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Abstract Let f : C → C̄ be a non-constant elliptic function. We prove that the Hausdorff dimension of
the escaping set of f equals 2q/(q+1), where q is the maximal multiplicity of poles of f . We also consider
the escaping parameters in the family fβ = βf , i.e. the parameters β for which the orbit of one critical
value of fβ escapes to infinity. Under additional assumptions on f we prove that the Hausdorff dimension
of the set of escaping parameters E in the family fβ is greater than or equal to the Hausdorff dimension
of the escaping set in the dynamical space. This demonstrates an analogy between the dynamical plane
and the parameter plane in the class of transcendental meromorphic functions.
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1. Introduction and main results

The understanding of the dynamics and geometry of elliptic functions has developed
rapidly since the publication of the papers [5,9,10]. Although these functions are rel-
atively ‘regular’, they manifest such unexpected features as the fact that the Hausdorff
dimension of their Julia set is always larger than 1 (see [9]) or, in the non-recurrent
case, that the corresponding Hausdorff measure always vanishes, whereas the packing
measure, in the absence of parabolic points, is finite and positive (see [10]). A systematic
exposition of the geometric measure theory and the ergodic theory of regular pseudo-
non-recurrent elliptic functions is given in [11]. In spite of possible associations stemming
from the name, this is not a narrow class of functions.

Let f : C → C̄ be a transcendental meromorphic function, where C̄ = C∪{∞} denotes
the Riemann sphere. For n ∈ N, denote by fn the nth iterate of f . The Fatou set F (f)
of f is the set of points z ∈ C such that all iterates fn(z) are well defined and {fn}n∈N

forms a normal family in some neighbourhood of z. The complement J(f) of F (f) in C̄

is called the Julia set of f . Domı́nguez proved [4] that for transcendental meromorphic
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functions with poles, the escaping set

I(f) =
{

z ∈ C : lim
n→∞

fn(z) = ∞
}

is non-empty and J(f) = ∂I(f). Several authors (see, for example, [1–3, 7, 14, 15])
have studied properties of the escaping set of entire and meromorphic functions. It was
shown by Kotus [8, Example 3] that if f is an elliptic function such that the closure
of the post-critical set is disjoint from the set of poles, then the Hausdorff dimension
dimH(J(f)) � 2q/(1+q), where q is the maximal multiplicity of poles of f . The argument
actually shows that

dimH(I(f)) � 2q

q + 1
. (1.1)

Moreover, Bergweiler and Kotus [3] and Kotus and Urbański [9] proved that if f is any
elliptic function, then the upper bound on dimH(I(f)) is equal to the lower bound, i.e.

dimH(I(f)) � 2q

q + 1
. (1.2)

Our paper is divided into three parts. The first part of the paper (§§ 2 and 3) focuses
on the generalization of (1.1) to the whole class of elliptic functions. Together with the
estimate (1.2) it gives the following theorem.

Theorem 1.1. Let f be a non-constant elliptic function. Then

dimH(I(f)) =
2q

q + 1
,

where q is the maximal multiplicity of poles of f .

The second part of the paper (§ 4) is devoted to estimating the Hausdorff dimension
of the escaping set in the parameter space for some families of elliptic functions. Let
f : C → C̄ be an elliptic function such that one of its critical values, denoted by f(c1) �= 0,
is a pole of the maximal multiplicity q. We define a one-parameter family of functions
fβ = βf , β ∈ C \ {0}. As a counterpart of the escaping set I(fβ), we consider the set of
escaping parameters in the family fβ , i.e.

E =
{

β ∈ C \ {0} : lim
n→∞

fn
β (c1) = ∞

}
.

Remark 1.2. If f(c1) = 0 is a pole, then fβ(c1) = 0 and f2
β(c1) = ∞ for every

β ∈ C \ {0}. In this case E = ∅.

The main result of the second part of the paper is the following theorem.

Theorem 1.3. Let fβ = βf , β ∈ C \ {0}, be a one-parameter family of elliptic
functions such that one of the critical values of f , denoted by f(c1) �= 0, is a pole of the
maximal multiplicity q. Then,

dimH(E) � 2q

q + 1
.
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Corollary 1.4. For q ↗ ∞ we have dimH(E) � dimH(I(f)) ↗ 2.

A similar analogy between the dynamical and the parameter planes is known for the
exponential family fλ(z) = λez (see [12, 13]). It follows from McMullen’s result that
the Hausdorff dimension of the escaping set I(fλ) equals 2. Qiu proved that the set of
maps fλ with the singular (asymptotic) value 0 approaching infinity also has Hausdorff
dimension equal to 2. Theorem 1.3 is a generalization of Qiu’s result, although it is valid
under weaker assumptions on f . It is sufficient to assume that c1 is any prepole of order 1,
i.e. f(c1) ∈ f−1(∞), and the proof does not change.

In the third part of the paper (§ 5) we give some examples.

2. Notation and preliminary estimates

We fix a non-constant elliptic function f : C → C. Then f is periodic with respect to some
lattice Λ ⊂ C defined by Λ = [λ1, λ2] = {lλ1 + mλ2 : l, m ∈ Z}, where λ1, λ2 ∈ C \ {0}
such that Im(λ1/λ2) �= 0. Let

R = {t1λ1 + t2λ2 : 0 � t1, t2 � 1} (2.1)

be the basic fundamental parallelogram of f . Let qb denote the multiplicity of b ∈ f−1(∞)
and let q = sup{qb : b ∈ f−1(∞)}. Since f has finitely many poles in R, it follows by the
periodicity of f that

q = max{qb : b ∈ f−1(∞)}. (2.2)

Since f is periodic and has finitely many critical points in R, there exists ρ > 1 such
that all critical values of f are contained in B(0, ρ − 1). In §§ 2 and 3, we consider only
poles from the set

F = {b ∈ f−1(∞) : |b| > ρ and qb = q}. (2.3)

We use the notation

U(a, r) =
{

z : − 3π

4q
� arg(z − a) � 3π

4q
, |z − a| � r

}
,

for a ∈ C and r > 0.

Lemma 2.1. Let ε0 � 1
3 be such that B(bi, ε0) ∩ B(bj , ε0) = ∅, bi �= bj , bi, bj ∈ F .

There exist holomorphic functions G, H and constants C1, C2 > 1, ε ∈ (0, ε0), φ ∈ R

such that:

(i) f(z) = G(z)(z − b)−q, f ′(z) = H(z)(z − b)−q−1, G(b), H(b) �= 0, z ∈ B(b, ε);

(ii)
C−1

1

|z − b|q � |f(z)| � C1

|z − b|q ,
C−1

2

|z − b|q+1 � |f ′(z)| � C2

|z − b|q+1 , z ∈ B(b, ε);

(iii) f is one to one in each of the segments U(b, ε);

(iv)
{

z ∈ C̄ : |z| � C1

εq
, φ − π

8
� arg(z) � φ +

9π

8

}
⊂ f(U(b, ε))

for any b ∈ F .
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Proof. Fix b ∈ F . Since b is a pole of the multiplicity q, the formulae for f and
f ′ given in (i) are obvious. Taking sufficiently small ε ∈ (0, ε0), we may assume that
G(z) �= 0 and H(z) �= 0 for z ∈ B(b, ε). There exist constants C1, C2 > 1 such that

C−1
1 � |G(z)| � C1, C−1

2 � |H(z)| � C2, z ∈ B(b, ε).

Hence,

C−1
1

|z − b|q � |f(z)| =
∣∣∣∣ G(z)
(z − b)q

∣∣∣∣ � C1

|z − b|q (2.4)

and

C−1
2

|z − b|q+1 � |f ′(z)| =
∣∣∣∣ H(z)
(z − b)q+1

∣∣∣∣ � C2

|z − b|q+1 (2.5)

for z ∈ B(b, ε). Shrinking ε if necessary, we can choose constants μ1, μ2, 0 < μ2 − μ1 <

π/4, such that μ1 < arg(G(z)) < μ2, z ∈ B(b, ε) and f is one to one in the segment
U(b, ε). Observe that the function f(z)/G(z) = (z − b)−q maps U(b, ε) onto the set
{z ∈ C̄ : |z| � ε−q, −3π/4 � arg(z) � 3π/4}. Hence,{

z ∈ C̄ : |z| � C1

εq
, −3π

4
+ μ2 � arg(z) � 3π

4
+ μ1

}
⊂ f(U(b, ε)).

Since 0 < μ2 − μ1 < π/4, there exists φ ∈ R such that{
z ∈ C̄ : |z| � C1

εq
, φ − π

8
� arg(z) � φ +

9π

8

}
⊂ f(U(b, ε)).

Note that the domain of G, H can be extended to
⋃

b∈F B(b, ε) and the constants C1,
C2, ε, φ are universal for all poles in F because of the periodicity of f . �

Up to the end of § 3 the constants C1, C2, ε, φ are as in Lemma 2.1.
For 0 < r1 < r2 we write

P (r1, r2) = {z : r1 < |z| < r2}.

We fix a pole b0 ∈ F of the maximum multiplicity q. We take R0 > 1 such that U(b0, ε) ⊂
P (R0, 2R0) and define a constant

a0 = max
{

2,
C1

εqR0
,

ρ

R0
,
8 max{|λ1 + λ2|, |λ1 − λ2|}

R0

}
. (2.6)

Fix
a > a0

and consider a sequence of radii

Rn = anR0, n � 1. (2.7)

Let
P+(Rn) = {z ∈ C : Rn < |z| < 2Rn, φ < arg(z) < φ + π}, n � 1. (2.8)
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The condition a > a0 � 2 guarantees that the annuli P (Rn, 2Rn) are pairwise disjoint.
We consider the iterates fn, n ∈ N, which are defined outside a countable set of points.

Definition 2.2. We define the family of sets {An(a)}n�0 as follows:

A0(a) = {A0 = U(b0, ε)},

An(a) = {An ⊂ An−1 ∈ An−1(a) | ∃bn ∈ F : U(bn, ε) ⊂ P+(Rn),
An is a component of f−n(U(bn, ε))}, n � 1.

Let

Un(a) =
⋃

An∈An(a)

An, A(a) =
∞⋂

n=0

Un(a).

From now on, vol(A) signifies the Lebesgue measure of a set A.

Proposition 2.3. For each n � 0 the set An(a) defined above is non-empty. Moreover,
for n � 1, the number Nn of its elements contained in each An−1 ∈ An−1(a) is greater
than or equal to 3πR2

n/8vol(R).

Proof. Obviously, A0(a) �= ∅. We fix n � 1 and suppose that An−1(a) �= ∅. We will
show that An(a) is non-empty. It follows from Lemma 2.1 that for all b ∈ F we have

{z ∈ C̄ : |z| > Rn, φ � arg(z) � φ + π} ⊂ f(U(b, ε)),

as Rn � R1 = aR0 > C1ε
−q in view of (2.6). Take An−1 ∈ An−1(a). Since fn−1(An−1) =

U(bn−1, ε) for some pole bn−1 ∈ F ∩ P (Rn−1, 2Rn−1), we have fn(An−1) ⊃ P+(Rn).
Since a > a0, we have Rn � aR0 � 8 max{|λ1 + λ2|, |λ1 − λ2|}. Taking the poles b ∈ F

such that B(b, ε) ⊂ P+(Rk), we have

⋃
b

(R + b) ⊃
{

z :
5Rn

4
� |z| � 7Rn

4
, φ +

π

4
� arg(z) � φ +

3π

4

}

and, consequently,

Nn =
Nnvol(R)

vol(R)
� π((1.75)2 − (1.25)2)R2

n

4vol(R)
=

3πR2
n

8vol(R)
> 0.

The result follows. �

Remark 2.4. The elements An of An(a), n � 1, are pairwise disjoint as, by
Lemma 2.1, f is injective in each segment U(b, ε), b ∈ F , and the segments are pair-
wise disjoint.

In order to prove the lower bound on dimH(I(f)), we use the following result proved
by McMullen [12, Proposition 2.2]. Here and throughout the paper, diam(A) denotes the
diameter of a set A.

https://doi.org/10.1017/S0013091515000280 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000280


676 P. Ga�l ↪azka and J. Kotus

Proposition 2.5. For each n ∈ N, let An be a finite collection of disjoint compact
subsets of R

d, each of which has positive d-dimensional Lebesgue measure. Define Un =⋃
An∈An

An and A =
⋂∞

n=1 Un. Suppose that for each An ∈ An there is An+1 ∈ An+1

and a unique An−1 ∈ An−1 such that An+1 ⊂ An ⊂ An−1. If Δn, dn are such that, for
each An ∈ An,

vol(Un+1 ∩ An)
vol(An)

� Δn > 0, diam(An) � dn and dn → 0 as n → ∞,

then dimH(A) � d − lim supn→∞
∑n

j=1 |log Δj |/|log dn|.

3. Proof of Theorem 1.1

Let K = C
(q+1)/q
1 C2. We prove the following lemma.

Lemma 3.1. Let f be a non-constant elliptic function and let a0 be the constant
given in (2.6). Then, for every a > a0, there is a subset A(a) of I(f) and for this subset

dimH(A(a)) � 2q

q + 1
− 6 log 2 + 12q log K/(q + 1)

log a
.

Since dimH(A(a)) � 2q/(q + 1) − (6 log 2 + 12q log K/(q + 1))/log a ↗ 2q/(q + 1) for
a ↗ ∞, we have that Theorem 1.1 follows from Lemma 3.1.

We fix a > a0 and consider the sets An(a), n � 0, given in Definition 2.2. We drop the
parameter a and keep the notation from the last section.

Lemma 3.2. Let An ∈ An, n � 1. Then, for every z ∈ An,

K−1R
(q+1)/q
j � |f ′(f j−1(z))| � K(2Rj)(q+1)/q, j = 1, . . . , n.

Proof. Fix z ∈ An. We have f j(z) ∈ U(bj , ε) ⊂ P (Rj , 2Rj), j = 0, 1, . . . , n. It follows
from Lemma 2.1 that

C−1
1

|f j−1(z) − bj−1|q
� |f j(z)| � C1

|f j−1(z) − bj−1|q
, j = 1, . . . , n.

Thus,
C−1

1

2Rj
� C−1

1

|f j(z)| � |f j−1(z) − bj−1|q � C1

|f j(z)| � C1

Rj

and consequently

(
C−1

1

2Rj

)(q+1)/q

� |f j−1(z) − bj−1|q+1 �
(

C1

Rj

)(q+1)/q

. (3.1)

Again using Lemma 2.1, we obtain

C−1
2

|f j−1(z) − bj−1|q+1 � |f ′(f j−1(z))| � C2

|f j−1(z) − bj−1|q+1 , j = 1, . . . , n,
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which, using (3.1), gives

R
(q+1)/q
j

C
(q+1)/q
1 C2

� |f ′(f j−1(z))| � (2Rj)(q+1)/qC
(q+1)/q
1 C2, j = 1, . . . , n.

�

The next lemma is devoted to estimating the derivatives (fn)′, n � 1.

Lemma 3.3. Let An ∈ An, n � 1. Then, for every z ∈ An,

K−na(q+1)n(n+1)/2qR
(q+1)n/q
0 � |(fn)′(z)| � (2(q+1)/qK)na(q+1)n(n+1)/2qR

(q+1)n/q
0 .

Proof. Fix z ∈ An. We know that

(fn)′(z) =
n−1∏
j=0

f ′(f j(z)).

Using Lemma 3.2, we obtain
∣∣∣∣

n−1∏
j=0

f ′(f j(z))
∣∣∣∣ � 2(q+1)/qKR

(q+1)/q
1 · · · · · 2(q+1)/qKR(q+1)/q

n

= (2(q+1)/qK)n(aR0)(q+1)/q · · · · · (anR0)(q+1)/q

= (2(q+1)/qK)na(q+1)n(n+1)/2qR
(q+1)n/q
0 .

Analogously, we get the estimate from below
∣∣∣∣

n−1∏
j=0

f ′(f j(z))
∣∣∣∣ � K−na(q+1)n(n+1)/2qR

(q+1)n/q
0 .

Finally,

K−na(q+1)n(n+1)/2qR
(q+1)n/q
0 � |(fn)′(z)| � (2(q+1)/qK)na(q+1)n(n+1)/2qR

(q+1)n/q
0 .

�

From now on, L(f, A) denotes distortion of a map f on a set A, i.e.

L(f, A) =
supz∈A |f ′(z)|
infz∈A |f ′(z)| .

The next lemma follows immediately from Lemma 3.3.

Lemma 3.4. Let An ∈ An, n � 1. Then

L(fn, An) � 2(q+1)n/qK2n and diam(An) � 2εKn

a(q+1)n(n+1)/2qR
(q+1)n/q
0

,

where ε is as in Lemma 2.1.
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Remark 3.5. Observe that diam(An) → 0 as n → ∞, since a > a0 � 2.

By Lemma 3.4, the numbers dn defined in Proposition 2.5 are equal to

dn = 2εKna−(q+1)n(n+1)/2qR
−(q+1)n/q
0 , n � 1. (3.2)

Lemma 3.6. There exists γ > 0 such that

vol(Un+1 ∩ An)
vol(An)

� γ

26(q+1)n/qK12na2(n+1)/qR
2/q
0

for each An ∈ An, n � 1.

Proof. Recall that in Definition 2.2 we considered the segments

U(b, ε) =
{

z ∈ C : −3π

4q
� arg(z − b) � 3π

4q
, |z − b| � ε

}
,

where b ∈ F and ε > 0 as in Lemma 2.1. Hence, vol(U(b, ε)) = 3πε2/4q.
Take some n � 1 and An ∈ An. There exists bn ∈ F such that An is a component

of f−n(U(bn, ε)), where U(bn, ε) ⊂ P+(Rn). Moreover, for each Ak ∈ An+1 there is
bn+1 ∈ F such that Ak is a component of f−n−1(U(bn+1, ε)), U(bn+1, ε) ⊂ P+(Rn+1).
There are finitely many sets Ak ∈ An+1 contained in An. We denote by bk the pole
corresponding to Ak. Let zn = f−n(bn) ∈ An, zk = f−n−1(bk) ∈ Ak. Observe that fn is
conformal on An as all critical values of f are contained in B(0, ρ−1), so all the branches
of f−1 are well defined on

⋃
b∈F (U(b, ε)). Thus, L(fn, An) = L(f−n, fn(An)). Hence,

vol(An) =
∫∫

U(bn,ε)
|(f−n)′(z)|2 dz

�
∫∫

U(bn,ε)

(
sup

z∈U(bn,ε)
|(f−n)′(z)|

)2
dz

= vol(U(bn, ε))
(
L(f−n, U(bn, ε)) inf

z∈U(bn,ε)
|(f−n)′(z)|

)2

� 3πε2

4q
(L(fn, An)|(f−n)′(bn)|)2

=
3πε2

4q

(
L(fn, An)
|(fn)′(zn)|

)2

. (3.3)

Set Pn+1 = P+(Rn+1). Then

vol(Un+1 ∩ An) =
∑

Ak⊂An

vol(Ak) =
∑

bk∈Pn+1

vol(f−n−1(U(bk, ε)))

=
∑

bk∈Pn+1

∫∫
U(bk,ε)

|(f−n−1)′(z)|2 dz

�
∑

bk∈Pn+1

∫∫
U(bk,ε)

(
inf

z∈U(bk,ε)
|(f−n−1)′(z)|

)2
dz
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=
3πε2

4q

∑
bk∈Pn+1

( supz∈U(bk,ε) |(f−n−1)′(z)|
L(f−n−1, U(bk, ε))

)2

� 3πε2

4q

∑
bk∈Pn+1

(
|(f−n−1)′(bk)|

L(f−n−1, U(bk, ε))

)2

=
3πε2

4q

∑
zk∈Ak⊂An

(L(fn+1, Ak)|(fn+1)′(zk)|)−2. (3.4)

Now, combining (3.3) and (3.4), we estimate the density of the sets Un+1 ∩ An in An:

vol(Un+1 ∩ An)
vol(An)

�
∑

zk∈Ak⊂An
(L(fn+1, Ak)|(fn+1)′(zk)|)−2

(L(fn, An)/|(fn)′(zn)|)2

=
|(fn)′(zn)|2
(L(fn, An))2

∑
zk∈Ak⊂An

(L(fn+1, Ak)|(fn+1)′(zk)|)−2. (3.5)

Using Lemma 3.4, we obtain

vol(Un+1 ∩ An)
vol(An)

�
|
∏n−1

j=0 f ′(f j(zn))|2

22(q+1)n/qK4n

∑
zk∈Ak⊂An

1
22(q+1)(n+1)/qK4(n+1)|

∏n
j=0 f ′(f j(zk))|2

=
1

22(q+1)(2n+1)/qK4(2n+1)

∑
zk∈Ak⊂An

∏n−1
j=0 |f ′(f j(zn))|2∏n−1
j=0 |f ′(f j(zk))|2

1
|f ′(fn(zk))|2

=
1

22(q+1)(2n+1)/qK4(2n+1)

∑
zk∈Ak⊂An

( n−1∏
j=0

|f ′(f j(zn))|
|f ′(f j(zk))|

)2 1
|f ′(fn(zk))|2 . (3.6)

It follows from Lemma 3.2 that

|f ′(f j(zn))| � K−1R
(q+1)/q
j+1 and |f ′(f j(zk))| � (2Rj+1)(q+1)/qK, j = 0, 1, . . . , n−1.

This implies that

|f ′(f j(zn))|
|f ′(f j(zk))| � 1

2(q+1)/qK2 , j = 0, 1, . . . , n − 1. (3.7)

Using Lemma 3.2 repeatedly, we obtain

|f ′(fn(zk))| � (2Rn+1)(q+1)/qK. (3.8)

Putting (3.7) and (3.8) into (3.6) and by Proposition 2.3, we obtain

vol(Un+1 ∩ An)
vol(An)

� 1
22(q+1)(2n+1)/qK4(2n+1)

(
1

2(q+1)/qK2

)2n 1

22(q+1)/qR
2(q+1)/q
n+1 K2

∑
zk∈Ak⊂An

1

= 2−2(q+1)(3n+2)/qK−6(2n+1)R
−2(q+1)/q
n+1 Nn+1
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� 2−2(q+1)(3n+2)/qK−6(2n+1)R
−2(q+1)/q
n+1 3πR2

n+1(8vol(R))−1

= 2−6(q+1)n/qK−12nR
−2/q
n+1 γ

= 2−6(q+1)n/qK−12na−2(n+1)/qR
−2/q
0 γ,

where γ = (3π/8)2−4(q+1)/qK−6(vol(R))−1. �

By Lemma 3.6, the numbers Δn from Proposition 2.5 are given by

Δn =
γ

26(q+1)n/qK12na2(n+1)/qR
2/q
0

, n � 1.

Assembling the preceding lemmas, we may now prove Lemma 3.1.

Proof of Lemma 3.1. Lemma 3.6 implies that

n∑
j=1

|log Δj | ∼ 3(q + 1) log 2 + 6q log K + log a

q
n2 as n → ∞.

In view of Lemma 3.4, we have

|log dn| ∼ q + 1
2q

n2 log a as n → ∞.

The result follows. �

4. Proof of Theorem 1.3

Let {ci ∈ R : f ′(ci) = 0, i = 1, . . . , k} be the set of critical points of f in the basic
fundamental parallelogram R defined in (2.1). Now, we assume that the critical value
f(c1) �= 0 is a pole of the multiplicity q defined in (2.2).

We consider the one-parameter family of functions

fβ(z) = βf(z), β ∈ B(1, r) for 0 < r <
1
4

− 1
2α + 4

≈ 0.04, (4.1)

where α = sin(π/8) =
√

2 −
√

2/2. The functions fβ are periodic and their critical points
are the same as for the elliptic function f . We modify a definition of F given in (2.3).
Now

F = {f(c1) + lλ1 + mλ2 : l, m ∈ Z}.

Lemma 4.1. Let ε1 = min{ε0, r|f(c1)|}. There exists ε ∈ (0, ε1) such that:

(i)
(2C1)−1

|z − b|q � |fβ(z)| � 2C1

|z − b|q ,
(2C2)−1

|z − b|q+1 � |f ′
β(z)| � 2C2

|z − b|q+1 , z ∈ B(b, ε);

(ii)
{

z ∈ C̄ : |z| � 2C1

εq
, φ − π

8
� arg(z) � φ +

9π

8

}
⊂ fβ(U(b, ε));

(iii) f is one to one in each of the segments U(b, ε)

for any b ∈ F and all β ∈ B(1, r), where C1, C2, φ are from Lemma 2.1.
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Proof. Since β ∈ B(1, r), where r is defined in (4.1), we have 1/2 < 1 − r < |β| <

1 + r < 2, and then (i) is an easy consequence of Lemma 2.1 (ii). Moreover, | arg(β)| <

arcsin(1/4 − 1/(2α + 4)) ≈ 0.04, so for sufficiently small ε ∈ (0, ε1) we have μ1 �
arg(βG(z)) � μ2, where 0 < μ2 − μ1 < π/4 for all β ∈ B(1, r). Arguing analogously to
the proof of Lemma 2.1, we show (ii) and (iii). �

From now on, the constants C1,C2, ε, φ are as in Lemma 4.1.
In this section, we modify the definition of the sequence of radii given in § 2 (see (2.7)).

Let R1 > 0 be such that
B(f(c1), ε) ⊂ P (R1, 2R1). (4.2)

Next, we define a constant

â0 = max
{

2,
2C1

(1 − α)εqR1
,
3M

R1
,
(6M)2q

R2q+1
1

,
8 max{|λ1 + λ2|, |λ1 − λ2|}

R1

}
, (4.3)

where M = 2(2C1)(q+1)/qC2. For a > â0 we consider a sequence of radii {Rn}n�1 given
by the formula Rn = an−1R1. We consider auxiliary functions gn(β) = fn

β (c1), n ∈ N,
which are defined outside a countable set of parameters.

Definition 4.2. We define the following family of sets:

D0(a) = {D0 = B(1, r)},

D1(a) = {D1 = g−1
1 (U(f(c1), ε)) ⊂ D0},

Dn(a) = {Dn ⊂ Dn−1 ∈ Dn−1(a) | ∃bn ∈ F : U(bn, ε) ⊂ P+(Rn),
Dn is a component of g−1

n (U(bn, ε))}, n � 2.

Let

Vn(a) =
⋃

Dn∈Dn(a)

Dn, D(a) =
∞⋂

n=0

Vn(a).

Figure 1 illustrates the sets defined above for q = 4.

Proposition 4.3. For each n � 0 the set Dn(a) defined above is non-empty. Moreover,
for n � 2, the number Nn of its elements contained in each Dn−1 ∈ Dn−1(a) is estimated
from below by 3πR2

n/8vol(R).

Proof. Obviously, D0(a),D1(a) �= ∅. Assume that Dn−1(a) �= ∅ for some n � 2. Using
Lemma 4.1, we have

{z ∈ C̄ : |z| > Rn, φ � arg(z) � φ + π} ⊂ fβ(U(b, ε))

for all poles b ∈ F and β ∈ B(1, r), as Rn � R2 = aR1 > 2C1(1 − α)−1ε−q > 2C1ε
−q in

view of (4.3). Since gn−1(Dn−1) = U(bn−1, ε) for some pole bn−1 ∈ F ∩P (Rn−1, 2Rn−1),
we have gn(Dn−1) = {fβ(gn−1(β)) | β ∈ Dn−1} ⊃ P+(Rn). As Rn � 8 max{|λ1 +
λ2|, |λ1 − λ2|}, similarly to Proposition 2.3, we show the lower bound on Nn. �

In the next part of this section, we prove the following lemma.
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Dn + 1

Dn + 1

Dn

gn + 1ˆ

ˆ
gn + 1ˆ

gn + 1

π /8

αR n + 1

P 

+(Rn + 1)

αR
n

 +
 1

αR
n

 +
 1

Figure 1. Sets from Definition 4.2 and the proof of Lemma 4.8.

Lemma 4.4. Let fβ be the family of maps defined in (4.1) and let â0 be the constant
given in (4.3). Then, for every a > â0 there is a subset D(a) of E , and for this subset

dimH(D(a)) � 2q

q + 1
− 6 log 2 + 12q log M/(q + 1)

log a
.

Theorem 1.3 easily follows from Lemma 4.4.
In order to prove Lemma 4.4 we again use Proposition 2.5. We fix a > â0 and consider

the sets Dn(a), n � 0, given in Definition 4.2. As before, for simplicity we suppress the
explicit dependence on a in the notation.

Using Lemma 4.1, it is easy to prove the following estimate.

Lemma 4.5. Let Dn ∈ Dn, n � 2. Then, for all β ∈ Dn,

M−1R
(q+1)/q
j+1 � |f ′

β(f j
β(c1))| � M(2Rj+1)(q+1)/q, j = 1, . . . , n − 1.

The next lemma is technical, but it is key to the proof in the following part of this
section. We would like to note that the ‘prime’ in g′

n signifies differentiation with respect
to β, whereas the ‘prime’ in f ′

β signifies differentiation with respect to z.
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Lemma 4.6. Let Dn ∈ Dn, n � 2. Then, for every β ∈ Dn,

g′
n(β) =

1
β

n−1∏
k=1

f ′
β(fk

β (c1))
[
fβ(c1) +

n∑
k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

]
.

Proof. Let n = 2. Note that g2(β) = f2
β(c1) = βf(βf(c1)). Thus,

g′
2(β) = f(βf(c1)) + βf ′(βf(c1))f(c1) =

f2
β(c1)
β

+
f ′

β(βf(c1))fβ(c1)
β

=
1
β

f ′
β(βf(c1))

[
fβ(c1) +

f2
β(c1)

f ′
β(fβ(c1))

]

=
1
β

f ′
β(fβ(c1))

[
fβ(c1) +

f2
β(c1)

f ′
β(fβ(c1))

]
.

Suppose that the lemma is true for some n � 2. We show that it is true for n + 1:

gn+1(β) = βf(gn(β)),

g′
n+1(β) = f(gn(β)) + βf ′(gn(β))g′

n(β)

=
fn+1

β (c1)
β

+ f ′
β(fn

β (c1))
1
β

n−1∏
k=1

f ′
β(fk

β (c1))
[
fβ(c1) +

n∑
k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

]

=
fn+1

β (c1)
β

+
1
β

n∏
k=1

f ′
β(fk

β (c1))
[
fβ(c1) +

n∑
k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

]

=
1
β

n∏
k=1

f ′
β(fk

β (c1))
[
fβ(c1) +

n∑
k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))
+

fn+1
β (c1)∏n

i=1 f ′
β(f i

β(c1))

]

=
1
β

n∏
k=1

f ′
β(fk

β (c1))
[
fβ(c1) +

n+1∑
k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

]
.

�

In the following lemma we estimate the derivative of gn. We show that g′
n is comparable

to the product of the derivatives of fβ over the trajectory of the critical value fβ(c1).

Lemma 4.7. Let Dn ∈ Dn, n � 2. Then, for every β ∈ Dn,

M1−n

2(1 + r)
a(q+1)n(n−1)/2qR

(n(q+1)−1)/q
1

� |g′
n(β)|

� 5
2(1 − r)

(2(q+1)/qM)n−1a(q+1)n(n−1)/2qR
(n(q+1)−1)/q
1 .
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Proof. Fix β ∈ Dn. It follows from Lemma 4.5 that
∣∣∣∣

n−1∏
k=1

f ′
β(fk

β (c1))
∣∣∣∣ � 2(q+1)/qR

(q+1)/q
2 M × · · · × 2(q+1)/qR(q+1)/q

n M

= (2(q+1)/qM)n−1(aR1)(q+1)/q × · · · × (an−1R1)(q+1)/q

= (2(q+1)/qM)n−1a(q+1)n(n−1)/2qR
(q+1)(n−1)/q
1 .

Analogously, we get the estimate from below:
∣∣∣∣

n−1∏
k=1

f ′
β(fk

β (c1))
∣∣∣∣ � (M−1)n−1a(q+1)n(n−1)/2qR

(q+1)(n−1)/q
1 .

Finally,

M1−na(q+1)n(n−1)/2qR
(q+1)(n−1)/q
1 �

∣∣∣∣
n−1∏
k=1

f ′
β(fk

β (c1))
∣∣∣∣

� (2(q+1)/qM)n−1a(q+1)n(n−1)/2qR
(q+1)(n−1)/q
1 .

(4.4)

Now, applying (4.4), we estimate the sum
∑n

k=2 fk
β (c1)/

∏k−1
i=1 f ′

β(f i
β(c1)):∣∣∣∣

n∑
k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

∣∣∣∣ �
n∑

k=2

∣∣∣∣ fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

∣∣∣∣

�
n∑

k=2

2Rk

M1−ka(q+1)k(k−1)/2qR
(q+1)(k−1)/q
1

=
n∑

k=2

2ak−1R1M
k−1

a(q+1)k(k−1)/2qR
(q+1)(k−1)/q
1

=
n∑

k=2

2Mk−1

a((q+1)k−2q)(k−1)/2qR
(q+1)(k−1)/q−1
1

=
2M

(aR1)1/2q

n∑
k=2

Mk−2

a(((q+1)k−2q)(k−1)−1)/2qR
(2(q+1)(k−1)−2q−1)/2q
1

.

Since a > â0 � 2 and ((q +1)k −2q)(k −1) � 2(q +1)(k −1)−2q for q ∈ N, k = 2, 3, . . . ,
we have

n∑
k=2

Mk−2

a(((q+1)k−2q)(k−1)−1)/2qR
(2(q+1)(k−1)−2q−1)/2q
1

�
n∑

k=2

Mk−2

(aR1)(2(q+1)(k−1)−2q−1)/2q
.

Using the inequality (2(q + 1)(k − 1) − 2q − 1)/2q � k − 2, q ∈ N, k = 2, 3, . . . , and the
fact that a > â0 � max{R−1

1 , 3MR−1
1 }, we obtain

n∑
k=2

Mk−2

(aR1)(2(q+1)(k−1)−2q−1)/2q
�

n∑
k=2

(
M

aR1

)k−2

�
∞∑

k=2

(
M

aR1

)k−2

=
1

1 − M/aR1
� 3

2
.
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Hence, ∣∣∣∣
n∑

k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

∣∣∣∣ � 2M

(aR1)1/2q
× 3

2
� R1

2
,

because a > â0 � (6M)2qR−2q−1
1 . Therefore,

R1

2
= R1 − R1

2
�

∣∣∣∣fβ(c1) +
n∑

k=2

fk
β (c1)∏k−1

i=1 f ′
β(f i

β(c1))

∣∣∣∣ � 2R1 +
R1

2
=

5R1

2
. (4.5)

Plugging (4.4) and (4.5) into the formula for g′
n, we prove the lemma. �

In the next part of this section we estimate the diameters of Dn and the ratios
vol(Vn+1 ∩ Dn)/vol(Dn), and in order to do that we prove that the functions gn are
conformal on Dn ∈ Dn. Note that the maps gn, n � 2, are holomorphic outside a count-
able set of points and have poles at βn−1 ∈ ∂Dn−1.

Lemma 4.8. For each Dn ∈ Dn, n � 1, the map gn is conformal on Dn.

Proof. The map g1(β) = fβ(c1) = βf(c1) is linear, and so is one to one and holo-
morphic on D1. By induction, we show that the maps gn, n � 2, are conformal. Suppose
that gn, n � 1, is conformal on Dn; we prove that gn+1 is conformal on Dn+1 ⊂ Dn.
If n = 1, then we take the segment U(b1, ε) ⊂ P (R1, 2R1) with b1 = f(c1), and if
n � 2, we consider a segment U(bn, ε) ⊂ P+(Rn). We know that Dn is a component
of g−1

n (U(bn, ε)), n � 1. Let βn = g−1
n (bn) ∈ ∂Dn. If Dn+1 ⊂ Dn ∈ Dn, then Dn+1

is a component of g−1
n+1(U(bn+1, ε)) with U(bn+1, ε) ⊂ P+(Rn+1). We define a map

ĝn+1(β) = fβn(gn(β)) = βnf(gn(β)). It follows from Lemma 4.1 (ii) that

ĝn+1(Dn) ⊃
{

z ∈ C̄ : |z| � 2C1

εq
, φ − π

8
� arg(z) � φ +

9π

8

}
.

We show that ĝn+1 is one to one in Dn. Take β′, β′′ ∈ Dn such that ĝn+1(β′) = ĝn+1(β′′).
By definition of the map ĝn+1, we have f(gn(β′)) = f(gn(β′′)), where gn(β′), gn(β′′) ∈
gn(Dn) = U(bn, ε). By Lemma 4.1 (iii), f is one to one in U(bn, ε), so gn(β′) = gn(β′′)
and this implies that β′ = β′′. This follows from the injectivity of the map gn.

There is a set D̂n+1 ⊂ Dn such that

ĝn+1(D̂n+1) =
{

z ∈ C : (1 − α)Rn+1 < |z| < (2 + α)Rn+1, φ − π

8
< arg(z) < φ +

9π

8

}

(4.6)
for φ as in Lemma 4.1.

Now, we show that Dn+1 ⊂ D̂n+1. Note that ĝn+1(β) = (βn/β)gn+1(β). Since
gn+1(Dn+1) = U(bn+1, ε) ⊂ P+(Rn+1) and 0 < r < 1/4 − 1/(2α + 4), for β ∈ Dn+1 we
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have

|ĝn+1(β)| >
1 − r

1 + r
Rn+1 >

3α + 8
5α + 8

Rn+1 ≈ 0.92Rn+1 > (1 − α)Rn+1 ≈ 0.62Rn+1,

|ĝn+1(β)| <
1 + r

1 − r
2Rn+1 <

2(5α + 8)
3α + 8

Rn+1 ≈ 2.17Rn+1 < (2 + α)Rn+1 ≈ 2.38Rn+1,

arg(ĝn+1(β)) < φ + π + 2 max
β∈B(1,r)

arg(β)

< φ + π + 2 arcsin
(

1
4

− 1
2α + 4

)

≈ φ + π + 0.08 < φ +
9π

8
,

arg(ĝn+1(β)) > φ − 2 max
β∈B(1,r)

arg(β) > φ − 2 arcsin
(

1
4

− 1
2α + 4

)
≈ φ − 0.08 > φ − π

8
.

Thus, ĝn+1(Dn+1) ⊂ ĝn+1(D̂n+1). Since the map ĝn+1 is one to one in Dn, we have
Dn+1 ⊂ D̂n+1.

It follows from (4.6) that

U(bn+1, ε) = gn+1(Dn+1)

⊂ P+(Rn+1)

⊂
{

z ∈ C : (1 − α)Rn+1 < |z| < (2 + α)Rn+1,

φ − π

8
< arg(z) < φ +

9π

8

}
= ĝn+1(D̂n+1).

Since 0 < r < 1/4 − 1/(2α + 4), taking ζ = gn(β) for β ∈ ∂D̂n+1 we have

2r|f(ζ)| <

(
1
2

− 1
α + 2

)
|f(ζ)| =

(
1
2

− 1
α + 2

)∣∣∣∣ ĝn+1(β)
βn

∣∣∣∣
�

(
1
2

− 1
α + 2

)
(2 + α)Rn+1

|βn|

=
αRn+1

2|βn|
< αRn+1,

as |βn| > 1 − r > 1/2. Hence (see Figure 1),

dist(ĝn+1(β), gn+1(Dn+1)) � αRn+1 > 2r|f(ζ)|.

Thus, for β ∈ ∂D̂n+1 and w ∈ gn+1(Dn+1) we have

|ĝn+1(β) − w| � dist(ĝn+1(β), gn+1(Dn+1)) > 2r|f(ζ)|

and
|gn+1(β) − ĝn+1(β)| = |βf(ζ) − βnf(ζ)| = |β − βn| |f(ζ)| < 2r|f(ζ)|.

https://doi.org/10.1017/S0013091515000280 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091515000280


Hausdorff dimension of escaping set 687

Hence, |ĝn+1(β) − w| > |gn+1(β) − ĝn+1(β)| in the set ∂D̂n+1. Since the map gn+1 is
holomorphic on intDn, the assumptions of the Rouché theorem are satisfied. It implies
that the equations ĝn+1(β) = w and gn+1(β) = w have the same number of roots in
D̂n+1. Since the map ĝn+1 is one to one in D̂n+1, the former equation has a unique root
for a given w. So does the latter. Since Dn+1 ⊂ D̂n+1, we have that gn+1 is one to one
in Dn+1. The map gn+1 is holomorphic on intDn, and so is conformal on Dn+1. �

Remark 4.9. In Lemma 4.8 we showed in fact that the segments U(bn, ε) ⊂ P+(Rn),
n � 2, are in one-to-one correspondence with the sets Dn ⊂ Vn ∩ Dn−1 for each Dn−1 ∈
Dn−1. Hence, each Dn, n � 1, is a finite collection of the sets Dn. Moreover, the sets Dn

are pairwise disjoint.

The next lemma follows immediately from Lemma 4.7.

Lemma 4.10. Let Dn ∈ Dn, n � 2. Then the distortion L(gn, Dn) satisfies

L(gn, Dn) � 5(1 + r)
1 − r

2(q+1)(n−1)/qM2(n−1)

and

diam(Dn) � 4ε(1 + r)Mn−1

a(q+1)n(n−1)/2qR
(n(q+1)−1)/q
1

,

where ε is as in Lemma 4.1.

Remark 4.11. Observe that diam(Dn) → 0 as n → ∞, since a > â0 � 2.

By Lemma 4.10, the numbers dn defined in Proposition 2.5 are equal to

dn = 4ε(1 + r)Mn−1a−(q+1)n(n−1)/2qR
−(n(q+1)−1)/q
1 , n � 2, (4.7)

and d1 = diam(A1) < 2r.
In the next lemma we estimate from below the density of the sets Vn+1 ∩ Dn in the

set Dn ∈ Dn, n � 2. The proof is very similar to the proof of Lemma 3.6.

Lemma 4.12. There exists M ′ > 0 such that

vol(Vn+1 ∩ Dn)
vol(Dn)

� M ′

26(q+1)n/qM12na2n/qR
2/q
1

for each Dn ∈ Dn, n � 2.

Proof. Take some n � 2 and Dn ∈ Dn. There exists bn ∈ F such that Dn is a com-
ponent of g−1

n (U(bn, ε)), where U(bn, ε) ⊂ P+(Rn). Moreover, for each Dk ∈ Dn+1 there
is bn+1 ∈ F such that Dk is a component of g−1

n+1(U(bn+1, ε)), U(bn+1, ε) ⊂ P+(Rn+1).
There are finitely many sets Dk ∈ Dn+1 contained in Dn. We denote by bk the pole
corresponding to Dk. Let βn = g−1

n (bn) ∈ Dn, βk = g−1
n+1(bk) ∈ Dk. It follows from

Lemma 4.8 that gn is conformal on Dn, so L(gn, Dn) = L(g−1
n , gn(Dn)). Hence,

vol(Dn) � 3πε2

4q

(
L(gn, Dn)
|g′

n(βn)|

)2

(4.8)
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and

vol(Vn+1 ∩ Dn) =
∑

Dk⊂Dn

vol(Dk) � 3πε2

4q

∑
βk∈Dk⊂Dn

(L(gn+1, Dk)|g′
n+1(βk)|)−2. (4.9)

It follows from (4.8) and (4.9) that

vol(Vn+1 ∩ Dn)
vol(Dn)

� |g′
n(βn)|2

(L(gn, Dn))2
∑

βk∈Dk⊂Dn

(L(gn+1, Dk)|g′
n+1(βk)|)−2.

Then, by Lemma 4.6, (4.5) and Lemma 4.10, we obtain

vol(Vn+1 ∩ Dn)
vol(Dn)

� ((1 − r)/(1 + r))6

5622(q+1)(2n−1)/qM4(2n−1)

×
∑

βk∈Ak⊂An

( n−1∏
j=1

|f ′
βn

(f j
βn

(c1))|
|f ′

βk
(f j

βk
(c1))|

)2 1
|f ′

βk
(fn

βk
(c1))|2

. (4.10)

By Lemma 4.5, we have

|f ′
βk

(fn
βk

(c1))| � (2Rn+1)(q+1)/qM and
|f ′

βn
(f j

βn
(c1))|

|f ′
βk

(f j
βk

(c1))|
� 1

2(q+1)/qM2 (4.11)

for j = 1, 2, . . . , n − 1. Putting (4.11) into (4.10) and using Proposition 4.3, we obtain

vol(Vn+1 ∩ Dn)
vol(Dn)

�
(

1 − r

1 + r

)6 1
5622(q+1)(2n−1)/qM4(2n−1)

(
1

2(q+1)/qM2

)2(n−1) 1

22(q+1)/qM2R
2(q+1)/q
n+1

×
∑

βk∈Dk⊂Dn

1

=
(

1 − r

1 + r

)6 22(q+1)/qNn+1

5626(q+1)n/qM6(2n−1)R
2(q+1)/q
n+1

� M ′

26(q+1)n/qM12na2n/qR
2/q
1

,

where

M ′ =
3π(1 − r)622(q+1)/qM6

8 × 56(1 + r)6vol(R)
.

�

By Lemma 4.12, the numbers Δn from Proposition 2.5 are given by

Δn =
M ′

26(q+1)n/qM12na2n/qR
2/q
1

, n � 2.

Lemma 4.4 is a consequence of McMullen’s result (Proposition 2.5) and Lemmas 4.10
and 4.12. We omit the proof since it is analogous to the proof of Lemma 3.1.
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5. Examples

In this section we give two examples of functions satisfying the assumptions of Theo-
rem 1.3. First, we recall a definition of the Weierstrass elliptic function.

Definition 5.1. For any lattice Λ, the Weierstrass elliptic function is defined by the
formula

℘Λ(z) =
1
z2 +

∑
w∈Λ\{0}

(
1

(z − w)2
− 1

w2

)
, z ∈ C.

The numbers α1(Λ) = 60
∑

w∈Λ\{0} w−4, α2(Λ) = 140
∑

w∈Λ\{0} w−6 are invariants of
the lattice Λ in the following sense: for any lattice Λ′, if α1(Λ) = α1(Λ′) and α2(Λ) =
α2(Λ′), then Λ = Λ′.

The first example was given by Hawkins and Koss in [5].

Example 5.2. Let Γ = [γ1, γ2] be the lattice with the invariants α1(Γ ) = 0, α2(Γ ) =
4. Set Λ = [λ1, λ2] with λ1 = 3

√
e4πi/3γ2

1/m, where m is an odd negative number and
λ2 = λ1γ2/γ1. Then all critical values of ℘Λ are poles.

The same authors showed the following example in [6].

Example 5.3. Let Λ be the lattice with the invariants α1(Λ) ≈ 26.5626 and α2(Λ) ≈
−26.2672. Then ℘Λ has an attracting fixed point p ≈ 1.5566, i.e. ℘Λ(p) = p and |℘′

Λ(p)| <

1 such that ℘n
Λ(e1) → p, ℘n

Λ(e2) → p, where e1 ≈ 1.4206 and e2 ≈ 1.5539 are two critical
values of ℘Λ. The third critical value e3 ≈ −2.9746 is a pole.

Weiestrass elliptic functions given in both examples satisfy the assumptions of Theo-
rem 1.3 with q = 2. Thus, in both cases dimH(E) � 4/3.
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