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Abstract. In this paper we analyzed different measures, characterizing the melting
of Lennard–Jones solid, and associated with the properties of both the translational
and the orientational local order. It has been shown that the most sensitive indicator
of melting is the cumulant of the probability distribution function over w6 bond-
order parameter. The criterion of melting based on the indicator is proposed; the
criterion can be used for any solids, having fcc/hcp types of symmetry.

1. Introduction
Melting and crystallization of matter are of fundamental
interest in condensed matter physics. Microscopic nature
of melting is not fully understood yet even for simple
systems, like Lennard−Jones (LJ) one, although it is well
understood in numerous experimental and theoretical
investigations that the physical and mechanical proper-
ties of condensed matter are determined primarily by
the short-range order of atoms. The main goal of this
paper is to find melting indicators that are very sensitive
to phase transition. The short-range order is usually
studied by analyzing the radial behavior of the pair cor-
relation function averaged over the angular distribution
of particles (radial distribution function (RDF)). Here,
we also consider the properties of orientational order
of LJ particles near the melting transition (Steinhardt
et al. 1983; Nose and Yonezawa 1986; Mitic et al. 2008;
Klumov 2010, 2013; Klumov et al. 2011) to quantify the
solid–liquid transition (e.g. Avinash and Shukla 2011).
One notes that melting indicators help in predicting
melting, but give no explanation why the crystal melts at
corresponding value of the indicator. Explanations can
be found in microscopic details of particles correlations
not included in the RDF, in particular multi-particles
correlations. These details are very challenging for real
experiments, but can be obtained at the moment by
using computer simulations only. Below we consider
in detail how the translational and orientational local
orders vary in the vicinity of the melting transition of
a LJ system to construct the most efficient indictors of
the melting.

2. Numerical procedure
We use the common expression for the LJ potential in
dimensionless form: ULJ(r) = 4(r−12 − r−6) and NVT
(constant particle number N, volume V , and temperat-
ure T ) ensemble of particles (with N = 4×103) arranged
in a cubic box of size L with the periodic bound-

ary conditions. Initially (at low reduced temperatures
T ∗ ∼ 0.5 and ρ � 1) particles form the face centered
cubic (fcc) crystal; then the system is heated by step-wise
way by a small value δT ∗ � 10−2 and equilibrated con-
figurations are used to define the structural properties.
Here, the standard molecular dynamics method with the
Verlet algorithm and Langevin thermostat (e.g. Klumov
2013) is used to calculate the particle configurations.

2.1. RDF-associated melting indicators

Let us start to consider the structural properties of LJ
system in the vicinity of melting transition by analyzing
the radial distribution function g(r) (RDF). Figure 1
shows the typical behavior of g(r) versus temperature
T ∗ and distance r. The change in the RDF at melting
is rather sharp, with only a narrow temperature range
where there is a crossover between crystal and liquid.
One can see that between T ∗ � 1 and the melting
temperature T ∗

m � 1.65 there are remarkable changes in
the RDF of the crystal: the additional maxima between
the main maxima in the RDF become undetectable.
These additional maxima describe fine details of the fcc
lattice. The disappearance of the additional maximum
between the first and the second main maximum is
illustrated by inset in Fig. 1. We note that the sharp
breaking of g(r) (at T ∗ � 1.6) is clearly seen at all
spatial scales. It means, in part, that the melting trans-
ition can be considered at the local order level. Several
approximate approaches have been proposed to locate
the melting point of different substances. This includes
phenomenological criteria for freezing and melting, like
e.g. Raveché-Mountain-Streett criterion (Raveché et al.
1974) and others, including dynamical criterions as well.
Figure 2 shows temperature dependencies of some melt-
ing indicators of a LJ system; g(r) variations in the
considered temperature range are shown in the in-
set. The plotted are the inverted Raveché parameter
R−1 = gmax/gmin, which is the first maximum of g(r) to
the first non-zero g(r) minimum ratio, parameter gmin,
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Figure 1. (Color online). Melting of Lennard−Jones system.
The radial distribution function g(r) is plotted versus distance
r and reduced temperature T ∗. The dependence is color-coded
by the value of g(r). Sharp change of g(r) at T ∗ � 1.6 occurring
at all spatial scales corresponds to the melting of the system.
Insets show in fine detail the behavior of g(r) in the vicinity of
the melting transition. The curves are color-coded by T ∗ value.
Cumulative measure N(< r) ≡

∫ r

0
4πr2g(r)dr (mean number of

particles in a sphere of radius r) is also plotted at the same
temperatures as g(r). Additionally, modification of the first
non-zero minimum of g(r) is shown in detail. Reduced density
of LJ system is ρ∗ = 1.
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Figure 2. (Color online). Melting indicators of Lennard−Jones
system versus reduced temperature. Plotted are parameters
R−1 = gmax/gmin (red line), gmin (green line), bond-breakage
parameter C, translational order parameter τT , and excess of
pair entropy s2. Inset shows variations of g(r) in the range
of considered values of temperature T ∗. Reduced density is
ρ∗ = 1.

and translational order parameter τT defined from the
expression τT ∝

∫ rc
0

|(g(r) − 1)|dr, where rc is distance of
the order of a few interparticle distances (Truskett et al.
2000; Errington et al. 2003) and excess of pair entropy
s2 defined from s2 ∝

∫
(g(r)ln(g(r)) − g(r) + 1)dr (e.g.

Errington et al. 2003). Additionally, the bond-breakage
parameter C(T ∗), defined as an averaged loss rate of

neighboring particles, is plotted in Fig. 2. All plotted
measures reveal nearly the same relative variations in
the range of the melting transition; that makes these
parameters to be good candidates for quantification of
the order/disorder in LJ system.

2.2. Orientational local order at melting

To define the local orientational order of LJ system
we use the bond-order parameter method (Steinhardt
et al. 1983), which has been widely used in the con-
text of condensed matter physics, hard sphere systems,
complex plasmas, colloidal suspensions, etc. (e.g, Gasser
et al. 2001; Klumov 2010, 2013; Khrapak et al. 2012;
Klumov et al. 2011). Within the method we calculate
the bond-order parameters qlm for each ith particle by
qlm(i) = N−1

nn

∑Nnn

j=1 Ylm(θj , φj), where Ylm(θ, φ) are the
spherical harmonics, and θ, φ are the polar and the
azimuthal angles of jth neighboring particle, respect-
ively. By using values of qlm, it is easy to calculate
the rotational invariants of the second ql and third wl

orders. Calculated rotational invariants qi, wi are then
compared with those for ideal lattices. Here, we are
specifically interested in identifying face-centered cubic
(fcc), hexagonal close-packed (hcp), and icosahedral (ico)
lattice types, therefore use the invariants ql , wl calculated
using the fixed number of nearest neighbors: Nnn = 12
(e.g. Klumov 2010). A particle whose coordinates in the
four-dimensional space (q4, q6, w4, w6) are sufficiently
close to those of the ideal fcc (hcp, ico) lattice is counted
as fcc-like (hcp-like, ico-like) particle. The values of ql
and wl for the considered lattices are shown in Table 1.
Note that values of ql for odd l are non-zero for the
hcp crystal only (e.g. qhcp

l ≈ 0.08, 0.25, 0.31, 0.13, 0.12
for l = 3, 5, 7, 9, 11, respectively).

By calculating the bond-order parameters, it is easy to
identify disordered (liquid-like) phase too (for instance,
such particles have mean bond-order parameter q

liq
6 �

N
−1/2
nn � 0.29 � q

fcc/hcp/ico
6 , where Nnn = 12). By varying

the number of nearest neighbors Nnn and rank l of bond-
order parameter, it is possible to identify any lattice
type (including quasicrystalline particles and distorted
hcp/fcc/ico modifications) existing in the system (e.g.
by using Nnn = 8 and 14, it is easy to identify the
first and the second shells of the body centered cubic
(bcc) lattices with using just q4 and q6 order parameters,
etc.). Figure 3 shows typical temporal variations of
parameters q4, q6, and w6 for solid-like and liquid-like LJ
systems in the vicinity of the melting transition; strong
fluctuations of the parameters make it clear to use the
probability distribution functions (PDF) taken over ql
and wl values −P (ql) and P (wl) to characterize the
solid–liquid transition of different close-packed solids
(Klumov 2010, 2013; Klumov et al. 2011; Mitic et al.
2013). The cumulative PDFs Cl

q and Cl
w associated with

the P (ql) and P (wl) (e.g. Cl
q(x) ≡

∫ x

−∞ P (ql)dql) are used
to construct the melting indicators; for instance, it can be
the value qhh

6 defined from the expression Cl
q6

(qhh
6 ) = 1/2.
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Table 1. Values of ql and wl in the perfect crystals.

System NN q4 q6 q8 q10 q12 w4 w6 w8 w10 w12

fcc 12 0.19 0.58 0.4 0.4 0.6 −0.16 −0.013 0.06 −0.09 0.09

hcp 12 0.1 0.49 0.32 0.32 0.56 0.13 −0.012 0.05 −0.08 0.1

ico 12 0 0.66 0 0.36 0.59 −0.16 −0.17 0.06 −0.094 0.1

bcc 8 0.5 0.63 0.2 0.65 0.41 −0.16 0.013 0.06 −0.09 0.029

bcc 14 0.036 0.51 0.43 0.2 0.4 0.13 3.2×10−3 0 0.018 0
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Figure 3. (Color online). Temporal variations of bond-order
parameters q4 (red line), q6 (green line), and w6 (blue line)
for solid-like (a) and liquid-like (b) Lennard−Jones system in
the vicinity of melting transition. Insets show trajectories of
neighboring particles. Reduced density is ρ∗ = 1.

Other cumulants qhh
l and whh

l are calculated by the same
way. Figure 4 shows different indicators of melting as
a function of reduced temperature T ∗. It is clearly seen
that the measure whh

6 is the most sensitive indicator of
melting; the measure changes explosively in the vicinity
of the transition.

To conclude, we considered different indicators of
melting of LJ system associated with both translational
and orientational local order properties. It has been
shown that the measure whh

6 is very sensitive to the
melting-induced breakage of the local orientational or-
der; it makes the measure to be a nice melting indicator,
which can be used to quantify the order/disorder trans-
ition for any close-packed solids.
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