Adv. Appl. Prob. 49, 603-628 (2017)
doi:10.1017/apr.2017.14
© Applied Probability Trust 2017

ROBUST SCHEDULING FOR FLEXIBLE
PROCESSING NETWORKS

RAMTIN PEDARSANI * AND
JEAN WALRAND,** University of California, Berkeley
YUAN ZHONG,*** Columbia University

Abstract

Modern processing networks often consist of heterogeneous servers with widely varying
capabilities, and process job flows with complex structure and requirements. A major
challenge in designing efficient scheduling policies in these networks is the lack of reliable
estimates of system parameters, and an attractive approach for addressing this challenge
is to design robust policies, i.e. policies that do not use system parameters such as arrival
and/or service rates for making scheduling decisions. In this paper we propose a general
framework for the design of robust policies. The main technical novelty is the use of a
stochastic gradient projection method that reacts to queue-length changes in order to find
a balanced allocation of service resources to incoming tasks. We illustrate our approach
on two broad classes of processing systems, namely the flexible fork-join networks and
the flexible queueing networks, and prove the rate stability of our proposed policies for
these networks under nonrestrictive assumptions.

Keywords: Robust scheduling; flexible queueing network; stochastic gradient projection

2010 Mathematics Subject Classification: Primary 60K25
Secondary 90B15; 60G17

1. Introduction

As modern processing systems (e.g. data centers, hospitals, manufacturing networks) grow in
size and sophistication, their infrastructures become more complicated, and a key operational
challenge in many such systems is the efficient scheduling of processing resources to meet
various demands in a timely fashion. A scheduling policy decides how server capacities are
allocated over time, and a major challenge in designing such policies is the lack of knowledge
of system parameters due to the complex processing environment and the volatility of the
jobs to be processed. Demands are diverse, typically unpredictable, and can occur in bursts;
furthermore, operating conditions of processing resources can vary over time (see, e.g. [18]).
Thus, estimates of key system parameters such as arrival and/or service rates are often unreliable,
and can frequently become obsolete. One approach to address this complicated scheduling and
resource allocation problem is to design robust scheduling policies, where scheduling decisions
are made based only on current and/or past system states such as queue sizes, and not depending
on system parameters such as arrival or service rates. Robust scheduling policies can be highly

Received 29 October 2015; revision received 13 October 2016.

* Current address: Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa
Barbara CA 93106, USA. Email address: ramtin @ece.ucsb.edu

** Postal address: Department of Electrical Engineering and Computer Sciences, University of California Berkeley,
257 Cory Hall, Berkeley CA 94720, USA. Email address: walrand@berkeley.edu

#*% Current address: University of Chicago Booth School of Business, 360 Harper Center, 5807 South Woodlawn
Avenue, Chicago, IL 60637, USA. Email address: yuan.zhong @chicagobooth.edu

603

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:ramtin@ece.ucsb.edu?subject=Adv. Appl. Prob.%20paper%2016014
mailto:yuan.zhong@chicagobooth.edu?subject=Adv. Appl. Prob.%20paper%2016014
https://doi.org/10.1017/apr.2017.14

604 R. PEDARSANI ET AL.

desirable in practice, since they use only minimal information and can adapt to changes in
demands and service conditions automatically. The main objective of this paper is to develop
a general framework for designing robust policies and analyzing their performance.

Consider a single-server queueing system with unit-size jobs arriving at an unknown rate A,
and a server with a costly and sufficiently large service capacity u (in particular, © > A),
whose precise value is unknown. Suppose that at regular time intervals, the server can adjust
its service effort, measured by the fraction p € [0, 1] of the total capacity (we can implement
this in practice as a randomized decision of serving the queue with probability p). The goal
is to keep the system stable. Let AQ be the queue size change over a regular time interval.
Intuitively, if AQ > O then it is likely that the arrival rate is faster than the dedicated service
effort, which should then be increased. If AQ < 0 then the service effort should be decreased
for cost consideration. This naturally leads to an update rule for the service effort from time n to
n+ 1 of the form p"*+! := p”" + " A Q with step size 8" > 0. Under mild technical conditions
on the sequence {"}, it can be shown that ©* — X almost surely, implying system stability.

This simple example illustrates the high-level approach of our policy design framework:
allocate more (less) service to a queue if the corresponding queue size increases (decreases).
Our design approach uses only the system state information — namely, the queue size changes
— and does not require information on either the arrival or service rates. A simple but key
observation that justifies the validity of this approach is that if the queue size at the start of
an interval is sufficiently large, then A Q, the queue size change, is proportional to A — up
in expectation. In a network setting, by building upon this simple observation, we can decide
how to allocate shared resources among competing queues based on their respective queue size
changes.

Our methodology is general and can be applied to a wide range of processing networks. To
illustrate our approach concretely, we focus on two broad classes of network models, which

e generalize many important classes of queueing network models, such as parallel server
systems [20] and fork-join networks [21] (see Section 1.1 for more details), and

e model key features of dynamic resource allocation at fine granularity in many modern
applications such as cloud computing, flexible manufacturing, and large-scale healthcare
systems.

We now proceed to describe our network models and contributions in more detail.
Common to many modern large-scale processing systems are the following two important
features:

e workflows of interdependent tasks, where the completion of one task produces new tasks
to be processed in the system, and

o flexibility of processing resources with overlapping capabilities as well as flexibility of
tasks to be processed by multiple servers.

To illustrate these two features, consider the scheduling of a simple MapReduce job [12] of
a word count of Shakespeare’s Hamlet in a data center (see Figure 1). Mappers are assigned
the tasks of word count by act of the play, producing intermediate results, which are then
aggregated by the reducer. In more elaborate workflows, these interdependencies can be
more complicated. There may also be considerable overlap in the processing capabilities
of the data center servers, and flexibility on where tasks can be placed [12]. Similarly, in a
healthcare facility such as a hospital, an arriving patient may have a complicated workflow of

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 605

7 Reduce |—>| Finish |

| Start

FIGURE 1: Word count of Hamlet in MapReduce.

service/treatment requirements [2], which can also be assigned to doctors and/or nurses with
overlapping capabilities. To capture the dependencies in workflows and the system flexibility,
we consider the following two classes of processing networks:

e a flexible fork-join processing network model, in which jobs are modeled as directed
acyclic graphs, with nodes representing tasks, and edges representing precedence con-
straints among tasks, and servers have overlapping capabilities; and

e a flexible queueing network with probabilistic routeing structure, where a job goes
through processing steps in different queues according to a routeing matrix, and servers
have overlapping capabilities.

We design a robust scheduling policy for each class of network, and analyze performance
properties of the proposed policies. For both models, we prove the throughput optimality of our
policies, under a factorization criterion on service rates (see Assumption 2.1 of Section 2.4 for
details). We are concerned with rate stability in this paper. A scheduling policy is throughput
optimal if, under this policy, the system is stable whenever there exists some policy under which
the system is stable. Our policy design is based on the simple idea of matching incoming flow
rates to their respective service rates, and detecting mismatches using queue size information. If
system parameters were known, a so-called static planning problem [15] can be solved to obtain
the optimal allocation of server capacities, which balances flows in the system. Without the
knowledge of system parameters, however, the policy updates the allocation of server capacities
according to changes in queue sizes. Methodologically, our policy uses the idea of stochastic
gradient descent (see, e.g. [7]), a technique that has been applied in the design of distributed
policies in ad hoc wireless networks [17].

1.1. Related works

Scheduling of queueing networks has been studied extensively over several decades. We
do not attempt to provide a comprehensive literature review here; instead we review the most
relevant works.

Our flexible fork-join network model is closely related to and substantially generalizes the
classical fork-join networks (see, e.g. [3], [4], [6], [19], [21], [22]). The main difference
between the classical models and ours is that we allow tasks to be flexible, whereas tasks are
assigned to dedicated servers in classical fork-join networks. In classical networks, simple
robust policies such as FIFO (first-in—first-out) can often be shown to be throughput optimal,
but need not be so in our flexible networks.

The flexible queueing network model is closely related to the system considered in [1] (the
authors of [1] also considered setup costs whereas we do not). The policies in [1] make use of
arrival and service rates, and their throughput properties are analyzed using fluid models, hence
their approach is distinct from ours. We would also like to point out that in the case where the

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

606 R. PEDARSANI ET AL.

queues are not flexible, i.e. each queue has a dedicated server, the system reduces to the open
multiclass queueing network (see, e.g. [11], [16]).

Both the flexible fork-join network model and the flexible queueing network model can be
viewed as generalizations of the classical parallel server system, considered in, e.g. [20]. The
flexible fork-join network extends the parallel server system by allowing jobs to consist of
tasks with precedence constraints, and the flexible queueing network extends the parallel server
system by allowing probabilistic routeing among jobs. There is considerable interest in the
study of robust scheduling algorithms in the context of parallel server systems. The well-known
Gcp rule — equivalent to a MaxWeight policy with appropriately chosen weights on queues —
has been proved to have good performance properties, including throughput optimality (see,
e.g. [20]). The Gcu rule does not make use of the knowledge of arrival rates, but does require
the knowledge of service rates. Baharian and Tezcan [5] studied performance properties of
the longest-queue-first (LQF) policy, which is robust to both arrival and service rates, and
established its throughput optimality when the so-called activity graph is a tree. Stolyar and
Yudovina [27] established the throughput optimality of a priority discipline in a many-server
parallel server system, which consists of server pools, each of which in turn consists of a large
number of identical servers, also under the condition that the activity graphis atree. Dimakis and
Walrand [13] established the throughput optimality of LQF under a local pooling condition. To
the best of the authors’ knowledge, in the flexible fork-join networks and the flexible queueing
networks, both extensions of parallel server systems, which include precedence constraints
and routeing, respectively, the problem of designing robust scheduling policies has not been
addressed prior to this work.

As mentioned earlier, the analysis of our policies uses the technique of stochastic gradient
descent [7], which has been successfully employed in the design of distributed carrier-sense
multiple access (CSMA) algorithms for wireless networks [17]. Our analysis is different from
that of the CSMA algorithms in several ways, e.g. CSMA algorithms actively attempt to estimate
the arrival and service rates, whereas our policy is adaptive, and only reacts to these parameters
through queue size changes.

1.2. Organization of the paper

The rest of the paper is organized as follows. In Section 2 we introduce the flexible fork-join
network model. We propose our robust scheduling policy, and state our main theorems. In
Section 3 we describe the flexible queueing network model, and design a robust scheduling
policy for this network. We conclude the paper in Section 4. All proofs are provided in the
appendices.

2. Scheduling directed acyclic graphs with flexible servers

2.1. System model

We consider a general flexible fork-join processing network, in which jobs are modeled as
directed acyclic graphs (DAGs). Jobs arrive to the system as a set of tasks, among which there
are precedence constraints. Each node of the DAG represents one task type, and each (directed)
edge of the DAG represents a precedence constraint. We make use of both the concepts of tasks
and rask types. To avoid confusion and overburdening terminology, we will often use node
synonymously with task type for the rest of the paper. More specifically, we consider M classes
of jobs, each of them represented by one DAG structure. Let G, = (Vp, &) be the graph
representing the job of class m, 1 < m < M, where V,, denotes the set of nodes of type-m
jobs, and &, the set of edges of the graph. Note that sets V,, are disjoint. Let V = U,IZIZI Vi

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 607

and & = UZ’:l &n. We suppose that each §,, is connected, so that there is an undirected path
between any two nodes of G,,. There is no directed cycle in any §,, by the definition of the
DAG. Let the number of nodes of job type m be K,,, i.e. |'V,,| = K. Let the total number of
nodes in the network be K. Thus, ZZI:I K,, = K. We index the task types in the system by
k, 1 <k < K, starting from job type 1 to M. Thus, task type k belongs to job type m (k) if

m(k)—1 m(k)

Y Kw<k=) Ku.
m'=1 m'=1

We call node k' a parent of node k, if they belong to same job type m, and (k’, k) € &,,. Let P
denote the set of parents of node k. In order to start processing a type-k task, the processing of
all tasks of its parents within the same job should be completed. Node k is said to be a root of
DAG type m(k), if P, = @. We call k" an ancestor of k if they belong to the same DAG, and
there exists a directed path of edges from k' to k. Let Ly be the length of the longest path from
the root nodes of the DAG, (), to node k. If k is a root node then Ly = 0.

There are J servers in the processing network. A server is flexible if it can serve more than
one type of task. A task type is flexible if it can be served by more than one server. In other
words, servers can have an overlap of capabilities in processing anode. Foreach j, we define 77
to be the set of nodes that server j is capable of serving. Let T; = |T;|. For each k, let 8; be
the set of servers that can serve node k, and let Sy = |48x|. Without loss of generality, we also
assume that 7, S > 1 for all j and k, so that each server can serve at least one node, and each
node can be served by at least one server.

Example 2.1. In Figure 2 we illustrate the DAG of one job type that consists of four nodes
{1,2,3,4}. There are two servers 1 and 2. Server 1 can process tasks of types in the set
71 = {1, 2, 3} and server 2 can process tasks of types in the set 7 = {3, 4}. When a type-1
task is completed, it “produces’ one type-2 task and one type-3 task, both of which have to be
completed before the processing of the type-4 task of the same job can start.

We consider the system in discrete time. We assume that the arrival process of type-m jobs is
an independent Bernoulli process with rate A,,, 0 < A,,, < 1, i.e. in each time slot, a new job of
type m arrives to the system with probability 1,,, independently over time. We assume that the
service times are geometrically distributed and independent of everything else. When server j
processes task k, the service completion time has mean M,:jl. Thus, py; can be interpreted as
the service rate of node k when processed by server j.

1.2

o.1) = K 2.4)
» / (3.4)

(1,3)
(b)

FIGURE 2: An illustration of (a) a simple DAG and (b) its corresponding queueing network.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

608 R. PEDARSANI ET AL.

2.2. Queueing network model for cooperative servers

We model our processing system as a queueing network in the following manner. We
maintain one virtual queue of processed tasks that are sent from node &’ to k for each edge of
the DAGs (k’, k) € &. Furthermore, we maintain a virtual queue for the root nodes of the DAGs.
Let x,, be the number of root nodes in the graph of job type m. Then, the queueing network
has Z"A:IZI (|1&m| + xm) virtual queues. As an example, consider the DAG of Figure 2(a). The
virtual queues corresponding to this DAG is illustrated in Figure 2(b). There are five virtual
queues in total, four for edges of the graph, and one for the root node 1.

2.2.1. Job identities and synchronization. In our model, jobs and tasks have distinct identities.
This is mainly motivated by applications to data centers and healthcare systems. For instance,
it is important not to mix up blood samples of different patients in hospital, and to put pictures
on the correct webpage in a data center setting.

To illustrate how a job is processed in the preceding queueing network, consider the network
in Figure 2(b). Suppose that a job of identity a and with a DAG structure of Figure 2(a) enters
the network. When task 1 of job a from queue (0, 1) is processed, tasks 2 and 3 of job a are sent
to queues (1, 2) and (1, 3), respectively. When tasks in queues (1, 2) and (1, 3) are processed,
their results are sent to queues (2, 4) and (3, 4), respectively. Finally, to process task 4 of job a,
one task belonging to job a from queue (2, 4) and one task belonging to job a from (3, 4) are
gathered and processed to finish processing job a. We emphasize that tasks are identity-aware
in the sense that to complete processing task 4, it is not possible to merge any two tasks (of
possibly different jobs) from queues (2, 4) and (3, 4).

A common and important problem that needs to be addressed in scheduling DAGs is
synchronization, where all parents of a task need to be completed for the task to be processed. In
the presence of flexibility, synchronization constraints may lead to disorder in task processing,
which adds synchronization penalty to the system; see [24] for an example. In this paper, to
guarantee synchronization, we assume the simplifying condition that servers are cooperative
(this is equivalent to the case of cooperating servers described in [1]). That is, we assume
that servers that work on the same task type, cooperate on the same head-of-the-line task,
adding their service capacities. In this way, tasks are processed in a FIFO manner so that no
synchronization penalty is incurred.

2.2.2. Queue dynamics. Now we describe the dynamics of the queueing network. Let Q¢ r)
denote the length of the queue corresponding to edge (', k) and let Qo x) denote the length
of the queue corresponding to root node k. A task of type k can be processed if and only if
Q.k) > Oforallk’ € P —this is because servers are cooperative, and tasks are processed in a
FIFO manner. Thus, the number of tasks of node k available to be processed is ming ¢ p, O k' k)
if k is not a root node, and Qo k), if k is a root node. For example, in Figure 2(b), queue (2, 4)
has length 2 and queue (3, 4) has length 1, so there is one task of type 4 available for processing.
When one task of class k is processed, lengths of all queues (k’, k) are decreased by 1, where
k' € P, and lengths of all queues (k, i) are increased by 1, where k € $;. Therefore, the
dynamics of the queueing network is as follows. Let d; € {0, 1} be the number of processed
tasks of type k at time 7, and a], € {0, 1} be the number of jobs of type m that arrive at time n.
If k is a root node of the DAG then

+1 _ .
Qlox = Qo + Gy — i3

otherwise,
n+l _ An n n
Q(k’,k) - (k’,k) + d ; dk

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 609

Let py; be the fraction of capacity that server j allocates for processing available tasks of
class k. We define p = [py;] to be the allocation vector. If server j allocates all its capacity to
different tasks then Zke'fj prj = 1. Thus, an allocation vector p is called feasible if

> i1 foralll <j<J.

T
keT;

We interpret the allocation vector at time n, p" = [p}/ j], as randomized scheduling decisions
at time 7, in the following manner. First, without loss of generality, the system parameters can
always be rescaled so that) jes Mkj < 1 forall k, by speeding up the clock of the system.
Now suppose that at time slot #, the allocation vector is p”. Then, the head-of-the-line task k
is sgrved with prol?ability > Ikj Py; in that time slot. Note that 2 jes ki py; < 1 by our
scaling of the service rates.

J€5k

2.3. The static planning problem

In this subsection we introduce a linear program (LP) that characterizes the capacity region
of the network, defined to be the set of all arrival rate vectors A where there is a scheduling
policy under which the queueing network of the system is stable. As mentioned earlier, the
stability condition that we are interested in is rate stability. The nominal traffic rate to all nodes
of job type m in the network is A,,,. Letv = [vi] € R_If be the set of nominal traffic rate of nodes
in the network. Then, vy = A, if m(k) = m, i.e. if ZZ;,_:II Ky <k <Y _ Ky. The LP
that characterizes the capacity region of the network makes sure that the total service capacity
allocated to each node in the network is at least as large as the nominal traffic rate to that node.
Formally, the LP — known as the static planning problem [15] — is defined as follows.

Minimize p
subject to v < Z wurjprj foralll <k <K,
J€8k
o> Zpkj foralll <j < J,
keT;
prj =0 ifk &7j,
prj = 0.

Proposition 2.1. Let the optimal value of the LP be p*. Then p* < 1 is a necessary and
sufficient condition of rate stability of the system under some scheduling policy.

Proof. The proof can be found in Appendix A.1. (]

Thus, by Proposition 2.1, the capacity region A of the network is the set of all A € Rﬁf’ for
which the corresponding optimal solution p* to the LP satisfies p* < 1. More formally,

A= {A € Rf: there exists py; > 0 such that Z prj < 1forall j,

T
keT;

and v, < Z kj px; for all k}.
J€8k

2.4. Scheduling policy robust to task service rates

In this subsection we make the following assumption on service rates fiy;.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

610 R. PEDARSANI ET AL.

Assumption 2.1. For all k and all j € 8y, service rates ui; can be factorized to two terms: a
task-dependent term i, and a server-dependent term o j. Thus, pg; = wra;.

While Assumption 2.1 appears somewhat restrictive, it covers a variety of important cases.
When o; = 1 for all j, the service rates are task dependent. This case models, e.g. a
data center of servers with the same processing speed (possibly of the same generation and
purchased from the same company), but with different software compatibilities, and possibly
hosting overlapping sets of data blocks. The case when « are different can model the inherent
heterogeneous processing speeds of the servers.

We now propose a scheduling policy with known ¢ ;, which is robust to task service rates 1,
and prove that it is throughput optimal. The idea of our scheduling policy is quite simple: it
reacts to queue size changes by adjusting the service allocation vector p = [py;]. Since service
rates /ix; are factorized to two terms 4 and o, only the sum py = >, ;) py; affects the
effective service rate for node k. One can consider py as the total capacity that all the servers
allocate to node k in a time slot. So, with a slight abuse of notation and terminology, we call
p = [p«] the service allocation vector from now on.

To precisely describe our proposed scheduling algorithm, we first introduce some notation.
Let 1{Q’(7k/’ o > 0} be the indicator that the queue corresponding to edge (k’, k) is nonempty
at time n. Let AQ’Z,:{ 1,{) = ’Z,:,le) - ?k,! o be the size change of queue (k/, k) from time n to
n + 1. Define E}} to be the event that there is a strictly positive number of type-k tasks to be
processed at time n. Thus, E}} = {Q?O,k) > 0} if k is a root node, and E}} = {Q?’k,’k > 0 for
all k' € P} if k is not a root node. Also let 1 Ep be the indicator function of event £}

LetC C Rf be the polyhedron of feasible service allocation vector p, i.e.

C= {p € RX: there exists Dkj such that Z ajprj = pi forall k,
J €8k

pj =0 forallk,j. Y pij < 1f0ra11j}.

qT.
keT;

For any K-dimensional vector x, let [x]e denote the convex projection of x onto C. Finally,
let {8"} be a positive decreasing sequence with the following properties:

(i) Y2 B" =0,

(i) Y02, (B™)? < oo, and
(iii) limp— oo 1/nB" < 00.

As we will see in the sequel, a key step of our algorithm is to find an unbiased estimator
of L — ug px for all k, based on the current and past queue sizes. Toward this end, for each
node k, we first pick a path of queues from a queue corresponding to a root node of the DAG to
queue (k', k) for some k' € P. Note that the choice of this path need not be unique. Let F¢
denote the set of queues on this path from a root node to node k. For example, in the DAG
of Figure 2(b), for node 4, we can pick the path #4 = {(0, 1), (1,2), (2,4)}. Then, we use

Zﬁ,j)eﬂk A Qi) as an unbiased estimate of A — uu pr. To illustrate the reason behind this
estimate, consider the DAG in Figure 2(b). It is easy to see that

E(AQ(+ A0S + A0, | Qbay >0, 0k, > 0,p") = A — ap}.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 611

In general, if Ly = L — 1 for node k (recall that Ly is the length of the longest path from a

root node to k), one picks a path of edges (io, i1), (i1,i2), ..., (ir—1,iL), such that ip = 0 and
i;, = k. Then,
L—1 L—1
+1
E[Z AQU Ly I g =1, p"] = (= wiy pi, 1) + > i v} Lgp =i iy, ey)
=0 =1
= vk — wikpy Ly - 2.1

Note that one can pick any path from a root node to k, but the longest path is picked in
(2.1) for the purpose of ease of notation for the proofs. Our scheduling algorithm updates the
allocation vector p" in each time slot # in the following manner.

(i) We initialize with an arbitrary feasible p°.

(i) Update the allocation vector p" as follows:

p,':“=[p;:+ﬂ"1E; > AQ’Z,»J[})}- 22)
(i’,i)eHy e

This completes the description of the algorithm.

We now provide some intuition for the algorithm. As we mentioned, the algorithm tries to
find adaptively the capacity allocated to task k, pi, that balances the nominal arrival rate and
departure rate of queues (k’, k). The nominal traffic of all the queues of DAG type m is vy
for task types k belonging to job type m. Thus, the algorithm tries to find p; = vi/pu, in
which case the nominal service rate of all the queues is p; 1 = vi. To find an adaptive robust
algorithm, we formulate the following optimization problem:

K
Pl: minimize % l;(vk — epi)?
subjectto p € C.

Solving (P1) by the standard gradient descent algorithm, using step size 8" at time n, leads
to the update rule

Pt =1pf + B ok — i ple. (2.3)

To make the update in (2.3) robust, first we consider a ‘skewed’ update

Pt =1k + B ok = ep)le. 2.4)
and second, we use the queue-length changes in (2.1) as an unbiased estimator of the term
vr — px py- This results in the update equation in (2.2). Thus, the update in (2.2) becomes
robust to knowledge of service rates . The algorithm is not robust to knowledge of server
rates «j, since the convex set € is dependent on «;, and the projection requires the knowledge
of server speeds o;.

Let us now provide some remarks on the implementation efficiency of the algorithm. First,
the policy is not fully distributed. While the update variables 1gn 3~ ;s ;)¢ 5, AQ?I;) can be
computed locally, the projection [-]e requires full knowledge of all these local updates. Second,
since Euclidean projection on a polyhedron is a quadratic programming problem that can be
solved efficiently in polynomial time by optimization algorithms such as the ‘interior point
method’ [8], the projection step [-]e can be implemented efficiently.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

612 R. PEDARSANI ET AL.

The simulation results are derived using the described algorithm. To analyze the theoretical
performance properties of the algorithm, we make minimal modifications to the proposed
algorithm for technical reasons. First, we assume that

(i) the nominal arrival rate of all the tasks vy is strictly positive,
(i1) there are finitely many servers in the system, and
(iii) all the service rates, pu;, are finite.

Note that assumptions (i)—(iii) can be made without loss of generality. Then, there exists g9 > 0
such that for all k, vi /i > 9. We now suppose that g is known, and consider a variant Cg,
of the convex set C, defined to be

Cep = {p € RX: there exists pkj = 0 such that Z ajprj = px for all k,

J €8k
pr = g forallk, > pij < 1 forall j}. (2.5)
keT;

Note that p* € C¢,. We modify the projection to be on the set Cg, every time, so that p” are
now updated as

it = [p;z +8" g) AQ';,.T,})} : 2.6)
@i, i)eHy 080
Remark 2.1. (i) The modified update (2.6) ensures that the service effort uy p} allocated to
each queue k is always strictly between 0 and 1, which will imply that all queues are nonempty
for a positive fraction of the time, so as to guarantee convergence of the modified algorithm (2.6).
We believe that the original algorithm (2.2) converges as well, although establishing this fact
rigorously appears difficult.

(ii) Let us also note that the modified algorithm (2.6) is essentially robust in the following
sense. On the one hand, the update (2.6) assumes the knowledge of gy, which in turn depends
on v and p. On the other hand, &y can be chosen with minimal information on v and ©. For
example, if ¢ is a known lower bound on vg, k = 1,2, ..., K and C is a known upper bound
onug, k=1,2,..., K, then we can set &g = c¢/C.

The main results of this section are the following two theorems.

Theorem 2.1. Let A € A. The allocation vector p" updated by (2.6) converges to p* = [p;]
almost surely (a.s.), where pj} = vy /.

Proof. The proof can be found in Appendix A.2. Here, we briefly describe the main steps of
the proof. First, we show that the nonstochastic gradient projection algorithm with the skewed
update (2.4) converges. This is not true in general, but the convergence holds here, due to the
form of the objective function in (P1), which is the sum of separable quadratic terms. Second,
we show that the cumulative stochastic noise present in the update due to the error in estimating
the correct drift is an Ly-bounded martingale. Thus, by the martingale convergence theorem
the cumulative noise converges and has a vanishing tail. This shows that after some time the
noise becomes negligible. Finally, we prove that the event that all queues in the network are
nonempty happens for a positive fraction of time. Intuitively, this suggests that the algorithm
is updating ‘often enough’ to be able to converge. The rigorous justification makes use of
Kronecker’s lemma [14]. O

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 613

Theorem 2.2. Let . € A. The queueing network representing the DAGs is rate stable under
the proposed scheduling policy, i.e. lim,_, Q’gk’,k)/” =0a.s. forall (K, k).

Proof. The proof can be found in Appendix A.3. While proving the theorem is techni-
cally quite involved, the key idea is to use Theorem 2.1 to prove that the servers allocate
enough cumulative capacity to all the tasks in the system, which leads to rate stability of the
network. O

Remark 2.2. We present extensive numerical studies and simulations results for our robust
scheduling policy in the extended version of the paper [26].

3. Flexible queueing network

In this section we consider a different queueing network model, and show that our robust
scheduling policy can also be applied to this network.

3.1. Network model

We consider a flexible queueing network with K queues and J servers, and probabilistic
routeing. Servers are flexible in the sense that each server can serve a (nonempty) set of queues.
Similarly, tasks in each queue are flexible, so that each queue can be served by a set of servers.
Similar to the DAG scheduling model, for each j, let 7; be the set of queues that server j
can serve, and T; = |7;|. For each k, let &, be the set of servers that can serve queue k, and
let S = |8k|. Clearly, Z}(:l Tj = Zle Sk, and we denote this sum by S. Without loss of
generality, we assume that each server can serve at least one queue, and each queue can be
served by at least one server.

We suppose that each queue has a dedicated exogenous arrival process (with rates being
possibly 0). For each k, suppose that arrivals to queue k form an independent Bernoulli process
with rate Ay € [0, 1]. Thus, in each time slot, there is exactly one arrival to queue k with
probability Ag, and no arrival with probability 1 — Ag. Let A (¢) be the cumulative number of
exogenous arrivals to queue k up to time ¢. The routeing structure of the network is described
by the matrix R = [rpk]1<k’, k<K, Where ryy denotes the probability that a task from queue &’
joins queue k after service completion. The random routeing is independent and identically
distributed (i.i.d.) over all time slots. We assume that the network is open, i.e. all tasks eventually
leave the system. This is characterized by the condition that (I — RT) is invertible, where [is
the identity matrix, and R " is the transpose of R.

Example 3.1. To clarify the network model, we consider a flexible queueing network shown
in Figure 3. For concreteness, we can think of this system as a multitier application [23] with
two flexible servers (the two boxes), and one type of application with three tiers in succession
(the three queues). When a task is processed at queue 2, it will join queue 3 with probability 3
and it will join queue 1 with probability 1 = 1 — rp3 (that can be thought of as the failure
probability in processing queue 2). This network is different from the classical open multiclass
queueing networks, in that queue 2 can be served by two servers. In this network 77 = {1, 2},
T =1{2,3}, 81 = {1}, 82 = {1, 2}, and 43 = {2}.

Similar to the DAG scheduling problem, we assume that several servers can work simultane-
ously on the same task, so that their service capacities can be added. In each time slot, if a task
in queue k is served exclusively by server j, then the task departs from queue k with probability
Mij = pjoj, where gy is the service rate of queue k and o is the speed of server j.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

614 R. PEDARSANI ET AL.

rn=1-r3

FIGURE 3: Flexible queueing network with three queues and two servers.

The dynamics of the flexible queueing network can be described as follows. Let O} be the
length of queue k at time n. Let di € {0, 1} be the number of tasks that depart queue k at
time n. Let a; € {0, 1} be the number of exogenous arrivals to queue k at time n. Finally, let
1;_, ., be the indicator that the task departing queue k at time # (if any) is destined to queue k'.
Then the queue dynamics is

K
O = Of i+) di T, —df
k'=1
Note that E(a}) = Ax and E(1},) = ry.
Similar to the DAG scheduling problem, we define the allocation vector p = [py;] (of server
capacities), and p is called feasible if

D <1 foralll <j<J.

T
keT;

For each j, py; can be interpreted as the probability that server j decides to work on queue k.
Then, the head-of-the-line task in queue k is served with probability > j k) Pij- Similar to the
DAG model, we scale the service rates so that j ki PRj < 1 for any feasible p.

We now introduce the LP that characterizes the capacity region of the flexible queueing
network. Toward this end, for a given arrival rate vector A, we first find the nominal traffic
rates v = [V l1<k<k € RX where vy is the long-run average total rate at which tasks arrive to
queue k. For each k, vy = Ar + Zlel virik. Thus, we can solve v in terms of R and A:

v=(I—-RNH A (3.1)

Note that (3.1) is valid, since by our assumption that the network is open, (1 — R7T)is invertible.
The LP is then defined as follows.
Minimize p
subject to v < Z wijprj forall 1 <k < K,
J €8k
P> Zpkjforalllfjgj,
keT;
p =0 ifkgT;
prj = 0.
Let the optimal value of the LP be p*. Similar to Proposition 2.1 we can show that p* < 1
is a necessary and sufficient condition of system stability. Thus, given wy; and R, the capacity

region A of the network is the set of all A € RX, so that the corresponding optimal solution p*
to the LP satisfies p* < 1.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 615

3.2. Robust scheduling policy

In this section we propose a robust scheduling policy that is provably throughput-optimal
when the service rates can be written as u; = uraj. The policy is robust to arrival and task
service rates, but not robust to routeing probabilities of the network and servers’ speed. The key
idea is to use a stochastic gradient projection algorithm to update the service allocation vector p
such that all the flows in the network are balanced. We first give the precise description of the
algorithm, and state the main theorem. Then, we provide some explanations. We use similar
notation as that used in Section 2.

Since service rates can be factorized to a task-dependent rate and a server-dependent rate,
only the sum py :=)" j ajpkj affects the effective service rate for queue k. So, similar to the
DAG scheduling problem, we call p = [pi] € RX the service allocation vector. Our scheduling
algorithm updates the allocation vector p” in each time slot n in the following manner.

(i) We initialize with an arbitrary feasible p°.
(ii) Update the allocation vector p” as follows:

pﬂ+1 — [pn + ﬂnEn(I _ RT)*lAQn]GSO, (32)

where E" isa K x K diagonal matrix such that Ew = 1{Q2>0} and Gy, is given in (2.5).
The main results of this section are the following two theorems.

Theorem 3.1. Let A € A. The allocation vector p" updated by (3.2) converges to p* = [p;]
a.s., where p; = v/ .

Proof. This is almost identical to the proof of Theorem 2.1. We omit the details. (]

Theorem 3.2. The flexible queueing network is rate stable under the robust scheduling algo-
rithm specified by the update in (3.2), i.e.

n

lim & =0 forallk.

n—-oo n

Proof. The proof can be found in in Appendix A.4.]

The intuition for the update (3.2) is as follows. The algorithm tries to adaptively find
the allocation vector p* using a gradient projection method that solves (P1). To robustify
the algorithm to the knowledge of task service rates, we consider the ‘skewed’ updates in
(2.4). However, the major difference compared to the DAG scheduling problem is the way
we find unbiased estimators of the terms vy — g p;(’. We use AQ"HL, the changes in queue
sizes, and routeing matrix R, to estimate these terms. It is easy to show that the kth entry of
(I — RT)"'AQ"! is an unbiased estimator vy — ukpy,if Qp > 0. Define M = diag{j},
the K x K diagonal matrix with diagonal entries py. Then,

]E(En(l _ RT)*lAQ}’Z‘Fl | Q}’l) — En(l _ RT)*IE(AQVL+1 | Q}’l)
— En(l—RT)_l(k-l-RTMEnpn _MEnpl’l)
= B — ME"p"
= E"(v — Mp").

Note that matrix £” in update (3.2) ensures that the algorithm updates pj only for queues k that
are nonempty, since [(/ — RT)_lAQ”+1]k is no longer an unbiased estimator of vy — g p’,:
when Q) = 0.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

616 R. PEDARSANI ET AL.

4. Conclusion and future work

In this paper we presented two processing networks that can effectively model different
applications such as cloud computing, manufacturing lines, and healthcare systems. Our
processing system is flexible in the sense that servers are capable of processing different types
of tasks, while tasks can also be served by different servers. We proposed a scheduling and
capacity allocation policy for these networks that is robust to service rates of the tasks and the
arrival rates. The proposed scheduling algorithm is based on solving an optimization problem
by stochastic gradient projection. The algorithm solves the problem of balancing all the flows
in the network using only queue size information, and uses the allocation vector derived by the
gradient algorithm at each time slot as its scheduling decision. We proved rate stability of the
queueing networks corresponding to the models in the case that servers are cooperative and
service rates can be factorized to a task-dependent rate and server-dependent rate.

There are many possible directions for future research. We summarize some of these
directions as follows.

e It is important to find provably throughput optimal and robust scheduling policies while
relaxing the assumption of cooperative servers. Some progress has been made in [25].

e A future direction is to investigate whether there exists a throughput-optimal policy which
is only dependent on the queue-size information in the network in the current state or
in the past, when service rates are generic, and cannot be necessarily factorized to a
task-dependent rate and server-dependent rate.

o In the case of flexible queueing networks, a future direction is to find a throughput-optimal
policy that is robust to the knowledge of routeing probabilities.

Appendix A

A.1. Proof of proposition 2.1

Consider the fluid scaling of the queueing network, X’ li’ B = O k(lrt])/r (see [10] for
more discussion on the stability of fluid models), and let X k) be the corresponding fluid limit.
The fluid model dynamics is as follows. If k is a root node then

t 0 t t
Xon =X00 T Anw — Pis

where Ain(k is the total number of jobs of type m (scaled to the fluid level) that have arrived to
the system until time ¢. If £ is not a root node then

0 t t
X(k’ k) = X(k’,k) + Dk/ - Dk’

where D is the total number of tasks (scaled to the fluid level) of type k processed up to time ¢.
Suppose that p* > 1. We show that if X0 wr) = = 0 for all (', k), there exists #y and (X', k)
such that X wh = > €(tp) > 0, which 1mp11es that the system is weakly unstable [11]. Contrary
to this, suppose that there exists a scheduling policy that under that policy for all + > 0 and
all (K, k), X! w.ky = 0. Pick a regular point 7;. (We define a point 7 to be regular if X! k) is
differentiable at ¢ for all (k’, k).) Then, for all (X', k), X(k, o = = 0. Since A" m(y = rm = Vi,
this implies that Dk = v for all the root nodes k. Now considering queues (k’, k) such that
nodes k’ are roots, we obtain
D Dk/ =V = Vg.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 617

Similarly, one can inductively show that for all k, Dk = vk. On the other hand, at a regular
point #1, Dk is exactly the total service capacity allocated to task k at #1. This implies that there
exists pg; j at time #; such that vy =) _; jes Mkj pk ; for all k and the allocation vector [py;] is
feasible, i.e. Zke 7, Pkj 5 1. This contradicts p* > 1.

Now suppose that p* <1, and p* = [pk] is an allocation vector that solves the LP. To
prove sufficiency of the condition, consider a generahzed head-of-the-line processor sharing
policy that server j works on task k with capacity pk Then the cumulative service allocated
to task k up to time 7 is Sk Z/G& ukjpk]t > vrt. We show that X/ W = = 0 for all ¢ and
all (', k), if X0 K = = 0 for all (¥, k). First consider queue (0, k) correspondlng to a root
node. Suppose that X! 0k =€ > 0 for some positive #; and €. By continuity of the fluid
limit, there exists 79 € (0, tl) such that X(0k = = €/2 and X(0 K > 0 for all ¢ € [ty, 1]. Then,
X(o Ky = Vk — Z/E& k) pk] < 0 fort € [tg, t1], which is a contradiction. Now we show that
Xik, g = 0 forall 7 if k' is a root node and k is a child of ¥’. Note that X(0 = 0; thus,
Dk, = v = V. Then, X(k/ k) = Vk — Zjesz ukjp,’:j < 0. This proves that X(k’,k) = 0 for
all . One can then inductively complete this proof for all queues (', k). ([

A.2. Proof of Theorem 2.1

Recall the following notation which will be widely used in the proofs:
Lign, =0forall kep) = 1

‘We introduce the further notation
K
1 En = 1_[1 El’: .
k=1

Note that event E” denotes the event that all the queues are nonempty at time 7.

Lemma A.1. There exist constants £ and 9 > 0, which are independent of n, such that given
any history " up to time n, P(lgnye =1 | F*) > §p > 0.

Proof. We work with each of the DAGs §,, separately, and construct events so that all the
queues corresponding to §,, have positive lengths after some time £. We can do this since w py;
will always be no smaller than p &g and strictly smaller than 1, so there is positive probability
of serving or not serving a task.

Let E}/ be the event that task k is served at time n, E © be the event that task k is not served at
time n, and E " be the event that job type m arrives at t1me n. Consider a particular DAG §,,.
Recall that Ly is the length of the longest path from the root nodes of the DAG to node k. Let
£m = maxkev, Lir + 1. We construct the event E(£,,) that happens with a strictly positive
probability, and assures that all the queues at time n + £,, are nonempty. Toward this end, let
El,,) = ﬂz L o1’ where event C"' i

c'=Er () EX () E.

{k: Ly<n'—1} {k: Ly>n'—1}

In words, C" is the event that at time 7/, there is a job arrival of type m, services of tasks of
class k for k with Ly < n’ — 1, and no service of tasks of class k for k with L; > n’ — 1.
Now, by construction all the queues are nonempty at time n + £ with a positive probability. To
illustrate how we construct this event, consider the example of Figure 2(a) and the corresponding
queueing network in Figure 2(b). Then, C? is the event that there is an arrival to the system,

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

618 R. PEDARSANI ET AL.

and no service in the network. Further, C! is the event that there is a new job arriving, task 1
is served, and tasks 2, 3, and 4 are not served. Note that there is certainly at least one available
task 1 to serve due to C°. Up to now, certainly queues (0, 1), (1, 2), and (1, 3) are nonempty.
Then C? is the event of having a new arrival, service to tasks 1, 2, and 3, and no service to
task 4. This construction ensures that after three time slots, all the queues are nonempty.

Now for the whole network it is sufficient to take £ = max,, £,,. Construct the events E (¢,,)
for each DAG independently, and freeze the DAG §,, (no service and no arrivals) from time
n+ {y ton + £ — 1. This construction makes sure that all the queues in the network are
nonempty at time n + £ given any history ¥" with some positive probability &g. (]

Lemma A.2. The following inequality holds:

N I do
lim inf — leE,,f > >0 as
n'=

Proof. Take a subsequence 1,(, n’ > 1. Define a sequence (Y "/)n/zl by
Y =10 —P e =11 F" 705,

Then, it is easy to see that IE[Y”/ | .77(”/_1)@] = 0. Thus, (Y"/) is an ?’”/Z-adapted Zero-mean
martingale. Furthermore, we have |Y"'| < 2a.s. foreachn’. By applying the martingale law of
large numbers (see, e.g. Corollary 2 of [9, Section 11.2]), we have limm%oo(l/m)zn’"/zl y" =
0 a.s. By Lemma A.1, this immediately implies that lim inf,, o (1/m)> v _, 1,0 = o ass.
Therefore, with probability 1,

n/t]

! hIp P 870

NN IR .
minf o) Lpw = liminf

=1 n'=1
This completes the proof of Lemma A.2. (]
Lemma A.3. The following equality holds:

n
. n' _
nllg;o Z B 1E”/ =00 a.s.
n'=1
Proof. From now on we work with the probability-1 event defined in Lemma A.2. Consider

a sample path in this probability-1 event, and let x,, = ﬁ”/ 1 g First note that x,,; > 0. Thus,
by the monotone convergence theorem, the series either converges or goes to co. Suppose

that lim, oo Y /_; X,y = s for some finite s. Define the sequence b, = 1//8"/. Then,
by Kronecker’s lemma [14], we have limn_wo(l/b,,)ZZ,=1 by x,y, = 0. This shows that
limy, oo (1 /bn)ZZ/=1 1 g = 0, which results in a contradiction, since lim, . », 1/n8" is finite,

and, hence, by Lemma A.2,

NN PR
hnn_l)gl)f E Z:] lE,,/ > 0. O
n'=
Now we are ready to prove Theorem 2.1. Consider the probability-1 event in Lemma A.3.
Let d, = ||[p" — p*||*> and fix ¢ > 0. We prove that there exists a n¢(¢) such that, for all
n > no(€), d, has the following properties.

(i) Ifd, < e thend,4+1 < 3e.

(ii) Ifd, > e thendy41 < d, — y", where > o2 | y" = oo and y" — 0.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 619

Then property (ii) shows that for some large enough ny = nj(€) > no(€), dy; < €, and
properties (i) and (ii) show that d,, < 3€ for n > nj(e). This is true for all € > 0, so d,
converges to 0 a.s.

First we show property (i). Let U" = [U}'] € RX be the vector of updates such that

n+1 __ n+1
Uit =1 Y A0,
(@),

Note that || U" ||? is bounded by some constant C; > 0, since the queues length changes at each
time slot are bounded by 1. On the other hand, 8” — 0. Thus, one can take n{ (¢) large enough
such that, for all n > nq(¢€), B < /€/2Cy. Then, forn > ni(¢) if d, < ¢,

dyyr = [Ip"t" = p*|1?
= Ilp" + B"U" e, — p*II?
<|p"+p"U"" = p*|? A.D)
<2d, +2(8M*IU")? (A2)
< 3¢,

where (A.1) is due to the fact that projection to the convex set is nonexpansive, and (A.2) is by
the Cauchy—Schwarz inequality.

To show property (ii), we make essential use of the fact that the cumulative stochastic noise
is a martingale. Let ZZ‘H = 15/? (U} — vk + i py)- Then, by (2.1),

E[Z;*' | F"1=0 forallk, (A.3)

which shows that Z" is a martingale difference sequence. Now observe that

K
durr =Y (P = pp)?
k=1

K
<Y L+t = pp)? (A4)
k=1
K
=dp + (B NU" P+ 28" Y (pf — Pk — mapf + 23D 1y
k=1

K
=do+ BVNU"TP 428" Y 0k — PO Pk — PO+ 2) 1
k=1

K K
<dy+(B"C1 =) 2w 1 (P} — P> +) 28" 2 (o — P 1y, (AS)
k=1 k=1

where (A.4) is due to nonexpansiveness of projection, and (A.5) is due to the facts that E”* C E}}
and ||U"||? < C;. Let u* = ming p. Since Z,le (p; — p,’(‘)2 > ¢, the following choice of y”
satisfies dp,+1 < d, — y™:

K
" =—(B"C1+ B" g 2u*e — Y 28" Z (pf — p) gy
k=1

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

620 R. PEDARSANI ET AL.

As B" — 0 asn — 00, it is easy to see that y" — 0 a.s. Thus, to complete the proof of
Theorem 2.1, we need to show that Ziil ¥n = 0o a.s. Toward this end, note that Zn (,B")2 is
finite which makes —), (8™)2C; bounded. By (A.3), and the facts that don (8M)? < oo and
lp" — p*|l is bounded for all n, we obtain

n K
=2 22 Z L = D gy

n'=1k=1

is an L,-bounded martingale and by the martingale convergence theorem converges to some
bounded random variable a.s. [14]. Finally,

o0
2eu” Zﬁ" 1gn =00 as.
n=1

by Lemma A.3. This completes the proof of Theorem 2.1.]
A.3. Proof of Theorem 2.2

In this subsection we provide the proof of Theorem 2.2. The key idea to prove the rate
stability of queues is to first show that the servers allocate enough cumulative capacity to
all the tasks in the network. This is formalized in Lemma A.4. Second, in Lemma A.5,
we show that each queue (k’, k) cannot become unstable if task k receives enough service
allocation over time, and the traffic rate coming to these queues is nominal. Finally, we use
these two conditions to show rate stability of all the queues in the network by mathematical
induction.

To prove the theorem, we first introduce some notation. Let D}’ denote the cumulative number
of processed tasks of type k at time n. Recall that d}/ is the number of processed tasks of type k
at time n. Therefore, D} =)}, ld” Let A = Z" _1ah, 1 <m < M, be the cumulative
number of jobs of type m that have arrived up to time n. Then the queue-length dynamic of
queue (k’, k) can be written as follows. If X’ # 0 then Qs = Q(k, o+ Dy —Dp If K=0
then Q(k,’k) Q(k’ o T Am(k) Dy.

At time n, the probability that one task is served and departed from queue (k’, k) is % p, if
all of the queues (i, k) are nonempty for all i. We define s} to be a random variable denoting the
virtual service that queues (k’, k) have received at time n, whether there has been an available
task k to be processed or not. Also s; is a Bernoulli random variable with parameter 1k Py
Then, the cumulative service that queues (k’, k) receive up to time n is S} =, _; s¢ for
all ¥’. Note that the cumulative service is different from the cumulative departure. Indeed,
dk = S k 1 E"

From now on, in the proof of Theorem 2.2, we consider the probability-1 event that p”
converges to p* stated in Theorem 2.1.

Lemma A.4. The following equality holds:

n

lim =% = as. forall k.
n—-oo n

Proof. By Theorem 2.1, the sequence pj converges to vi/ux a.s. Therefore, for all the
sample paths in the probability-1 event, and for all €; > O, there exists ng(e;) such that
Py — vill < € forall n > no(ey).

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 621

Let 5} be ani.i.d. Bernoulli process of parameter v — €1. We couple the processes s;’ and 5}/
as follows. If s = O then s = 0. If s} = 1 then 5} = 1 with probability (vx — €1)/ux py, and
53 = 0 with probability 1 — (vx — €1)/x py . Note that 5} is still marginally an i.i.d. Bernoulli
process of parameter vy — €. Then,

n

n n/
liminf 2% > lim inf Lon=mp(ep+1 5

n—-oo n n—o0 n
n ~n/
I S
> lim inf m (A.6)
n— 00 n
=V —€ as., (A7)

where (A.6) is by construction of the coupled sequences, and (A.7) is by the strong law of large
numbers.

Let 5; be an i.i.d. Bernoulli process of parameter v + €. We couple the processes s}
and §; as follows. If sy = 1then sy = 1. If s{ = O then 5 = 0 with probability
(1 — (v +€1))/(1 — uxpy), and 5 = 1 with probability 1 — (1 — (vx +€1))/(1 — e py)-
Note that 5}/ is still marginally an i.i.d. Bernoulli process of parameter v + €;. Then,

S¢ no(er) + n/= s”/
lim sup k< lim sup 2 no(en)+1 "k
n—oo N n— 00 n
1’10(61) + n/, En/
< lim sup 2 =no(e)+1 "k A8)
n—oo n
=V +€ as., (A.9)

where (A.8) is by construction of the coupled sequences, and (A.9) is by the strong law of large
numbers. Letting ;] — 0, we have

Sl‘l n
.. k1 ko
liminf — =limsup — = v; as. |
n—oo n n—oo N

Lemma A.5. Consider a fixed k and all queues (k', k) with k' € Py. Suppose that

D7,
lim —X =, forallk' € %, as. (A.10)
n—oo n
if Px # <, and
Al
lim mb Vi a.s.
n—o0 n
if k is a root node. Then,
n
lim —&0 _ o g

n— 00 n

Proof. Before getting to the details of the proof, note that if k is a root node then we readily
know that
Al’l
lim —® 5, =

=An =V as.
n—oo n

Thus, the lemma states that queues (0, k) are rate stable.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

622 R. PEDARSANI ET AL.

We prove the lemma for the general case that node k is not a root node. A similar proof
holds for the case of root nodes. First, we show that for all pair of queues (i, k) and (i’, k) such

thati, i’ € P, we have
n n
Q(i,k) B Q(i/,k)

lim =0 as. (A.11)
n—00 n
Note that " "
Wb~ CLun _ D =Dy — Dy —Dy) Dy —Df
n n n '
Then, by (A.10),
D' — D"
lim —X =y —1v, =0 as.
n—o0 n
Second, we show that
Qn
liminf —%% — 0 as.
n—oo n

Contrary to this, suppose that in one realization in the probability-1 event defined by (A.10)

and Lemma A 4,
ot
lim inf GAL))

n—o00 n

> 2¢p for some €5 > 0. (A.12)

This implies that in that realization

0
lim inf 200+ Die = Dk

n—00 n

> 26).

By (A.10), the probability that limnﬁoo(Q(()k/ o) + DZ/)/n = v is 1. Thus, in that realization
n

. Dj
lim sup — < v, — 2e3. (A.13)
n

n—0oo

On the other hand, (A.12) shows that there exists ng(€3) such that, for all n > ng(ep),
O 1y = 2ne. (A.14)

Furthermore, (A.11) shows that there exists n1 (€3) such that, foralli € $#; andforalln > n(e),

|0 1) — Qliny| < neéa. (A.15)

Letns(e2) = max(ng(ez), n1(e2)). Equations (A.14) and (A.15) imply that, for all n > ny(€7),
’(11. K = nex. Now taking n3(e2) = max(na(€3), 1/€2), it holds that all the queues (i, k), i €
&P, are nonempty for n > n3(ez). Thus, s = d}/ for all n > n3(ez). Therefore,

. Sy ny(e2) + D} D}
limsup — < limsup ———— = lim sup —.
n—oo N n—o00 n n—00 n
Thus, by Lemma A .4, vy < limsup,,_, DZ /n, which contradicts (A.13). Since this holds for
any €2 > 0, we conclude that

Qn
liminf —%0 — o 4. forall k' € 2. (A.16)
n—00 n

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 623

Finally, we show that

O
lim sup ZED _ 0 as.
n—o00 n

Contrary to this, suppose that in one realization in the probability-1 event defined by (A.10),
(A.11), and Lemma A 4,

lim sup
n—oo

an’ k
wh 4e3 for some €3 > 0.
n

This implies that in that realization Q?k, K > 4nez happens infinitely often. Moreover,
by (A.16), Q",, p < 2ne3 happens also infinitely often in that realization. On the other hand,
by (A.11), there exists some ng(€3) such that, for all n > no(e3) and all i € %,

100 1y — Q| < nes. (A.17)
<

Take N1 = max(no(€3), 2/€3). Then, there exists N1 < nj(€3) < na(e3) such that lekl’,k) <
2n1€3 and Q?,f,’ 5 > 4njez. In words, ny + 1 is the first time after N; that Qi(lk’, o /1 Crosses
2e3 without going below 2¢3 before exceeding 4¢3. Then, since the queue length changes by
at most 1 each time slot, queue (k’, k) is nonempty for all n, n; < n < ny. Furthermore, for
alln,n; <n <njpand, forall i € $, by (A.17),

Q?i,k) > Q?k’,k) —ne3 >2ne3 — 1 —ne3 > njez — 1> 1.

Thus, all the queues (i, k) are also nonempty for all z in the intervaln; < n < n,. Consequently,
foralln, ni <n <nj, s,’f = d,i’. Now define a process

B?k’,k) =Dy, —S;.
Note that, by (A.10) and Lemma A .4, in the realization of probability-1 event that we consider,
B,
lim &0 =0, (A.18)

n— oo n

We bound Bz'kz, 1y s follows:

B(nkz/,k) = B?kl’,k) + [B?kz/,k) - B?/cl’,k)]
= B}y + D7 — D — ({2 =)]
= By, + Dy — D} —(D}? — D]
= Bf’kl,’k) + 10> — 041
> B(nkl’,k) + 4e3ny — 2e3ng.

Dividing both sides of the inequality by n; and subtracting B?k‘,, o /n1, we obtain

np ni B"l

’ / / n n
wh _ Pwp (ch)(1_1)+463_263 L
ny ni ni ny nj

B B

By (A.18), we can choose a large enough N, such that, for all n > N, |B("k, k)/nl < 2e3/3.
Then, N; can be chosen as

2
Ni = max(no(63), —, Nz)a
€3

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

624 R. PEDARSANI ET AL.

and we choose n1 and ny accordingly as before. Then, since n, np > Np, we can write

n n
B(k/’k) B B(k/’k) < 4E (A.19)
n n - 3 '
However,
B} By,
Swn _ Zwn 263(”_1 - 1) e —26™ = 265,
ny ni ny nj
which contradicts (A.19). Thus,
O
lim sup ZED _ 0 as.
n—oo
The result holds for arbitrary K’ € $. This completes the proof of Lemma A.5.]

Now we are ready to prove Theorem 2.2. We complete the proof of Theorem 2.2 by induction.
Recall that Ly is the length of the longest path from the root of the DAG () to node k. If k
is aroot, Ly = 0. The formal induction proceeds as follows.

e Basis. All the queues corresponding to root nodes, i.e. all (k’, k) for which Ly = 0 are
rate stable.

o Inductive step. If all the queues (k’, k) for which L; < L — 1 are rate stable, then all the
queues (k’, k) for which Ly = L are also rate stable.

The basis is true by Lemma A.5. The inductive step is also easy to show using Lemma A.5.
For a particular queue (k', k) = (ip, iz+1), suppose that Ly = L. Pick a path of edges

(i1,102), (i2,03), ..., (L. iL+1),

from queue (0, i1) to (k/, k). By assumption of induction, all the queues (i;, i;) are rate stable
for/ < L — 1, and

U+1

L—1
iy — Dl = Ao — Diy +) (D = Djf)
=1

L—1

_ n 0 n 0
= Qo) — Q. T 2 Qi — Qinirn)-
=1

Therefore,
n n 0 L—1 n N
lim D_’nL — lim A _ Q0.in ~ Lw.in _ Z (Q(il,i1+1) Q(il,i1+1))
n—oo n n—oo n n P n
= Am
= Vg a.s.

Now since lim;, s oo DZ/ /n = v as., by Lemma A.5, (K, k) is rate stable. This completes the
proof of the induction step and, as a result, the proof of Theorem 2.2.]

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 625

A.4. Proof of Theorem 3.2

Let D denote the cumulatlve number of tasks that have departed queue k by and including
timen: D} =)0 _, a’k Define s; to be a random variable denoting the virtual service that
queue k receives at time n, whether the queue has been empty or not. Note that s;’ is a Bernoulli
random variable with parameter 1 pj, and d} = s}/ lQn>0 Define the cumulative service that
queue k has received up to time n tobe S} =, _; s7.

Lemma A.6. The following equality holds:

n n n
lim —Z”’ S Viow

= e a.s. forallk, k'
n—00 n

Proof. First note that the sequence of random Varlables 1 t— o 18 1.i.d. Bernoulli-distributed
with parameter rri’, and independent of the sequence sk Now by Theorem 3.1, the sequence
Wk pk converges to v a.s. Thus, in thlS probability-1 event, for all €4 > 0, there exists ng(€4)
such that ||/,Lkpk — k|l < €4 forall n’ > ng(es).

Let w} be an i.i.d. Bernoulli process of parameter (v; — €4)rir. We couple the processes
sy 17, and wy asfollows. If s; = Othenwy = 0. If s = 1 thenw; = 1} _,, with probability
(v — €4)/px pi, and wy = 0 with probability 1 — (vx — €4)/ug py. wy is still marginally an
i.i.d. Bernoulli process of parameter (vy — €4)ryr. Then,

.. Zn Sn lz_>k/ _
lim inf =/ > liminf
n—oo n n—oo

"_ w?
—Zn =nolea)+1 7k = (Uk — 64)rkk/ a.s.
Now we couple the processes s; 1;_,, and v}/, where v} is an i.i.d. Bernoulli process of
parameter (g — €q)rpr. If 57 = 1then vy =1 .. If 57 = O then v} = 0 with probability
(1 — (vk +€4))/(1 — e py).and vy = 1j_,, withprobability 1 —(1 — (v + €4))/(1 — ik py)-
Note that vy is still marginally an i.i.d. Bernoulli process of parameter (vx + €4)rgx. Then,

S ll’l n/_ Un,
lim sup % < lim sup m = (0 + e as.
n—od n—oQ
The proof is complete by letting €4 — O. (|

Now we are ready to complete the proof of the theorem. Observe that

n K n K
Of = QY+ AL+ D0 DA —DI < O+ AL+ D0 3 s 1, —Df

n'=1k'=1 n'=1k'=1

So it is enough to show that

n n K n n
AL+ =1 k=1 sk/ lqu —Dy

lim =0.
n— 00 n
First, we show that
A% + /_ s 1”, —D?
n—o0 n
Contrary to this, suppose that in a realization,
An + I S ’ ’ Dn
lim inf —% L= Zk L k kﬁk k - es for some €5 > 0.

n—o00 n

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

626 R. PEDARSANI ET AL.

Then, using Lemma A.6 and the fact that lim,_, A} /n = A, we have
Dy X
lim sup —k < A+ Z V' Pk — €5 = Vg — €5. (A.20)
n—oo N
k'=1
On the other hand, lim inf,,_, o, O7 @/n > €5 implies that there exists ng(es) > 1/es such that
foralln > no(es), Qf > esn, or in words, the queue is nonempty after no(es). Thus, sk = d"
for n’ > ng. Therefore,
Y no + D} D!
lim sup & <1lim sup 0 k = lim sup —k.
n—oo N n— 00 n n—oo N
Now by Lemma A.4, lim sup,,_, o, S/ /n = v < limsup,,_, ., D} /n, which contradicts (A.20).
The lemma is also valid for the flexible queueing network, and the proof does not change. Since
this holds for any €5 > 0, we conclude that

n

lim inf & =0 as. (A.21)

n—oo n

Second, we show that

=0 a.s.

Al + I s" 1", —D?
lim sup k Z =1 Zk 1 k'—k k
n—oo n

Suppose that in a realization

A4y K s D

n— 00 n

> 2¢¢ for some € > 0.

This implies that in this realization, Q} > 2egn happens infinitely often and

Al + ., sm 1Y —Dn
lim sup R IZk —15% Lo k

n—00 n

> 2¢€6
in that realization. Moreover, by (A.21), for any €5 > 0, Q] < €en happens infinitely often

with probability 1. Let No > 2/eg. Then, there exist No < n3 < n4 such that QZ3 < €gns3 and
QZ“ > 2¢€eny4 and queue k is nonempty between times n3 and n4. Define a process

n K
By = AL+)Y sy, St

n'=1k'=1
Then, . _ . .
B]}c“ — BZ% + [B]}c“ _ BZ%]
> B+ 0yt - 0 (A.22)
> B + 2e6ns — €ons. (A.23)

Equation (A.22) is due to the following:

B — B = Al — AP + Z Z S —(Sp = S
n'=n3+1k'=1

> AP — AT 4 Z de/ n e — (S — 5
n'=n3+1k'=1

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

Robust scheduling 627

= Ap — AP+ Z Z n i —(Dp = D)

n'=n3+1k'=1

= QY — Q. (A.24)

Equation (A.24) holds since queue k is nonempty between times 73 and n4. Now (A.23) implies

that

B™ B™ B/, n
B B L(_3_1>+266_€6_3,

ng n3 n3 \ng ng

By Lemma A .4, we know that

nn
lim £ =0 a.s.,
n—oo n

so we can choose N, large enough such that, for all n > N, |L~?,i'/n| < €6/3. Then,

B* BP| 2
P Pk | e (A.25)
n4 njy 3
However, since BZ3 /n3 < €gand n3/ng < 1,
gn4 gﬂ}
_k __k ZG6(n—3_l> +2€6—€6n—3 = €¢,
ng n3 ng nq
which contradicts (A.25). Thus,
An + — '—1 S ’ ’ Dn
lim sup Zovet Tirmr S Yo = Df =0 as.,
n—00 n
which completes the proof of Theorem 3.2. O

(1]
(2]
(3]
[4]
[5]
(6]
(71
(8]
(9]
(10]
[11]

[12]

References

ANDRADOTTIR, S., AYHAN, H. AND Down, D. G. (2003). Dynamic server allocation for queueing networks with
flexible servers. Operat. Res. 51, 952-968.

ATAR, R., MANDELBAUM, A. AND ZVIRAN, A. (2012). Control of fork-join networks in heavy traffic. In 50th
Ann. Allerton Conf. on Communication, Control, and Computing, IEEE, pp. 823-830.

BacceLLL F. AND MAKOWSKI, A. (1985). Simple computable bounds for the fork-join queue. In Proc. 19th Ann.
Conf. on Information Sciences and Systems, John Hopkins University, Baltimore, MD, pp. 436—441.
BacckiLLl, F.,, MAKOowskl, A. M. AND SHWARTZ, A. (1989). The fork-join queue and related systems with
synchronization constraints: stochastic ordering and computable bounds. Adv. Appl. Prob. 21, 629-660.
BaHARIAN, G. AND TEZCAN, T. (2011). Stability analysis of parallel server systems under longest queue first.
Math. Meth. Operat. Res. 74,257-279.

BamBos, N. AND WALRAND, J. (1991). On stability and performance of parallel processing systems. J. Assoc.
Comput. Mach. 38, 429-452.

BORKAR, V. S. (2008). Stochastic Approximation. Cambridge University Press.

BoyD, S. AND VANDENBERGHE, L. (2004). Convex Optimization. Cambridge University Press.

CHow, Y. S. AND TEICHER, H. (1997). Probability Theory, 3rd edn. Springer, New York.

Dar, J. G. (1995). On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid
limit models. Ann. Appl. Prob. 5,49-717.

Dar J. G. (1999). Stability of fluid and stochastic processing networks. MaPhySto Miscellanea Publication 9,
University of Aarhus.

DEAN, J. AND GHEMAWAT, S. (2008). Mapreduce: simplified data processing on large clusters. Commun. Assoc.
Comput. Mach. 51, 107-113.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

628

[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

(271

R. PEDARSANI ET AL.

Dimakis, A. AND WALRAND, J. (2006). Sufficient conditions for stability of longest-queue-first scheduling:
second-order properties using fluid limits. Adv. Appl. Prob. 38, 505-521.

DURRETT, R. (2010). Probability: Theory and Examples (Camb. Ser. Statist. Prob. Math. 31), 4th edn. Cambridge
University Press.

HARRISON, J. M. (2000). Brownian models of open processing networks: canonical representation of workload.
Ann. Appl. Prob. 10, 75-103.

HARRISON, J. M. AND NGUYEN, V. (1993). Brownian models of multiclass queueing networks: current status
and open problems. Queueing Systems 13, 5-40.

JIANG, L. AND WALRAND, J. (2010). A distributed CSMA algorithm for throughput and utility maximization in
wireless networks. IEEE/ACM Trans. Networking 18, 960-972.

KANDULA, S. et al. (2009). The nature of data center traffic: measurements and analysis. In Proc. 9th ACM
SIGCOMM Conf. Internet Measurement Conference, ACM, New York, pp. 202-208.

KONSTANTOPOULOS, P. AND WALRAND, J. (1989). Stationarity and stability of fork-join networks. J. Appl. Prob.
26, 604-614.

MANDELBAUM, A. AND STOLYAR, A. L. (2004). Scheduling flexible servers with convex delay costs: heavy-traffic
optimality of the generalized cu-rule. Operat. Res. 52, 836-855.

NGUYEN, V. (1993). Processing networks with parallel and sequential tasks: heavy traffic analysis and Brownian
limits. Ann. Appl. Prob. 3, 28-55.

NGUYEN, V. (1994). The trouble with diversity: fork-join networks with heterogeneous customer population.
Ann. Appl. Prob. 4, 1-25.

PADALA, P. et al. (2009). Automated control of multiple virtualized resources. In Proc. 4th ACM Europ. Conf.
on Computer Systems, ACM, New York, pp. 13-26.

PEDARSANI, R., WALRAND, J. AND ZHONG, Y. (2014). Robust scheduling in a flexible fork-join network. In IEEE
53rd Ann. Conf. on Decision and Control, IEEE, pp. 3669-3676.

PEDARSANI, R., WALRAND, J. AND ZHONG, Y. (2014). Scheduling tasks with precedence constraints on multiple
servers. In 52nd Ann. Allerton Conf. on Communication, Control, and Computing. IEEE, pp. 1196-1203.
PEDARSANI, R., WALRAND, J. AND ZHONG, Y. (2016). Robust scheduling for flexible processing networks.
Preprint. Available at https://arXiv.org/abs/1610.03803vl.

STOLYAR, A. L. AND YUDOVINA, E. (2012). Tightness of invariant distributions of a large-scale flexible service
system under a priority discipline. Stoch. Systems 2, 381-408.

https://doi.org/10.1017/apr.2017.14 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.14

	1 Introduction
	1.1 Related works
	1.2 Organization of the paper

	2 Scheduling directed acyclic graphs with flexible servers
	2.1 System model
	2.2 Queueing network model for cooperative servers
	2.2.1 Job identities and synchronization.
	2.2.2 Queue dynamics.

	2.3 The static planning problem
	2.4 Scheduling policy robust to task service rates

	3 Flexible queueing network
	3.1 Network model
	3.2 Robust scheduling policy

	4 Conclusion and future work
	A
	A.1 Proof of proposition 2.1
	A.2 Proof of Theorem 2.1
	A.3 Proof of Theorem 2.2
	A.4 Proof of Theorem 3.2

	References

