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A magnetohydrodynamic chaotic stirrer
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Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania,

Philadelphia, PA 19104-6315, USA

(Received 11 July 2001 and in revised form 8 May 2002)

A magnetohydrodynamic (MHD) stirrer that exhibits chaotic advection is investigated
experimentally and theoretically. The stirrer consists of a circular cavity with an
electrode (C) deposited around its periphery. Two additional electrodes (A) and (B)
are deposited eccentrically inside the cavity on the bottom. The cavity is positioned
in a uniform magnetic field that is parallel to the cylinder’s axis, and it is filled with a
weak electrolyte solution. Fluid motion is induced in the cavity by applying a potential
difference across a pair of electrodes. A closed-form, analytical solution is derived
for the MHD creeping flow field in the gap between the two eccentric cylinders. A
singular solution is obtained for the special case when the size of the inner electrode
shrinks to a point. Subsequently, passive tracers’ trajectories are computed when the
electric potential differences are applied alternately across electrodes AC and BC with
period T . At small periods T , the flow is regular and periodic in most of the cavity. As
the period increases, so does the complexity of the motion. At relatively large periods,
the passive tracer experiences global chaotic advection. Such a device can serve as
an efficient stirrer. Since this device has no moving parts, it is especially suitable
for microfluidic applications. This is yet another practical example of a modulated,
two-dimensional Stokes flow that exhibits chaotic advection.

1. Introduction
In recent years, there has been a growing interest in developing minute chemical

and biological laboratories and reactors. Often it is necessary to propel fluids from
one part of a device to another, control the fluid motion, mix, and separate fluids.
In microdevices, these tasks are far from trivial. Typically, electrostatic forces are
being used to move liquids around. These forces usually induce very low flow rates,
require the use of high electrical potentials, and may cause significant heating of the
solution. The use of electromagnetic forces presents an interesting and flexible means
of manipulating liquids in microfluidic devices and systems. The only requirement
is that the liquid be at least slightly conductive. This requirement is met by many
biological solutions.

The application of electromagnetic forces to pump, confine and control fluids is
by no means new. To date, magnetohydrodynamics (MHD) has mostly been used
to pump and control highly conducting fluids such as liquid metals and ionized
gases and to study ionospheric/astrophysical plasmas (i.e. Woodson & Melcher 1969;
Davidson 2001). The potential use of electromagnetic forces in microdevices has
attracted much less attention. Recently, Jang & Lee (2000), Lemoff & Lee (2000), and
Zhong, Yi & Bau (2001) have constructed MHD micro-pumps on silicon and ceramic
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C A B

Figure 1. A schematic depiction of a magnetohydrodynamic stirrer. The dark segments denote the
electrodes. Electrodes A and B are located on the cavity’s bottom. Electrode C is shaped like a disk
and surrounds the cavity. The cavity is filled with saline solution.

substrates and demonstrated that these pumps are able to move liquids around in
micro-conduits. MHD can be used not only for the purpose of pumping fluids, but
also to control fluid flow in networks of conduits and to induce secondary complex
flows that may be beneficial for stirring and mixing. For example, Bau, Zhong & Yi
(2001) deposited an array of transverse electrodes on the bottom of a conduit. The
electrodes were connected alternately to two terminals of a DC power supply. As a
result, electric currents were induced in opposite directions between adjacent pairs
of electrodes. The interaction between these currents and a uniform magnetic field
perpendicular to the bottom of the conduit led to the formation of Lorentz forces
in opposing directions between adjacent pairs of electrodes. This, in turn, led to the
formation of cellular convection. This motion can be used to deform and stretch
material interfaces and enhance mixing. Since we have the freedom to pattern the
electrodes in any desired way, one can envision the feasibility of generating ‘local’
volumetric forces to direct the flow in ‘wall-less’ conduits.

In this paper, we take the above ideas one step further and design a stirrer that
exhibits chaotic advection. The stirrer consists of a circular cavity with an electrode
C deposited along its periphery. Two additional electrodes, A and B, are deposited on
the cavity bottom. See figure 1 for a schematic description of the device. The cavity is
filled with a weakly conducting liquid such as saline solution, and it is positioned in a
uniform magnetic field that is parallel to the cavity axis. Such a magnetic field can be
generated, for example, by a permanent magnet or an electromagnet. When a potential
difference is imposed between the two electrodes (A) and (C), say, an electric current
flows between them. The interaction between this current and the magnetic field
results in Lorentz forces that, in turn, induce counterclockwise (say) flow circulation
in the cavity centred next to electrode A. Subsequently, when the potential difference
is switched from electrode pair AC to electrode pair BC, depending on the polarity
of the electrodes, one can induce either a counterclockwise or clockwise circulatory
pattern centred next to electrode B. Using Aref’s (1984) terminology, we refer to each
electrode pair as an agitator. We operate the device by alternately engaging electrode
pairs AC and BC with a period T . The fluid viscosity is sufficiently high that transient
effects can be neglected and the instantaneous Eulerian flow field can be described
as a Stokes flow. We show that the trajectories of passive tracers may be quite
complicated. As the period of the alternations T increases so does the complexity of
the tracer motion.

The design of the above-described MHD stirrer was inspired by Aref’s (1984) study
of the inviscid blinking vortex pair. Each pair of electrodes in our device induces
circulatory motion. Aref (1984) considered, however, a highly idealized, inviscid sys-
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Figure 2. A liquid-filled two-dimensional cavity confined between two eccentric cylinders of radii
R1 and R2 and eccentricity ec. Both cylinder surfaces are metalized to form electrodes. A uniform
magnetic field, B, is directed out of the page. The figure depicts both the Cartesian (x, y) and the
bi-cylindrical (α, β) co-ordinate systems. The coordinates α = α1 and α = α2 coincide, respectively,
with the inner and outer cylinders.

tem. In contrast, our system is easily constructed and implemented in an experiment.
Nevertheless, there are many qualitative similarities between the Lagrangian motion
observed in our viscous system and the motion in the inviscid system studied by
Aref. Our paper is also related to the studies of chaotic advection in two-dimensional,
time-dependent Stokes flows induced by two rotating eccentric cylinders (i.e. Aref &
Balachandar 1986; Chaiken et al. 1986, 1987). We provide here yet another prac-
tical example of chaotic advection in a simple flow system. Since the device does
not include any moving parts, it is particularly appropriate for use as a stirrer in
microfluidic devices.

The paper is organized as follows: first, we derive an expression for the MHD
flow field between two eccentric cylinders; next we obtain asymptotic expressions for
the case when the radius of the inner cylinder shrinks to zero. In both cases, one
can obtain a closed-form description of the flow field. Subsequently, using a quasi-
static approximation, we compute the flow field and the trajectories of the passive
tracers when the two pairs of electrodes AC and BC are activated alternately. Finally,
the theoretical results are qualitatively compared with experimental observations.
Although the mathematical model consists of a very idealized description of the
physical set-up, the experiment demonstrates that the ideas described in this paper
can, indeed, be implemented in practice.

2. Mathematical model
We focus our attention on low-Reynolds-number viscous-dominated (creeping)

flows. We start by developing an analytic solution for two-dimensional MHD flow in
a cavity confined between two eccentric cylinders.

2.1. MHD flow between two eccentric cylinders

Consider an eccentric annulus (figure 2). R1 and R2 denote, respectively, the radii of
the inner and outer cylinders. Without loss of generality, we position both cylinder
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centres on the x-axis. The distance between the cylinder centres is the eccentricity
ec. The cavity is placed in a uniform static magnetic field of flux density B = Bêz
directed in the (z) direction, which is parallel to the axes cylinders. We use bold letters
to denote vectorial quantities. The cavity is filled with a weak electrolyte solution
of electrical conductivity σ and viscosity µ. The cylinder surfaces in contact with
the liquid are metallized to form two electrodes, C and A. Potentials V1 and V2 are,
respectively, imposed on the surfaces of the inner (A) and outer (C) electrodes. The
potential difference, (∆V = V1 − V2), induces a current of density J = Jxêx + Jy êy .
More specifically, Ohm’s law for a moving conductor of conductivity σ in a magnetic
field is:

J = σ(E + u× B) = σ(−∇V + u× B). (1)

In the above, êi is a unit vector in the i-direction; u is the fluid velocity vector;
E is the electric field, and V is the electric potential. The interaction between the
electric current and the magnetic field generates a (volumetric) Lorentz force of
density, J × B. We assume that the flow is two-dimensional and incompressible. The
momentum equation is

ρ
Du

Dt
= J × B − ∇p+ µ∇2u, (2)

where u is the velocity vector; t is time; p is the pressure; and ρ is the density. We non-
dimensionalize equation (2) using R2 as the length scale; U = σ∆VBR2/[µ(α1 − α2)]
as the velocity scale; the period T ∗ of the alternations in the electric field as the time
scale; σ∆VB/(α1 − α2) as the pressure scale; and ∆V as the electric potential scale.
In the above, α1 and α2 are bi-cylindrical coordinates that we introduce later in this
section. The dimensionless momentum equation is

St2
∂u

∂t
= (−(α1 − α2)∇V +Ha2u× êz)× êz − ∇p+ ∇2u. (3)

In the above, we neglected advection, assuming that the Reynold number (Re =
UR2/ν) is small. The Stanton number, St = R2/

√
νT ∗, is the ratio between the

diffusion time and the forcing period. When St � 1, the flow can be assumed to
be quasi-static, and the time-derivative can be neglected. We show in the Appendix
that even when St = O(1), the quasi-static approximation still gives a qualitatively
reasonable description of the flow. Both these approximations are discussed in Landau
& Lifshitz (1959, p. 91). Ha = BR2

√
σ/µ is the Hartman number. When the liquid is

a weak conductor of electricity such as in the case of saline solutions, the Hartman
number is small and the term u×B can be safely neglected. For example, in our case,
Ha ∼ O(10−2).

For our particular geometry (figure 2), it is convenient to use the bi-cylindrical
coordinates (α, β) (Moon & Spencer, 1971):

α+ iβ = log
y + i(x+ a)

y + i(x− a) . (4)

Briefly, the constant α coordinates represent a family of eccentric circles with their
centres lying on the y = 0 axis. α = ∞ is located at x = a and y = 0. Constant β
coordinates represent a second family of circles that are orthogonal to the constant
α circles, and all of which pass through (x, y) = (a, 0). In other words, the region
confined between the inner cylinder, (x−a coth α1)

2 +y2 = a2/(sinh2 α1), and the outer
cylinder (x − a coth α2)

2 + y2 = a2/(sinh2 α2), in the physical (x, y)-plane is mapped
into the rectangle, 0 6 α2 < α < α1 6 ∞ and −π < β < π, in the (α, β)-plane. α = α1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

02
00

16
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112002001635


A magnetohydrodynamic chaotic stirrer 157

and α = α2 define, respectively, the inner and the outer cylinders. Consistent with our
non-dimensional scheme, we select a = sinh(α2).

The electric potential (V ) satisfies Laplace’s equation, ∇2V = 0. Therefore, in the
bi-cylindrical coordinate system, the dimensionless potential is

V =
α− α2

α1 − α2

. (5)

Consequently, the dimensional current density

J ≈ h σ
R2

V1 − V2

α1 − α2

êα,

where

h =
1

a
(cosh α− cos β). (6)

The dimensional Lorentz force is

J × B = h
σB

R2

V1 − V2

α1 − α2

êβ,

and the dimensionless steady-state momentum equation becomes

h−1∇2u = êβ +

(
∂p

∂α
êα +

∂p

∂β
êβ

)
. (7)

In order to compute the flow field, it is convenient to work in terms of the stream
function ψ. It satisfies the bi-harmonic equation, ∇4ψ = 0, and admits a solution of
the form (Jeffery 1922)

hψ = (A0+B0α) cosh α+(C0+D0α) sinh α+(A1 cosh 2α+B1+C1 sinh 2α+D1α) cos β. (8)

The corresponding expression for the pressure is

p =
2

a
(β(B0 + D1 − 1

2
a) + ((B0 − 2C1 + D1) cosh α+ (D0 − 2A1) sinh α) sin β

−(C1 cosh(2α) + A1 sinh(2α)) sin(2β)). (9)

Since the pressure must be single-valued,

B0 + D1 = a/2. (10)

Additionally, we need to satisfy no-slip and impermeability boundary conditions at
the surfaces of the inner and outer cylinders. At the inner boundary (α = α1), we
require ψ = ∂(hψ)/∂α = 0, or more explicitly,

(A0 + B0α1) cosh α1 + (C0 + D0α1) sinh α1 = 0
A cosh 2α1 + B1 + C1 sinh 2α1 + D1α1 = 0,

}
(11)

(D0 + A0 + B0α1) sinh α1 + (B0 + C0 + D0α1) cosh α1 = 0
2A sinh 2α1 + 2C1 cosh 2α1 + D1 = 0.

}
(12)

Similarly, at the outer boundary (α = α2), ψ = C = constant and ∂(hψ)/∂α =
(C/a) sinh α2, or

(A0 + B0α2) cosh α2 + (C0 + D0α2) sinh α2 = (C/a) cosh α2,
(A1 cosh 2α2 + B1 + C sinh 2α2 + D1α2) = −C/a,

}
(13)
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(D0 + A0 + B0α2) sinh α2 + (B0 + C0 + D0α2) cosh α2 = (C/a) sinh α2,
2A sinh 2α2 + 2C1 cosh 2α2 + D1 = 0.

}
(14)

The algebraic equations (10)–(14) were solved with Mathematica (Wolfram 1996) to
obtain the various coefficients in closed form. Since the resulting expressions are
lengthy, they are not reproduced here.

An example of the flow field between two eccentric cylinders is depicted in the
Appendix (figure 15). The fluid circulates around the inner cylinder. There are no
internal stagnation points. In this sense, the MHD flow in the gap between two
eccentric cylinders is topologically different from the shear-flow induced when the
inner cylinder rotates as in Aref & Balachandar (1986) and Chaiken et al. (1987).

In our envisioned application, the inner electrode A is not an actual cylinder and it
does not restrict the flow. Although the electrode has a finite radius, for mathematical
convenience we consider the limiting case of R1 → 0 or α1 →∞.

2.2. Singular solution

We consider the limiting case when, in the (x, y)-plane, the inner electrode is the
point (a, 0) and the outer electrode is the circle with radius R2. In other words, we
let R1 → 0 and α1 → ∞. At the same time, to maintain finite current, we adjust the
potential difference ∆V so that ∆V/(α1 − α2) remains finite. The dimensional current
per unit height of the cylinder (I ′, A m−1) is

I ′ =

∫ π

−π
J
R2

h
dβ =

∫ π

−π
h
σ

R2

∆V

α1 − α2

R2

h
dβ =

2πσ∆V

α1 − α2

. (15)

Accordingly, it is convenient to re-write the velocity scale as I ′BR2/2πµ.†
Since ψ and the velocity components must be bounded as α→ ∞, we require that

C1 = −A1, C0 = −A0, and D0 = −B0. At the outer boundary, α = α2, we apply the
conditions ψ = C = constant and u = v = 0. As before, B0 + D1 = a/2, and

A0 = (ae−2α2 + a− 2aα2)/4, B0 = a/2, B1 = − 1
2
ae−2α2 , A1 = D1 = 0,

C = 1
2
a2e−2α2 .

}
(16)

Thus, the stream function has the form

hψ = (A0 + B0α) e−α + B1 cos β. (17)

At the outer cylinder (α = α2), the stream function has the value C = 1
2
a2 e−2α2 =

1
8
(1− e2

c)
2.

More conveniently, equation (17) can be rewritten using the two radial coordinates,
r1, and r2, respectively, centred at (a, 0) and (−a, 0): a = 1

2
(e−1
c − ec), r2

1 = (x− a)2 + y2,

and r2
2 = (x+ a)2 + y2. Accordingly,

Ψ (x, y) = 1
8

(
r2

1

(
1 + 2 log

(
r2

r1
ec

))
− e2

cr
2
2 + (1− e2

c)
2

)
, (18)

where ec is the eccentricity, and in non-dimensional units, the cavity radius is one.
The outer cylinder is specified by

r2
1 + r2

2 = (r2
2 − r2

1)
1 + e2

c

1− e2
c

. (19)

† We are grateful to an anonymous reviewer for suggesting this velocity scale.
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(a) (b) (c)

A

Figure 3. The flow field induced by one electrode pair. The radius of the outer cylinder R2 = 1.
R1 → 0 and the eccentricity ec = 1/2. (a) Streamlines. (b) The vertical velocity uy(0, x) as a function
of x. (c) A photograph of a flow visualization experiment.

Equation (18) can be recast in yet another form using radial coordinates (r, θ) with
their origin at the cylinder centre:

Ψ (r, θ) = (r2 + 2ecr cos θ + e2
c) log

(
e2
cr

2 + 2ecr cos θ + 1

r2 + 2ecr cos θ + e2
c

)
+ (r2 − e2

c)(1− e2
c). (20)

Equation (20) is a new singular solution for the Stokes equation in a cylinder.
Figure 3(a) depicts the streamlines computed with (18). The radius of the outer

cylinder is one, the eccentricity ec = 1/2, a = 3/4, and α2 = log(2) = 0.693. The
magnitude of the stream function at the outer cylinder’s surface, α = α2, is C = 9/128
and, at the inner electrode location, it is zero. The solid circle denotes the location
of the electrodes. The streamlines form closed orbits, and the motion is regular. In
contrast to the flow field induced by a rotlet (i.e. Meleshko & Aref 1996), with the
exception of the centre of rotation, the MHD flow does not contain any stagnation
points. Note than the centre of rotation is not at the electrodes but shifted to the
right. We will discuss this shift in the location of the centre of rotation shortly.

Figure 3(b) depicts the vertical component of the velocity uy(x, 0) as a function of
x. Note that the velocity is not zero at the electrodes. The velocity gradient on the
electrode’s left-hand side is larger than on its right-hand side. This is a direct result of
the higher current density on the electrode’s left-hand side (where the gap is narrower).
Consequently, the vertical velocity immediately to the right of the electrode is directed
downwards even though the Lorentz force at that location is directed upwards. In
other words, the shift to the right of the point of zero velocity (and the centre of
rotation) is caused by the competition between the Lorentz (upward) and the shear
(downward) forces exerted by the fluid on the electrode’s left-hand side. The centre
of rotation is located at a radial distance of 0.41 units from the cylinder centre
while the electrode is located at a radial distance of 0.5 units. More generally, the
x-coordinate of the centre of rotation is xr = a(w + ec)/(w − ec), where w is a root of
w log(w2) = ec(w

2 − 1). The centre of rotation (xr, 0) is a stagnation point.
Figure 3(c) depicts the results of flow visualization experiments. Dye was injected

into the solution, and the figure shows the streaklines which under steady-state
conditions coincide with the streamlines. The inner electrode is designated as A in
figure 3(c). The experimental observations are in reasonable agreement with theoretical
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B

A

eA

eB

R2

C

h

Figure 4. A schematic depiction of the location of the two inner electrodes A and B. eA and eB
denote the distances of the electrodes from the cavity centre, and θ is the angle between the radii
that go through the electrode locations.

predictions. Since the inner electrode is finite, the shift in the centre of rotation away
from the electrode is not observed in the experiment.

2.3. Two point electrodes

More complicated motion than that depicted in figure 3 can be generated by utilizing
two or more inner electrodes. Here we consider only two inner ‘point’ electrodes
denoted A and B (figure 4), and we refer, as before, to the outer electrode as C.

There are many choices for possible locations of the electrodes A and B. They can
be specified by their distances from the cavity centre (eccentricities), eA and eB , and
the angle, θ, formed between the radii that pass through the electrode locations. See
figure 4. In this paper, we focus only on the special cases when eA = eB = 0.5, θ = π/2,
and θ = π. In the latter case, both electrodes are located along the same diameter of
the confining cylinder C. Likewise, there is a great amount of flexibility in selecting
any particular timewise variations and magnitudes of the electrode potentials.

We impose a potential difference across electrodes A and C for the time interval
0 < t < T1 and then a potential difference of the same magnitude (but not necessarily
the same polarity) across electrodes B and C for the time interval T1 < t < T . Then
the process is repeated. Furthermore, we assume that the Reynolds number is small
and the potential alternations are sufficiently slow so that the flow is quasi-static
and the instantaneous flow field is given by the steady-state solution of the Stokes
equation. This approximation is commonly used in the context of Stokes flows (i.e.
Landau & Lifshitz 1959, p. 91; Aref & Balachander 1986; Chaiken et al. 1987).

When the potential difference is induced between electrodes A and C, we denote the
resulting flow field as ψA. When the potential difference is induced between electrodes
B and C, we denote the resulting flow field as ψB . Both ψA and ψB are computed
using equation (18), but with two different Cartesian coordinate systems. When the
potential difference alternates between AC and BC while A and B have the same
polarity, the resulting flow field is

ψ(x, y, t) = ψA(x, y)fA(t) + ψB(x′, y′)fB(t), (21)

provided that fB(t) = 0 when fA(t) 6= 0 and that fA(t) = 0 when fB(t) 6= 0. When
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electrodes A and B are subjected to different polarities, the two electrode pairs induce
motion in opposite directions; the + sign in (21) is replaced with a − sign.

One can explore various types of time-modulations (various functions fA(t) and
fB(t)). Here, for convenience, we select the simple protocol

fA(t) =

{
1, kT < t < kT + T1

0, kT + T1 < t < (k + 1)T ,
(22)

and

fB(t) =

{
0, kT < t < kT + T1

1, kT + T1 < t < (k + 1)T .
(23)

In the above, k = 0, 1, 2, . . . is an integer and the resulting flow field is periodic in time
with periodicity T , i.e. ψ(x, y, t+ T ) = ψ(x, y, t). The ‘on–off’ nature of (22) and (23)
is not quite consistent with the Stokes approximation that requires the time constant
associated with the modulations to be larger than the viscous time constant. We
could have easily incorporated other protocols that facilitate a smoother and more
gradual transition from fA(t) to fB(t). Aref & Balachandar (1986) have, however,
investigated the effects of various protocols on the kinematics of the flow between
two rotating eccentric cylinders and determined that an ‘on–off’ protocol similar to the
one specified by equations (22) and (23) gives qualitatively indistinguishable results
from ones obtained with ‘smoother’ protocols. Indeed, functions fA(t) and fB(t) that
provide a more gradual timewise change will only modify the ‘effective’ time interval
Ti without changing the qualitative nature of the flow. Within each time interval, the
passive tracer’s trajectory coincides with the streamlines depicted in figure 3. Choosing
a different f(t) than specified in (22–23) would merely have the effect of changing the
length of the segment that a particle travels along a streamline in the allotted time.
In fact, we can introduce a new time variable, τ =

∫ t
f(ξ) dξ, to eliminate the explicit

dependence on the particular choice of f(t). In the interest of minimizing the number
of parameters in our problem, we chose to employ the ‘on–off’ protocol. Moreover,
the more interesting flow phenomena occur when T is relatively large and when the
quasi-static approximation is likely to be valid.

Clearly, there is a great amount of flexibility in determining the number of elec-
trodes, their locations, and the protocols for potential magnitudes and alternations.
The selection of the best parameters to achieve efficient mixing is an interesting
optimization problem that we do not address here.

The motion of a passive tracer can be readily computed by numerically integrating
the advection equations:

ẋ = ux, ẏ = uy. (24)

In the above, we have changed the time scale from T ∗ to the convective time
scale R2/U, where U = I ′BR2/(2πµ). The particles’ trajectories were computed by
integrating (24) using a fourth-order Runge–Kutta algorithm in MatLab.

One can imagine the trajectory that a passive tracer will follow when the electrode
pairs are alternately actuated. In the time interval kT < t < kT + T1, the tracer will
move along a segment of the curve described by ΨA = const. In the time interval
kT + T1 < t < (k + 1)T , the tracer will follow a segment of the curve ΨB = const.
Under certain circumstances, this mechanism can lead to chaotic tracer trajectories.

The expressions for the flow field that we have obtained above are valid when
only one electrode pair is active at any given time, i.e. fA(t)fB(t) = 0. Simultaneous
actuation of both electrode pairs, (fA(t)fB(t) 6= 0), would alter the electric field in
the cavity and render the expressions that we obtained above invalid. Nevertheless,
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(c)(b)(a)

Figure 5. The streamlines in the limiting case of the period T → 0. eA = eB = 1/2. (a) θ = π/2
(co-rotating), (b) θ = π (co-rotating), and (c) θ = π (counter-rotating). The + and × denote,
respectively, the locations of the electrodes and the stagnation points.

it is instructive to examine the flow field in the limiting case of the alternation
period, T → 0. This limiting case provides useful information on the flow topology.
Figure 5 depicts the streamlines for a few cases when the flow fields induced by
the two electrode pairs are superposed. The symbols + and × denote, respectively,
the locations of the electrodes and stagnation points. In figure 5(a), θ = π/2 and
both electrodes A and B have the same polarity. The flow field consists of closed
orbits that either encircle both electrodes or are confined between them. Figure 5(b)
depicts the case of θ = π and both electrodes A and B having the same polarity.
The flow field in figure 5(b) is similar to the one depicted in figure 5a. Note the
presence of an elliptic stagnation point (that acts as a centre of rotation) in each
of these cases. The situation is different when the electrodes A and B have different
polarities (figure 5c). This arrangement necessitates changing the polarity of electrode
C (we will describe in the next section how this is done in practice). In figure 5(c)
one electrode pair (AC) induces clockwise motion while the other electrode pair (BC)
induces counterclockwise motion. In the limit of small period T , these two motions
superpose to form two families of closed orbits. One family of closed orbits has its
centre of rotation (elliptic stagnation point) next to electrode A; the other family has
its centre of rotation next to electrode B.

As already noted by Aref (1984) among others, equations (24) are a Hamiltonian
system. The flow conserves area, and the phase space (x, y) coincides with the physical
space. When T = 0, the system is autonomous and integrable. The phase-space
portrait consists of elliptic fixed point(s) surrounded by closed orbits (tori) (figure 5).
The system is analogous to a nonlinear oscillator with the period of the oscillations (τ)
being dependent on the initial conditions (x0, y0) and ranging from zero to infinity. We
refer, respectively, to orbits with rational and irrational period ratios τ/T as rational
and irrational tori. Below we quote briefly a few results from dynamic systems theory.

When T > 0, the system may no longer be integrable. When T is small, the
Kolmogorov–Arnold–Moser (KAM) theorem states that most of the orbits (the irra-
tional tori) will distort only slightly. According to the Poincaré–Birkhoff theorem, the
rational tori deform significantly and form a ‘petal’ structure that leads in the Poincaré
section to a sequence of hyperbolic (saddle) and elliptic fixed points. The hyperbolic
points give rise to chaotic behaviour while the elliptic points and the orbits surround-
ing them form a family of rational and irrational tori subject to the considerations
enumerated above, leading to an infinite hierarchy. The net result is that, for relatively
small values of T , one observes the coexistence of chaotic islands and invariant tori.
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Figure 6. Poincaré section (stroboscopic image) when two point electrodes are positioned at
eA = eB = 1/2 and θ = π. T1 = T/2, and T = 6. Both electrode pairs induce counter-clockwise
motion.

As T increases, the chaotic areas increase in size and the regular regions shrink
although they do not disappear completely. The flow topology as a function of T is
described in some detail in § 4. Below, we describe briefly a few numerical experiments
that illustrate the ideas described above.

Figure 6 depicts the Poincaré cross-section when T = 6, T1 = T/2, θ = π,
and eA = eB = 0.5 for orbits with trajectories originating at (x0, y0) = (1.25, 0.9),
(1.25, 0.8), (1.25, 0.7), (1.25, 0.6), (1.25, 0.5), (1.25, 0.4), (1.25, 0.32), (1.25, 0.2), (1.25, 0.1),
(1.25,−0.45), (1.25,−0.1). The invariant (irrational) tori trace closed orbits similar
to the trajectories depicted in figure 5(b) (T = 0). The figure also depicts deformed
rational tori. Note the appearance of hyperbolic (saddle) and elliptic fixed points.
The elliptic fixed points are encircled by closed orbits that form new families of tori
and that are subject to the same process as their larger counterparts. The picture is
consistent with the predictions of the Poincaré–Birkhoff and KAM theorems. When T
was further increased to T = 8, say, the Poincaré section of the trajectory starting at
(x0, y0) = (1.25, 0.5) formed a band of scattered points. When we plotted the locations
of two passive tracers {x(t), y(t)} as functions of time for two particles inserted at
nearby positions (not shown here), the two trajectories followed each other closely for
a short amount of time but eventually diverged widely, suggesting a positive Lyapunov
exponent and a sensitivity to initial data characteristic of chaotic dynamics. Later in
the paper, we calculate the correlation dimension associated with the chaotic motion
and show that its magnitude is consistent with chaotic behaviour. In summary, the
chain of events as T increases is very similar to what has been observed in many
chaotic Hamiltonian systems (see, for example, Ottino 1989, pp. 143–152).

3. Flow visualization experiments
Along with the numerical computations, we also carried out a few crude, qualitative

experiments. The objective of the experiments was to illustrate that similar flows to
the ones predicted here can be also observed in practice. The experimental apparatus
is similar to that depicted in figure 1. To facilitate easy introduction of dye in the
experiments, the stirrer’s cavity was not capped. The stirrer’s circumference was made
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of a metal washer with a radius R2 = 7.8 mm and a height of 2 mm. The inner
electrodes A and B were made out of copper wires of radii R1 = 0.35 mm. Since
R1 � R2, the theory that treats the inner electrodes as points should provide a
reasonable description of the flow field. Earlier attempts at printing the electrodes
with metal inks were frustrated by the relatively rapid consumption of the electrodes.
In all our experiments, eA = eB = R2/2. The working fluid was ∼ 0.1 M saline solution.
When the voltage drop across the electrodes was below a certain threshold of about
V0 ∼ 2 V, little current passed in the solution. For example, when V = 0.25 V, the
apparent specific conductivity σ ∼ 5 × 10−3 Ω−1 m−1. As the potential difference
increased, the apparent specific conductivity increased, achieving a value of about
0.06 Ω−1 m−1 at the potential difference of 1 V. Apparently, below the threshold V0,
the electrodes are impervious to Na+ ions (Levich 1962), and the current is carried by
various impurities in the solution. At potential differences well above 2 V, the specific
conductivity was nearly constant at about 1 Ω−1 m−1. Our experiments were carried
out for potential differences ranging from 0.3 to 7 V.

A neodymium (NdFeB) permanent magnet of approximate intensity B = 0.3 T (Ed-
mund Scientific CR81-23) provided the magnetic field. The magnetic field’s intensity
was measured with a gauss meter. The electrodes were connected via computer-
controlled relay actuators and a D/I card (PCL-725, Advantech Co., Ltd.) to the
terminals of two DC-power supplies (Hewlett Packard, HP 6032A). The relays were
programmed to switch ‘on’ and ‘off’ in such a way that only one electrode pair (either
AC or BC) was active at any given time. In other words, when kT ∗ < t < kT ∗ + T ∗1
(T ∗1 > 0), the pair AC was activated while the pair BC was disconnected from the
power supply. When kT ∗ + T ∗1 < t < (k + 1)T ∗, the pair BC was activated while the
pair AC was disconnected. The superscript ∗ denotes dimesional quantities. In our
experiments, T ∗ ranged from 2 to 4 s and T1 = T/2. T ∗ was chosen to be relatively
small to avoid significant effects of dye diffusion and migration in the electric field. In
one arrangement, the electrodes A and B were both connected to the power supply’s
plus terminal while C was connected to the minus terminal. This resulted in both
electrode pairs inducing circulation in the counterclockwise direction. In a second ar-
rangement, during the first part of the period, A and C were connected, respectively,
to the plus and minus terminals while in the second part of the period, C and B were
connected, respectively, to the plus and minus terminals. In other words, C’s polarity
changed at mid-period. This arrangement induced counterclockwise circulation in the
first half of the period and clockwise circulation in the second half of the period.
We varied the effective (dimensionless) period, T , by varying the potential difference
across the electrodes, that in turn, affected the system’s characteristic time and the
actual (dimensional) period T ∗.

The flow field was visualized by introducing a drop of dye at various locations
inside the cavity. The dye consisted of a solution of Blue Dextran (SIGMA Chemical
Co.) in Fluorescent Liquid Dye (Cole-Parmer Instrument Company). Although the
two dyes had vastly different diffusion coefficients, we used a mixture of dyes rather
than a single one because the individual dyes appeared to be charged and tended to
drift in the electric field. This drift was much reduced when the mixture of the two
dyes was used. The flow visualization allowed us to obtain only a crude qualitative
description of the flow field. The images of the flow field were captured with both
video and still cameras. The movies provide a much more vivid account of the
evolution of the dye tracers.†

† A sample video clip is available at http://www.seas.upenn.edu/∼ bau/Movie 2 Ecc.avi
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In our experiments, we did not observe any significant bubble generation. This is
consistent with the low electrical currents transmitted through the apparatus. Over
time, however, the electrodes degraded. This could be a problem in a practical
device designed to operate for an extended period of time. The erosion problem
can be significantly reduced or even eliminated by appropriate selection of electrode
material and/or through the use of an AC electric and magnetic fields. By appropriate
synchronization of the electromagnetic field with the AC current, the diretion of the
Lorentz force would remain unaltered (i.e. Lemoff & Lee 2000).

Clearly, there are many differences between the two-dimensional model presented
earlier in the paper and the experimental set-up described in this section. Although
one can model the time-dependent three-dimensional flow in the apparatus, such
a model will be too cumbersome and of little use for studying the evolution of
the chaotic advection. For the study of the trajectories of a passive tracer over
very many periods, one needs relatively simple and highly accurate expressions for
the velocity field. Therefore, when studying chaotic stirring, many researchers have
invoked a two-dimensional quasi-static approximation. To illustrate that our model
retains the essential physics of the stirring process, we compare in the Appendix the
two-dimensional quasi-static flow with a Hele-Shaw model and with a time-dependent
model. Based on these comparisons, it appears that similar physical mechanisms are
at work in both the experiments and the theory.

4. Results and discussion
We activated the two electrode pairs according to the protocol detailed in (22) and

(23). In some of the figures below, we show stroboscopic images. These images were
obtained by integrating equation (24), which describes the motion of a passive tracer,
and documenting the tracer’s location at the end of each period. In other words, each
image is a superposition of snapshots that depict the location of the tracer particle
at times t = kT , where k = 0, 1, 2, . . . . Such stroboscopic images are referred to
as Poincaré sections and they are often used as a diagnostic tool to determine the
effectiveness of the stirring process. When the pattern of points that emerges lies on a
smooth curve, the motion is deemed to be regular (poor stirring). A scattered pattern
corresponds to chaotic motion. All the results presented in this section correspond
to eA = eB = R2/2 and T1 = T/2. The corresponding bi-cylindrical coordinates are
α1 = ∞, α2 = log(2) and a = 0.75.

Figure 7 depicts the Poincaré sections for various periods T = 4 (a), 8 (b), 20 (c)
and 50 (d ) when θ = π/2 and both electrode pairs induce counterclockwise motion.
Note the different advection patterns that evolve as the period T increases. Figure 7(a)
depicts trajectories of particles initially positioned at locations (x, y) = (1.25, 0), (1.45,
0.2), (1.65, 0.4) and (1.85, 0.6). The passive tracer’s trajectory is only slightly jittery as
it is alternately influenced by the flow fields induced by the two pairs of electrodes.
Since the period is relatively small, the tracer does not have sufficient time to stray
away from its mean, regular path. The net result is that the stroboscopic image
(figure 7a) appears regular, depicting closed orbits that either encircle electrodes A
and B or are confined between them. The flow topology is very similar to the one
corresponding to the limiting case of T = 0 (figure 5a). In most of the domain, the
tracer’s orbits appear to remain closed and regular until T exceeds ∼ 4.4.

As the period T increases, the tracer strays a larger distance away from its
‘regular path’, leading to a more complicated motion. When T = 8, figure 7(b) depicts
particle trajectories with initial positions (x, y) = (1.05,−0.2), (1.25, 0), (1.5, 0.25) and
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(a) (b)

(d )(c)

Figure 7. Poincaré sections (stroboscopic images) when two point electrodes are positioned at
eA = eB = 1/2 and θ = 90◦. T1 = T/2. Both electrode pairs induce counter-clockwise motion. (a)
T = 4, (b) T = 8, (c) T = 20, and (d ) T = 50.

(1.75, 0.5). An irregular region or chaotic island is visible between the inner and outer
regular regions. As the period T is further increased, the chaotic region spreads to
cover most of the cavity and wipes out the regular core. When T = 20, figure 7(c)
depicts trajectories of particles inserted at (x, y) = (1.9, 0.65), (1.8, 0.55) and (1.25,
0). Only a thin regular layer is visible in the vicinity of the outer cylinder’s surface.
A further increase in T leads to a further spreading of the irregular region. When
T = 50, figure 7(d ) depicts the trajectory of a single particle inserted at location
(x, y) = (1.25, 0). The chaotic region appears to cover the entire cavity. Figure 7
illustrates the disintegration of regular trajectories as the period T increases. Although
the underlining flow field is quite simple, the advection patterns are complex.

Next, we examined the case of θ = π and both electrode pairs inducing motion
in the same sense (counterclockwise). Figure 8(a, b, c) (left column) depicts respec-
tively, the Poincaré sections when T = 4, 10 and 40. We also include photographs of
flow visualization experiments (right column). Keep in mind, however, that the pho-
tographs represent actual dye trajectories and not stroboscopic images. Furthermore,
due to the smallness of the apparatus, diffusion (which is ignored in the mathematical
model) played a significant role in the experiment. When T = 4, figure 8(a) depicts
the trajectories of particles with initial positions (x, y) = (0.4, 0), (0.55, 0), (0.7, 0),
(0.85, 0) and (1,0). In most of the section, the motion appears to be regular. The
Poincaré section features closed trajectories that either encircle both electrodes A and
B or are confined between these two electrodes. The flow visualization photograph
exhibits similar behaviour. The spread of the dye is partially due to diffusion and par-
tially due to the jittery motion caused by the trace particles being alternately captured
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(a)

(b)

(c)

Figure 8. Poincaré sections (stroboscopic images, left column) and flow visualization photographs
(right column) when eA = eB = 1/2 and θ = π (co-rotating). T1 = T/2. (a) T = 4, (b) T = 10, and
(c) T = 40.

by the velocity fields induced by each electrode pair. When T = 10, figure 8(b) depicts
the trajectories of particles inserted at (x, y) = (0.4, 0), (0.5, 0), (0.6, 0) (0.7, 0) and
(1.25, −0.1). A chaotic island is visible between the inner and outer regular regions.
Unfortunately, we were not able to duplicate in the experiment all the features of the
numerical simulation. Nevertheless, the dye traces exhibit a chaotic core and outer
regular region, and the rapid spread of the dye (which is much more vividly captured
in the movie) in the region next to electrodes A and B provides partial evidence of
the existence of a chaotic island. As T increases further, the chaotic region spreads
and the regular regions shrink. When T = 40, figure 8(c) depicts the trajectory of a
single particle inserted at (x, y) = (1.25, 0). The chaotic region appears to have spread
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(a) (b)

Figure 9. Poincaré section (stroboscopic image) depicting an island of regularity (a) and
enlargement of the regular region (b) when eA = eB = 1/2 and θ = π (co-rotating) and T = 60.

to wipe out the regular regions completely. Flow visualization experiments conducted
at relatively large T exhibit a rapid spread of the dye to cover the entire region.

The chaotic regions depicted in figure 8 contain islands of regular behaviour. An
example of such an island of regularity is depicted in figure 9(a) when T = 60.
Figure 9(b) zooms in on the regular region to reveal finer structures that consist
of invariant tori and perhaps chaotic subregions. As T increases, the regular region
shrinks and moves upward.

In order to characterize the chaotic behaviour, we computed the correlation di-
mension D(1 6 D < 2) (Grassberger & Procaccia 1983). Briefly,

C(r) =
(n

2

)−1
n−1∑
i=1

n∑
j=i+1

H(r − ‖xi − xj‖) (25)

is the probability that two arbitrary points, xi and xj , on a tracer’s orbit are closer
together than distance r. H(u) = 1 when u > 0 and H(u) = 0 when u 6 0; ‖.‖ denotes

a norm in two-dimensional Euclidean space, i.e. ‖xi − xj‖ =
√

(xi − xj)2 + (yi − yj)2.
For sufficiently small r, one expects that C(r) = arD , and the correlation dimension is
defined as

D =
d logC(r)

d log r
. (26)

We verified our code by calculating the correlation dimension for the Henon map
and obtaining an excellent agreement (within 0.3%) with published data. Figure 10
depicts the correlation dimension D as a function of the period T for the conditions
of figure 8; 15 000 points were used in the calculation of D. This was deemed to be
sufficient since changes in the number of points from 11 000 to 15 000 in increments
of 1000 (T = 80) led to variations in D smaller than 0.5%. When T < 4, D ∼ 1 which
indicates that in most of the cross-section the motion is regular. When T > 4, the
correlation dimension increases and assumes a value of D ∼ 1.9 when T ∼ 80. D > 1
is consistent with chaotic flow. D does not appear, however, to be a useful measure
for the stirrer’s effectiveness.

Next, we examine the effect of the direction of rotation on the evolution of chaotic
advection. In figure 11, we examine the case when the two electrodes are positioned at
an angle θ = π apart and when one electrode pair AC (say) induces counterclockwise
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Figure 10. The correlation dimension D is depicted as a function of the period T when
eA = eB = 1/2 and θ = π (co-rotating).

motion and the other electrode pair, BC, induces clockwise motion. The top (I),
middle (II), and bottom (III) rows in figure 11 depict, respectively, Poincaré sections,
the actual trajectories of the passive tracer, and photographs of flow visualization
experiments. The columns (a), (b) and (c) correspond, respectively, to T = 2, 6
and 8. When T = 2 (figure 11 Ia), the motion depicted in the Poincaré section is
mostly regular and consists of two sets of closed orbits, one set encircling electrode
A and the other set encircling electrode B. The tracers were introduced at locations
(x, y) = (0.26, 0), (0.4, 0), (0.5, 0), (1.45, 0), (2.0), (2.1, 0) and (2.24, 0). Figure 11-IIa
depicts the actual motion of the tracer. Witness the presence of jitters resulting from
the tracer being trapped (at different times) by the flow fields induced by the two
electrode pairs. The presence of two families of periodic orbits is well supported by
the flow visualization experiments (figure 11 IIIa). As the period T increases (i.e.
T = 6), chaotic islands become visible. In figure 11(Ib) the passive tracers were
introduced at locations (x, y) = (0.3), (0.5, 0), (0.8, 0), (1.1, 0), (1.5, 0), (1.55, 0) and
(1.75, 0). Figure 11-IIb illustrates that as the period increases, so does the magnitude
of the jitters. The presence of the global structure consisting of two counter-rotating
circulations is visible in figure 11-IIIb. When T = 8, figure 11(Ic) depicts the trajectory
of a single tracer inserted at (x, y) = (1.25, 0). The irregular chaotic region appears
to have spread to cover almost the entire cavity. Similar to figure 11(Ic) the flow
visualization experiments (figure 11 IIIc) illustrate the presence of counter-rotating
eddies through the existence of an unmixed zone at the ends of the diagonal that is
perpendicular to the line connecting electrodes A and B (figure 11 IIIc).

To examine the effect of the stirrer in enhancing mixing, like Aref (1984), we tracked
the deformation of a material blob (figures 12 and 13). To this end, we inserted a
square material blob of edge size 0.15, initially centred at (1.125, 0.375), and tracked
its evolution as a function of time for various stirring periods. Figures 12 and 13
depict, respectively, the evolution of the blob when the electrode pairs are inducing
co-rotating and counter-rotating circulation. In both cases, θ = π and eA = eB = 0.5.
Figures 12 and 13 should be cross-referenced, respectively, with figures 8 and 11. The
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(a) (b) (c)

I

II

III

Figure 11. Poincaré sections (stroboscopic images, row I), actual passive tracers’ trajectories (row
II), and flow visualization photos (row III) when eA = eB = 1/2, θ = π (counter-rotating), and
T1 = T/2. (a) T = 2, (b) T = 6, and (c) T = 8.

evolution of the blob was tracked by integrating the trajectories of 104 points initially
evenly distributed within the square.

When T = 4, figure 12(a) depicts the initially square blob at times t = 0,
T , 2T , . . . , 8T . When the period is relatively small, the blob stretches, deforms and
elongates slowly. It is confined essentially to a closed orbit that encloses both internal
electrodes. At this period, the flow, as depicted in the Poincaré section (see figure 8a),
appears regular. The process accelerates as the period increases. When T = 10, fig-
ure 12(b) depicts the blob at times t = 0, T , 2T , 3T (figure 12b1), and 4T , . . . , 7T
(figure 12b2). Note that at t ∼ 5T , the blob turns into a thin strip and it starts folding
upon itself; it is still confined to a relatively narrow band that encircles both internal
electrodes. Although the particles have been stirred, they occupy only a small region
of the cavity. When T = 20, figure 12(c) depicts the blob at t = 0, T (figure 12c1),
2T , 3T (figure 12c2), 4T (figure 12c3), 5T (figure 12c4), 8T (figure 12c5), and 10T
(figure 12c6). Here, after one period (figure 12c1), the square blob has already turned
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(a) (b1) (b2)

(c2) (c3)(c1)

(c5) (c6)(c4)

(d1) (d2) (d3)

t = 3Tt = 2Tt = 0

t = T

t = 10Tt = 8Tt = 5T

t = 4Tt = 2Tt = 0

t = 4T
t = 7T

t = 5T
t = 6T

t = 0
t = 3T

t = T

t = 2T

t = 0

t = 2T

t = T

t = 3T

t = 8T

(d6)(d5)(d4)

t = 4T t = 5T t = 10T

t = T t = 3T

Figure 12. The deformation of a material blob of edge size 0.15 initially (t = 0) centred at (1.125,
0.375) at various times t = kT and various periods (a) T = 4, (b) T = 10, (c) T = 20, and (d )
T = 40. eA = eB = 1/2, θ = π (co-rotating), and T1 = T/2.
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t = 20Tt = 10Tt = 0

t = 50Tt = 40Tt = 30T

t ~ 30T t = 100T t ~ 50T

Figure 13. The deformation of a material blob of edge size 0.15 initially (t = 0) centred at (1.125,
0.375) at various times t = kT . eA = eB = 1/2, θ = π (counter-rotating), T = 8, T1 = T/2, and
various times t = 0, 10T , 20T , 30T , 40T , 50T , and 100T . Also shown are two flow visualization
photographs at estimated times t ∼ 30T and 50T .

into a thin line. Subsequent images illustrate the line’s folding. The locally compli-
cated behaviour exhibited in figure 12c6 is consistent with the presence of a chaotic
island (figure 8b). When T = 40, figure 12(d ) depicts the blob at times t = 0, T
(figure 12d1), 2T (figure 12d2), 3T (figure 12d3), 4T (figure 12d4), 5T (figure 12d5),
and 10T (figure 12d6). The figures illustrate the stretching and folding process that
is consistent with the nearly ‘global’ chaos depicted in figure 8(c). In other words,
the fluid particles spread to cover almost the entire cavity area. Despite the fact that
our process is viscous while the one described by Aref (1984) is inviscid, figure 12(d )
shares many similarities with Aref’s (1984) figure 6. Figure 12(d ) also illustrates the
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presence of exclusion zones, one next to the cavity’s circumference and the other
shaped like a ‘mouth’ in the lower half of the cavity (figure 12d6).

When T = 8, figure 13 depicts the blob’s evolution when the two vortices are
counter-rotating at times t = 0, 10T , 20T , 30T , 40T , 50T and 100T . At about
t ∼ 100T , the fluid particles wander to cover almost the entire cavity area. The
process is quite similar to the one that we observed in flow visualization experiments.
We also include in figure 13 two photographs that somewhat resemble the structures
observed at t ∼ 30T and 50T . Of course, the conditions used in the computations (a
square blob) and in the experiment (a blob of ill-defined shape) are vastly different.
Nevertheless, it is interesting to observe qualitative similarities between the theoretical
predictions and the experimental observations.

5. Conclusions
The paper provides a practical example of a time-periodic, low-Reynolds-number

flow that exhibits chaotic behaviour. The theoretical predictions are in good qual-
itative agreement with experimental observations. We have demonstrated that two
alternating ‘agitators’ can induce complicated motions and that the complexity of the
motion increases as the period of alternation increases. We chose a circular geom-
etry because of the availability of relatively simple analytic solutions to the Stokes
problem. Similar ideas can, of course, be implemented in other geometries such as a
rectangular confining chamber or a flow-through conduit. Moreover, the stirrer does
not require rigid walls. Indeed, the stirrer’s geometry is dictated by the deposition of
the peripheral electrode C. Since the electrode can be either printed or photolitho-
graphically patterned, one can produce fairly complicated shapes. Furthermore, one
can employ a larger number of agitators than the two that we have used here and
more complicated protocols of timewise variations. An interesting optimization prob-
lem is the selection of the peripheral electrode’s geometry, the location and number
of agitators, and a timewise alternation protocol to induce the most efficient stirring.
The motion in our device is induced through magnetohydrodynamic forces; thus, the
stirrer does not require any moving parts. Variations of the device employed in our
study can be fabricated on a much smaller scale to provide stirring in microfluidic
systems. Some potential disadvantages of the MHD stirrer are electrode erosion,
significant bubble generation when the current intensity increases, and the possible
migration of charged particles and molecules in the electric field. Many of these
disadvantages can be alleviated through the use of alternating, synchronized electric
and magnetic fields.

The work described in this paper was supported, in part, by DARPA (Dr Anantha
Krishnan, Program Director) through a grant to the University of Pennsylvania. Dr
Jianzhong Zhu assisted in constructing the experimental set-up.

Appendix
In order to study the chaotic advection, we used a relatively simple description

of the flow field. Although there are many differences between the experimental
apparatus and the theoretical model, the same physical mechanisms are at work in
both the theoretical model and the experiment. In this Appendix, we examine briefly
some of the differences between the actual flow in the experimental apparatus and the
two-dimensional quasi-static model. The Appendix consists of two parts: in the first,
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we compute the flow field in a shallow cavity using the Hele-Shaw approximation;
in the second, we examine the quasi-static approximation. The computations were
carried out with the aid of the finite element package FemLab† version 2.1. To
facilitate a numerical solution, we carried out the computation for an inner electrode
of dimensionless radius 0.25 confined in a cavity of radius 1. The eccentricity is 0.5.
The two-dimensional time-independent finite-element calculations were compared
with and found to be indistinguishable from the analytic solution (equation(8)).

Since the experimental apparatus consists of a shallow cylinder, it is appropri-
ate to simulate the flow in the experimental apparatus using the Hele-Shaw (H-S)
approximation. We denote, respectively, the dimensionless and dimensional heights
of the apparatus as 2H and 2H∗ (H = H∗/R2). Furthermore, we assume that the
velocity distribution is parabolic (in z) and that the pressure is uniform in the vertical
(−H 6 z 6 H) direction (see, for example, Yih 1979, p. 382). Accordingly, the two-
dimensional velocity vector u = uxêx +uy êy = 3

2
(1− z2/H2)û(x, y) satisfies the non-slip

boundary condition at |z| = H . û(x, y) is the average velocity along the cavity’s height,
and it satisfies the two-dimensional continuity equation ∇ · û = 0. The momentum
equation (Brinkman 1947) is

St2
∂û

∂t
= −∇V × êz − ∇p+ ∇2û− 3

H2
û. (A 1)

In the above, we removed the factor (α1 − α2) from the velocity scale (3), and
∇ = êx∂/∂x+ êy∂/∂y is a two-dimensional operator.

In the main body of the paper, we solved the time-independent version of (A1) in
the limit H →∞. In the other extreme of H → 0, we can drop the term ∇2û, and the
time-independent version of (A1) assumes the form of Darcy’s equation,

0 = −∇V × êz − ∇p− 3

H2
û. (A 2)

Since equation (A2) is of a lower order than equation (A1), it cannot satisfy the
non-slip condition at the cylindrical boundaries. Formally, the domain can be divided
into a core region where ∇2û is negligible (to O(H2)) and boundary layer regions
in which ∇2û ∼ H−2û. The advantage of (A1) is that it includes the boundary-layer
structure and provides predictions that are in better agreement with experimental
observations than (A2) (i.e. Fernandez et al. 2002). Equation (A2) can, however, be
readily solved in a closed-form. Below, we provide an analytical solution for (A2) and
a numerical solution for (A1).

The solution of (A2) proceeds along similar lines to the process described in § 2.1.
Briefly, we use the bi-cylindrical coordinate system and introduce the stream function
(Ψ ). The streamfunction satisfied the Laplace equation ∇2Ψ = 0 with the boundary
conditions Ψ (α1, β) = 0 and Ψ (α2, β) = W , where the constant W is determined by
requiring the pressure to be a unique function of β. The appropriate solution is

Ψ =

(
−H

2

3

)
α1 − α
α1 − α2

(A 3)

The flow field consists of closed contours similar to the ones depicted in figure 15.
By periodically alternating the flow field, one would observe chaotic behaviour of a
similar nature to what we described in § 4.

Since the full equation (A1) is not separable in bi-cylindrical coordinates, we can
either construct a series solution or resort to numerical techniques. We chose the latter.

† FEMLAB is a product of COMSOLAB, Tengnergatan 23, SE-111 40 Stockholm, Sweden.
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0.4

0

–0.4

–0.8

–1.2
0.25 0.75 1.25 1.75 2.25

x

uy(x,0)

Figure 14. Comparison between Hele-Shaw (dashed line and circles) and two-dimensional (solid
line) time-independent flows. The velocity uy(x, 0), normalized with its maximal value, is depicted
as a function of x. R1/R2 = 0.25, R2/H

∗ = 4, and ec = 0.5.

Figure 15. The streamlines of the Hele-Shaw flow (dashed lines) are compared with the
two-dimensional streamlines (solid line). R1/R2 = 0.25, R2/H

∗ = 4, and ec = 0.5.

We use (R2/H
∗) = 4, which is roughly comparable to the situation in our experiment

(free top surface). When St = 0, R1/R2 = 0.25 and ec = 0.5, figures 14 and 15 depict,
respectively, the normalized velocity uy(x, 0)/Maxx(uy(x, 0)) as a function of x and the
streamlines for the two-dimensional (solid line) and the H-S (dashed line) flows. In
figure 14, we also use hollow circles to help distinguish the H-S flow from the two-
dimensional profile. In figure 14, Maxx(u

HS
y (x, 0))/Maxx(u

2D
y (x, 0)) ∼ 0.6. Although the

two flow fields are not identical in detail, they are qualitatively quite similar, and it
is reasonable to expect that the H-S model will exhibit chaotic advection similar to
what we observed in the two-dimensional simulations.

Next, we compare the quasi-static flow field with an actual time-dependent flow
field in the Hele-Shaw cell. The quasi-static approximation assumes that the velocity
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0.010

0.005

0

–0.005

–0.010
21 3 4 5 6

Time

uy(0, 0)

Figure 16. Comparison between the quasi-static approximation (solid line) and the time-dependent
flows with St2 = 1(∗), St2 = 9 (dashed line), and St2 = 25 (dashed-dot line). uy(0, 0) is depicted as a
function of time. R1/R2 = 0.25 and ec = 0.5.

0.01

0

–0.01

–0.04
–1.0 0 0.5 1.0

x

uy(x, 0)

–0.02

–0.03

–0.5

Figure 17. The instantaneous uy(x, 0, t1) quasi-static approximation (solid-line) and the
time-dependent velocity profiles St2 = 1(∗), St2 = 9 (dashed line), and St2 = 25 (dashed-dot line)
are depicted as a function of x. R1/R2 = 0.25 and ec = 0.5.

u(x, y, t) ∼ us(x, y)F(t), where F(t) is the protocol used to alter the voltage and
us(x, y) is the time-independent flow field. Here, we use F(t) = cos(2πt). We integrated
numerically equation (A1). Once initial transients died out figures 16 and 17 depict,
respectively, the velocity uy(0, 0, t) as a function of time and the instantaneous velocity
distribution uy(x, 0, t1) as a function of x when the quasi-static approximation is
invoked (solid line), when St2 = 1(∗), St2 = 9 (dashed line), and St2 = 25 (dashed-dot
line). The time t1 in figure 17 was chosen to coincide with the point of maximum
amplitude in figure 16. On the scale of the figures, when St2 = 1, the time-dependent
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flow field is essentially indistinguishable from the quasi-static approximation. When
St2 = 9, the time-dependent flow exhibits a time-lag and slightly reduced amplitude in
comparison with the quasi-static flow. This relatively good agreement is partially due
to the fact that in the H-S cell, the effective Stanton number (3−1/2HSt) is significantly
smaller than St. As the frequency of the oscillations and St increase, the amplitude
of the oscillations decreases and the time-lag increases.

Based on the analysis in this Appendix, it is reasonable to assume that similar
stirring mechanisms are at work in the two-dimensional model and in the experi-
ment. This assertion is supported by the qualitative agreement between experimental
observations and theoretical predictions.
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