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Abstract

Evaluation of agricultural Research, Development, Extension and Management requires knowledge of
farming systems economics and risk as well as broader adoption drivers. But until now, these factors have
not been effectively combined when determining the success of agricultural research projects. To fill this
gap, we developed Value-Ag, an integrated modelling platform using whole-farm economic analysis and
prediction of the scaling potential in the context of production risk and household dynamics to provide an
ex-ante estimate of the benefits of adopting an innovation. In this paper, we use a hypothetical case study to
illustrate Value-Ag’s potential to evaluate agricultural innovations in a rigorous, systematic and participa-
tory manner across a range of scenarios, thereby stimulating thinking and learning opportunities with the
relevant stakeholders, and increasing the scrutiny of projects so that they deliver greater value for money
while fostering a more results-focused culture in developing countries.
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Introduction

Evaluation of agricultural innovations in complex farming systems is a necessary but elusive task.
Quantifying the economic and risk trade-offs from the adoption of various interventions targeted
at resource-constrained smallholder farmers remains a challenge for agricultural development
agencies (e.g. Antle et al., 2017; Dixon et al., 2010).

Smallholder farmers play a key role in achieving food security by producing around 80% of
food in Asia and Africa (Food and Agriculture Organization of the United Nations, 2012) but
are faced with low productivity, land degradation, rising production costs and/or labour shortages
(World Bank, 2018). Decades of research, policy interventions and development projects have
attempted to address these challenges through the promotion of new technologies or practice
changes at the farm level in an attempt to increase yields, income, efficiency, resilience and/or
food security in smallholder farms (Dixon et al., 2010; Schreinemachers et al., 2017; Sheahan
and Barrett, 2017). But despite the potential benefits, many of the innovations have failed to
achieve the desired level of adoption by farmers and local communities, meaning that smallholder
farmers may have not benefitted as much as they could have in many regions (e.g. Valdivia et al,
2017). An example is the Conservation Agriculture (CA) package that despite being heavily pro-
moted has an estimated adoption rate of 5% (e.g. Brown et al, 2017a; Giller et al., 2009;
Mupangwa et al., 2016; Ndah et al., 2014; Ward et al., 2018).
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Disappointing adoption rates of agricultural innovations can often be explained by a combi-
nation of enabling environment, economic drivers, risk factors, broader social context, extension
effort, level of farmer engagement and sometimes the technologies themselves (e.g. Giller et al,
2009; Mwinuka et al., 2017; Sheahan and Barrett, 2017; Valdivia et al., 2017). Yet, these factors are
seldom combined in ex-ante evaluations of agricultural innovations promoted by agricultural
development projects. The real value of innovations is often poorly assessed due to weak ex-ante
impact processes, simplistic or non-existent adoption estimates, lack of suitable tools or data, and/
or failure to include whole-farm trade-offs and risk (Connor et al., 2015; Valdivia et al., 2017). In
the absence of objective measures, there is a tendency for project proponents to assume full adop-
tion of innovations, when it is very rarely the case.

Conversely, comprehensive cost-benefit analyses of agricultural opportunities are often too
complex and costly to undertake for many innovations (e.g. Clark and Tilman, 2017; Fineman
et al., 2009; Khodakarami et al., 2007; Muthoni et al., 2017; Yet et al,, 2016). Indeed, some rely
on abstract econometric analyses or on hybrid Bayesian networks that make probabilistic infer-
ence on complex domains with a large number of variables, others on spatial information and
others still generally focus on project management issues/risks (e.g. risk of unexpected budget
blowouts, schedule delays and staff changes), rather than on the likely uptake of the agricultural
innovation itself (although Yet et al, 2016 did include an adoption component in their approach).

Of note, large models such as DREAM (HarvestChoice, 1995), IMPACT (Herrero et al., 2007),
NUANCES-FARMSIM (Van Wijk et al., 2009) and the global initiative AgMIP (Rosenzweig et al.,
2013), as well as agent-based models applied to agriculture (e.g. Berger, 2001), are very useful for
assessing the potential triple-bottom-line (economic, social and environmental) benefits of
technology diffusion and adoption at a larger scale, but simulation of a range of market, trade,
technology and research scenarios by geographic and socio-economic clusters remains an exper-
tise- and data-hungry process inaccessible to most. And while many research proposals may
require an impact pathway and an estimated impact to be described, these are often of a more
qualitative nature (e.g. Davila et al., 2016).

Attempts to combine economic simulation and adoption projections in the evaluation of
innovation opportunities have been made (Mwinuka et al., 2017; Schreinemachers et al.,
2017), which suggests that multi-tool approaches are starting to pave the way for more realistic
evaluations of changes at the farm level. In addition, systems-dynamics models have been
employed to link production with value chain processes, simulating uptake of technologies
and inputs (e.g. Rich et al., 2011), while, for example, the TOA-MD model (Antle, 2011) has com-
bined means and variations of input parameters that result in benefit distributions which can be
interpreted as adoption probabilities. Nevertheless, some evaluation and prioritisation
approaches, such as highly specialised econometric methods (e.g. Mwinuka et al, 2017), tend
to add unnecessary complexity. Others require that reliable adoption data are readily available,
which is seldom the case (e.g. Antle, 2011).

While such examples demonstrate a continuing interest in combining an examination of eco-
nomic and adoption drivers in smallholder contexts, so far, very few approaches have been pro-
posed that incorporate systematic farming systems analysis and evaluation of agricultural
innovations into relevant Research for Development (R4D) projects. To fill this gap, we developed
Value-Ag, a multi-tool platform that combines key elements of bio-economic modelling, risk
analysis and adoption theory to evaluate the short-cycle impact of agricultural innovations in
smallholder farming systems. The key engines of Value-Ag are the Integrated Analysis Tool
(IAT) (McDonald et al, 2019) and the Smallholder Adoption and Diffusion Outcome
Prediction Tool (ADOPT) (Brown et al., 2016; Kuehne et al., 2017).

The IAT captures most trade-offs and synergies of the typical crop-livestock smallholder farm,
including crop yield variability simulated with the biophysical model Agricultural Systems
Modelling and Simulation (APSIM) (Holzworth et al., 2014), and simulation of livestock and
whole-farm performance over time. A key aim of conducting biophysical and economic modelling
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of smallholder systems is to better understand how production and consumption pathways could
generate improved levels of farming system performance and positive welfare outcomes for the
smallholder communities.

Smallholder ADOPT provides a prediction of adoption outcomes. It is based on the concept
that the characteristics of the innovation and the farmers will determine the relative advantage
that they gain from the innovation, and that this will determine the potential peak adoption level.
Previously, the prediction of adoption outcomes often relied on best-guess estimates, but the
ADOPT tool has introduced a structured process of quantifying the effect of adoption influences
to generate a prediction of adoption outcomes. This approach contrasts with other adoption and
impact pathway theories, such as stepwise adoption frameworks (e.g. Brown et al., 2017b; Byerlee
and Hesse De Polanco, 1986) and the Innovation Systems (e.g. Douthwaite and Hoffecker, 2017;
Schmid et al., 2017; Smits, 2002), which rely on qualitative, non-binary processes that account for
a dynamic network of agents interacting with a specific economic area under a particular institu-
tional infrastructure and involved in the generation, diffusion and utilisation of technology.

We hypothesise that the novel linking of these tools via the Value-Ag platform will improve the
evaluation of agricultural research projects targeting locations with similar biophysical and socio-
economic characteristics. Value-Ag enables a relatively quick assessment by project stakeholders
of the potential production, economic/risk impacts and adoptability of changes in a farming sys-
tem (i.e. management, crops, forages, prices, costs), while offering the flexibility to explore differ-
ent intervention levels, scenarios and systems more widely.

In summary, Value-Ag could make a direct contribution to in-country research capacity and
better decision-making by allowing users (research/extension professionals, project managers and
others) to identify the factors driving the value of innovations and the rate of adoption at the
project level, and how altering these could affect economic outcomes. Moreover, benefits from
this approach could flow on to improvements in farm productivity and profitability, resilience
to climate change (e.g. by simulating catastrophic years), resource-use efficiency, food security
and rural livelihoods. Ultimately, Value-Ag results could provide funders of Research,
Development, Extension and Management (R D E & M) with clear, consistent and comparable
benchmarks across a range of scenarios that will contribute to higher value for agricultural
development investments.

In this paper, we outline the Value-Ag framework in detail and use a simplified hypothetical
example to illustrate its potential to evaluate agricultural innovations in the smallholder context. A
simplified hypothetical example allows the reader to better focus on the methodology, which can
be explained in detail within paper length constraints. The application of Value-Ag to a fully de-
veloped case study in southern Laos is described in Monjardino et al. (2020).

Materials and Methods
The Value-Ag concept

Agricultural systems include multiple biological, economic and social constraints, interactions,
synergies, risks and trade-offs over time, which all contribute to the complexity of the farmer’s
decision-making process (e.g. Antle et al., 2017; Hardaker et al., 2015).

The Value-Ag framework (Figure 1) takes such complexity into account by combining key
elements of bio-economic modelling, risk analysis, adoption theory and impact assessment to help
determine the net value of an agricultural innovation for a specific group of smallholder farmers.
In other words, Value-Ag compares the economic performance of a group of smallholder farms
over a set number of years, with and without a particular agricultural innovation, and predicts
their multi-year adoption to determine the likely value of that innovation to them.

The main goal of Value-Ag is to introduce consistency and structure in the socio-economic and
risk analysis of complex agricultural systems and to deliver a range of standard outputs that

https://doi.org/10.1017/5S0014479720000204 Published online by Cambridge University Press


https://doi.org/10.1017/S0014479720000204

636 Marta Monjardino et al.

Value-Ag
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Figure 1. The Value-Ag framework combines whole-farm economic modelling, risk and uncertainty at the farm level with
adoption and short-cycle impact of an agricultural innovation to estimate its likely value to smallholders.

benefit and empower its users by assessing the value of specific innovations and allowing com-
parisons to be made between competing investments. While Value-Ag does not directly extend to
institutions, services or markets, it captures some of the broader socio-economic influences via the
adoption component of the framework, as well as sensitivity analysis. Overall, the strengths of the
proposed approach in terms of systems integration, quantification of change, scaling potential and
contribution towards achieving some of the global SDGs' could have wide-ranging applicability in
the developing world where mixed smallholder farming systems prevail (Dixon et al., 2010;
Reynolds et al., 2018).

The processes and tools by which Value-Ag calculates profit and incorporates risk at the farm
level, predicts adoption, and assesses impact at the targeted farmer population level, and then
quantifies the value of a generic innovation for a case study are described next.

Calculating profit

Value-Ag calculates the economic performance of a smallholder farming system by employing the
whole-farm bio-economic IAT model (McDonald et al., 2019). This simulation tool represents a
typical smallholder farm while providing the flexibility to accommodate a diverse range of pro-
duction systems with different combinations of management, soil and climate, as well as variations
in commodity prices and seasonal climate.

Underlying all versions of the IAT is the integration of three simulation modules, as illustrated
in Figure 2: (1) economic simulation module, (2) livestock simulation module and (3) externally
simulated crop and forage inputs. The IAT interface combines the three modules in a ‘creep’ budg-
eting approach, where users make incremental changes in farm management to explore the impact
of different options. This approach involves re-specifying various input and output variables in a

!Sustainable Development Goals (https://www.un.org/sustainabledevelopment/sustainable-development-goals/).
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Figure 2. Conceptual framework of the Integrated Analysis Tool (IAT) underlying Value-Ag (adapted from McDonald et al.,
2019).

systematic manner to explore the system response to these changes. In other words, the user
‘creeps’ around the various responses in a systematic fashion to examine whether there is a shift
towards or away from a more satisfactory position than the starting one.

By including all the activities that are available to, or necessary for the household to meet its
needs and objectives, the model provides an accurate guide to whether exploiting different crop,
forage and animal options will make the household better or worse off. While annual net profit
represents the main economic output, the insights from the IAT are not restricted to financial
gains and losses, as the output also includes information on farm labour allocation, food and feed
yields, and surplus resources which might be usefully employed within or outside the farming
enterprise. A more detailed description of the IAT, including mathematical structure and assump-
tions, can be found in McDonald et al. (2019).

Incorporating risk and uncertainty

The risks faced by farmers include yield risk, price risk and input supply risk. Yield and price risks
contribute directly to financial risk, which is ultimately most important to them (Hardaker
et al., 2015).

Other than finding off-farm employment, saving or using credit markets, reducing interest
rates by using informal borrowing (e.g. loans from family members), smallholder farmers often
cope with risk by diversifying production (Kahan, 2008). For example, including a legume crop in
a crop-livestock system has the potential to both increase overall profit and reduce downside risk
in the drier seasons, partly due to healthier animals from a more nutritious and abundant diet, and
hence an increasingly resilient livestock system (e.g. Monjardino et al., 2020).

Seasonal variability affects crop and forage yields, in turn impacting on livestock yields and
economic outcomes. Yield risk is incorporated in the economic analysis by representing the
year-to-year variability of crop and forage production over the analysed period via imported
APSIM vyield outputs that are adjusted annually subject to available rainfall (Figure 1) or farm
yield data, if available. This allows livestock performance, farm profit and financial risk to vary
according to the climatic conditions over the period of the analysis.

Smallholder farmers are typically risk averse, meaning that they may be willing to sacrifice
some expected income (risk premium) to reduce the probability of below-average income
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Figure 3. Conceptual framework of the Smallholder ADOPT tool underlying Value-Ag (adapted from Kuehne et al., 2017).

(Hardaker et al., 2015). The risk from price volatility is often smallholder farmers’ greatest concern
(Kahan, 2008) and is incorporated in this study to a limited extent by simply testing variation in
commodity prices via sensitivity analysis.

The climate risk and level of farmer risk aversion associated with each scenario is assessed
through a set of metrics borrowed from a profit-risk-utility framework described in
Monjardino et al. (2019) (Figure 1). In brief, each risk profile is determined through the combi-
nation of standard deviation (SD) and coefficient of variation (CV) of the 10-year average net
profit, probability of a positive net profit [P(nx > 0)] and conditional value at risk of the lowest
10% of net profits (CVaR0.1) as a measure of downside risk. In addition, (risk-neutral) average
net profit is adjusted for risk and risk aversion through an equation representing risk-adjusted net
profit for each scenario: Rw = - (0.5 *r/m * V), where R is the risk-adjusted average net profit,
is the n-year risk-neutral average net profit, r is a coefficient of relative risk aversion and V is the
variance of the average net profit (calculated as SD?). The r values vary between 0 and 4 (0 = no
risk aversion, i.e., risk-neutral decision maker; 1= low risk aversion; 2 = moderate risk aversion;
3 = high risk aversion and 4 = very high risk aversion). The default coefficient of relative risk
aversion used in this analysis is 2, indicating a moderate level of risk aversion.

Predicting adoption

Value-Ag predicts adoption of innovations via Smallholder ADOPT (Figure 1). This is a refine-
ment of the developed country version of ADOPT (Kuehne et al., 2017), which is based on a
conceptual framework developed from well-established adoption theory and literature (Feder
and Zilberman, 1985; Lindner, 1987; Rogers, 2003) (Figure 3). Smallholder ADOPT considers four
key aspects of adoption: (1) characteristics of the innovation, (2) characteristics of smallholder
farmers, (3) the relative advantage to smallholder farmers from using the innovation and (4)
smallholder farmers’ learning of the relative advantage of the innovation. The influences on adop-
tion found in the literature were conceptualised as related to either (1) learning about relative
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advantage or (2) the actual relative advantage. Similarly, each adoption influence was also identi-
fied as being related to the target population or to the innovation.

The conceptual framework has four quadrants. The two left-hand quadrants - the population-
specific influences on the ability to learn about the innovation and the learnability characteristics
of the innovation - only influence the time taken to reach peak adoption; they do not influence the
peak level of adoption. The two right-hand quadrants - the relative advantage for the population
and the relative advantage of the innovation - influence both the time taken to reach peak adop-
tion and the peak adoption level. The influence on the time taken to reach peak adoption occurs in
two ways because relative advantage also affects the learning of relative advantage node.

Users of Smallholder ADOPT respond to a series of Likert-scaled questions aimed at identify-
ing a qualitative measure for each of the adoption influences. The responses are attributed
numeric values, which are then used in functions that represent how the variables relate to each
other, and the influence they have on adoption and diffusion. The outputs of the tool are years for
‘Time to Peak Adoption’ and a percentage for the ‘Peak Adoption Level’. The expected diffusion of
the innovation is displayed using the widely used S-shaped cumulative adoption curve. Predictions
for the cumulative level of adoption for the first 10 years are extracted from Smallholder ADOPT
for use as an input into the Value-Ag framework.

Assessing impact

While Value-Ag is not designed to assess the effects of agricultural changes across the entire value
chain (i.e. triple-bottom-line impact), it offers a convenient platform to assess the economic ben-
efits of a new technology or practice change at the farming system level, and therefore the likeli-
hood of it being adopted at the project/regional scale. Value-Ag is intended as a tool to evaluate the
short-cycle impact of innovations systematically, even though it also captures some elements of
food security (e.g. home consumption), livelihood and well-being (e.g. household income), sus-
tainability (e.g. soil condition) and contextual effects (e.g. social drivers of adoption).

The linking of these models involves a novel process by which selected economic outputs (i.e.
annual net profit) of the baseline and the innovation scenarios are transferred from the IAT into
the Value-Ag platform to allow the annual results of each simulation trial to be summarised as the
net present value (NPV) of annual net profit, calculated as (1):

NPV =" [(R—C)/(1 + )] (1)

where R is annual gross revenues from livestock and produce sales, C is annual variable costs
(i.e. production and marketing) and annual total fixed costs, ¢ is time in years (commonly a
short-to-medium term of up to 10 years) and i is real discount rate.

Calculation of the NPV employs a default real discount rate based on the current interest rates
for borrowers in the rural region. A discount rate is used to compare benefits and costs that occur
at different times, and a high discount rate better reflects the reality of many resource-poor farm-
ers, who have pressing needs to provide for their families and so cannot afford to sacrifice short-
term income, even if it would result in greater benefits in the long term.

The principal economic criterion used to compare the two scenarios is the net value of inno-
vation, which is calculated as the difference between the NPV of annual net profit of the innova-
tion scenario and the baseline scenario that, in this case, is a farm with no innovation (e.g.
legume crop).

The final and novel part of the Value-Ag approach involves two key steps:

1) Out scaling the farm economic benefit by multiplying the annual net profit outputs of the
baseline and the innovation scenarios by the number of farms covered by the project case
study (e.g. village), assuming they are similar vis-a-vis innovation and socio-economic
context;
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2) Opverlaying the annual net values from adopting the innovation over the number of years
analysed (i.e. the difference between annual net profits with and without the innovation)
with the data points for the first 10 years (in this example) of predicted cumulative adop-
tion extracted from Smallholder ADOPT used to establish the net value of the adopted
innovation for the entire smallholder population targeted by the project case study.

The linkage between the different models- - farming system (IAT) and farmer population
(Smallholder ADOPT) - is possible based on the assumption that the target farmer population
is well defined and relatively homogeneous in terms of farm type, socio-economic dynamics and
exposure to the innovation (e.g. via project engagement/extension activities). While heterogeneity
always exists among farms (see Discussion for more on the issue of farm typologies), Value-Ag
provides the framework to project the economic performance of an individual representative farm
across a larger population according to adoption outcomes (Figure 1). Crucially, this feature
enhances the potential applicability of both base models, because until now IAT simulations have
not been used beyond the farm level, nor have Smallholder ADOPT predictions been coupled with
farm economics for more meaningful insights, by being able to better predict economic outcomes.

The approach assumes that the level and speed of adoption of the innovation by the farmer
population targeted by the project case study influences the potential increase in agricultural pro-
ductivity, and when it occurs. Other factors, such as productivity benefit per unit of use (e.g. ha),
the extent of use of the innovation on the farm, the presence of competing technologies, as well as
other market and household drivers (e.g. price loops, family dynamics) also contribute to the over-
all impact of innovation adoption on productivity gains.

Results
Whole-farm profitability

The standard Value-Ag output is illustrated here through a simplified hypothetical example of a
typical crop-livestock smallholder farming system (baseline scenario) and a generic innovation
type, for example, a small area of the farm grown to a new forage crop to broaden the livestock
feed base as well as market opportunities (innovation scenario). Actual Value-Ag results for a fully
developed case study in Laos are reported by Monjardino et al. (2020).

As shown in Figure 4, introducing an innovation into the baseline scenario would have been an
economically attractive proposition over the 10-year period investigated. For this hypothetical
case, the net profit gain for the innovation scenario varied between 2% (year 6) and
30% (year 7), with an average net profit gain of 10% recorded over the entire period. While these
values are indicative only, they illustrate the type of results a Value-Ag analysis generates. Overall,
profit gains/losses can be traced to relative changes in annual gross margins of the simulated crop
and livestock enterprises, as well as to the extra benefits and costs directly attributed to the inno-
vation. Using a real discount rate of 20% to reflect most smallholders’ reality, the scenario with the
innovation returned a higher NPV of annual net profit than that simulated for the scenario
without the innovation (i.e. baseline), resulting in a positive net value of innovation at the farm
level (the actual value is calculated for each specific case study).

Risk and risk aversion

Likewise, it is possible to explore the innovation’s effect on risk given a certain level of farmer risk
aversion. In this hypothetical case, over 10 years, CVar0.1 (or downside risk) was reduced by 9.8%,
despite no change in P(n > 0), and the CV of net profit keeping constant at ~0.3 over the entire
period in both the baseline and the innovation scenario, suggesting a slight reduction in risk
exposure overall. In addition, the innovation scenario was responsible for an increase in the risk
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Figure 4. Example of IAT-simulated annual net profit ($) over 10 years for a baseline (solid black line) and innovation
(dotted grey line) scenarios, and % farm profit gain of the innovation relative to the baseline (light grey area).

premium by 9.5%, resulting in an increase of 9.8% in the risk-adjusted net profit due to a default
moderate level of risk aversion. In this hypothetical example, a more resilient livestock enterprise
was the main contributor to overall risk mitigation, especially from year 4 of the analysis onwards.

Adoption and scaling potential

Based on the above results, the standard annual net values of innovation over 10 years for the
simulated farm were out-scaled across the total number of farms assumed to be part of the study
(e.g. a village of 10 farms, in this example). This showed the annual net value of the innovation for
the entire smallholder population targeted by the study if the innovation was fully adopted
(Figure 5). In this case, overlaying the annual net value of the innovation with the curve from
the Smallholder ADOPT output that predicted a peak level of adoption of 27% occurring in
11 years allowed us to determine the net value of the adopted innovation for the entire smallholder
population targeted by the study (Figure 5). The prediction of the adoption curve in this hypo-
thetical analysis was based on default (generally average) responses for all questions, including a
risk-neutral context (Q3) (see Supplementary Table S1). While including this innovation was
found to be a relatively economically attractive proposition at the farm level over the 10-year
period investigated (based on the assumed model parameters), the actual likelihood of intensifying
this traditional crop-livestock farming system relied on more than just economic outcomes.

Sensitivity analysis

Sensitivity analysis was used to test the robustness of the simulated results to variation in model
parameter values, some of which might be subject to uncertainty or change at different times and
places. Key IAT parameters tested often include crop yields and commodity prices used in cal-
culations (e.g. Monjardino et al., 2020). Overall, sensitivity to IAT parameter changes can be ana-
lysed individually or combined in factorial analysis.
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study, assuming full adoption of the innovation (light grey bars) and predicted adoption of the innovation (dark grey bars)
using Value-Ag to combine the economic assessment with a predicted diffusion curve (adoption rate) determined by
Smallholder ADOPT (dotted black line represents 27% adoption in 11 years).

Smallholder ADOPT can also be used to generate sensitivity analyses for changes in various
adoption influences (see Kuehne et al. (2017) for a discussion of the use of sensitivity analyses).
This process allows users to identify the influences having the largest impact on peak adoption
level and/or the time taken to reach peak adoption level and to adjust them if it is feasible. Overall,
the sensitivities of each adoption influence will vary according to the characteristics of the inno-
vation and the target population for which it is being considered. As an example, we illustrate the
effect of farmer risk aversion/orientation on predicted adoption outcomes and the resulting
annual net value of the innovation. In this case, we varied the response to the Smallholder
ADOPT Q3 on risk orientation from the default risk-neutral option setting (almost none have
a minimising production risk as a strong motivation) to the higher four levels of risk orientation
of the target population (a minority/about half/a majority/almost all, etc. have minimising pro-
duction risk as a strong motivation). The results show that peak adoption varied between 27% in a
risk-neutral context (Figure 6a) and 21% in a highly risk-averse context (Figure 6e). In all five
scenarios, time to peak adoption remained unchanged at 11 years (Figure 6—e). These results apply
to the related response to Smallholder ADOPT Q21 on risk exposure of the innovation (default:
small increase in risk). For example, for a moderately risky innovation, adoption would have
peaked at 19% (risk neutral) down to 11% (very risk averse) over 15 years (results not shown).
In addition, the impact of each corresponding level of farmer risk aversion on the farm net profit
is illustrated in Figure 6f for both the baseline and the innovation scenarios.

Discussion
Decision making at the farm and project level

The gap in ex-ante impact evaluation of agricultural innovations at both farm and project level has
prompted the development of a novel multi-tool approach that can help evaluate the likely eco-
nomic and risk benefits of specific innovations adopted by smallholder farmers. The Value-Ag
framework achieves this goal by enhancing the understanding of underlying bio-economic and
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Figure 6. Impact of sensitivity analysis of risk orientation of the farmer population (based on five levels of farmer risk
aversion: (a) neutral, (b) low, (c) moderate, (d) high and (e) very high on the predicted diffusion curve determined by
Smallholder ADOPT (dotted black line) and the resulting annual net value of the innovation for the entire smallholder
population (10 farms) targeted by the project case study (dark to light grey bars moving from neutral to very high aversion).
The impact of each level of farmer risk aversion on the farm net profit is illustrated in (f).

risk trade-offs and socio-economic adoption drivers that can aid the successful design and delivery of
intensification options for smallholders by making the value of potential changes to the system more
explicit. Compared to various other approaches discussed in Introduction in terms of complexity, flex-
ibility, data accessibility, expertise and time requirements, metrics relevance, ease of use, etc., Value-Ag
has the advantage of handling relatively rapid, flexible and systematic assessments of alternative agri-
cultural options while relying on accessible data sets, broad expertise and an inclusive process.

Value-Ag’s capacity to estimate gains in yield and profit accompanied by changes in downside
risk and risk premium when moving from a conventional to a more intensive scenario can be
particularly useful in persuading farmers to adopt context-specific interventions for increased
farm profitability and resilience. Concerns about differences in farmer attitudes to risk are cap-
tured to some extent in a typical Value-Ag analysis by:

1. choosing a short-to-medium term planning horizon; while a 5-year simulation may be a

more realistic time frame in the smallholder context, 10 years can better illustrate the
potential of the tool which is important to consider in the development of these systems;
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2. accounting for off-farm labour and potential investment activities at the household level;

3. conducting a sensitivity analysis on key model parameters influencing the household risk
profile, such as commodity prices, crop yields and on/off-farm labour;

4. quantifying the effect of five levels of risk aversion on farm net profit (Figure 6f);

5. framing the broader attitudes of the farmer population to profit and risk when considering
an innovation for their farms (captured in Smallholder ADOPT); and

6. using a high discount rate in the NPV calculations, thus reducing the magnitude of future
benefits relative to the present.

In addition, many smallholder regions around the world are often affected by social and political
risks, which can give rise to risk-mitigating strategies such as migration (seasonal, temporary or
permanent). While these broader influences are beyond the scope of Value-Ag, it nevertheless
captures some of the most important dimension of household and labour flows that may occur
from migration.

Overall, implementation of agricultural technologies will only occur if these innovations are
adapted to suit the production objectives and fundamental system properties of a range of farm
types (e.g. household and employment structures, attitudes to risk). Currently, a core assumption
in Value-Ag is that a single farm typology applies across the case study/village targeted by the
project. While simplistic, this assumption still provides a good indication of the likely value of
a specific innovation across a selected and relatively homogeneous farmer population.
Nevertheless, replicating the Value-Ag analysis across several different farm types would be pos-
sible. Such analysis would essentially involve varying key relevant parameters in the whole-farm
simulation, likely adjusting the risk aversion level, and choosing different ADOPT responses re-
lated to the farmer population for each farm-type scenario.

And even though Value-Ag cannot account for all possible socio-economic scenarios, it is a
flexible framework that captures much of smallholder farmers’ actions. For example, the IAT allo-
cates farm labour by ability/availability of all family members, including elderly, teenagers and
young children, both male and female. There is also inclusion of off-farm work for different family
members and a range of wages, as well as the option to hire casual labourers at peak times, who
could be migrant farmers or other people. This is important, because dynamics of local and sea-
sonal labour availability is likely to influence specific management decisions considering overall
demand for agricultural labour in the region. Likewise, Smallholder ADOPT captures a range of
socio-economic influences on the decisions of farmers but is limited by the local, complex,
diverse, dynamic and unpredictable realities of smallholder farmers.

Ultimately, Value-Ag can assist with identifying and prioritising agricultural opportunities by
determining their effect on farm profit and household income and adding in a consideration of
risk and farmer risk aversion as well as the likelihood of adoption. Moreover, by identifying prac-
tices that have the potential to help mitigate the effects of a drying climate and improve efficiency
of resource use, Value-Ag can provide evidence to those seeking to improve resilience and sus-
tainability of smallholder farms. More generally, better informed decision-making at the farm
level (i.e. by farmers based on advice stemming from research projects) could result in enhanced
rural livelihoods, with potential flow-on impacts on community cohesion, national prosperity and
regional stability.

Validation and participatory training

Validation of Value-Ag is ongoing, with the integrated tool so far tested on specific case studies
involving the introduction of a legume crop in the baseline system, both in rotation with a tradi-
tional rice crop in Southeast Asia (Monjardino et al., 2020) and with intercropping with maize in
South Africa (unpublished results). The IAT component has been extensively applied to the small-
holder context in China (Komarek et al., 2015), India (Kumar et al., 2017; Mayberry et al., 2017,
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2018), Pakistan (Shafiullah, 2012), Southeast Asia (Gabb et al, 2017; Lisson et al, 2010;
Monjardino et al., 2020; Parsons et al., 2012) and Africa (Mayberry et al., 2017, 2018; Rigolot
et al., 2015) and has been used in project planning and development of intervention strategies
in low and high rainfall areas.

Smallholder ADOPT has also been tested with target users in several developing countries (e.g.
Akroush and Dhehibi, 2015; Dhehibi et al., 2017; Farquharson et al., 2013; Mwinuka et al., 2017),
and with historical diffusion data in Ethiopia, India and Laos (Brown et al., 2016).

Overall, the opportunity for research/extension professionals to work alongside farmers in a
Value-Ag workshop setting allows valuable insights into farmer decision making and attitudes
to risk, input/enterprise trade-offs and identified constraints to adoption of the specific innova-
tions (Crawford Fund, 2018). The decision/thinking process required to explore Value-Ag’s po-
tential can significantly contribute to the knowledge and confidence required to build the capacity
of all stakeholders.

Farming systems research and global food security

As mentioned earlier, a strength of Value-Ag is that it enables a relatively rapid assessment of the
potential production, profit-risk profile and adoptability of changes in a farming system that result
from the combination of the biophysical environment and socio-economic context at the farm
and village/project level. This capability reinforces the value-adding role of integrated modelling
in addressing complex issues in farming systems research, as well as its potential to significantly
contribute to global food and nutrition security through better decision making at the farm, proj-
ect and funding levels (Antle et al., 2017; Reynolds et al., 2018).

Another strength of Value-Ag is its flexibility, not just by combining quantitative and qualita-
tive information specific to site and project/region but also by its potential wider applicability.
While the IAT component of Value-Ag was originally developed to suit mixed crop-livestock
smallholder systems, it could be used to explore specific enterprise combinations, such as different
cropping options. Likewise, it could be used to evaluate the whole-farm performance of specific
components of CA or the combined technologies as a package. Furthermore, Value-Ag could be
employed to better evaluate the effect of variable market conditions on farmer decision-making
and adoption of changed practices or new technologies, for example, by drawing parameters such
as commodity prices, input and transportation costs, and supply chain transaction costs from data
distributions, and/or by conducting more complex factorial analyses.

Benchmarking government policy and R4D investment

Value-Ag could be used to explore the impact of policies and regulations, such as input subsidies,
agricultural trade, environmental protection and even food security, on the profitability and
dynamics of agricultural systems. The key is to generate credible evidence of possible outcomes
from a range of different policy-related scenarios and allow a more flexible approach to be created
when undertaking out scaling projects across different agro-ecological environments and policy
settings. In particular, Value-Ag’s ‘what if scenario-building capability is useful for informing
government of the likely adoption/behavioural responses by farmers in relation to changing eco-
nomic characteristics and influences, such as those associated with the subsidisation of agricul-
tural inputs and core components of new innovations (e.g. farm mechanisation equipment).
Given the significant investments that governments from developing countries make in rela-
tion to the provision of subsidies, there are little ‘hard data’ currently available that demonstrate
the net benefits of these policies in terms of increased productivity, profitability and adoptability.
This aspect of Value-Ag offers an opportunity to influence government policy in relation to the
provision of agricultural subsidies and how it can be best managed from a policy development and
implementation perspective (e.g. impact of policy advice on input price/use, level of capital
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investment, farm profitability and resilience). This in turn can inform further Value-Ag analysis to
assess the likely risk-return and adoption impact of government investment into the technology,
so that government policy can be fine-tuned through modelling utilising adjusted farmer decision-
making responses.

The strength of Value-Ag’s evidence-based process and ability to make valid comparisons be-
tween competing demands for scarce financial resources could allow research funders, develop-
ment agencies, credit providers and policy-makers access to more rigorous benchmarks, stronger
performance measures and better understanding of adoption processes in order to better deter-
mine the likely value and effectiveness of R D E & M strategies.

Conclusions

We provide proof of concept of Value-Ag, a systematic methodology to help users better under-
stand the value gained from the adoption of agricultural innovations for smallholder farmers. The
multi-tool approach is a novel combination of bio-economic modelling, risk analysis, adoption
prediction and impact assessment to help determine the likelihood of agricultural innovations
being adopted and then paying off over time. In addition, the use of Value-Ag has potential
as a valuable participatory training platform to improve research capacity building, farmer
engagement, project implementation and overall benchmarking of agricultural research projects.

Overall, Value-Ag is suited to developing case studies with agricultural innovations that are
expected to improve crop yield and/or animal performance and assess the relative benefits of each
innovation over time given the predicted level of its adoption. The process involves exploring
enterprise and profit-risk trade-offs, comparing intervention levels and allowing ‘what-if’ scenar-
ios and sensitivity analyses. The main outcomes for a particular case are useful insights for
improving farm productivity and profitability while reducing risk exposure from an agricultural
innovation, as well as the opportunity to out-scale these changes across the agricultural develop-
ment project according to predicted adoption outcomes. Notably, Value-Ag offers a platform to
evaluate agricultural innovations in a clear, consistent and comparable manner across projects,
therefore increasing the scrutiny of projects so that they deliver greater value for money, as well
as fostering a more results-focused learning culture in developing countries.
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