et al. (2018)
and the available DNS data (Hoyas & Jiménez 2008; Mizuno 2016). This means that
the energy produced at the streamwise component of the TKE through the production
term is distributed to wall-normal and spanwise components via the pressure strain. The
spectra also are distributed approximately along the linear ridge y = 0.2λz for LES, QL and
GQL cases, suggesting that both QL and GQL models capture the componentwise energy
distribution process by the pressure strain reasonably well. This is somehow expected
because this process takes place at integral length scale (i.e. y ∼ λz; see also discussion
in Cho et al. (2018)) and the QL and GQL models are designed to capture well the
integral-scale dynamics. However, the QL model appears to underestimate the spectral
energy intensity of all pressure-strain terms, and their spanwise wavenumber spectra do
not span length scales below λ+z ≈ 100. This can be seen more clearly in figure 6, where
y+k+

z Π̂yz has been represented as a function of the wall-normal distance for two different
spanwise wavenumbers. These two features are quickly improved with the application of
the GQL approximations: the spectra begin to reach smaller spanwise scales in GQL1
and approach the spectra of LES quantitatively in GQL5. The GQL25 case shows little
improvement with respect to the GQL5 case.

The streamwise wavenumber spectra of pressure strain are shown in figure 8. Similarly
to the velocity spectra, the pressure strain intensity appears to be concentrated for λ+x �
700 in the QL model. The spectra are extended to smaller λx, as λx,c is decreased by the
GQL approximations. A significant improvement is seen in GQL5, whose spectra of the
Ph-subspace group reproduce a good portion of the spectra of LES. Once again, the spectra
of GQL25 show excellent agreement with those of the LES, except for the phenomenon
already observed in figures 3 and 5: i.e. the complete depletion of energy for the streamwise
wavelengths in the Ph-subspace group.

Figure 8 shows the recovery of the pressure-strain transport along the streamwise
direction with the GQL approximations. To understand the difference between the QL and
GQL models, we introduce the following equations for pressure fluctuation (Townsend
1976; Kim 1989):

1
ρ

∇2pR = −2
dU
dy

∂v′

∂x
and

1
ρ

∇2pS = −
∂u′

j

∂xi

∂u′
i

∂xj
, (3.2a,b)

where p′ = pR + pS, and pR and pS are rapid and slow pressures, respectively. The terms
‘rapid’ and ‘slow’ are derived from the fact that only the rapid part responds immediately
to a change imposed on the mean, and the slow part feels the change through nonlinear
interactions (Kim 1989). Using the flow decomposition in (2.1a) and the projections
defined in (2.2a,b), (3.2a,b) can be written as

1
ρ

∇2pR
l = −2

dU
dy

∂vl

∂x
, (3.3a)

1
ρ

∇2pS
l = Pl

[
−∂ul,j

∂xi

∂ul,i

∂xj

]
+ Pl

[
−2

∂ul,j

∂xi

∂uh,i

∂xj

]
+ Pl

[
−∂uh,j

∂xi

∂uh,i

∂xj

]
(3.3b)

in the Pl subspace and

1
ρ

∇2pR
h = −2

dU
dy

∂vh

∂x
, (3.4a)

1
ρ

∇2pS
h = Ph

[
−∂ul,j

∂xi

∂ul,i

∂xj

]
+ Ph

[
−2

∂ul,j

∂xi

∂uh,i

∂xj

]
+ Ph

[
−∂uh,j

∂xi

∂uh,i

∂xj

]
(3.4b)
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Figure 8. Premultiplied streamwise wavenumber spectra of k+
x y+Π̂+

x ( y+, λ+x ) (a,c,e,g,i) and
k+

x y+Π̂+
yz ( y+, λ+x ) (b,d, f,h,j) for (a,b) LES, (c,d) QL, (e, f ) GQL1, (g,h) GQL5 and (i,j) GQL25 cases.

Here, the vertical line represents the streamwise cut-off wavelength (λx,c) dividing the Ph-subspace (left) and
Pl-subspace (right) regions.
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in the Ph subspace. In the QL and GQL models, the second term on the right-hand side
of (3.3b) and the first and the last terms on the right-hand side of (3.4b) are absent. In
the case of the QL model, this feature and the decomposition of velocity fluctuations
(2.1a) into a streamwise mean and the remaining fluctuation make ul,j in (3.4b) not vary
in the streamwise direction, thus each streamwise Fourier mode of pS

h is coupled only
with that of uh,j at the same wavenumber. Therefore, pS

h does not play any role in the
energy transport between the streamwise Fourier modes (Hernández & Hwang 2020). In
the GQL model, ul,j is instead allowed to vary in the streamwise direction, which evidently
enhances the streamwise-dependent slow pressure generation in the Pl subspace through
(3.3b). Furthermore, in this case, uh,j can now interact with ul,j in a ‘convolutive’ manner in
the streamwise wavenumber space for the generation of pS

h, as is indicated by (3.4b). This
feature in the GQL model would allow for a much more vigorous pressure-strain transport
than the QL model. This may explain the substantial improvement of the pressure-strain
transport only with a small increase in Mx,F (e.g. GQL 1 and GQL 5 in figures 7 and
8), rendering the slow pressure in Ph subspace more important for the streamwise energy
transport and energy cascade.

4. Discussion

In this work, the GQL approximation in the streamwise direction has been applied to
turbulent channel flow at Reτ ≈ 1700. In particular, this study aimed to examine the
nonlinear interactions between the energy-containing streamwise waves, which have been
understood to originate from the streak instability and/or transient growth mechanisms
in the self-sustaining processes at different length scales (Park et al. 2011; Alizard 2015;
Cassinelli et al. 2017; de Giovanetti et al. 2017; Lozano-Durán et al. 2021). This is a direct
extension of previous studies of the QL model (Thomas et al. 2014, 2015; Farrell et al.
2016; Hernández & Hwang 2020) using the GQL approximation, as the QL model captures
the dynamics of such energy-containing streamwise waves in a minimal manner with the
linearised Navier–Stokes equations. The spectral energetics of the QL and GQL models
have been studied and compared with those of the LES, with focus on the streamwise
nonlinear energy transport to address the efficacy of the models in generating a turbulent
state. The QL model is still able to sustain turbulence only with slight underprediction
of turbulent skin friction (note that Reτ � 1500 for the QL model; see table 1), and it
recovers reasonably well some fundamental distance-from-the-wall scaling in the spanwise
wavenumber spectra as the energy cascade is allowed along the spanwise direction. This
is essentially because the QL model contains the most fundamental elements supporting
the self-sustaining process (for further details, see Thomas et al. (2014, 2015), Farrell
et al. (2016) and Hernández & Hwang (2020)). It has been found that as the number of
streamwise Fourier modes allowed to interact nonlinearly is increased (i.e. GQL1, GQL5
and GQL25 cases), the linear scaling of the spectra with the distance from the wall, which
was absent especially in the streamwise spectra of the QL model, is rapidly recovered.
The implementation of the GQL approximation, however, has revealed a couple of points
which deserve further discussions: (i) multi-scale behaviour of the QL and GQL models
and (ii) dependence of energy transfer to the Ph subspace on the cut-off wavelength λx,c.
We address these points in this section.

4.1. Multi-scale dynamics in the QL and GQL models
As pointed out in § 1, in the QL model, the full nonlinear evolution of streaks generated
by a linear mechanism (i.e. the lift-up effect) is captured, but the subsequent streak
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instability/transient growth and breakdown processes are approximated by the linearised
equations about the streamwise-averaged velocity field. In fact, the mechanisms associated
with streak instability and transient growth have been understood to play an important
role in the determination of the streamwise length scales (Park et al. 2011; Alizard 2015;
Hwang 2015; Cassinelli et al. 2017; de Giovanetti et al. 2017; Lozano-Durán et al. 2021).
Despite being able to suitably resolve and/or model the key structural elements in the
self-sustaining process, the size of which varies from the inner to the outer length scales,
the following features indicate that the performance of the QL model may not be fully
satisfactory (e.g. figure 2c,d): (1) an excessive energy intensity around particular spanwise
wavelengths (λ+z ≈ 300–700) and (2) the reduced spectral intensity of the velocity and
production at the length scale smaller and larger than these wavelengths. It is important
to note that these features appear even if the QL model is mathematically capable of
dealing with the streak instability and transient growth mechanisms through the linearised
equations in the Ph subspace, indicating that there must be another physical mechanism
damaged in the QL model.

In fact, the two observations above indicate that the QL model exhibits a considerably
reduced multi-scale behaviour. This argument becomes clearer when a systematic
reduction of the spanwise box size is carried out in order to examine the multi-scale
behaviour of the QL model. Here, the LES and QL cases have been recomputed for
different spanwise box size (Lz/h = 0.3, 0.5, π/2). Figure 9 shows the mean velocity
and Reynolds shear stress of the simulated cases. It can be observed that the three QL
cases have very similar statistics. Although there are small deviations in the mean velocity
near the centre of the channel, such deviations are much larger in the full LES cases.
Figure 10 shows the spanwise and streamwise wavenumber spectra of Reynolds shear
stress of the original QL case (Lz/h = π/2) and that recomputed with Lz/h = 0.5. While
the very little difference in the spanwise wavenumber spectra for λz/h ≤ 0.5 is expected
given the existence of the self-sustaining processes at each spanwise length scale (Hwang
2015; Hwang & Bengana 2016), the very small difference in the streamwise wavenumber
spectra confirms that the QL model exhibits a significantly reduced multi-scale behaviour.
Here, we note that, owing to (2.11), there is no direct modification of the production
term in the implementation of the QL model – the QL approximation only changes the
form of the nonlinear turbulent transport term. Therefore, this observation implies that the
modified fluctuation interaction dynamics by the QL model has subsequently affected the
mean-fluctuation interaction described by

∂〈u〉x,z

∂t
= −dP0

dx
+ ν

∂2〈u〉x,z

∂y2 − ∂

∂y

[∫ ∞

−∞
〈û′∗(kz)v̂

′(kz)〉x dkz

]
, (4.1)

where dP0/dx is the applied mean pressure gradient (note that the eddy viscosity term for
the LES is omitted here for convenience). The resulting mean velocity has subsequently
affected the fluctuation dynamics, such that the QL model exhibits a reduced multi-scale
behaviour across the different energy-containing integral scales.

It has been shown that the QL approximation to a flow retaining the self-sustaining
process at single length scale (i.e. low-Reynolds-number case or uniform shear turbulence
case) has a tendency to elevate the production as well as the related wall shear velocity
compared to the full simulation (Hernández & Hwang (2020), and references therein).
This is consistent with the elevated energy intensity and the local mean shear rate around
a particular spanwise length scale and wall-normal location observed in this study for
the QL model (λ+z � 200–700; figure 2c,d). However, unlike the low-Reynolds-number
or single-scale cases, in the present study where the multi-scale behaviour is prominent
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Figure 10. Premultiplied (a,b) spanwise and (c,d) streamwise spectra of Reynolds shear stress for the QL
model: (a,c) Lz/h = π/2; (b,d) Lz/h = 0.5.

due to the high Reynolds number, the elevated energy intensity and production around the
particular spanwise length scales lead to a significant disruption in the mean-fluctuation
dynamics at other length scales. Indeed, to obtain a logarithmic mean velocity, it is
necessary to have approximately self-similar production and transport spectra scaling in y
for λz ∈ [200δν, 1h] (Hwang & Lee 2020), i.e.

kzyP̂(kz, y) ≈ f (kzy). (4.2)

However, in the QL model, the elevated production around a particular length scale and
wall-normal location (λ+z ≈ 300 and y+ ≈ 20–30; figure 4c) leads to an increase of the
mean shear rate at the related wall-normal location (y+ ≈ 20–30 in figure 1c). Given that
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the mass flow rate across the channel is constant in the present simulations, this must result
in a reduced mean shear rate at some other wall-normal locations. The reduced mean shear
rate at those locations would then generate the significantly reduced fluctuations at both
small and large scales, as the production there is expected to be reduced. We note that
in the case of high-Reynolds-number wall turbulence, all integral scales varying from the
viscous inner to the outer one generate turbulent skin friction almost equally (de Giovanetti
et al. 2016). This explains why the reduction in skin-friction drag (or mean shear velocity)
of the QL model is observed in this case and in Farrell et al. (2016) unlike the other QL
studies at low Reynolds number or uniform shear turbulence.

This behaviour observed in the QL model appears to be very effectively cured in
the GQL model. In fact, only a small increase in Mx,F (or a decrease in λx,c) shows
a drastic improvement in the first-order statistics and Reynolds shear stress. As shown
in figures 3 and5, this is presumably related to the improved energy cascade in the
streamwise direction due to the enlarged Pl-subspace group, which more effectively
removes the excess of energy at a particular scale (or wavelength) seen in the QL
model. This subsequently leads to much more balanced mean-fluctuation interactions at
all integral scales like in full LES. This scenario is supported by the wall-normal velocity
(figure 2) and pressure strain (figure 8) spectra of the GQL1 and GQL5 cases. In particular,
these two spectra of the GQL5 case appear to be well aligned with their linear-scaling
ridge with the distance from the wall across the entire range of scales, like those of
the LES case, despite the fact that a significant part of the flow (i.e. the Ph-subspace
group) is solely obtained by solving the linearised equations. This observation suggests
that promoting a balanced mean-fluctuation dynamics across the entire range of scales
admitting self-similar production may be the key to a successful prediction at least for the
low-order turbulence statistics. In this respect, the QL model can further be improved from
various perspectives: for example, in the context of the present QL/GQL models, λx,c can
further be considered as a function of λz, or, alternatively, one can introduce energetically
neutral stochastic forcing to enrich the dynamics. Indeed, the latter idea was central to
the recent work by Hwang & Eckhardt (2020) and Skouloudis & Hwang (2021), where
a minimal QL approximation, much simpler than the QL/GQL models in the present
study, was shown to reproduce the key statistical behaviours, if the mean-fluctuation
dynamics is captured with a suitable model for the self-interacting nonlinear term. In
the context of the present QL/GQL models, λx,c can further be considered as a function
of λz. In this respect, it is finally worth mentioning the previous work by Bretheim,
Meneveau & Gayme (2015) where a judicious choice of higher streamwise wavenumber(s)
for the Ph-subspace group was shown to improve the mean velocity profile significantly.
In their case, such a choice would have led to a reduced fluctuation at the energetic
scale (see also Hernández & Hwang (2020) for this issue). Like in our study, it is
presumable that this would subsequently result into a more balanced mean-fluctuation
interaction.

Finally, it is worth mentioning that the discussion above suggests the needs of properly
capturing all integral scales at high Reynolds numbers. The typical streamwise length
scale of the (smallest) coherent structures in the near-wall region is at O(102)–O(103)
in viscous inner units: the streamwise length of the quasi-streamwise vortices is
λ+x � 200–300 and that of the near-wall streaks is λ+x � 1000 (e.g. Hwang 2013).
Therefore, a reasonable guess of λx,c, which captures well the mean velocity profile,
would scale in viscous inner units with λ+x,c � O(102)–O(103), and GQL5 and GQL25
confirm this requirement. This also explains why the QL model works reasonably well
at low Reynolds numbers, i.e. Reτ � O(100) – at such low Reynolds numbers, the
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energy cascade barely exists and the QL model is good enough to capture the structures
at λ+x,c � O(102)–O(103).

4.2. Energy transfer to the high-wavenumber group
In figures 3, 5 and 8, we have reported that the premultiplied streamwise wavenumber
spectra of the GQL cases typically exhibit a large intensity in the Pl subspace, consistent
with Tobias & Marston (2017). Indeed, as the Pl-subspace group is enlarged by decreasing
λx,c (or increasing Mx,F), the streamwise wavenumber spectra tend to reach smaller
wavelengths. It has been claimed that this is the key advantage of the GQL model over the
QL model, as the motions in the Ph subspace can exchange energy through the convolutive
interaction (equivalently the non-local interaction in the wavenumber space) with those in
the Pl subspace, and this has been referred to as a ‘scattering’ mechanism (e.g. Tobias &
Marston 2017). However, it appears that this scattering mechanism is completely absent
when λx,c is sufficiently low (i.e. GQL25 case). In fact, the spectral intensity for λx < λx,c
in this case is zero, which is difficult to understand solely with the proposed ‘scattering’
mechanism. Finally, this observation also suggests that the GQL models may experience a
bifurcation in terms of λx,c. However, the investigation of this issue requires consideration
of many different values of λx,c especially around the bifurcation point potentially with
many different initial conditions (in the case of a subcritical bifurcation). This issue is
certainly interesting to pursue, but is beyond the scope of the present study.

To understand this behaviour better, let us consider the equations for the Ph-subspace
group. The velocity component uh is governed by the linear equation (2.4b) whose last two
terms Ph[(ul · ∇)ul] and Ph[(uh · ∇)uh] are neglected by the GQL approximation. Since
equation (2.4b) is linear and it has no driving term, (2.4b) can be written as follows:

∂uh

∂t
= L(U l)uh, (4.3)

where L is an autonomous linear operator. For an illustrative purpose, let us first simply
assume that U l is steady (or time-periodic), although U l in the present QL and GQL
models is all chaotic. In a well-posed QL/GQL model, the flow field should not diverge in
time. Therefore, the resulting stable solution to the corresponding QL/GQL model should
lead to uh in the form of either a non-trivial neutrally stable leading eigenmode (or Floquet
mode) (e.g. Malkus 1956; Pausch et al. 2019) or the trivial solution (i.e. zero) (for an
alternative based on the idea of parametric neutralisation as governing the mean state, see
also Farrell & Ioannou (2012)). Similarly, when U l is chaotic like in the present QL and
GQL models, this notion can be extended in terms of the Lyapunov exponents and vectors
of (4.3) without loss of generality. In this case, (4.3) becomes the tangent (or linearised)
equations to the trajectory U l in the Ph subspace. Therefore, any non-trivial solution uh to
(4.3) ultimately acquires the structure of the Lyapunov vector associated with the leading
Lyapunov exponent of L(U l), which can be obtained as follows:

σ = lim sup
t→∞

ln ‖uh‖
t

, (4.4)

where ‖ · ‖ is any relevant norm of the velocity field. For the given QL and GQL
models to be well-posed (or not blow up), the leading Lyapunov exponent of the linear
equations L(U l) should be either negative or zero, meaning that uh can only decay or be
marginally stable, respectively. In the case of the turbulent state produced by the QL/GQL
approximation, the leading Lyapunov exponent from (4.3) must be zero (Farrell & Ioannou
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2012; Farrell et al. 2016), if (4.3) admits a non-trivial solution. Otherwise, the only possible
solution is the trivial solution.

Given the discussion above, it is now evident that the scattering mechanism proposed
by Tobias & Marston (2017) must depend on the nature of the Lyapunov spectrum of
(4.3). It is worth mentioning that the leading Lyapunov exponent has been speculated to
be proportional to the inverse of the fastest time scale of the system (i.e. the inverse of
the Kolmogorov time; see Ruelle (1979) and Crisanti et al. (1993)). However, more recent
evidence suggests that the instability related to the leading Lyapunov exponent grows even
faster than the Kolmogorov time scale (Mohan, Fitzsimmons & Moser 2017). It is yet to
be clarified how the leading Lyapunov exponent would precisely scale, but it appears to be
reasonable to assume that it is at least associated with the fastest time scale to some extent.

Now, let us return to the linearised equations (4.3) in the QL and GQL models. As
λx,c is decreased (or Mx,F is increased), the smallest time scale of the system is expected
to be reduced. This is observed in the turbulent transport spectra, where more energy is
transferred towards smaller streamwise and spanwise length scales. In other words, the
decrease in λx,c could lead the linearised equations for a given streamwise wavenumber
in the Ph subspace to become more unstable before they reach the statistically stationary
state. This is consistently seen for the QL, GQL1 and GQL5 cases where the spectra of
the Ph-subspace group are extended to smaller streamwise and spanwise wavelengths on
decreasing λx,c (figures 2 and3). However, if λx,c is too small, (4.3) for the Ph-subspace
group is expected to be dominated by viscous dissipation. Therefore, (4.3) may only admit
the trivial solution in the Ph subspace. This explains why the streamwise wavenumber
spectra of the GQL25 case (figure 3) exhibit the trivial solution for λx < λx,c. This is
further confirmed in figure 11, where the time evolution of the energy of the streamwise
Fourier modes is plotted for the QL and GQL25 cases from a full LES flow field. Since
the low-wavenumber modes fluctuate chaotically in time, the non-trivial solutions for
the high-wavenumber-mode equations should be the ‘neutrally stable’ Lyapunov vector
– otherwise, all the QL/GQL simulations should have blown up or lead to the trivial
solution. This is why GQL25 is, in fact, the case which admits the trivial solution, as
can be observed from the energy of the high-wavenumber modes Ekx ≈ 10−7 in the new
statistically stationary state, much lower than that of LES. In this case, the behaviour of
the Ph subspace must be slaved to the Pl subspace because the trivial solution in the Ph
subspace can no longer influence the dynamics in the Pl subspace. It is interesting to note
that such a streamwise wavelength is λ+x,c ≈ 200: i.e. the (smallest) streamwise length scale
of the streak instability in the near-wall region (e.g. Schoppa & Hussain 2002; Cassinelli
et al. 2017). Furthermore, in the full LES, λx � λ+x,c (� 200) is at the energy-receiving
range (figure 5b,j), implying that the role of the Pl subspace is primarily dissipation of
turbulence. Therefore, it is likely that this behaviour in the GQL approximation would
occur when λ+x,c becomes close to a dissipation-dominated length scale, such as the
Kolmogorov microscale, although a more detailed investigation would be necessary to
understand the precise scaling behaviour. Finally, this suggests that if λx,c is sufficiently
small such that the Ph-subspace group only gives the trivial solution, the application of the
GQL approximation becomes equivalent to that of a spectral low-pass cut-off filter with
threshold streamwise wavelength λx,c.

5. Concluding remarks

In the present study, we have investigated the spectral energetics of a GQL approximation
applied to turbulent channel flow at Reτ � 1700. The focus of the present study is given
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Figure 11. Time trace for the streamwise Fourier modes (hkx = 0, 2, 8, 14, 20, 26, 32, 38, 44, 50, 56,

62, 68, 74, 80) in log scale: (a) QL; (b) GQL25. Here, the blue-coloured lines represent the results from the
full LES. At the time indicated by the black dashed line, the QL/GQL approximations are applied. Also,
the red-coloured solid lines indicate the streamwise Fourier modes in the low-wavenumber group and the
red-coloured dashed lines those in the high-wavenumber group.

to its application in the streamwise direction to explore the nonlinear interactions between
energy-containing streamwise waves, which have been understood to originate from the
streak instability and/or transient growth mechanism in the self-sustaining processes at
different length scales. For the GQL approximation, the velocity is decomposed into
low- and high-wavenumber modes, the former of which are solved by considering the
full nonlinear equations (Pl-subspace group) whereas the latter are obtained from the
linearised equations around the former (Ph-subspace group). The QL case has been found
to exhibit the most anisotropic second-order turbulence statistics throughout the entire
wavenumber space of the spectra, in agreement with previous studies (Thomas et al. 2014;
Farrell et al. 2016). Only a small increase in the number of streamwise modes allowed to
interact nonlinearly (or the enrichment of the Pl-subspace group; i.e. GQL1 and GQL5
cases) has resulted in a rapid recovery of the scaling of the streamwise wavelengths with
the distance from the wall y, which was absent in the streamwise spectra of the QL case.
These cases also exhibited spectra extending over a wider range and reaching out to smaller
scales, when compared with the QL case whose spatial spectra were highly localised in
the wavenumber space.

The energetics of the QL and GQL models have been studied using the streamwise and
spanwise wavenumber spectral TKE budget equation. The production spectra of the QL
model have been found to be highly localised and the turbulent transport is inhibited in
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the streamwise direction. Simulations with different spanwise boxes have confirmed that
this is related to a considerably reduced multi-scale behaviour of the QL model which
originates from both mean-fluctuation and fluctuation–fluctuation dynamics. Finally, it
has been proposed that the ‘scattering mechanism’ (Tobias & Marston 2017), by which
the motions in the Ph subspace exchange energy through interaction with those in the Pl
subspace, depends on the Lyapunov spectrum of the linearised equations projected to the
Ph-subspace group. This has explained the gradual extension of the spectra of the GQL
model over a wider range, when the cut-off streamwise wavelength λx,c for the velocity
decomposition in the GQL model is sufficiently large. This is also consistent with the
emergence of the trivial solution in the Ph-subspace group, when the cut-off wavelength
λx,c is sufficiently small.
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