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STATE-DEPENDENT-KILLED SPECTRALLY
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Abstract

For a spectrally negative Lévy process X, killed according to a rate that is a function
ω of its position, we complement the recent findings of [12] by analysing (in greater
generality) the exit probability of the one-sided upwards passage problem. When ω is
strictly positive, this problem is related to the determination of the Laplace transform
of the first passage time upwards for X that has been time-changed by the inverse of the
additive functional

∫ ·
0 ω(Xu) du. In particular, our findings thus shed extra light on related

results concerning first passage times downwards (resp. upwards) of continuous-state
branching processes (resp. spectrally negative positive self-similar Markov processes).
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1. Introduction

Below we will write Q[W] for EQ[W], Q[W; A] for EQ[W1A], and Q[W|G] for EQ[W|G].
Given an expression R(x) defined for x ∈ R, R being understood from the context, we will write
R( · ) for the function (R � x �→R(x)).

1.1. Problem delineation

Let X = (Xt)t∈[0,∞) be a spectrally negative Lévy process (SNLP) under the probabilities
(Px)x∈R. This means that X is a càdlàg, real-valued process with no positive jumps and non-
monotone paths that has stationary independent increments and, under P0, almost surely
(a.s.) vanishes at zero; furthermore, for each x ∈R, the law of X under Px is that of x + X
under P0. We refer to [1], [4], [11], and [18] for the general background on (the fluctuation
theory of) Lévy processes, and to [1, Chapter VII], [11, Chapter 8], [4, Chapter 9], and
[18, Section 9.46] for SNLP in particular. As usual we set P := P0. The expression ‘a.s.’ without
further qualification is to be understood as ‘Px a.s. for all x ∈R’; similarly for ‘distributed’,
‘independent’, and so on.

For c ∈R, we next denote by τ+
c := inf{t ∈ (0,∞):Xt > c} the first hitting time of the set

(c,∞) by the process X. Further, let q ∈ [0,∞) and let eq be an exponentially with mean q−1

distributed random variable (e0 = ∞ a.s.) independent of X. Finally, let ω : R→ [0,∞) be
Borel measurable and locally bounded.
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Then, for real x ≤ c, we will be interested in the quantity

B(ω)
q (x, c) := Px

[
exp
{

−
∫ τ+

c

0
ω(Xu) du

}
;τ+

c < eq

]
; (1.1)

it may be interpreted as the first passage probability of X killed at eq over the level c when
started at x under ‘ω-killing’, i.e. when X is killed (in addition to being killed at the time eq)
according to a rate that depends on the position of X and that is given by the function ω.
To be precise, if e is a mean-one exponentially distributed random variable independent
of (X, eq), then B(ω)

q (x, c) = Px(τ+
c < eq ∧ η), where η := inf{t ∈ (0,∞) :

∫ t
0 ω(Xu) du> e};

when ω is a constant r ∈ [0,∞), then η= e/r is exponential of rate r. Another way of
viewing B(ω)

q (x, c) is as Px[Mτ+
c

;τ+
c < eq], where M := exp{− ∫ ·

0 ω(Xu) du} is a multiplicative
functional [7, Chapter 3] of X. Also, B(ω)

q (x, c) =B(ω+q)
0 (x, c), but it will be convenient to

keep the independent exponential killing separate.

1.2. Motivation

Assume now that ω is strictly positive everywhere.

Remark 1.1. It would be enough to assume here that ω is strictly positive just Lebesgue-
almost everywhere without any of the statements to follow being meaningfully affected.
Indeed, for p ∈ (0,∞), the p-potential measure of X is absolutely continuous with respect
to Lebesgue measure [11, Corollary 8.9]. Hence, the additive functional (

∫ t
0ω(Xu) du)t∈[0,∞)

changes only on a negligible set if ω is altered on a Lebesgue-null Borel set. Still, to avoid
some extra a.s. qualifications, we assume here simply (and, in view of the preceding, without
loss of generality) that ω is strictly positive everywhere.

Our main motivation for the interest in (1.1) then comes from its involvement in the solution
of the first passage problem upwards for the process that we will denote by Y = (Ys)s∈[0,∞)

and is defined as follows. Setting ζ := ∫ eq
0 ω(Xu) du (see [8, Remark 5] and [5, Theorem 1]

for deterministic conditions on the finiteness/divergence of this integral in the case q = 0,
i.e. eq = ∞ a.s.), then

for s ≥ ζ , Ys = ∂ , where ∂ is some ‘cemetery’ state,

while for s ∈ [0, ζ ), Ys = Xρs ,
(1.2)

with

ρs := inf
{

t ∈ [0,∞) :
∫ t

0
ω(Xu) du> s

}
for s ∈ [0,∞).

Notice that ρ = (ρs)s∈[0,∞) is continuous (because ω is strictly positive, and hence∫ ·
0 ω(Xu) du is strictly increasing) and it is strictly increasing where it is finite (because
ω is locally bounded, and hence

∫ ·
0 ω(Xu) du is continuous). Thus, the paths of Y up to

ζ are the same as the paths of X up to eq, modulo the random time change ρ. Also,
if F = (Ft)t∈[0,∞) is any filtration relative to which X is adapted and has independent
increments, with eq independent of F∞, then thanks to the strong Markov property of X
and the memoryless property of the exponential distribution, the process Y is Markovian
with state space (R,BR) and lifetime ζ under the probabilities (Py)y∈R and in the filtration
G = (Gs)s∈[0,∞) := (Fρs ∨ σ ({{ρu < eq} : u ∈ [0, s]}))s∈[0,∞), in the precise sense that it is
G-adapted and that for any Borel measurable h : R→ [0,∞], y ∈R, {s, t} ⊂ [0,∞), we have,
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a.s.-Py, Py[h(Yt+s)1{t+s<ζ }|Gt] = PYt [h(Ys); s< ζ ]1{t<ζ }. (Of course, if in addition we have a P∂
such that Yt = ∂ for all t ∈ [0,∞) a.s.-P∂ , then as a consequence Y is also simply Markovian
with state space (R∪ {∂}, σ (BR ∪ {{∂}})) and infinite lifetime.)

By way of example, when ω= exp and ∂ = −∞, then, under the probabilities
(Plog x)x∈(0,∞), S := eY is a spectrally negative positive self-similar Markov process (pssMp)
absorbed at the origin, with index of self-similarity 1, associated to X via the Lamperti

transform for pssMp [11, Theorem 13.1]. And, for c ∈ (0,∞), on {τ+
log c<eq},

∫ τ+
log c

0 eXu du
is the first time that S hits the set (c,∞), the latter time being = ∞ on the complement of
{τ+

log c < eq}. We understand in the preceding, of course, that e−∞ = 0, so that 0 is, as usual, the
cemetery state for S; it is known that S hits 0 eventually with positive probability (and then a.s.)
if and only if either q> 0 or else X drifts to −∞ [11, Theorem 13.1]. See Example 3.2.

Similarly, for c ∈ (0,∞), with ω(x) = 1
|x| for x ∈ (−∞,−c] and again ∂ = −∞, −Yτ

+−c

becomes, under the probabilities (P−x)x∈[0,∞), a continuous state branching process (csbp)
B stopped on hitting the set [0, c), where B is the csbp associated to −X under the Lamperti
transform for csbp [11, Theorem 12.2]. (We are forced to stop at τ+−c in order to remain in the
setting of a locally bounded ω, which is an assumption that remains in force throughout this

paper.) And, on {τ+−c < eq},
∫ τ+−c

0
du

|Xu| is the first time B hits [0, c), the latter time being = ∞ on

the complement of {τ+−c < eq}. See Example 3.3.
More generally, denote for d ∈R by T+

d := inf{s ∈ (0,∞) : Ys ∈ (d,∞)} the first hitting time
of the set (d,∞) by the process Y . Then, for γ ∈ [0,∞) and real y ≤ d, under Py, the Laplace
transform of T+

d = ∫ τ+
d

0 ω(Xu) du on {T+
d < ζ } = {τ+

d < eq} at the point γ is given simply by

Py[e−γT+
d ;T+

d < ζ ] =B(γω)
q (y, d). (1.3)

Moreover, knowledge of this expression automatically also furnishes the joint Laplace
transform of τ+

d and T+
d : if, further, p ∈ [0,∞), then Py[e−γT+

d −pτ+
d ; T+

d < ζ ] =B(γω)
q+p (y, d).

1.3. Overview of literature and results

Literature-wise, fluctuation results for the ‘ω-killed’ SNLP X have been the subject of
the substantial recent study in [12], to which the reader is referred for a further review
of existing and related results as well as extra motivation for considering such processes.
Expressions of the form (1.1) or (1.3) are particularly relevant in optimal stopping problems
with (generalized) discounting for spectrally negative processes (when the optimal stopping
time is a first passage time upwards): here the (generalized) discounting corresponds to the term
‘exp

{− ∫ τ+
c

0 ω(Xu) du
}
1{τ+

c <eq}’ in (1.1) or to ‘e−γT+
d 1{T+

d <ζ }’ in (1.3), while any ‘reward’
function of a spectrally negative process at a first passage time upwards will simply be constant
(on the event that this first passage is finite, owing to the absence of positive jumps). For
further deliberations on this we refer the reader to [3], where such problems were considered
for regular linear diffusions and, more generally, spectrally negative Feller processes (see
especially [3, Theorem 4.2]), and to [13] in the context of Lévy processes (we return to this
reference in more detail in Section 4). Outside of optimal stopping, in addition to the cases of
pssMp and csbp mentioned above, connections between the values of the additive functional∫ ·

0 ω(Xu) du evaluated at a first passage (hitting) time, on the one hand, and of the first passage
(hitting) time of the associated time-changed process, see (1.3), have also been found to
be useful in the context of linear diffusions [8, Eq. (6)]. Finally, an expression somewhat
reminiscent of the one in (1.1) appears in [15, Eq. (1.h)] in the context of Bessel processes.
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Our contribution is only a small complement to the findings of [12], but still one that
seems to deserve recording. To be precise, [12] provides information on the one-sided upwards
passage problem when ω is constant on (−∞, 0] (see [12, Subsection 2.4]); we will extend
this to a far more general class of functions ω. In this class, the solution to (1.1) will be
given in terms of a function H(ω)

q that will be found to solve (uniquely) a natural convolution
equation on the real line involving the q-scale function of X (Theorem 3.1). In contrast to the
two-sided exit problem, where the pertinent convolution equation is on the non-negative half-
line [12, Eq. (1.2)], this introduces some extra finiteness issues, making the analysis slightly
more delicate. The function H(ω)

q will also be associated with a family of (local) martingales
involving the process Y (Proposition 3.1).

1.4. Structure of this paper

We turn to the results and their proofs presently, in Section 3, after briefly introducing some
necessary further notation and recalling some known facts in Section 2. Section 4 concludes
by illustrating the findings in the context of determining the optimal level at which to sell an
asset whose price process is given by the exponential of the process Y from (1.2).

2. Further notation and some preliminaries

We denote by ψ the Laplace exponent of X, ψ(z) = log P[ezX1 ] for z ∈ [0,∞), and by � its
right-continuous inverse,�(p) := inf{z ∈ [0,∞) :ψ(z)> p} for p ∈ [0,∞);ψ is strictly convex
and continuous, limz→∞ ψ(z) = ∞, and�(0) is the largest zero of ψ . For real x ≤ c, recall the
classical identity [11, Eq. (3.15)]

Px[e−qτ+
c ; τ+

c <∞] = e−�(q)(c−x). (2.1)

Further, for λ ∈ [0,∞), W(λ) : R→ [0,∞) will be the λ-scale function of X, characterized
by being continuous on [0,∞), vanishing on (−∞, 0), and having Laplace transform∫ ∞

0
e−θxW(λ)(x) dx = 1

ψ(θ ) − λ
, θ ∈ (�(λ),∞). (2.2)

In particular, we set W(0) = : W. The reader is referred to [10] for further background on scale
functions of SNLP; we note explicitly only the asymptotic behavior [10, Eq. (33), Lemmas 2.3
and 3.3]

e−�(λ)xW(λ)(x) = W�(λ)(x) ↑ 1

ψ ′(�(λ) + )
as x ↑ ∞, λ ∈ [0,∞), (2.3)

that we shall use repeatedly in what follows (here, 1/0 := ∞ when λ=�(0) =ψ ′(0 +) = 0,
and otherwise ψ ′(�(λ) +) ∈ (0,∞); W�(λ) is the scale function of an Esscher transformed
process – its precise character is unimportant, what matters is only the monotone convergence).

Convolution on the real line will be denoted by a �: for Borel-measurable f , g : R→R,

(f � g)(x) :=
∫ ∞

−∞
f (y)g(x − y) dy, x ∈R,

whenever the Lebesgue integral is well defined for all x ∈R (it is, e.g., when f and g are both
non-negative, or both integrable, or when one of f , g is integrable, while the other is bounded).

https://doi.org/10.1017/jpr.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.23


476 M. VIDMAR

Finally, it will be convenient to introduce the following concepts.

Definition 2.1. For a function f : R→R, we will (i) say that it has a bounded left tail (resp.
left tail that is bounded below away from zero) if f is bounded (resp. bounded below away from
zero) on (−∞, x0] for some x0 ∈R; (ii) for further α ∈ [0,∞), say that it has a left tail that is
α-subexponential provided that for some x0 ∈R, some γ <∞, and then all x ∈ (−∞, x0], we
have | f (x)| ≤ γ eαx; and (iii) say simply that it has a subexponential left tail if, for some α > 0,
it has a left tail that is α-subexponential.

3. Results and their proofs

3.1. Main result

Here is the main result of this note.

Theorem 3.1. There exists a unique function H(ω)
q : R→ (0,∞) satisfying (the arbitrary

normalization condition) H(ω)
q (0) = 1 such that

B(ω)
q (x, c) = H(ω)

q (x)

H(ω)
q (c)

for all real x ≤ c. (3.1)

The function H(ω)
q enjoys the following properties.

(I) It is non-decreasing (hence locally bounded), continuous, and it is strictly increasing
provided ω> 0.

(II) For each c ∈R the following holds: ω1( · ∧ c) =ω2( · ∧ c) implies H(ω1)( · ∧ c) =
αH(ω2)( · ∧ c) for some α ∈ (0,∞), this α being 1 if c ≥ 0.

(III) If ω1, ω2 : R→ [0,∞) are both locally bounded and Borel measurable with ω1 ≤ω2

(resp. ω1 <ω2), then H(ω1)
q ≤H(ω2)

q (resp. H(ω1)
q <H(ω2)

q ) on (0,∞) and H(ω1)
q ≥H(ω2)

q

(resp. H(ω1)
q >H(ω2)

q ) on (−∞, 0); of course, H(ω1)
q (0) = 1 =H(ω2)

q (0).

(IV) For real x ≤ c, H(ω)
q (x) ≤H(ω)

q (c)e−�(q)(c−x); in particular, H(ω)
q (x) ≤ e�(q)x for all

x ∈ (−∞, 0], so that H(ω)
q has a left tail that is �(q)-subexponential.

Furthermore, if (ωe�(q+p)·) �W(q) is finite-valued for all p ∈ (0,∞), in particular if ω has a left
tail that is bounded, then for some unique L(ω)

q ∈ [0, 1], H(ω)
q satisfies the convolution equation

H(ω)
q = L(ω)

q e�(q)· + (ωH(ω)
q ) �W(q). (3.2)

More specifically:

(i) If, moreover, ω has a left tail that is bounded and bounded below away from zero, then
H(ω)

q satisfies the (homogeneous) convolution equation

H(ω)
q = (ωH(ω)

q ) �W(q). (3.3)

(ii) If (ωe�(q)·) �W(q) is finite-valued, in particular if ω has a subexponential left tail, then
H(ω)

q is the unique locally bounded Borel measurable function H : R→R admitting

https://doi.org/10.1017/jpr.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.23


First passage upwards for state-dependent-killed SNLPs 477

a left tail that is �(q)-subexponential and satisfying the (inhomogeneous) convolution
equation

H = L(ω)
q e�(q)· + (ωH) �W(q), (3.4)

where

L(ω)
q = lim

x→−∞ H(ω)
q (x)e−�(q)x

= lim
x→−∞ Px

[
exp
{

−
∫ τ+

0

0
ω(Xs) ds

} ∣∣∣ τ+
0 < eq

]
∈ (0, 1]. (3.5)

This function is given as H(ω)
q =↑ –limn→∞ Hn, where H0 := L(ω)

q e�(q)· and recursively
Hn+1 := L(ω)

q e�(q)· + (ωHn) �W(q) for n ∈N0.

After some remarks and examples we turn to the proof of this theorem on p. 480.

Remark 3.1. Since H(ω)
q =H(ω+q)

0 , (3.3) may be rewritten as H(ω)
q = ((ω+ q)H(ω)

q ) �W.

For the same reason, when q> 0 then automatically H(ω)
q = ((ω+ q)H(ω)

q ) �W.

Remark 3.2. Because of (2.3), cases (i) and (ii) are seen to be mutually exclusive (but they
are not exhaustive). Of course, (ωe�(q+p)·) �W(q) is finite-valued for all p ∈ (0,∞) if and only
if (ωeα·e�(q)·) �W(q) is finite-valued for all α ∈ (0,∞), in which case, for each α ∈ (0,∞),
ωeα· falls under the provisos of case (ii). For the resulting convolution equation (3.4) we
then have suitable uniqueness of the solution as well as an explicit recursion to (at least
in principle) produce it. At the same time, by bounded convergence in (3.1) and (1.1),
limα↓0 H(ωeα·)

q =H(ω)
q .

Example 3.1. When ω is constant and equal to some μ ∈ [0,∞), then from (2.1),
H(ω)

q =H(μ)
q = e�(q+μ)·, and this instance falls under case (i) or (ii) according as μ> 0 or

μ= 0.

Example 3.2. When ω= γ eα·, with γ ∈ [0,∞) and α ∈ (0,∞), a situation that falls under
case (ii), using (2.2) we obtain

H(γ eα·)
q (x) =

∞∑
k=0

γ ke(�(q)+αk)x∏k
l=1 (ψ(�(q) + lα) − q)

/ ∞∑
k=0

γ k∏k
l=1 (ψ(�(q) + lα) − q)

, x ∈R, (3.6)

with the series converging to finite values. (As usual the empty product is interpreted as being
equal to 1.) Of course, when γ > 0 then, from (3.1), by spatial homogeneity, H(γ eα·)

q (x) =
H(eα·)

q (x+ 1
α

log γ )

H(eα·)
q ( 1

α
log γ )

, x ∈R. Note that this reproduces (up to trivial transformations) Patie’s [14]

scale functions from the fluctuation theory of spectrally negative pssMp [11, Section 13.7].

We can also identify the limit (3.5) as L(γ eα·)
q = (∑∞

k=0
γ k∏k

l=1 (ψ(�(q)+lα)−q)

)−1. For the special

case when X is Brownian motion and when γ > 0 (γ = 0 being trivial), if q = 0 we have

H(γ eα·)
q (x) =H(γ eα·)

0 (x) = I0(2eαx/2√γ /α)
I0(2

√
γ /α) , x ∈R, where I0 is the modified Bessel function of

the first kind (of order 0); for q> 0 the function H(γ eα·)
q evaluates in terms of a generalized

hypergeometric function.
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Remark 3.3. Let γ ∈ [0,∞) and α ∈ (0,∞). Suppose ω(x) ≤ γ eαx for all x ∈R. Then, again
via (2.2), we get the following a priori bound on the absolute error in case (ii) from computing
only finitely many terms of the recursion for H(ω)

q :

H(ω)
q − Hn ≤ L(ω)

q

∞∑
k=n+1

γ k∏k
l=1 (ψ(�(q) + αl) − q)

e(�(q)+αk)·

≤
∞∑

k=n+1

γ k∏k
l=1 (ψ(�(q) + αl) − q)

e(�(q)+αk)·

for all n ∈N0. (In particular, H(ω)
q ≤ L(ω)

q
∑∞

k=0
γ k∏k

l=1 (ψ(�(q)+αl)−q)
e(�(q)+αk)· ≤∑∞

k=0
γ k∏k

l=1 (ψ(�(q)+αl)−q)
e(�(q)+αk)·.)

In the following, an expression of the form ‘H(ω)
q (x) ∝ b(x)’ means that there is a C ∈ (0,∞)

such that H(ω)
q (x) = Cb(x) for all x in the relevant domain; the constant C depends only on

ω, q, and the characteristics of X, not on x (it is ultimately determined by the (arbitrary)
normalization condition H(ω)

q (0) = 1).

Example 3.3. Let c ∈ (0,∞), γ ∈ (0,∞), and ω(x) = γ
|x| for x ∈ (−∞,−c]. Using the result

for csbp of [6, Theorem 1] we identify H(ω)
q up to a multiplicative constant;

H(ω)
q (x) ∝

∫ ∞

�(q)

dz

ψ(z) − q
exp

{
xz +

∫ z

θ

γ

ψ(u) − q
du
}
, x ∈ (−∞,−c],

where θ ∈ (�(q),∞) is arbitrary but fixed. Indeed, [6, Eq. (11)] identifies (by other means) the
expression (1.3), and even the joint Laplace transform ‘Py[e−δT+

d −pτ+
d ; T+

d < ζ ]’, from which

the expression for H(ω)
q can easily be recovered via (3.1). Note that this ω falls under neither

case (i) nor case (ii), but it does fall under (3.2). In fact, while it is not so obvious, an easy
computation shows that (3.2) is verified in this case with L(ω)

q = 0. For the special case when

X is Brownian motion and when γ > 0: if q = 0 we have H(ω)
q (x) ∝ 2

√−2γ xK1(2
√−2γ x),

x ∈ (∞,−c], where K1 is the modified Bessel function of the second kind (of order 1); for
q> 0 the function H(γ eα·)

q does not appear to have a closed-form expression in terms of
elementary/special functions.

Example 3.4. Let n ∈N≥2, γ ∈ [0,∞), c ∈ (0,∞), and ω(x) = γ
|x|n for x ∈ (−∞,−c]. Except

possibly when q =�(0) =ψ ′(0 +) = 0, we then automatically have, because of the asymptotic
properties of W(q) (see (2.3)) that (ωe�(q)·) �W(q) is finite-valued, and in any event we assume
now that this is so. Then note, using (2.2), that for x ∈ (−∞,−c], v ∈ [�(q),∞), and for α > 0,
dn

dαn

∫∞
0

e(v+α)(x−y)

(x−y)n W(q)(y) dy = e(v+α)x

ψ(v+α)−q , which implies that

∫ ∞

0

e(v+α)(x−y)

|x − y|n W(q)(y) dy =
∫ ∞

v+α
dv1

∫ ∞

v1

dv2 · · ·
∫ ∞

vn−1

dvn
evnx

ψ(vn) − q

=
∫ ∞

v+α
dvn

exvn

ψ(vn) − q

∫ vn

v+α
dvn−1 · · ·

∫ v2

v+α
dv1 =

∫ ∞

v+α
dy

exy

ψ(y) − q

(y − v − α)n−1

(n − 1)! .
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Hence, letting α ↓ 0, by monotone convergence,

((ωev·) �W(q))(x) = γ

∫ ∞

0

ev(x−y)

|x − y|n W(q)(y) dy

= γ

∫ ∞

v
dy

exy

ψ(y) − q

(y − v)n−1

(n − 1)! = γ

∫ ∞

0
dy

ex(v+y)

ψ(v + y) − q

yn−1

(n − 1)! .

Thus, the recursion of case (ii) allows us to identify H(ω)
q , up to a proportionality constant, in

terms of an infinite series of iterated integrals:

H(ω)
q (x) ∝ e�(q)x

[
1+

∞∑
k=1

( γ

(n − 1)!
)k
∫

(0,∞)k

(x1 · · · xk)n−1ex(x1+···+xk) dx1 · · · dxk

(ψ(�(q) + x1) − q) · · · (ψ(�(q) + x1 + · · · + xk) − q)

]

= e�(q)x
[

1 + γ

(n − 1)!
∫ ∞

0
dy

yn−1exy

ψ(�(q) + y) − q

+
( γ

(n − 1)!
)2
∫ ∞

0
dy

yn−1exy

ψ(�(q) + y) − q

∫ ∞

0
dz

zn−1exz

ψ(�(q) + y + z) − q
+ · · ·

]
, x ∈ ( − ∞,−c].

For instance, when X is Brownian motion, q = 0, and n = 3, then H(ω)
q (x) ∝ 1 + γ

−x + γ 2

3x2 +
· · · , x ∈ (−∞,−c], with the first three terms of the preceding series having been made explicit;
already the fourth term does not (appear to) evaluate to any nice expression. It is clear from the
representation of the series, however, that in this special case its kth term will be of the form
ck/|x|k, for some ck ∈ (0,∞), so that by adding the successive terms to the series we get an
asymptotic expansion of H(ω)

q .

Remark 3.4. In connection with the results of [12]:

(a) Let q = 0. If ω|(−∞,0] = 0, then L(ω)
q = 1 and (3.4) recovers [12, Eq. (2.23) with

φ = 0]. If ω|(−∞,0] = φ ∈ (0,∞), then H(ω)
q |(−∞,0] = e�(φ)· and (3.3) is seen – via

W(φ) = W + φW(φ) �W, which may be checked by taking Laplace transforms using
(2.2), and via φe�(φ)· �W = e�(φ)·, which follows directly from (2.2) – to be a slight
rewriting of [12, Eq. (2.23) with φ > 0].

(b) In [12, Eq. (2.25)], for real x ≤ c the ‘ω-resolvent’ identity∫ ∞

0
Px

[
exp
{

−
∫ t

0
ω(Xu) du

}
; t< τ+

c , Xt ∈ dy
]
dt

is formally asserted only for the case when ω|(−∞,0] is constant, but it of course prevails

in full generality (with our H(ω)
0 replacing the H(ω) there); the proof consists only in

using the resolvent identity for the two-sided exit problem [12, Eq. (2.15)] and the fact
that

H(ω)
0 (x)

H(ω)
0 (c)

=B(ω)
0 (x, c) = lim

b→−∞ Px

[
exp

{
−
∫ τ+

c

0
ω(Xu) du

}
;τ+

c < τ−
b

]
.

For this reason we omit reproducing the expression here.
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(c) The approach of [12] to handle the case when ω is constant on (−∞, 0] is by taking
limits in the two-sided exit problem (as indicated in the previous item). We will follow
an alternate, more direct, route (also inspired by [12]), which will allow us to prove the
result in greater generality.

As previously indicated, we turn now to the proof of our main result. We resume providing
further complements to Theorem 3.1 in Proposition 3.1 on p. 485. Below, as usual, the
statement ‘τ+

d ↓ τ+
c as d ↓ c’ means that the map (c,∞) � d �→ τ+

d is non-decreasing and
that limd→c,d>c τ

+
d = τ+

c (all pointwise). Other statements of this form are interpreted in an
analogous manner.

Proof of Theorem 3.1. We separate the proof into several parts. The reader who wishes
(at first) only to see the main idea without being preoccupied with the technical details may
proceed (first) to (•3) below.

(•1) We begin by arguing that there exists a unique function H(ω)
q : R→ (0,∞) satisfying

H(ω)
q (0) = 1 and (3.1). This is basically a consequence of the strong Markov property and of

the absence of positive jumps of X.
Let x ≤ y ≤ c be real numbers. Since X has no positive jumps, then Px-a.s. Xτ+

y
= y on

{τ+
y <∞}, and it follows by the strong Markov property of X applied at the time τ+

y , and
by the memoryless property of the exponential distribution, that one has the multiplicative
structure

B(ω)
q (x, c) =B(ω)

q (x, y)B(ω)
q (y, c).

Furthermore, it is clear that B(ω)
q (x, c)> 0 for all real x ≤ c. As a consequence, we may

unambiguously define (with a preemptive choice of notation) H(ω)
q (x) := B(ω)

q (x,c)

B(ω)
q (0,c)

for real x ≤ c,

c ≥ 0. In short, then, H(ω)
q : R→ (0,∞), H(ω)

q (0) = 1, and (3.1) holds. It is clear that H(ω)
q is

unique in having the preceding properties.
(•2) We consider statements (I), (II), (III), and (IV). Apart from the continuity of H(ω)

q , (I),
(II), and (III) follow immediately from (3.1) and (1.1) and simple comparison arguments.

To prove the continuity of H(ω)
q , note that, for real c,

(r) τ+
d ↓ τ+

c as d ↓ c (this is simply directly from the definition of the first passage times
(τ+

y )y∈R involving the strict inequality >),

and further that for x ∈ (−∞, c), by quasi-left-continuity and regularity of 0 for (0,∞), also

(l) τ+
d ↑ τ+

c Px-a.s. (on {limd↑c τ
+
d <∞} and hence everywhere) as d ↑ c.

Then item (r), the fact that ω is locally bounded, and bounded convergence in (3.1) and (1.1),
immediately yield the right-continuity of H(ω)

q . Left-continuity follows similarly from item (l)
in lieu of (r), except that now one notices in addition that Px-a.s. on {τ+

c = ∞} also τ+
d = ∞

for all d< c that are sufficiently close to c (this is needed to ensure, when q = 0, the Px-a.s.
convergence 1{τ+

d <eq} → 1{τ+
c <eq} as d ↑ c also on the event {τ+

c = ∞}; the issue is moot when

q> 0 because then automatically Px(τ+
c = eq) = 0). The latter property in turn is a consequence

of the fact that the law of the overall supremum, X∞, being exponential (2.1), has no finite
atoms.

For (IV), notice that by (2.1), for real x ≤ c, H(ω)
q (x) ≤H(ω)

q (c)Px(τ+
c < eq) =

H(ω)
q (c)Px[e−qτ+

c ;τ+
c <∞] =H(ω)

q (c)e−�(q)(c−x).
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(•3) We now prove (i), exploiting the marked Poisson process technique of [12]. Suppose
then that ω has a left tail that is bounded and bounded below away from zero.

As a preliminary observation, note that the homogeneous convolution equation (3.3) may
be checked ‘locally’, separately on each (−∞, c] for c ∈R (this is trivial); then replacing
ω with ω( · ∧ c) if necessary, we may assume – by (II), and because W(q) vanishes on (−∞, 0)
– without loss of generality that ω is bounded by a λ ∈ (0,∞). Also, by assumption, there is
an x0 ∈R such that ω is bounded below away from zero on (−∞, x0] by some a> 0.

Next, again let x ≤ c be real numbers. Recall the expression for the resolvent [10,
Theorem 2.7(ii)],∫ ∞

0
e−λtPx(Xt ∈ dy, t< τ+

c ∧ eq) dt = (e−�(λ+q)(c−x)W(λ+q)(c − y) − W(λ+q)(x − y)) dy

for y ∈ (−∞, c], and the classical identity (2.1) Px[e−λτ+
c ;τ+

c < eq] = e−�(λ+q)(c−x).
Furthermore, let (Ti)i∈N be the arrival times of a homogeneous Poisson process of intensity λ,
marked by an independent sequence (Mi)i∈N of independent, identically, uniformly on [0, λ],
distributed random variables, all independent of X. Then, by properties of marked Poisson
processes,

B(ω)
q (x, c) = Px(Mi >ω(XTi) for all i ∈N such that Ti < τ

+
c , τ

+
c < eq)

= Px(T1 > τ
+
c , τ

+
c < eq) + Px[B(ω)

q (XT1 , c);T1 < τ
+
c ∧ eq,M1 >ω(XT1 )]

= e−�(λ+q)(c−x) +
∫ c

−∞
B(ω)

q (y, c)(e−�(λ+q)(c−x)W(λ+q)(c − y) − W(λ+q)(x − y))(λ−ω(y)) dy.

(3.7)

Further, plugging (3.1) into (3.7), multiplying both sides by H(ω)
q (c), and rearranging, we

see that

0 ≤H(ω)
q (x) −

∫ c

−∞
H(ω)

q (y)(e−�(λ+q)(c−x)W(λ+q)(c − y) − W(λ+q)(x − y))(λ−ω(y)) dy

=H(ω)
q (c)e−�(λ+q)(c−x). (3.8)

Letting c ↑ ∞ in (3.8), we then obtain, by monotone convergence and using (2.3), that

H(ω)
q = e�(λ+q)·hλ + ((λ−ω)H(ω)

q

)
�

(
e�(λ+q)·

ψ ′(�(λ+ q))
− W(λ+q)

)
, (3.9)

with hλ := limc→∞ H(ω)
q (c)e−�(λ+q)c; a priori this limit must exist in [0,∞), because the limit

of the left-hand side in (3.8) exists in [0,∞) (by monotone convergence), hence so too must
the limit of the right-hand side (so the limit defining hλ is even monotone non-increasing, but
we do not need this).

Note now the relations e�(λ+q)· = λe�(λ+q)· �W(q) (which is a direct consequence of (2.2))
and W(λ+q) = W(q) + λW(λ+q) �W(q) (which may be checked by taking Laplace transforms
and again using (2.2)). They together imply that(

e�(λ+q)·

ψ ′(�(λ+ q))
− W(λ+q)

)
� λW(q) =

(
e�(λ+q)·

ψ ′(�(λ+ q))
− W(λ+q)

)
+ W(q).
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Using this, we convolute both sides of (3.9) with λW(q) to obtain

λH(ω)
q �W(q) = e�(λ+q)·hλ + ((λ−ω)H(ω)

q ) �

(
e�(λ)·

ψ ′(�(q))
− W(λ+q) + W(q)

)
=H(ω)

q + ((λ−ω)H(ω)
q ) �W(q).

Then the estimate (IV)
H(ω)

q (x)

H(ω)
q (x0)

=B(ω)
q (x, x0) =B((ω−a)∨0)

q+a (x, x0) ≤ e−�(q+a)(x0−x) for

x ∈ (−∞, x0] implies (via (2.2) and via the local boundedness of H(ω)
q (see (I)) and of W(q))

that H(ω)
q �W(q) is finite-valued, and upon subtracting finite quantities we obtain (3.3). This

concludes the proof of (i).
(•4) We now turn to (3.2). Suppose then that (ωe�(q+p)·) �W(q) is finite-valued for all

p ∈ (0,∞) (on account of (2.2) and because ω is locally bounded, this condition is satisfied
when ω has a bounded left tail). The basic idea here is to reduce this case to (i) via a suitable
approximation. As the reader will see, some care is needed to pass to the relevant limits.

Indeed, from (i), for each p ∈ (0,∞) and n ∈N, one has, for all x ∈R,

H(p+ω∧n)
q (x) = [((ω ∧ n + p)H(p+ω∧n)

q ) �W(q)](x)

= [((ω ∧ n)H(p+ω∧n)
q ) �W(q)](x) + p[H(p+ω∧n)

q �W(q)](x)

=
[ ∫ 0∧x

−∞
+
∫ 0∨x

0

]
(ω(y) ∧ n)H(p+ω∧n)

q (y)W(q)(x − y) dy

+ p
[ ∫ 0∧x

−∞
+
∫ x∨0

0

]
H(p+ω∧n)

q (y)W(q)(x − y) dy. (3.10)

We now first pass to the limit n → ∞ as follows. In (3.1) and (1.1),

monotone (for the integral against the Lebesgue measure)

and

bounded (for the expectation)

convergence yield H(p+ω∧n)
q →H(p+ω)

q as n → ∞. Then, in (3.10),

monotone (for the integrals on [0, x ∨ 0]; recall (III))

and

dominated (for the integrals on (−∞, 0 ∧ x], using the assumed finiteness condition and
the estimate (IV) H(p+ω∧n)

q (y) ≤ e�(q+p)y for y ∈ (−∞, 0])

convergence produce

H(p+ω)
q (x) = [(ωH(p+ω)

q ) �W(q)](x) + p[H(p+ω)
q �W(q)](x)

=
[ ∫ 0∧x

−∞
+
∫ 0∨x

0

]
ω(y)H(p+ω)

q (y)W(q)(x − y) dy + p
∫ x

−∞
H(p+ω)

q (y)W(q)(x − y) dy. (3.11)

Let us next write, for the purposes of the remainder of this proof only, H(p+ω)
q = : Hp and

H(ω)
q = : H for short. We proceed to pass to the limit p ↓ 0.
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In (3.1) and (1.1), as before, by

bounded (for the integral against the Lebesgue measure; recall that ω is locally bounded)

and

monotone (for the expectation)

convergence, we obtain that Hp → H as p ↓ 0.
Then, in (3.11), [(ωHp) �W(q)](x) → [(ωH) �W(q)](x) as p ↓ 0, by

monotone (for the integral on (−∞, 0 ∧ x]; recall (III))

and

bounded (for the integral on [0, x ∨ 0]; use the facts that Hp is non-decreasing (see (I)),
that Hp(c) is bounded in bounded p given a fixed c ∈ [0,∞) (see (III)), and that W(q) and
ω are locally bounded)

convergence.
Finally, we consider

Lx := lim
p↓0

e−�(q)xp(Hp �W(q))(x) = e−�(q)x lim
p↓0

p
∫ x

−∞
Hp(y)W(q)(x − y) dy;

a priori this limit must exist in [0,∞), because the limits of H(p+ω)
q (x) and [(ωH(p+ω)

q ) �
W(q)](x) in (3.11) have already been found to exist (and are finite, because the limit of
H(p+ω)

q (x), being H(ω)
q (x), is finite). We show that Lx does not depend on x, thus demonstrating

that (3.2) is indeed satisfied for some, necessarily unique, L(ω)
q ∈ [0, 1].

Now, since W(q) is locally bounded, since Hp is non-decreasing for each p ∈ (0,∞), and
since Hp(c) is bounded in bounded p given a fixed real c, it is clear that for any choice of
a ∈ (−∞, x],

Lx = lim
p↓0

p
∫ a

−∞
Hp(y)e−�(q)yW(q)(x − y)e−�(q)(x−y) dy.

Suppose first that ψ ′(�(q)+)> 0. Then, given any ε > 0 we may (2.3) choose this a to be
(for simplicity) ≤ 0 and such as to render |W(q)(x − y)e−�(q)(x−y) − 1/ψ ′(�(q) + )| ≤ ε for all
y ≤ a. Consequently, since (using the estimate Hp(y) ≤ e�(q+p)y for y ≤ 0, p ∈ (0,∞))

lim sup
p↓0

p
∫ 0

−∞
Hp(y)e−�(q)y dy ≤ lim

p↓0

p

�(q + p) −�(q)
=ψ ′(�(q)+)<∞,

we conclude that Lx in fact does not depend on x.
For the case when ψ ′(�(q) +) = 0, i.e. the case q =�(q) =ψ ′(0 +) = 0, we have that Lx =

limp↓0 p
∫ a
−∞ Hp(y)W(x − y) dy for any a ∈ (−∞, x]. We argue that

Q := lim sup
p↓0

p
∫ a

−∞
Hp(y)(W(x − y) − W(a − y)) dy = 0

https://doi.org/10.1017/jpr.2019.23 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.23


484 M. VIDMAR

for a that are (again for simplicity) ≤ 0 ∧ x, which will complete the verification that Lx does
not depend on x. Indeed, since Hp(y) ≤ Hp(a)e−�(p)(a−y) ≤ e−�(p)(a−y) for real y ≤ a ≤ 0 and
p> 0, we have that

Q ≤ lim
p↓0

p
∫ ∞

−a
e−�(p)(y+a)(W(x + y) − W(a + y)) dy

= lim
p↓0

p
[
e�(p)(x−a)

(
p−1 −

∫ x−a

0
e−�(p)zW(z) dz

)
− p−1

]
= 0.

(•5) The claims of (ii) follow at once from the above (in particular from (IV)) and from
Lemma 3.1 below. �
Regarding the uniqueness of the solutions to (3.4), we have the following lemma.

Lemma 3.1. Suppose (ωe�(q)·) �W(q) is finite-valued (which occurs if ω has a subexponential
left tail). Let G : R→R be Borel measurable and locally bounded with a left tail that is �(q)-
subexponential. Then:

(i) limx→−∞ e−�(q)x((ωG) �W(q))(x) = 0.

(ii) G = (Gω) �W(q) implies G = 0.

(iii) Further, now let g : R→ [0,∞) be locally bounded, Borel measurable, and with a left
tail that is �(q)-subexponential. Suppose G ≥ 0 and G = g + (ωG) �W(q). Then G =
G∞ := ↑ − limn→∞Gn, where the Gn are given recursively: G0 := g and Gn+1 := g +
(ωGn) �W(q) for n ∈N0.

The proof of the lemma is technical; the reader may safely skip it without it affecting their
understanding of the remainder of the text.

Proof. (i). We have |e−�(q)x((ωG) �W(q))(x)| ≤ ∫∞
−∞ ω(y)|G(y)|e−�(q)yW(q)(x − y)

e−�(q)(x−y) dy for all x ∈R. Since G has a left tail that is �(q)-subexponential and since
it is locally bounded, it follows that there is a γ <∞ such that |G(y)|e−�(q)y ≤ γ for all
y ∈ (−∞, 0] (say). Therefore, for x ∈ (−∞, 0],

|e−�(q)x((ωG) �W(q))(x)| ≤ γ
∫ ∞

−∞
ω(y)W(q)(x − y)e−�(q)(x−y) dy,

which is <∞ by assumption. Now, by (2.3), W(q)(x − y)e−�(q)(x−y) is non-increasing to 0 as
x ↓ −∞. Thus the conclusion follows by dominated convergence.

(ii). Denote, for x ∈R, ‖G‖x := supy∈(−∞,x] |G(y)|e−�(q)y. Note that this quantity is finite
because G has a tail that is �(q)-subexponential and because it is locally bounded. Then
G = (Gω) �W(q) implies that for all x ∈R we have

|G(x)|e−�(q)x ≤ ‖G‖x

∫ ∞

−∞
ω(y)W(q)(x − y)e−�(q)(x−y) dy = ‖G‖x(ω � (e−�(q)·W(q)))(x).

By (i), (ω � (e−�(q)·W(q)))(x) = e−�(q)x((ωe�(q)·) �W(q))(x) → 0 as x ↓ −∞, so there is an
x0 ∈R such that (ω � (e−�(q)·W(q)))(x) ≤ Ix0 := (ω � (e−�(q)·W(q)))(x0)< 1 for all x ∈
(−∞, x0]. At the same time, the above estimate implies ‖G‖x0 ≤ Ix0‖G‖x0 , hence ‖G‖x0 = 0,
which forces G to vanish on (−∞, x0].
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Let us now shift all the functions by x0 for (notational) convenience; to wit, F := G(x0 + ·)
and θ :=ω(x0 + ·) are Borel measurable and locally bounded, and F = (Fθ ) �W(q). From this
we obtain finally that F = 0 by the following argument.

Fix y0 ∈ [0,∞) and let θ0 be an upper bound for θ on [0, y0]. We may choose s0 ∈ (0,∞)
such that ψ(s0) − q> θ0. Denote ‖F‖ := supy∈[0,y0] |F(y)|e−s0y. Then, for each y ∈ [0, y0],
F = (Fθ ) �W(q) and (2.2) imply that

|F(y)|e−s0y ≤ ‖F‖θ0

∫ y

0
e−s0(y−z)W(q)(y − z) dz ≤ ‖F‖θ0/(ψ(s0) − q).

Again this renders ‖F‖ = 0, and completes the proof of (ii).
(iii). By induction we can prove that Gn ≤ G for all n ∈N0. To see that the sequence

(Gn)n∈N0 is pointwise non-decreasing, define the operator L, acting on Borel measurable
functions h : R→ [0,∞], by Lh := (ωh) �W(q), and argue by induction that, for n ∈N0,
Gn =∑n

k=0 Lkg, where for k ∈N0, Lk :=L ◦ · · · ◦L︸ ︷︷ ︸
k-times

is the k-fold composition of the operator

L with itself (of course, L0 is just the identity operator). Then, passing to the limit in the
recursion via monotone convergence, we find that G∞ = g + (ωG∞) �W(q). It follows that
G − G∞ has a�(q)-subexponential left tail, is locally bounded, Borel measurable, and satisfies
G − G∞ = ((G − G∞)ω) �W(q). By (ii), this means that G = G∞. �

3.2. Further complements

As is to be expected, the solution to (1.1) is associated with a family of (local) martingales.
Recall the process Y from (1.2).

Proposition 3.1. Let c ∈R, γ ∈ (0,∞). Define the processes Z = (Zt)t∈[0,∞) and V =
(Vs)s∈[0,∞) as follows:

Zt := exp

{
−
∫ t

0
ω(Xu) du − qt

}
H(ω)

q (Xt), t ∈ [0,∞),

and
Vs := e−γ sH(γω)

q (Ys)1{s<ζ }, s ∈ [0,∞).

Further, let F = (Ft)t∈[0,∞) be any right-continuous filtration relative to which X is adapted
and has independent increments. Then:

(i) The stopped process Zτ
+
c is a bounded càdlàg martingale in the filtration F

under Px for each x ∈R; for real x ≤ c the Px-terminal value of this martingale is

H(ω)
q (c) exp{− ∫ τ+

c
0 ω(Xs) ds − qτ+

c }1{τ+
c <∞}.

(ii) Assume ω is strictly positive and eq is independent of F∞. Then the stopped process

VT+
c is a càdlàg bounded martingale in the filtration G = (Gs)s∈[0,∞) := (Fρs ∨ σ ({{ρu <

eq}:u ∈ [0, s]}))s∈[0,∞) under Px for each x ∈R.

Remark 3.5. As a check, since VT+
c has a constant expectation, we recover (1.3) in the limit

as time goes to infinity.
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Proof of Proposition 3.1. We may assume x ≤ c.
(i). Let t ∈ [0,∞). Then in Markov process theory parlance, with (for the purposes of

this proof, and for notational simplicity only) (θu)u∈[0,∞) being the shift operators, we have
τ+

c ∧ t + τ+
c ◦ θτ+

c ∧t = τ+
c and, Px-a.s.,

Zt∧τ+
c

=H(ω)
q (c)e− ∫ t∧τ+c

0 ω(Xu) du−q(t∧τ+
c )PX

t∧τ+c

[
exp
{

−
∫ τ+

c

0
ω(Xu) du − qτ+

c

}
;τ+

c <∞
]

=H(ω)
q (c)Px

[
e− ∫ t∧τ+c

0 ω(Xu) du−q(t∧τ+
c )
(

exp
{
−
∫ τ+

c

0
ω(Xu) du − qτ+

c

}
1{τ+

c <∞}
)
◦θτ+

c ∧t

∣∣∣Ft∧τ+
c

]

=H(ω)
q (c)Px

[
exp
{

−
∫ τ+

c

0
ω(Xu) du − qτ+

c

}
1{τ+

c <∞}
∣∣∣Ft∧τ+

c

]

=H(ω)
q (c)Px

[
exp
{

−
∫ τ+

c

0
ω(Xu) du − qτ+

c

}
1{τ+

c <∞}
∣∣∣Ft

]
,

which establishes the first claim.
(ii). For all real 0 ≤ s ≤ t, A ∈Fρs , applying the optional sampling theorem to the process

Zτ
+
c at the times ρs and ρt, we obtain

Px

[
exp
{

−
∫ ρt∧τ+

c

0
ω(Xu) du − q(ρt ∧ τ+

c )
}
H(ω)

q (Xρt∧τ+
c

); A ∩ {ρt ∧ τ+
c <∞}

]

= Px

[
exp
{

−
∫ ρs∧τ+

c

0
ω(Xu) du − q(ρs ∧ τ+

c )
}
H(ω)

q (Xρs∧τ+
c

); A ∩ {ρs ∧ τ+
c <∞}

]
;

that is, because ρt ∧ τ+
c = ρt ∧ ρT+

c
= ρt∧T+

c
on {ρt ∧ τ+

c < eq} = {t ∧ T+
c < ζ }, since ρ is the

inverse of
∫ ·

0 ω(Xu) du, and by the independence of eq from F∞,

Px[exp{−t ∧ T+
c }H(ω)

q (Yt∧T+
c

); A ∩ {t ∧ T+
c < ζ }]

= Px[exp{−s ∧ T+
c }H(ω)

q (Ys∧T+
c

); A ∩ {s ∧ T+
c < ζ }].

This implies that (e−sH(ω)
q (Ys)1{s<ζ })s∈[0,∞) stopped at T+

c is a martingale in the filtration
G under Px, because this process is constant on [ζ,∞), and since for s ∈ [0,∞), {s< ζ } =
{ρs < eq} with the equality of the trace σ fields Gs|{ρs<eq} =Fρs |{ρs<eq} holding true. Replacing

ω with γω shows that the same is true of the process (e−γ sH(γω)
q (Ys)1{s<ζ })s∈[0,∞) stopped

at T+
c . �

Apart from the solutions presented in Examples 3.1–3.4, it seems difficult to come up with
‘nice’ω for which H(ω)

q is given explicitly (in terms ofψ and�, say), at least for a general W(q).
However, based on Example 3.2, we can ‘reverse engineer’ a class of ω for which H(ω)

q is
(semi-)explicit, in the precise sense of the following proposition.

Proposition 3.2. Let ν be a probability measure on the Borel sets of (0,∞), whose support is
compactly contained in (0,∞); q ∈ [0,∞) is still fixed. Set

w(x) :=
∫ H(eα·)

q (x)eαxν(dα)∫ H(eα·)
q (x)ν(dα)

, x ∈R
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(see Example 3.2 for an explicit expression for H(eα·)
q ). Then w : R→R is well defined,

Borel measurable, and locally bounded, L(w)
q = ∫ L(eα·)

q ν(dα), and, for x ∈R, H(w)
q (x) =∫ H(eα·)

q (x)ν(dα).

Remark 3.6. Even though the functions H(eα·)
q are given explicitly by (3.6), because of the

intricate involvement of α in H(eα·)
q it seems impossible to actually carry out the above integrals

against ν(dα) analytically (unless of course ν is finitely supported, in which case the integrals
turn into sums).

Proof of Proposition 3.2. To ease the notation, set: for α ∈ (0,∞), Hα
q :=H(eα·)

q and
Lαq := L(eα·)

q ; L := ∫ Lαqν(dα); and for x ∈R, H(x) := ∫ Hα
q (x)ν(dα). From the explicit form of

the Hα
q given in Example 3.2 we see that H : R→ (0,∞] is well defined and Borel measurable.

Also, the fact that ν has a support bounded from above ensures, via Theorem 3.1, items (I)
and (III), that H is locally bounded, and in particular it is finite; then, w : R→ (0,∞) is well
defined, Borel measurable, and locally bounded (the latter again because the support of ν is
bounded from above).

Further, we know that Hα
q = Lαq e�(q)· + (eα·Hα

q ) �W(q) for each α ∈ (0,∞). Integrating both
sides against ν(dα) we obtain, via Tonelli’s theorem, H = Le�(q)· + (Hw) �W(q). At the same
time, for x ∈ (−∞, 0], e−�(q)xH(x) = ∫ Hα

q (x)e−�(q)xν(dα) ≤ 1, so H has a left tail that is
�(q)-subexponential. Next, because the support of ν is bounded from below away from zero,
w has a subexponential left tail. By Lemma 3.1, we obtain H = L

L(w)
q
H(w)

q . But we also have
H(1) = 1 =H(w)

q (1), hence L = L(w)
q , and the proof is complete. �

Another fairly general class of ω that can be handled with some success is considered in the
following remark.

Remark 3.7. Let P be a real polynomial, α ∈ (0,∞), and c ∈R. Suppose that ω(x) = P(x)eαx

for all x ∈ (−∞, c]. Then the recursion of Theorem 3.1(ii) can, on (−∞, c], be successively
computed in essentially closed form; we obtain algebraic expressions involving only ψ and
its higher-order derivatives. This is because, together with the Laplace transform of W(q) (2.2)
that is given in terms of ψ , we can also obtain via successive differentiation expressions for its
higher-order derivatives. In a similar vein, if c< 0 and ω(x) = P(1/x)eαx for x ∈ (−∞, c], then
we get iterated integrals involving ψ (cf. Example 3.4).

Finally, when given a concrete W(q), it may of course very well happen that for a specific form
of ω, the convolution equation of Theorem 3.1(ii) admits an explicit solution (even as it fails
to do so for a general W(q)). A flavor of this is given in the next section.

4. Application to a model for the price of a financial asset

4.1. The model

Assume ω> 0. We consider the process S defined by

Ss := eYs1{s<ζ }, s ∈ [0,∞),

as a model for the price of a (speculative) financial asset (here, Y is the process from (1.2)).
When ω= 1 then ζ = eq, Y = X on [0, eq), and S is nothing but the classical exponential Lévy
model for the price of a risky asset (defaulted at ζ ); see [19] for a recent review. The idea
in allowing a more general ω is that the asset price may ‘move faster or slower along its
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trajectory’, depending on the price level, destroying the stationary independent increments
property of the log-returns but preserving their Markovian character. Using time-changed Lévy
processes to model financial assets is not new, of course – see, e.g., [2, 9]. We set Qz := Plog z,
z ∈ (0,∞), for convenience.

4.2. The optimization problem

Suppose in the above setting that we are interested in the simple problem of the determina-
tion of the optimal level b at which to sell the asset, having bought it at the level z ∈ (0,∞),
under an inflation/impatience rate γ ∈ (0,∞). In other words, if we let, for b ∈ (0,∞),
R+

b := inf{s ∈ (0,∞) : Ss > b} denote the first hitting time of the set (b,∞) by the process S,
then we would like a solution to the problem

max
b∈[z,∞)

A(b) with A(b) := Qz[SR+
b

exp{−γR+
b }; R+

b <∞] for b ∈ [z,∞). (4.1)

(More generally, we may simply be interested in A(b) itself if we are predetermined to sell at
the level b ∈ [z,∞).)

Remark 4.1. Because of the regularity of 0 for (0,∞), on account of the quasi-left-
continuity, and by the strong Markov property (all for the process X), for each c ∈
R, a.s. τ+

c = inf{t ∈ [0,∞) : Xt > c} = inf{t ∈ [0,∞) : Xt ≥ c} = inf{t ∈ [0,∞) : Xt− ∨ Xt ≥ c}
(where, as usual, X0− = X0). This implies analogous a.s. equalities for the times R+

b , b ∈
(0,∞), and the process S.

But, for b ∈ [z,∞), since SR+
b

= b on {R+
b <∞},

A(b) = bQz[exp{−γR+
b }; R+

b <∞] = bPlog z[exp{−γT+
log b}; T+

log b < ζ ]

= bB(γω)
q ( log z, log b) = b

H(γω)
q ( log z)

H(γω)
q ( log b)

. (4.2)

Hence, (4.1) is intimately related to the determination of the quantity (1.1).

Remark 4.2. More difficult is the optimal stopping problem

( ∗ ) : max
T

Qz[ST exp{−γT}; T <∞],

where T ranges over all stopping times (of the completed natural filtration) of S, i.e. we
maximize the optimal selling time over all stopping rules of S, not just the first upcrossing
times (R+

b )b∈[z,∞) as in (4.1). On the level of the process X it corresponds to

(∗∗) : max
τ

Plog z

[
eXτ exp

{
−γ

∫ τ

0
ω(Xt) dt

}
; τ < eq

]
,

where τ ranges over all stopping times (of the completed natural filtration) of X (progressively
enlarged by eq).

Now, for the case q = 0 (without loss of generality), such problems have recently been
studied (in even greater generality: allowing an additive functional A of X in place of∫ ·

0 γω(Xu) du; a general Lévy process for X; f (Xτ ) in place of eXτ for a lower semi-continuous
map f ) in [13]. In the latter paper, sufficient conditions for the optimality of a first upcrossing
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time were provided [13, Theorem 2.1], these being further strengthened in the spectrally
negative case [13, Theorem 2.2]. In our present case, [13, Assumption 2.1] requires that

(C1): either X drifts to −∞, or else Px(
∫∞

0 ω(Xu) du = ∞) = 1 for all x ∈R

(in the case when X drifts to ∞ the latter is equivalent to
∫∞

ω(y) dy = ∞
[5, Theorem 1]).

When this is so, [13, Theorem 2.2] provides relatively explicit sufficient conditions under
which a first upcrossing time from the family (τ+

c )c∈R is optimal in (**). Indeed, let e be an
exponential random time of mean 1, independent of X, and set η̃ := ρe/γ . We then have, for
real x< z,

Px(Xη̃ > z) = Px(Xρe/γ > z) = Px(τ+
z <ρe/γ ) = Px

( ∫ τ+
z

0
γω(Xu) du< e, τ+

z <∞
)

= Px

[
exp
{

−
∫ τ+

z

0
γω(Xu) du

}
; τ+

z <∞
]
=B(γω)

0 (x, z) = H(γω)
0 (x)

H(γω)
0 (z)

(here, X is the running supremum process of X), i.e. the ‘hazard rate’ of Xη̃ is equal to (cf. [13,
Assumption 2.2])

�(γω)(z) := − d

dz
log Px(Xη̃ > z) = d

dz
log (H(γω)

0 (z)) = H(γω)′
0 (z)

H(γω)
0 (z)

, z ∈R,

when the derivative of H(γω)
0 exists, which we now assume it does. If, further, H(γω)

0 is
absolutely continuous, which occurs if H(γω)′

0 is locally bounded or even continuous [21,
Theorem 13.18], then it follows by the fundamental theorem of calculus that �(γω) ∈ L1

loc(R),
while

∫∞
�(γω) = ∞ (recall (C1)). Suppose for simplicity (for absolutely minimal conditions

that apply in the context of [13] the reader is asked to consult the latter reference directly) that

(C2): H(γω)
0 is continuously differentiable with a derivative that has no zeros.

Set K(γω)(x) := ex(1 − H(γω)
0 (x)

H(γω)′
0 (x)

) for x ∈R. Then, according to [13, Theorem 2.2,

Assumption 2.3, Lemma 2.2], if

(C3): there exists a (necessarily unique) x∗ ∈ [−∞,∞] such that the function
K(γω) : R→R is > 0 and non-decreasing on (x∗,∞), and is ≤ 0 on (−∞, x∗),

then 0 is optimal, τ+
x∗ is optimal, or (τ+

n )n∈N is an optimizing sequence in (**) according as
x∗ = −∞, x∗ ∈R, or x∗ = ∞.

Generally speaking, it appears to be a non-trivial matter to ascertain whether and when
the conditions (C1), (C2), and (C3) are met. We leave investigating this for future research.
In particular, without further qualifications, we make no claim that an optimizer in (4.1) is
also a general optimal selling rule (it is merely optimal in the class of first upcrossing passage
times). We can, however, make the following immediate observations concerning (C2) and (C3)
(leaving aside (C1), whose validity or non-validity is not difficult to check, except possibly
when X oscillates).
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Let γ = 1 without loss of generality. By standard excursion-theoretic arguments (see, e.g.,
[20, p. 13, proof of Lemma 3.6] and [10, Section 2.3]) we obtain the following representation
of the quantity B(ω)

0 (x, c) for real x ≤ c (incidentally, it is true even if ω is not strictly positive):

H(ω)
0 (x)

H(ω)
0 (c)

=B(ω)
0 (x, c) = e− ∫ c

x ω(y) dy/δ exp
{

−
∫ c

x
n
[
1 − e− ∫ χ0 ω(g+ξu) du1{χ<∞}

]
dg
}
, (4.3)

where the first factor appears only when X has paths of finite variation, in which case δ is
the drift of X, and where n is the (suitably normalized) excursion measure for excursions
away from the maximum of X, ξ is the canonical process, and χ := inf{u ∈ (0,∞) : ξu ≥ 0} is
the lifetime of the excursions. Now, if ω is continuous and has a bounded left tail then, by
dominated convergence, the map R � g �→ n

[
1 − e− ∫ χ0 ω(g+ξu) du1{χ<∞}

]
is continuous so that

(4.3) implies, via the fundamental theorem of calculus, that

H(ω)′
0 (x)

H(ω)
0 (x)

= ω(x)

δ
+ n
[
1 − e− ∫ χ0 ω(x+ξu) du1{χ<∞}

]
, x ∈R,

(again, the first term appears only when X has paths of finite variation); H(ω)′
0 therefore exists,

is continuous, and has no zeros (the latter because ω> 0), i.e. (C2) obtains. Besides, if in
addition ω is non-decreasing (resp. non-increasing, strictly increasing on a neighborhood of
−∞ and non-decreasing, strictly decreasing on a neighborhood of −∞ and non-increasing),

then R � x �→ 1 − H(ω)
0 (x)

H(ω)′
0 (x)

is non-decreasing (resp. non-increasing, strictly increasing, strictly

decreasing). Hence, if ω is strictly increasing and bounded on a neighborhood of −∞,
continuous, and non-decreasing, then there exists a (necessarily unique) x∗ ∈ [−∞,∞] such

that the function R � x �→ 1 − H(ω)
0 (x)

H(ω)′
0 (x)

is > 0 on (x∗,∞) and is < 0 on (−∞, x∗); with this x∗,

condition (C3) is met.

Remark 4.3. For another similar optimal stopping problem see [17]; the first upcrossing times
were found therein to be not always optimal.

4.3. Analysis in some special cases

Ifω= 1 then, because of the martingale property of (exp{Xt −ψ(1)t})t∈[0,∞) and on account
of the optional sampling theorem, A(b) is monotone in b ∈ [z,∞) and the problem (4.1) is
trivial. However, for a general ω this is no longer true, as we will see in an example shortly. To
this end we specialize now to the case when

for some α ∈ (0,∞) we have ω= eα· ∧ 1. (4.4)

As a possible rationale for such a choice we can imagine that the asset moves faster along its
trajectory at smaller price levels, reflecting that the investors are then more jittery, increasing
the velocity of the trades.

Remark 4.4. With the ω of (4.4), condition (C1) of Remark 4.2 is always met; it is only not
clear when X oscillates, and in that case we see that

∫∞
0 ω(Xu) du = ∞ a.s., because a.s. X will

spend an infinite Lebesgue amount of time in [0,∞) (in turn, we can convince ourselves of
the latter as follows: every time the process X goes above the level 1, it will take it a strictly
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positive amount of time to pass below 0; because X oscillates it will do this infinitely often,
and by the strong Markov property and the absence of positive jumps for X, these successive
sojourn times of X – between hitting the level 1 and then going below 0 – will be independent
and identically distributed and now the claim follows by the strong law of large numbers). In
addition, by the discussion at the end of Remark 4.2, conditions (C2) and (C3) for an as yet
unknown x∗ also obtain.

We have chosen the ω of (4.4) because as a consequence we can now be quite explicit
about the nature of H(γω)

q = : H. Denote L := L(γω)
q , and by P the Patie scale function (3.6) of

Example 3.2, so that L = (
∑∞

k=0 akγ
k)−1 and

P(x) = Le�(q)x
∞∑

k=0

ak(γ eαx)k, x ∈R, (4.5)

where we have set ak := (
∏k

l=1 (ψ(�(q) + lα) − q))−1 for k ∈N0. Then, by Theorem 3.1(II),
H = P on (−∞, 0], while by Theorem 3.1(ii), for x ∈ [0,∞),

H(x) = h(x) + γ

∫ x

0
H(y)W(q)(x − y) dy, (4.6)

where

h(x) := Le�(q)x + γ

∫ 0

−∞
eαyP(y)W(q)(x − y) dy, x ∈ [0,∞). (4.7)

As in the proof of Lemma 3.1 we see that, on [0,∞), H =↑ – limn→∞Hn where H0 := h,
and then recursively Hn+1 = h + γHn �W(q) for n ∈N0, the latter convolution being now on
[0,∞). Taking Laplace transforms on [0,∞) in (4.6) (denoting them by a hat) and using (2.2),
it is also true that Ĥ(s) = ĥ(s) + γ Ĥ(s)/(ψ(s) − q), and hence

Ĥ = ĥ
ψ − q

ψ − γ − q
on (�(q + γ ),∞) (4.8)

(using Theorem 3.1(III) and the known solution for ω= 1, it is easily checked that Ĥ(s)<∞
for s ∈ (�(q + γ ),∞)).

Now, if q + γ <ψ(1) then a comparison argument (with ω= 1) shows that A(b) → ∞ as
b → ∞. However, it does not in general seem obvious how to analytically determine an optimal
b in (4.1) (or, which amounts to the same thing, the x∗ of (C3) of Remark 4.2), nor is it our
intent to pursue this further here. We content ourselves with demonstrating (numerically, on
a concrete example) how A(b) may fail to be monotone in b, and how a non-trivial b may be
optimal, i.e. how the x∗ from (C3) of Remark 4.2 can fall into (z,∞).

In fact, this transpires already in the (presumably simplest) case when

1. ψ(s) = s2, s ∈ [0,∞), corresponding to X − X0 being a multiple (by the factor
√

2) of
Brownian motion, and

2. q = 0, α = 1,

to which we specialize all discussion henceforth.

Remark 4.5. In still more explicit terms, we now have, a.s., S = eX0+
√

2Bρ , where B := (X −
X0)/

√
2 is a standard linear Brownian motion and ρs = inf{t ∈ [0,∞) :

∫ t
0 eX0+

√
2Bu ∧ 1 du> s}
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FIGURE 1: The function A of (4.1) and (4.2) on the interval [1, 30] in the case when q = 0, α = z = 1,
and ψ(s) = s2, s ∈ [0,∞), for three values of the inflation/impatience parameter γ – from top to bottom,
γ = 0.9 (blue, dotted), γ = 1 (red, dashed), and γ = 1.1 (black, full). The case γ = 1.1 exhibits non-
trivial behavior. Unlike when ω= 1, for which the optimal b would be 1, now the optimal b is strictly
greater than 1. Intuitively this is due to the fact that the clock ‘runs faster’ when the price level is small,

thus ‘buying’ us some time in terms of the inflation depreciation as we wait for a higher price level.

for s ∈ [0,∞). Furthermore, setting Z := (e(X0+
√

2B)/2 ∧ 1) · B (where · denotes stochastic
integration [16]), it follows by the usual stochastic calculus techniques that W := Zρ is a
standard linear Brownian motion and that U := X0√

2
+ Bρ satisfies the stochastic differental

equation (SDE) U − U0 = (e−U/
√

2 ∨ 1) · W. This provides a description of the dynamics of
log S = √

2U, and hence, by Itô’s fromula, of S, from the SDE point of view.

Continuing with our analysis, under the above specifications �(0) = 0 and ψ(1) = 1, while
W(x) = x and (via (4.7)) h(x) = 1 + bγ x, x ∈ [0,∞), where

bγ := γ

∞∑
k=0

γ k

k!2(k + 1)
/

∞∑
k=0

γ k

k!2 .

Furthermore, inverting the Laplace transform (4.8) for H we obtain

H(x) =
√
γ − bγ
2
√
γ

e−√
γ x +

√
γ + bγ
2
√
γ

e
√
γ x, x ∈ [0,∞) (4.9)

(H|[0,∞) is uniquely determined by its Laplace transform, because by Theorem 3.1(I) this
function is continuous).

With (4.9) having been established, Figure 1 depicts the case z = 1 of (4.1) for three different
values of γ (0.9, 1, and 1.1) corresponding to three fundamentally different behaviors of the
objective function A. When γ = 1.1 (still z = 1), then numerically the optimal b in (4.1) is
approximately b∗ := 2.533 42. We reinforce this using Remark 4.2. Indeed, we have already
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FIGURE 2: Plot of Kγ from (4.10) on the interval [−2, 3] with γ = 1.1.

observed that conditions (C1), (C2), and (C3), for a suitable x∗, of Remark 4.2 hold in this
case. Let us further set Kγ :=K(γω) for short. Then we can compute

Kγ (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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k!2(k+1)

)
for x ∈ (−∞, 0).

(4.10)

This function is seen numerically, when γ = 1.1, to satisfy condition (C3) of Remark 4.2 with
(to within numerical precision) x∗ := log (b∗) – see Figure 2. On the other hand, when, ceteris
paribus, γ is 0.9 or 1, then numerical experiments also show (or at least suggest) that Kγ
is bounded away from zero (resp. is tending to 0 at ∞) and that it is strictly negative when
γ = 0.9 (resp. γ = 1). (Of course, given the explicit nature of the above expressions one could
in principle also verify all the preceding numerical claims analytically, but it would be an
extremely tedious exercise with little apparent gain, so we refrain from doing so.)

Finally, let us introduce the value function V : (0,∞) → (0,∞] (cf. (4.1) and (4.2)):

V(z) := sup
b∈[z,∞)

Qz
[
SR+

b
e−γR+

b ; R+
b <∞]= sup

b∈[z,∞)
b

H(log z)

H(log b)
, z ∈ (0,∞). (4.11)

It then follows analytically from the explicit form (4.9) of H obtained above that V ≡ ∞
when γ = 0.9, while V(z) = z + 1−b1

1+b1
z−1 ∈ (z,∞) for z ∈ [1,∞) when γ = 1; for the latter

case we focus (for simplicity) only on the interval [1,∞), so that the relevant values of H
are all given by (4.9) rather than being a mixture of these and the values of P from (4.5)
(recall that H|(−∞,0] = P|(−∞,0]). The case γ = 1.1 is handled numerically and reported in
Figure 3.
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FIGURE 3: Plot of V from (4.11) on the interval [1, 2] with γ = 1.1 (top, black, full) together with
the identity function (bottom, red, dashed) that corresponds to immediate selling (and must therefore

everywhere minorize the value function).
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