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Direct numerical simulations, performed with a high-order spectral-element method,
are used to study coherent structures in turbulent pipe flow at friction Reynolds
numbers Reτ = 180 and 550. The database was analysed using spectral proper orthogonal
decomposition (SPOD) to identify energetically dominant coherent structures, most of
which turn out to be streaks and quasi-streamwise vortices. To understand how such
structures can be modelled, the linear flow responses to harmonic forcing were computed
using the singular value decomposition of the resolvent operator, using the mean field as
a base flow. The SPOD and resolvent analysis were calculated for several combinations of
frequencies and wavenumbers, allowing the mapping out of similarities between SPOD
modes and optimal responses for a wide range of relevant scales in turbulent pipe
flows. In order to explore physical reasons behind the agreement between both methods,
an indicator of lift-up mechanism in the resolvent analysis was introduced, activated
when optimal forcing is dominated by the wall-normal and azimuthal components, and
associated response corresponds to streaks of streamwise velocity. Good agreement
between leading SPOD and resolvent modes is observed in a large region of parameter
space. In this region, a significant gain separation is found in resolvent analysis, which
may be attributed to the strong amplification associated with the lift-up mechanism,
here understood as nonlinear forcing terms leading to the appearance of streamwise
vortices, which in turn form high-amplitude streaks. For both Reynolds numbers, the
observed concordances were generally for structures with large energy in the buffer layer.
The results highlight resolvent analysis as a pertinent reduced-order model for coherent
structures in wall-bounded turbulence, particularly for streamwise elongated structures
corresponding to near-wall streamwise vortices and streaks.

Key words: pipe flow boundary layer, turbulent boundary layers

1. Introduction

In turbulent wall-bounded flows, such as straight pipes, channels and boundary layers,
the most typically observed coherent structures are near-wall streaks, which are elongated

† Email address for correspondence: leandra.abreu@unesp.br
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structures in the streamwise direction. The near-wall streaks have shown to be extremely
relevant for sustaining wall-bounded turbulence (Kline et al. 1967; Gupta, Laufer &
Kaplan 1971; Hamilton, Kim & Waleffe 1995). Such structures have regions of alternating
low and high momentum located in the viscous and buffer layers with a characteristic
spanwise spacing of approximately 100ν/uτ , where uτ is the friction velocity and ν is
the kinematic viscosity of the fluid (Kline et al. 1967; Smith & Metzler 1983; Marusic,
Baars & Hutchins 2017). For higher wall-normal positions, in the logarithmic layer,
larger structures are observed, with similar streaky shape, i.e. also elongated structures
in the streamwise direction (Hutchins & Marusic 2007). For low and moderate Reynolds
numbers, most of the turbulent production of a wall-bounded turbulent flow is located in
the region close to the wall. In turn, for large Reynolds numbers, the turbulent production
and dissipation contribution from the logarithmic layer could be as significant as the
one from the buffer layer (Jiménez 2018). In any case, the hunt for more effective
methods to model and characterize near-wall coherent structures is a very relevant problem
for efficient modelling in the industry, and for a better understanding of wall-bounded
turbulence dynamics.

For that matter, the use of statistical methods in flow databases can be convenient to
identify coherent structures present in turbulent flow. A useful data-driven approach is
proper orthogonal decomposition (POD), first introduced in the context of turbulence
by Lumley (1967, 1970). Proper orthogonal decomposition consists of finding among
a zero-mean stochastic process, given by an ensemble of realizations of the flow field,
a number of orthonormal basis functions, called POD modes, that maximize the mean
square energy. The extension of POD to the frequency domain is referred to as spectral
proper orthogonal decomposition (SPOD), terminology introduced by Picard & Delville
(2000). The SPOD method involves decomposition of the cross-spectral density tensor
(CSD) and leads to orthonormal modes oscillating at a specific frequency, which optimally
represent the second-order space–time flow statistics (Towne, Schmidt & Colonius 2018).
Each SPOD mode thus represents a structure that develops coherently in space and time.
This is a useful method to explore the flow dynamics, since the SPOD modes dissociate
flow phenomena at different time scales.

A strong connection between linearized models and coherent structures has been
provided by resolvent analysis, also called input/output analysis. In this context, the
nonlinear terms from the Navier–Stokes equations are treated as external forcing, and
the component-wise input/output approach is applied. Following early studies of forced
transitional flows (Farrell & Ioannou 1993; Trefethen et al. 1993; Jovanović & Bamieh
2005), resolvent analysis considers flows in the frequency domain, and searches for
forcings that lead to the most amplified flow responses. Such linearized responses from
resolvent analysis can often be related to results of hydrodynamic stability theory, with
modes corresponding to instability waves or to non-modal mechanisms such as lift-up
(Jovanović & Bamieh 2005). Resolvent analysis has gained attention in the past decade for
wall-bounded turbulent flows (Hwang & Cossu 2010; McKeon & Sharma 2010; McKeon,
Sharma & Jacobi 2013). An important result is that if the forcing can be modelled as spatial
white noise, a direct correspondence between SPOD and resolvent modes is expected
(Towne et al. 2018). Moreover, for a flow with a dominant optimal forcing, leading to
a gain much larger than that of suboptimal ones, the CSD will often be dominated by
the leading response obtained in resolvent analysis (Beneddine et al. 2016; Cavalieri,
Jordan & Lesshafft 2019). This indicates that SPOD is a pertinent signal-processing
method for comparison of numerical or experimental databases with predictions from
resolvent analysis.
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In the present study a combined analysis of the flow, with SPOD on the one hand
used to decompose turbulent fluctuations and resolvent analysis on the other hand as
a theoretical framework, is explored for the case of the canonical turbulent pipe flow.
The direct relation between both methods indicates a path to find a reduced-order model
based on the linearized equations, where the focus is on the highest amplification between
forcing and response. Considering a given base flow (usually the velocity profile averaged
in time and homogeneous directions), the resolvent operator may be used to discern the
dominant linear mechanisms in a turbulent flow, which facilitates analysis, and opens
possibilities for flow estimation and control approaches aiming at the said mechanisms
(Towne, Lozano-Durán & Yang 2020). A number of previous studies regarding turbulent
pipe flows have dealt with POD without frequency decomposition (Hellström, Marusic &
Smits 2016) and resolvent analysis (McKeon & Sharma 2010), but the ability of the latter
to model SPOD modes has not been addressed quantitatively by a thorough comparison
involving the range of relevant wavenumbers and frequencies. Thus, this is the main goal
of the present paper, namely to map out the similarities of SPOD and resolvent modes for
a turbulent pipe flow.

This paper is organized as follows. In § 2, the simulation database obtained by El
Khoury et al. (2013) is briefly described. This section includes some results in terms
of turbulence statistics and spectral analysis, with focus on the structures present in the
near-wall region. Section 3 briefly describes the lift-up mechanism present in shear flows,
which is relevant for the ensuing analysis. Section 4 proceeds with a description of the
methods of SPOD and resolvent analysis, and the relationship between both approaches.
A detailed comparison between SPOD and resolvent modes is presented and discussed in
§ 5. The paper is completed with conclusions in § 6.

2. Description of the employed database

The direct numerical simulation (DNS) database employed in this work was obtained
by El Khoury et al. (2013). The simulations were carried out for the fully developed
turbulent flow inside a smooth, circular straight pipe. The pressure-driven incompressible
flow of a viscous Newtonian fluid was considered, where the governing equations are
the time-dependent Navier–Stokes equations. The code used to solve these equations is
Nek5000, developed by Fischer, Lottes & Kerkemeier (2008), which is a computational
fluid dynamics solver based on the spectral-element method. This specific discretization
method is characterized by spectral accuracy, favourable diffusion and dispersion
properties and efficient parallelization.

The simulation domain consists of a circular pipe with radius R and length 25R with the
pipe axis taken along the streamwise x-direction. In this study we consider two different
Reynolds numbers, i.e. Reτ = 180 and 550, where Reτ is the friction Reynolds number
based on uτ and R. Snapshots of the flow quantities within the whole computational
domain are saved in a database, with non-dimensional time interval of δt = 4 (in terms of
bulk velocity and pipe radius); a total of 205 snapshots for Reτ = 180, and δt = 1 and 260
snapshots for Reτ = 550 were considered for the present analysis. A streamwise pressure
gradient drives the flow in the streamwise direction. Additional details of the numerical
set-up can be found in the work by El Khoury et al. (2013).

The resultant database from the DNS is in the cylindrical coordinate system and
the origin is located on the axis of the pipe. The flow is periodic in the streamwise
direction x . The velocity vector is given by q = [u, v, w] in streamwise, radial and
azimuthal coordinates [x, r, θ ], respectively, where r is the radial coordinate. Thus the
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FIGURE 1. Instantaneous streamwise velocity component for both friction Reynolds numbers:
(a) Reτ = 180; (b) Reτ = 550. The axis tick labels are scaled with the pipe radius.

non-dimensional wall distance can be obtained by (1 − r). Figures 1(a) and 1(b) show the
instantaneous streamwise velocity component u from the simulation for both Reτ = 180
and 550, respectively, where the axis tick labels are scaled with the pipe radius.

The inner velocity scaling is defined by the friction velocity uτ , the length by the viscous
length scale ν/uτ and is denoted by the superscript +. In the following we will use z+ =
r+θ as a pseudo-spanwise coordinate for simple comparison with results for planar flows
such as boundary layers and channels. Thus the azimuthal wavelength λθ can be associated
with a pseudo-spanwise wavenumber λ+

z = r+λθ . The resolvent and SPOD modes are a
function of the azimuthal wavenumber m, or wavelength λθ = 2π/m, and thus cannot be
expressed as a function of a single pseudo-spanwise wavelength λ+

z . For such modes, we
define λ̃+

z = (Reτ − 15)λθ , such that λ̃+
z represents the pseudo-spanwise wavelength at a

reference position in the buffer layer at a distance of 15 viscous units from the wall. This
allows for a comparison with similar structures found in other (planar) wall-bounded flows.

2.1. Turbulence statistics and spectral analysis
Using standard Reynolds decomposition u = ū + u′, the mean streamwise velocity profiles
ū+ and the variance profile of the streamwise velocity fluctuations ū′2+ in inner scaling are
shown in figures 2(a) and 2(b), respectively, for Reτ = 180 and 550. The mean velocity
profiles show the expected shape of wall-bounded turbulent flows when plotted as a
function of wall distance where the variable y+ = (1 − r)+ denotes the inner-scaled wall
distance. Variance profiles also have the expected pattern characteristic of wall-bounded
turbulent flows, with a near-wall peak in the buffer layer at (1 − r)+ ≈ 15, which increases
its magnitude with the Reynolds number, as expected Georg, Ramis & Philipp (2014).

In order to visualize turbulent structures present in the buffer layer, figures 3(a) and
3(b) show snapshots of the streamwise velocity fluctuations (u′+) in a wall-parallel station
at (1 − r)+ ≈ 15, for Reτ = 180 and 550, respectively. The same analysis is shown for
the logarithmic layer in figures 3(c) and 3(d) at (1 − r)+ ≈ 100, for Reτ = 180 and
550, respectively. These figures show that the dominant structures are elongated in the
streamwise direction in all cases, with higher amplitudes near the wall in the buffer layer,
in agreement with the near-wall structures found in the flow visualizations by Kline et al.
(1967). Such long and narrow structures of the streamwise velocity component u are the
well known streaks, which exhibit a range of sizes and are found between the near-wall
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FIGURE 2. (a) The mean flow and (b) streamwise velocity fluctuations at Reτ = 180 (black
solid line) and 550 (black dashed line), both scaled in viscous units. In panel (a) the blue
dashed line represents the linear law, ū+ = (1 − r)+; and the red dashed line is the log law,
ū+ = (1/κ) ln(1 − r)+ + B, where κ = 0.41 and B = 5.2.
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FIGURE 3. Instantaneous streamwise velocity fluctuation (u′+) field in the wall-parallel plane
for both friction Reynolds numbers, where panels (a,b) show the results in the buffer layer
(1 − r)+ ≈ 15, and the yellow rectangle represents a box with (λ+x , λ+z ) ≈ (1000, 100); panels
(c,d) show the results in the logarithmic layer (1 − r)+ ≈ 100. (a) Reτ = 180 at (1 − r)+ ≈ 15;
(b) Reτ = 550 at (1 − r)+ ≈ 15; (c) Reτ = 180 at (1 − r)+ ≈ 100; (d) Reτ = 550 at
(1 − r)+ ≈ 100.

region and the pipe core. The near-wall streaks have an amplitude peak at (1 − r)+ ≈ 15,
in the buffer-layer, and have a characteristic peak for the axial and azimuthal wavelengths
of (λ+

x , λ+
z ) ≈ (1000, 100), represented by the yellow rectangle in figures 3(a) and 3(b). In

what follows we denote as streaky structures, the structures elongated in the streamwise
direction, with an aspect ratio such that λ+

x > 2λ+
z at least. Although this is a somewhat

arbitrary choice, it will focus the analysis on the dominant elongated structures visible in
figure 3.

The two-dimensional inner-scaled premultiplied power-spectral density of streamwise
velocity fluctuations kx kzE+

uu at (1 − r)+ ≈ 15 are shown in figures 4(a) and 4(b) for
Reτ = 180 and 550, respectively, where kx and kz refer to streamwise and azimuthal
wavenumbers, respectively. For both Reynolds numbers, the results in figure 4 show a
highly energetic peak located in the near-wall region (1 − r)+ ≈ 15 for the wavelength
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FIGURE 4. Two-dimensional inner-scaled premultiplied power-spectral density of the
streamwise velocity kx kzE+

uu, at (1 − r)+ ≈ 15, for (a) Reτ = 180 and (b) Reτ = 550. The red
dashed line represents λ+x = 2λ+z .

combination (λ+
x , λ+

z ) ≈ (1000, 100), which is representative of the signature of the
near-wall cycle of streaks and quasi-streamwise vortices, which has been discussed at
length in many studies across a range of Reynolds numbers and flow types (see for instance
Hoyas & Jiménez (2006), Monty et al. (2009) and Smits, McKeon & Marusic (2011)).
Figure 4 shows that most of the fluctuation energy is related to the aforementioned streaks,
since the pre-multiplied spectrum has most of its content for λ+

x > 2λ+
z (below the red

dashed line).
The visualizations shown in figure 3 and the spectra in figure 4 indicate that the turbulent

pipe flow is dominated by near-wall streaks for the Reynolds numbers considered here. In
the next section we review the lift-up mechanism, which is a key aspect in the dynamics
of such streaky structures.

3. The lift-up mechanism

The lift-up mechanism was introduced in the work by Ellingsen & Palm (1975), who
identified a linear mechanism responsible for the amplification of fluctuations in shear
flows, followed by the work by Landahl (1980). Ellingsen & Palm (1975) concluded that
a finite disturbance independent of the streamwise coordinate leads to algebraic growth of
disturbances in shear flows, even though the basic velocity does not possess any inflection
point. The concept of lift-up effect has been recently explored in detail by Brandt (2014).

We briefly outline here the derivations of the equations highlighting the lift-up effect.
We consider a parallel velocity profile as ū = (ū, v̄, w̄) = (ū(y), 0, 0) where the overbar
denotes averaging in the homogeneous directions and time. In its simplest derivation, the
lift-up effect may be explored by considering Cartesian coordinates, but similar effects
are obtained in polar coordinates (Ellingsen & Palm 1975). Thus, considering this flow
as inviscid and incompressible, bounded by two parallel planes, subject to disturbances
independent of the streamwise coordinate x , the equation for the streamwise component
of the velocity fluctuations and for the streamwise vorticity, ξ , reduce, respectively, to

Du′

Dt
= 0,

Dξ

Dt
= 0. (3.1a,b)

Introducing the streamfunction Ψ for the cross-stream components

v′ = ∂Ψ

∂z
, w′ = −∂Ψ

∂y
, (3.2a,b)
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and upon linearization, we obtain for the streamwise component

∂u′

∂t
+ v′ dū

dy
= 0, (3.3)

and for the cross-stream flow, i.e. y and z components, we obtain

∂∇2Ψ

∂t
= 0, (3.4)

where ∇2 is the two-dimensional Laplacian. We can see from (3.4) that the cross-stream
velocity components are independent of time, i.e. a streamwise-independent perturbation
v′ will not grow or decay in an inviscid flow. Equation (3.3) can be integrated in time

u′ = u′(0) − v′ dū
dy

t (3.5)

to show that the perturbation u′ grows linearly in time, from which comes the term
algebraic inviscid instability. An addition of viscous effects limits the algebraic growth
in (3.5), which nonetheless may be of some orders of magnitude for higher Reynolds
numbers (Brandt 2014).

The term v′ dū/dy in (3.3) is responsible for the lift-up effect, and represents the
deformation of the mean velocity profile by the spanwise variations of v′. This is
one of the terms responsible for non-orthogonal eigenvectors of the evolution operator
(Jiménez 2018). Thus, the streamwise vortices, (v′, w′), lead to the formation of low- and
high-momentum streaks, since lift-up acts most strongly on long narrow features. Lift-up
works by moving low-velocity fluid from the wall upwards, creating low-velocity streaks
−u′, and viceversa (Landahl 1980; Brandt 2014; Jiménez 2018).

The above analysis is based on the linearized equations for streamwise-independent
disturbances. Nonlinear effects can be considered in the resolvent framework, with
nonlinear terms considered as forcing, as described in § 4.2. In this case, streamwise
vortices (v′ and w′ velocity fluctuations) are excited by the fy and fz forcing terms in the
y and z directions. For a turbulent flow, such a forcing corresponds to nonlinear terms in
the momentum equations. Thus, nonlinearities in the turbulent flow cause the formation
of streamwise vortices. Once such vortices are excited, they lead to the appearance of
streaks via the lift-up effect, similar to the description of Ellingsen & Palm (1975). In
what follows, the references to the lift-up effect should be understood in the context of
such a forced problem, with nonlinearities that excite streamwise vortices.

Accordingly, the lift-up effect has been shown to arise also in the analysis of the
linearized problem subject to forcing (Jovanović & Bamieh 2005), with optimal forcing
dominated by y and z components shaped as a streamwise vortex (Hwang & Cossu 2010),
creating v and w components in the flow, streamwise vortices that lead to highly amplified
streaks of streamwise velocity. This effect plays an important role in the near-wall cycle
described by Hamilton et al. (1995), Hall & Sherwin (2010) and Farrell & Ioannou
(2012), with a self-sustained cycle where streamwise vortices generate streaks, which,
once high amplitudes are attained, break down due to instabilities. Subsequent nonlinear
interactions among streamwise oscillatory modes generated by streak instability lead to
streamwise vortex regeneration, thus restarting the cycle. Due to the importance of lift-up
to wall-bounded turbulent flows, we focus our analysis on the coherent structures involved
in such mechanism, such as streaks and streamwise vortices.
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4. Methodologies

4.1. Spectral proper orthogonal decomposition
In the present study, SPOD follows the procedure outlined by Towne et al. (2018). The
method is applied to the velocity fluctuation components u′, v′ and w′ to characterize the
turbulent kinetic energy. We first apply a fast Fourier transform (FFT) to the velocity fields
in the homogeneous directions x and z to obtain the field for specific wavenumbers kx and
m, respectively. We also perform a FFT to the velocity fields in time to obtain the field
for a specific frequency ω, so q̂ = q̂(kx , r, m, ω), where hats denote Fourier-transformed
quantities and q̂ = [û; v̂; ŵ] are the state variables; we then apply the SPOD to this
transformed field, which is equivalent to solving the integral equation

∫
r′

C(r, r′, ω)Ψ (r′, ω)r′ dr′ = λ(ω)Ψ (r, ω), (4.1)

where Ψ are basis functions, or SPOD modes, λ is the corresponding eigenvalue and
C is the two-point cross-spectral density between the three velocity components, whose
dimension is 3Nrx3Nr, where Nr is the number of points in the radial coordinates. Note
that C is Hermitian, and thus eigenvalues are real and eigenfunctions are orthogonal. The
decreasing ordering of the eigenvalues ensures that the most energetic modes in terms of
kinetic energy are the first ones.

Since the number of grid points is high, we use the snapshot method, originally
introduced by Sirovich (1987), which is more effective in computing the SPOD
numerically, as presented by Towne et al. (2018) and Schmidt & Colonius (2020).

The short-time fast Fourier transform required to solve the SPOD was taken considering
blocks containing 32 snapshots with 75 % overlap, which leads to 22 and 29 blocks
for Reτ = 180 and 550, respectively. Spectral proper orthogonal decomposition was also
evaluated using blocks containing 48 snapshots with 50 % and 75 % of overlap, and the
changes in the results were not significant. Changes in leading eigenvalues did not exceed
0.1 % in most of the frequency/wavenumber combinations, indicating that the SPOD
results are reliable and can be meaningfully analysed.

In order to further verify the reliability of the computed SPOD modes, we carry out a
convergence analysis, by dividing the total dataset into two equal parts each corresponding
to 75 % of the original dataset, and performing the SPOD on each part, so a normalized
inner product is given by

μi,k = 〈Ψ k,Ψ i,k〉
‖Ψ k‖ · ‖Ψ i,k‖ , (4.2)

where 〈, 〉 denotes the standard L2 inner product considering the three velocity
components, i = (1; 2) indicates each subset and k each SPOD mode. This kind of
analysis was also performed by Lesshafft et al. (2019) and Abreu, Cavalieri & Wolf
(2017). Figures 5(a) and 5(b) show the normalized inner products of (4.2) considering
(λ+

x , λ+
z , λ+

t ) ≈ (1000, 100, 100) for Reτ = 180 and 550, respectively. Results show that
the less energetic SPOD modes show discrepancies, which can be explained by the
differences in the order in which the modes appear on each subset. However, for Reτ = 180
we can observe that the first three SPOD modes exhibit a correlation coefficient close
to one and can be considered as converged, and for Reτ = 550 the first two modes are
reasonably converged.

The convergence analysis of the SPOD modes is sensitive to the amount of data used
(Lesshafft et al. 2019). The DNS databases analysed here contain a limited number of
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FIGURE 5. Correlation coefficient μi,k to quantify the statistical convergence of the SPOD
modes, considering (λ+x , λ+z , λ+t ) ≈ (1000, 100, 100) for both Reynolds numbers: (a) Reτ =
180; (b) Reτ = 550.

snapshots, but for all analysed cases of (λ+
x , λ+

z , λ+
t ) studied in this paper, the first two

SPOD modes were found to be converged for both Reynolds numbers, with μi,k ≥ 0.95.

4.2. Resolvent analysis
To perform the resolvent analysis we follow the formulation described by McKeon &
Sharma (2010), also for a turbulent pipe flow. The linearized Navier–Stokes system for
fully developed incompressible pipe flow can be written in operator notation as

q̂ = C(iωI − L)−1Bf̂ , (4.3)

where L is the linearized Navier–Stokes operator considering the mean profile ū (averaged
in time, streamwise and azimuthal coordinates) as a base flow, ω is the analysed frequency,
q̂ = [û; v̂; ŵ] is a vector containing all velocity components, f̂ = [ f̂ x; f̂ y; f̂z], or nonlinear
terms from Navier–Stokes equations, in streamwise, wall-normal and azimuthal directions
and finally the linear operators B and C are filters that impose restrictions both the
forcing and in the output quantities of interest, respectively. Note that B guarantees that
no force will be applied in the continuity equation, and C amounts to observation of
only velocity fluctuations. The input is thus taken as the forcing term in the momentum
equation, interpreted as the nonlinear terms not considered in the linearization of the
Navier–Stokes equation, also labelled as generalized Reynolds stresses (for a given
frequency/wavenumber combination). The output is based on a norm involving solely
velocity fluctuations, and its maximization of the output thus leads to maximal turbulent
kinetic energy. The linearized Navier–Stokes operator here involves only the molecular
viscosity, as in McKeon & Sharma (2010). Even though it has been shown in some works
that inclusion of an eddy viscosity improves the agreement between resolvent modes and
flow statistics (Morra et al. 2019; Pickering et al. 2020), the present choice is motivated by
a more straightforward interpretation of the forcing f as the nonlinear terms; more detailed
analysis of such forcing terms are currently being carried out by our group in related works
(Nogueira et al. 2020). All variables here are Fourier transformed in time, streamwise and
azimuthal directions.
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It should be pointed out that the choice of base flow is not unique. A number of works
(e.g. Waleffe 1997; Schoppa & Hussain 2002; Farrell & Ioannou 2012) carry out analysis
using a base flow resulting from averaging on the streamwise direction. The resulting
flow is x- and t-dependent, and may be subject to streak instability and transient growth.
In this work, we have chosen to use the mean flow with averaging in all homogeneous
directions. This facilitates comparison with SPOD modes taken from data, as such modes
display better statistical convergence once preliminary Fourier decompositions are applied
to the database. This allows a broad comparison between resolvent modes and DNS data,
with the caveat that mechanisms such as streak instability and transient growth cannot be
detected in the analysis in straightforward manner.

The resolvent operator is defined as R = C(iωI − L)−1B, and its singular value
decomposition leads to optimal forcing modes, causing maximum amplification between
input and output,

R = U𝞢V†, (4.4)

where † superscript indicates the Hermitian of the matrix. The above equation decomposes
R into two orthonormal bases U and V, where U†U = I and V†V = I. Here U is the output
and V is the input bases, so the size of U is Nq × Nmodes and the size of V is Nf × Nmodes,
where Nq is the size of the output q̂, Nf if the size of the input f̂ and Nmodes is the number of
resolvent modes. The matrix 𝞢 is diagonal, with real, positive values, in decreasing order
σ1 ≥ σ2 ≥ · · · ≥ σn .

This approach leads to identification of modes that optimally describe the linear
amplification mechanisms in stable systems. In particular, resolvent analysis evaluates the
flow response to time-periodic forcing. The method provides two orthonormal bases, one
for forcing and the other one for the associated flow responses, and each pair of forcing
and response modes is related by a gain. Response modes with high gains are expected to
be dominant in the flow, as will be described next. Here we investigate how the response
modes obtained using resolvent analysis are able to model dominant structures in turbulent
pipe flow, which can be extracted from the DNS database. More details about the present
resolvent formulation can be seen in McKeon & Sharma (2010), and the relationship
between SPOD and resolvent modes is documented in Towne et al. (2018) and Lesshafft
et al. (2019).

The mean velocity profiles used to compute the resolvent analysis, ū = ū(1 − r), were
extracted from the simulation considering azimuthal, streamwise and temporal averages.
The base flow in wall units is shown in figure 2(a) for both Reynolds numbers.

4.3. SPOD versus resolvent analysis
Recent works have explored the connection between SPOD modes and the flow responses
to stochastic forcing successfully (Abreu et al. 2017; Towne et al. 2018; Lesshafft et al.
2019). To relate mathematically SPOD and resolvent analysis we can write the relation
between the flow realizations q̂ and the resolvent operator R for a problem with harmonic
forcing f̂ as

q̂ = Rf̂ . (4.5)

Analysis of stochastic fields require a formulation in terms of two-point statistics. This can
be obtained by multiplying (4.5) by its Hermitian and taking the expected value E() of
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the forcing. This leads to

E(q̂q̂†
) = RE( f̂ f̂

†
)R†. (4.6)

If the forcing is white noise in space, E( f̂ f̂
†
) = I, (4.6) becomes

𝟁𝞚𝞧† = U𝞢2U†, (4.7)

meaning that the SPOD modes are simply the response modes from resolvent analysis,
with SPOD eigenvalues equal to the square of resolvent gains.

It is clear that the forcing is not white noise in space, as, for instance, nonlinear terms
in the Navier–Stokes system vanish on the wall. The analysis of Nogueira et al. (2020) for
a minimal flow unit suggests that the forcing statistics are spatially coherent. In this case,
the response statistics depend on the details of the forcing in (4.6), such that

𝟁𝞚𝟁† = U𝞢V†E( f̂ f̂
†
)V𝞢U†. (4.8)

However, if the resolvent operator has a dominant amplification mechanism, such that
σ1 	 σ2, the response CSD will be dominated by the contribution of the leading response
mode (Beneddine et al. 2016; Towne et al. 2018; Cavalieri et al. 2019). To see this,
neglecting the high-order gains leads to

E(q̂q̂†
) ≈ u1𝞼1v†

1E( f̂ f̂
†
)v1𝞼1u†

1 (4.9)

and hence the flow response is approximately given by the projection of the forcing
statistics onto the optimal forcing mode v1, amplified by the leading gain 𝞼1 and taking
the shape of the most amplified response u1. In this case the leading SPOD mode may be
close to the optimal flow response, even though the forcing is not white in space.

The expressions above consider a Euclidean inner product, which is appropriate for
matrices. The non-uniform grids used in this work require the use of integration weights
for the discretization of the inner product. Resolvent analysis and SPOD should be
modified so as to account for integration weights; appropriate expressions are presented by
Towne et al. (2018), Lesshafft et al. (2019) and Cavalieri et al. (2019) and are not repeated
here for brevity.

5. Results and discussions

Figures 6 and 7 show the first two SPOD modes compared with the optimal and
suboptimal responses from resolvent analysis for Reτ = 180 and 550, respectively,
considering (λ+

x , λ+
z , λ+

t ) ≈ (1000, 100, 100), or the corresponding frequency ω+ =
2π/λ+

t ≈ 0.06. This is representative of the near-wall cycle, corresponding to the
peak wavenumber in the premultiplied spectra shown in figure 4 and to a phase
speed of c+ ≈ 10, a value typical of buffer-layer disturbances. Notice that the vertical
direction does not correspond to constant spacing in viscous length scale, due to
polar system. The results for the first mode for both Reynolds numbers (figures 6a,b
and 7a,b) show that the velocity field is associated with streamwise vortices (shown with
arrows) and accompanying low- and high-speed streaks (colours). Negative wall-normal
fluctuations carry high-momentum fluid and create high-velocity streaks with u′ > 0
(red contour lines), and the opposite occurs for the positive wall-normal disturbances,
creating slow-velocity streaks with u′ < 0 (blue contour lines), characterizing the lift-up
mechanism (Hwang & Cossu 2010; Brandt 2014). The second mode (figures 6c,d
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FIGURE 6. Comparison between the first two SPOD modes and optimal and suboptimal
responses from resolvent analysis using cross-stream view of the v − w components of the
vortices (arrows) and the u component of the streak (red and blue contours) for (λ+x , λ+z , λ+t ) ≈
(1000, 100, 100) at Reτ = 180. The axis ticks labels are scaled in inner units. (a) SPOD mode 1;
(b) resolvent mode 1; (c) SPOD mode 2; (d) resolvent mode 2.
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FIGURE 7. Comparison between the first two SPOD modes and optimal and suboptimal
responses from resolvent analysis using cross-stream view of the v − w components of the
vortices (arrows) and the u component of the streak (red and blue contours) for (λ+x , λ+z , λ+t ) ≈
(1000, 100, 100) at Reτ = 550. The axis ticks labels are scaled in inner units. (a) SPOD mode 1;
(b) resolvent mode 1; (c) SPOD mode 2; (d) resolvent mode 2.
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and 7c,d) shows a pattern with two streamwise vortices and two streaks as a function
of radius, similar to the observations of Hellström et al. (2016) for higher-order POD
modes of larger-scale structures at higher Reynolds number. Streamwise vortices and
streaks are again arranged consistently with the lift-up mechanism. The results show that
the optimal and suboptimal flow responses recover the leading SPOD modes for both
Reynolds numbers, highlighting that the responses obtained using the linearized operator
serve as a pertinent model for the dominant structures observed in the DNS for the
analysed frequency/wavenumber combination, (λ+

x , λ+
z , λ+

t ) ≈ (1000, 100, 100).
Our aim is to perform additional, detailed quantitative comparisons between the first

SPOD mode from the DNS and the optimal response from resolvent analysis. In order to
evaluate the agreement for several values of wavelengths λx and λz at a fixed frequency ω,
we define the metric

β = 〈q̂1SPOD
, q̂1RES

〉
‖q̂1SPOD

‖ · ‖q̂1RES
‖ , (5.1)

where q̂1SPOD
= [û1SPOD, v̂1SPOD, ŵ1SPOD ] is the first SPOD mode, q̂1RES

= [û1RES, v̂1RES, ŵ1RES ] is
the optimal response from resolvent analysis and β is the projection of q̂1SPOD

into q̂1RES

(note that 〈·, ·〉 denotes the L2 inner product). Thus, β = 1 indicates a perfect alignment
between both vectors and β = 0 indicates that the modes are orthogonal. The SPOD and
resolvent modes include all velocity components in order to include information about the
phase.

Results of agreement between the first SPOD mode and the optimal response from
resolvent analysis in terms of β are shown in figure 8(a–c) for Reτ = 180 at fixed
frequencies corresponding to λ+

t ≈ 100, 250 and 1500; and in figure 9(a–c) for Reτ = 550
at λ+

t ≈ 100, 250 and 1000. The frequencies are discretized by the application of the
Welch method, and were chosen to be representative of the near-wall cycle (λ+

t ≈ 100)
and of lower frequencies of larger structures. The red dashed line in all plots in figures 8
and 9 represents the line λ+

x = 2λ+
z , such that below that line the structures are elongated in

the streamwise direction with λ+
x > 2λ+

z . The black dashed line represents λ+
x = U+

maxλ
+
t ,

representing the limit where the phase velocity c+ is equal to the velocity in the pipe
centre U+

max . Results show for both Reynolds numbers that the coefficient β is close
to one for a large part of the parameter space, highlighting a significant region with
very good agreement between the first SPOD and resolvent modes, most of it below the
line λ+

x = 2λ+
z , indicating that resolvent analysis leads to an accurate modelling of such

turbulent structures in turbulent pipe flow for all the analysed frequencies.
In order to explore features leading to better or worse agreement, β ≈ 1 or β ≈ 0,

respectively, we evaluated for both friction Reynolds numbers the ratio between optimal
and suboptimal resolvent gains in logarithmic scale log10(σ1/σ2), indicating regions
where the optimal gain is much larger than the suboptimal; these results are shown in
figure 8(g–i) for Reτ = 180 and figure 9(g–i) for Reτ = 550, for the considered frequencies
in the preceding plots. We observe in general that regions where the first resolvent gain is
much larger than the second correspond to the region of good SPOD–resolvent agreement,
i.e. the triangular region below the red line λ+

x = 2λ+
z and to the left of the vertical line

marking c+ = U+
max. This behaviour is observed even for some regions crossing the red

line, for λ+
x < 2λ+

z . This thus indicates that regions where the optimal response is much
more dominant than the suboptimal may be accurately modelled considering the first
SPOD mode. In this region the leading flow response predicted by resolvent analysis is
much more amplified than suboptimal modes, which explains the agreement with leading
modes from the DNS, as discussed in § 4.3. The region at the right of the vertical lines
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FIGURE 8. (a–c) Agreement between first SPOD mode and optimal response from resolvent
analysis characterized in terms of β. (d–f ) Agreement between first SPOD and resolvent
modes considering fx = 0, characterized in terms of β( fx =0). (g–i) Ratio between optimal and
suboptimal resolvent gains in logarithmic scale. Results for Reτ = 180 and fixed frequencies:
λ+t ≈ 100, 250 and 1500 (from left to right). The region surrounded by the white line in all plots
represents an indicator of lift-up mechanism from resolvent analysis. The red dashed line in all
plots represents λ+x = 2λ+z . (a) β, λ+t ≈ 100; (b) β, λ+t ≈ 250; (c) β, λ+t ≈ 1500; (d) β( fx =0),
λ+t ≈ 100; (e) β( fx =0), λ+t ≈ 250; ( f ) β( fx =0), λ+t ≈ 1500; (g) log10(σ1/σ2), λ+t ≈ 100;
(h) log10(σ1/σ2), λ+t ≈ 250; (i) log10(σ1/σ2), λ+t ≈ 1500.

in the plots has low dominance of the leading resolvent mode, as shown in figures 8(g–i)
and 9(g–i), but nonetheless displays good agreement with SPOD modes. The said regions
are seen to lie to the right of the vertical line marking a phase speed equal to the mean
velocity at the jet centreline. Such frequency and wavenumber combinations thus relate to
disturbances with phase speed higher than the mean velocity anywhere in the pipe, and
are therefore not of much interest.

The analysis above highlights that a better agreement between leading SPOD and
resolvent modes is observed when a certain mode dominance is verified by analysis of
the linearized operator. We now investigate whether this dominance can be attributed to
the lift-up mechanism, understood in the present turbulent regime as transverse forcing
components (nonlinear terms in the radial and azimuthal momentum equations) giving rise
to streamwise vortices, which in turn lead to high-amplitude streaks, as discussed in § 3.
The region delimited by the white line in figures 8 and 9 denotes the presence of the lift-up
effect, purely from the resolvent analysis, at Reτ = 180 and 550, respectively. This region
shows an indicator of lift-up mechanism, which is here considered to be relevant when
the ratio of peak transverse and streamwise forcings, max(| fy|/| fx |) and max(| fz|/| fx |)
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FIGURE 9. (a–c) Agreement between first SPOD mode and optimal response from resolvent
analysis characterized in terms of β. (d–f ) Agreement between first SPOD and resolvent
modes considering fx = 0, characterized in terms of β( fx =0). (g–i) Ratio between optimal and
suboptimal resolvent gains in logarithmic scale. Results for Reτ = 550 and fixed frequencies:
λ+t ≈ 100, 250 and 1000 (from left to right). The region surrounded by the white line in all plots
represents an indicator of lift-up mechanism from resolvent analysis. The red dashed line in all
plots represents λ+x = 2λ+z . (a) β, λ+t ≈ 100; (b) β, λ+t ≈ 250; (c) β, λ+t ≈ 1000; (d) β( fx =0),
λ+t ≈ 100; (e) β( fx =0), λ+t ≈ 250; (f ) β( fx =0), λ+t ≈ 1500; (g) log10(σ1/σ2), λ+t ≈ 100;
(h) log10(σ1/σ2), λ+t ≈ 250; (i) log10(σ1/σ2), λ+t ≈ 1000.

(indicating streamwise vortices as optimal forcing) and the ratio of peak transverse and
streamwise velocity components, max(|u|/|v|) and max(|u|/|w|) (indicating streaks of
streamwise velocity as associated most amplified response) are simultaneously larger than
one. The regions satisfying these criteria are inside the ‘lift-up’ contour, or the white
line, in figures 8 and 9. The result shows that the regions where the lift-up mechanism is
present are close to those where β is around one, and also to parameters with dominance
of the optimal forcing in resolvent analysis. The present results highlight that the lift-up
mechanism is active for a wide range of frequencies and wavenumbers in turbulent pipe
flow for both Reynolds numbers analysed here, with a strong amplification mechanism
leading to structures that dominate the near-wall velocity field.

To further explore the lift-up effect, we performed the resolvent analysis neglecting
the forcing in the streamwise direction (restricting fx = 0 using the B operator), which
should retain the lift-up mechanism, as the streamwise forcing fx is not expected to be
relevant in this case. We evaluated the agreement between the first SPOD and resolvent
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FIGURE 10. Case of β = 0.95 for Reτ = 550 and combination (λ+x , λ+z , λ+t ) ≈
(1000, 100, 100), showing in panel (a) the comparison between first SPOD mode and the
optimal response from resolvent analysis for the three velocity components and in panel (b) the
associated forcing from resolvent analysis for the three components ( fx , fy, fz).

mode for this case, denoted as β( fx =0). Results are shown in figures 8(d–f ) and 9(d–f ) for
Reτ = 180 and 550, respectively. Similar agreement between SPOD and resolvent modes
is obtained, despite the fact that the streamwise forcing was neglected. Parameters where
good agreement is found also correspond to the region surrounded by the white line,
defined by the lift-up indicator. Such results confirm that in the roughly triangular region,
marking streamwise elongated structures with phase speeds lower than the centreline
velocity, the lift-up mechanism is dominant, with transverse forcing components leading to
streamwise vortices that in turn create amplified streaks. The relevance of such mechanism
in resolvent analysis is seen by a large gain ratio, σ1 	 σ2, and the dominance of the
optimal response leads to good agreement with the leading SPOD mode from the DNS.

To see some sample results of the above analysis in more detail, figure 10 shows
for Reτ = 550 results of comparisons between SPOD and resolvent modes for the
combination (λ+

x , λ+
z , λ+

t ) ≈ (1000, 100, 100), which is representative of the signature of
the near-wall cycle of streaks and streamwise vortices, with β = 0.95. In contrast, figure 11
shows the same kind of comparison, but for a larger azimuthal wavelength (λ+

x , λ+
z , λ+

t ) ≈
(1000, 500, 100), which leads to a β = 0.11 and thus substantial discrepancies between
SPOD and resolvent modes. Figures 10(a) and 11(a) show the first SPOD mode compared
with the optimal response from resolvent analysis for the three velocity components
(u, v, w), for the cases with β = 0.95 and β = 0.11, respectively. We can see that the
resolvent analysis reproduces very well the coherent structures obtained using SPOD for
the case (λ+

x , λ+
z , λ+

t ) ≈ (1000, 100, 100), which has a large ratio λ+
x /λ+

z = 10, indicative
of very elongated streaky structures. The agreement is better for the streamwise component
u, while the v and w components have similar shapes in the resolvent and SPOD modes,
but have larger amplitudes in the case of the SPOD. This indicates that the streaks are
reproduced well, whereas the in-plane velocities responsible for the streamwise vortices
are underpredicted by a factor of around three. The phases between velocity components
are nonetheless matched, as shown in figure 7; otherwise, a lower agreement metric
would be obtained. On the other hand, the optimal response from the resolvent is
not able to model the structure for the case (λ+

x , λ+
z , λ+

t ) ≈ (1000, 500, 100); here, the
ratio λ+

x /λ+
z ≈ 2 is much lower, departing from the streaky disturbances typical of the

lift-up mechanism. In particular, the spanwise wavelength of λ+
z = 500 implies that these

structures are centred farther from the wall. This is evident from the fact that the SPOD
modes exhibit significant energy in the range from (1 − r)+ = 200 to around 400. On the
other hand, but as in the case with β = 0.95, the resolvent modes exhibit high energy
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FIGURE 11. Case of β = 0.11 for Reτ = 550 and combination (λ+x , λ+z , λ+t ) ≈
(1000, 500, 100), showing in panel (a) the comparison between first SPOD mode and the
optimal response from resolvent analysis for the three velocity components and in panel (b) the
associated forcing from resolvent analysis for the three components ( fx , fy, fz).

mainly in the near-wall region, and are therefore unable to reproduce the flow dynamics in
this case.

Figures 10(b) and 11(b) show the forcing from resolvent analysis for the three
components ( fx , fy, fz), in the cases with β = 0.95 and β = 0.11, respectively. We can
notice that when β ≈ 1 the forcing corresponds to streamwise vortices, since fy and fz are
simultaneously larger than fx . On the other hand, when β ≈ 0 the forcing can no longer be
associated with such streamwise vortices, since here fx becomes much larger than fy . These
results indicate that the lift-up mechanism is not present in that case, and thus reinforce
the conclusion that resolvent analysis is an adequate reduced-order model to reproduce
streaky structures associated with the lift-up mechanism. The observed concordances were
generally for structures with peak in the buffer layer for both Reynolds numbers.

6. Conclusions

In the present study we used signal processing of a DNS, based on SPOD, to identify
near-wall coherent structures in a turbulent pipe flow for friction Reynolds numbers
Reτ = 180 and 550. In order to model such structures, a theoretical approach, i.e. resolvent
analysis, was used. The homogeneous directions of this flow allow the evaluation of
SPOD and resolvent analysis over a range of streamwise and azimuthal wavenumbers
and frequencies. The mean flow was used as a basis for the computation of resolvent
modes; optimal responses were considered as the most likely structures to be excited by
nonlinear terms in the Navier–Stokes system, particularly when the gain of the optimal
forcing is much larger than for suboptimal ones (Beneddine et al. 2016; Cavalieri et al.
2019). Coherent structures in the flow were extracted using SPOD, and we carried out
thorough quantitative comparisons between leading response modes from the resolvent
analysis and the SPOD eigenfunctions.

For both Reynolds numbers, the results show good agreement between SPOD and
resolvent, mostly for λ+

x ≥ 2λ+
z . These are parameters related to streaky structures, with

aspect ratio (streamwise over azimuthal extent) larger than two. We evaluated the ratio
between the first and second SPOD eigenvalues, as well the ratio between the optimal and
suboptimal gain from resolvent analysis, and observed that the regions where those ratios
have larger values correspond to cases where the agreement between SPOD and resolvent
modes are good.
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We also explored the physical reasons behind this agreement by introducing an indicator
of the lift-up mechanism using the optimal forcing and associated response from resolvent
analysis. In the present turbulent flow, such a mechanism is considered as active when the
forcing is related to wall-normal and azimuthal components, and the associated responses
to streaks. In this case, nonlinearities excite streamwise vortices, which in turn lead to
high-amplitude streaks (Hwang & Cossu 2010; Brandt 2014). The results show a clear
lift-up effect for wavenumbers and frequencies with good agreement between SPOD and
resolvent modes. Also, the observed concordances were generally for structures with peaks
in the buffer layer.

In conclusion, based on our results, it can be stated that the resolvent analysis provides
a simplified model leading to an accurate representation of coherent structures mostly for
the cases where the lift-up mechanism is present, with the optimal forcing corresponding
to transverse components shaped as streamwise vortices, and the associated response
corresponding to streaks. Such structures are observed for a broad range of frequencies
and wavenumbers, which indicates that the lift-up effect occurs over a wide range of scales
in turbulent pipe flow. Earlier studies in turbulent channel flow have applied transient
growth (Del Alamo & Jimenez 2006) and resolvent analysis (McKeon & Sharma 2010),
extracting structures consistent with observations from simulation and experiment. Here,
the analysis is made for a broad range of scales, showing the relevance of lift-up for the
studied structures and highlighting the pertinence of linearized models.

It is not surprising to find streamwise vortices leading to streaks in wall-bounded
turbulence, since this has been considered as an important part of the dynamics of such
flows for some time (Kline et al. 1967; Landahl 1980; Hamilton et al. 1995). The present
results highlight the relevance of this mechanism for most of the parameters considered
in turbulent pipe flow, which can be understood by the clear dominance of the optimal
forcing, with the shape of streamwise vortices, in leading to amplified flow responses of
streaky shape. Lift-up thus is naturally selected as the preferred mechanism giving rise to
streaky structures in turbulent pipe flow.

The use of resolvent analysis for such a wide range of turbulent scales is relevant. For
parallel flows, in particular, the resolvent operator only needs to be discretized in the
radial direction, and forcing and response modes can be obtained in fast computations.
This allows simple predictions of the dominant structures in turbulent flows. Moreover,
reconstructions of flow fluctuations from a limited number of sensors are also possible
using the resolvent operator (Towne et al. 2020), which opens possibilities for closed-loop
control of turbulent flows. As the lift-up effect studied here is also the basis of bypass
transition in boundary layers (Andersson, Berggren & Henningson 1999; Brandt 2014),
extension of control methods used in bypass transition (Sasaki et al. 2019) is a promising
direction for the control of wall-bounded turbulence.
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JOVANOVIĆ, M. R. & BAMIEH, B. 2005 Componentwise energy amplification in channel flows. J. Fluid

Mech. 534, 145–183.
KLINE, S. J., REYNOLDS, W. C., SCHRAUB, F. A. & RUNSTADLER, P. W. 1967 The structure of

turbulent boundary layers. J. Fluid Mech. 30 (4), 741–773.
LANDAHL, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech.

98 (2), 243–251.
LESSHAFFT, L., SEMERARO, O., JAUNET, V., CAVALIERI, A. V. G. & JORDAN, P. 2019 Resolvent-based

modeling of coherent wave packets in a turbulent jet. Phys. Rev. Fluids 4 (6), 063901.
LUMLEY, J. L. 1967 The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and

Radio Wave Propagation (ed. A. M. Yaglom & V. I. Tatarsky). Nauka.
LUMLEY, J. L. 1970 Stochastic Tools in Turbulence, Applied Mathematics and Mechanics, vol. 12.

Academic.
MARUSIC, I., BAARS, W. J. & HUTCHINS, N. 2017 Scaling of the streamwise turbulence intensity in the

context of inner-outer interactions in wall turbulence. Phys. Rev. Fluids 2 (10), 100502.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://nek5000.mcs.anl.gov
https://doi.org/10.1017/jfm.2020.445


900 A11-20 L. I. Abreu and others

MCKEON, B. J. & SHARMA, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech.
658, 336–382.

MCKEON, B. J., SHARMA, A. S. & JACOBI, I. 2013 Experimental manipulation of wall turbulence:
a systems approach. Phys. Fluids 25 (3), 031301.

MONTY, J. P., HUTCHINS, N., NG, H. C. H., MARUSIC, I. & CHONG, M. S. 2009 A comparison of
turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431–442.

MORRA, P., SASAKI, K., HANIFI, A., CAVALIERI, A. V. G. & HENNINGSON, D. 2019 A realizable
data-driven approach to delay bypass transition with control theory. arXiv:1902.05049.

NOGUEIRA, P. A. S., MORRA, P., MARTINI, E., CAVALIERI, A. V. G. & HENNINGSON, D. S.
2020 Forcing statistics in resolvent analysis: application in minimal turbulent Couette flow.
arXiv:2001.02576.

PICARD, C. & DELVILLE, J. 2000 Pressure velocity coupling in a subsonic round jet. Int. J. Heat Fluid
Flow 21 (3), 359–364.

PICKERING, E. M., RIGAS, G., SIPP, D., SCHMIDT, O. T. & COLONIUS, T. 2020 Optimal eddy viscosity
for resolvent-based models of coherent structures in turbulent jets. arXiv:2005.10964.

SASAKI, K., MORRA, P., CAVALIERI, A. V. G., HANIFI, A. & HENNINGSON, D. 2019 On the role of
actuation for the control of streaky structures in boundary layers. arXiv:1902.04923.

SCHMIDT, O. T. & COLONIUS, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J.
58 (3), 1023–1033.

SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech.
453, 57–108.

SIROVICH, L. 1987 Turbulence and the dynamics of coherent structures. I. Coherent structures. Q. Appl.
Maths 45 (3), 561–571.

SMITH, C. R. & METZLER, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of
a turbulent boundary layer. J. Fluid Mech. 129, 27–54.

SMITS, A. J., MCKEON, B. J. & MARUSIC, I. 2011 High–Reynolds number wall turbulence. Annu. Rev.
Fluid Mech. 43, 353–375.

TOWNE, A., LOZANO-DURÁN, A. & YANG, X. 2020 Resolvent-based estimation of space–time flow
statistics. J. Fluid Mech. 883.

TOWNE, A., SCHMIDT, O. T. & COLONIUS, T. 2018 Spectral proper orthogonal decomposition and its
relationship to dynamic mode decomposition and resolvent analysis. J. Fluid Mech. 847, 821–867.

TREFETHEN, L. N., TREFETHEN, A. E., REDDY, S. C. & DRISCOLL, T. A. 1993 Hydrodynamic stability
without eigenvalues. Science 261 (5121), 578–584.

WALEFFE, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883–900.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

44
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.445

	1. Introduction
	2. Description of the employed database
	2.1. Turbulence statistics and spectral analysis

	3. The lift-up mechanism
	4. Methodologies
	4.1. Spectral proper orthogonal decomposition
	4.2. Resolvent analysis
	4.3. SPOD versus resolvent analysis

	5. Results and discussions
	6. Conclusions
	References

