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Abstract

Z.-W. Sun [‘Refining Lagrange’s four-square theorem’, J. Number Theory 175 (2017), 169–190] conjec-

tured that every positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ N = {0, 1, . . .}) with

x + 3y a square and also as n = x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ Z) with x + 3y ∈ {4k : k ∈ N}. In this paper,

we confirm these conjectures via the arithmetic theory of ternary quadratic forms.

2020 Mathematics subject classification: primary 11E25; secondary 11E12, 11E20.

Keywords and phrases: sums of four squares, ternary quadratic forms.

1. Introduction

The Lagrange four-square theorem states that every positive integer can be written as

the sum of four integral squares. In 1917, Ramanujan [8] claimed that there are at most

55 positive-definite integral diagonal quaternary quadratic forms that can represent all

positive integers. Later, Dickson [2] confirmed that Ramanujan’s claim is true for 54

forms in Ramanujan’s list and pointed out that the quaternary form x2
+ 2y2

+ 5z2
+

5w2 included in his list represents all positive integers except 15.

In 2017, Z.-W. Sun [11] studied some refinements of Lagrange’s theorem. For

instance, he showed that for any k ∈ {4, 5, 6}, each positive integer n can be written

as xk
+ y2
+ z2
+ w2 with x, y, z, w ∈ N = {0, 1, . . .}. Sun called the integer polynomial

P(X, Y , Z, W) a suitable polynomial if every positive integer n can be written as

x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ N) with P(x, y, z, w) a square. In the same paper, Sun

showed that the polynomials X, 2X, X − Y , 2X − 2Y are all suitable. Also, he

showed that every positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ Z)

with x + 2y a square and he conjectured that X + 2Y is a suitable polynomial. This

conjecture was later confirmed by Y.-C. Sun and Z.-W. Sun in [9]. See [6, 12, 14] for

recent progress on this topic. Sun [11] also investigated the polynomial X + 3Y and

obtained the following result.
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THEOREM 1.1 [11, Theorem 1.3(ii)]. Assuming the GRH (Generalised Riemann

Hypothesis), every positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ Z)

with x + 3y a square.

Based on calculations, Sun posed the following conjecture.

CONJECTURE 1.2 [11, Conjecture 4.1]. X + 3Y is a suitable polynomial, that is, each

positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ N) with x + 3y a

square.

REMARK 1.3. With the help of a computer, Sun [13] verified this conjecture for n up

to 108. Later, the authors verified the conjecture for n up to 4 × 109. For example,

9996 = 582
+ 142

+ 62
+ 802 and 58 + 3 × 14 = 102,

99999999 = 1392
+ 192

+ 68662
+ 72692 and 139 + 3 × 19 = 142,

3999999999 = 23472
+ 182

+ 126712
+ 152952 and 2347 + 3 × 18 = 492.

We confirm this conjecture via the arithmetic theory of ternary quadratic forms.

THEOREM 1.4. Every positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z,

w ∈ N) with x + 3y a square.

If we omit the condition that x, y, z, w ∈ N, then Sun [12, Theorem 1.2(iii)] proved

that every positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ Z) with

x + 3y ∈ {4k : k ∈ N} provided that any positive integer m ≡ 9 (mod 20) can be written

as 5x2
+ 5y2

+ z2 with x, y, z ∈ Z and 2 ∤ z. Motivated by this, Sun also posed the

following conjecture.

CONJECTURE 1.5. For every positive integer n, there exist x, y, z, w ∈ Z such that

n = x2
+ y2
+ z2
+ w2 and x + 3y ∈ {4k : k = 0, 1, . . .}.

REMARK 1.6. Note that there are infinitely many positive integers which do not satisfy

the above conjecture if we add the condition that x, y, z, w ∈ N. In fact, it is known that

each integer of the form 42r+1 × 2 (r ∈ N) has only a single partition into four squares

(see [4, page 86]), that is,

2 × 42r+1
= (2 × 4r)2

+ (2 × 4r)2
+ 02
+ 02.

Clearly Conjecture 1.5 does not hold for any integer of this type if we add the condition

that x, y, z, w ∈ N.

We confirm the conjecture and obtain the following result.

THEOREM 1.7. Every positive integer n can be written as x2
+ y2
+ z2
+ w2 (x, y, z,

w ∈ Z) with x + 3y ∈ {4k : k = 0, 1, . . .}. Moreover, if 4 ∤ n, then there are x, y, z, w ∈ Z
such that n = x2

+ y2
+ z2
+ w2 and x + 3y ∈ {1, 4}.

REMARK 1.8. For example,

99997 = (−98)2
+ 342

+ 1192
+ 2742 and − 98 + 3 × 34 = 4,

99999 = (−29)2
+ 102

+ 332
+ 3132 and − 29 + 3 × 10 = 1.
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In Section 2 we will introduce some notation and prove some lemmas which are key

elements in our proofs of the theorems. The proofs of our main results will be given in

Section 3.

2. Notation and preparations

Throughout, for any prime p, we let Zp denote the ring of p-adic integers and Z×p
the group of invertible elements in Zp. In addition, we set Z×2

p = {x2 : x ∈ Z×p} and let

M3(Zp) denote the ring of 3 × 3 matrices with entries contained in Zp. We also adopt

the standard notation of quadratic forms (see [1, 7]). Let

f (X, Y , Z) = aX2
+ bY2

+ cZ2
+ rYZ + sZX + tXY

be an integral positive-definite ternary quadratic form. Its associated matrix is

M f :=





















a t/2 s/2

t/2 b r/2

s/2 r/2 c





















.

Let p be an arbitrary prime. We introduce the notation

q( f ) := { f (x, y, z) : (x, y, z) ∈ Z3},
qp( f ) := { f (x, y, z) : (x, y, z) ∈ Z3

p}.

For p > 2, we say that f is unimodular over Zp if its associated matrix M f ∈ M3(Zp)

and is invertible. We also let gen( f ) denote the set of quadratic forms which are in the

genus of f .

For any positive integer n, we say that n can be represented by gen( f ) if there exists

a form f ∗ ∈ gen( f ) such that n ∈ q( f ∗). When this occurs, we write n ∈ q(gen( f )).

By [1, Theorem 1.3, page 129],

n ∈ q(gen( f ))⇔ n ∈ qp( f ) for all primes p. (2.1)

The first lemma involves local representations over Z2.

LEMMA 2.1 [5, pages 186–187]. Let f be an integral positive-definite ternary

quadratic form and let n be a positive integer. Then n ∈ q2( f ) if and only if

f (X, Y , Z) ≡ n (mod 2r+1)

is solvable, where r is the 2-adic order of 4n.

The next lemma concerns the global representations by the form x2
+ 10y2

+ 10z2.

LEMMA 2.2. (i) Let n ≡ 1, 2 (mod 4) be a positive integer and λ be an odd integer

with 0 < λ ≤
√

10n and 5 ∤ λ. Then there are x, y, z ∈ Z such that

10n − λ2
= x2
+ 10y2

+ 10z2.
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(ii) Let n ≡ 3 (mod 4) be a positive integer and δ be an integer with 0 < δ ≤
√

10n,

4 | δ and 5 ∤ δ. Then there are x, y, z ∈ Z such that

10n − δ2 = x2
+ 10y2

+ 10z2.

(iii) Let n be a positive odd integer and µ be an integer with 0 < µ ≤
√

10n,

µ ≡ 2 (mod 4) and 5 ∤ µ. Then there are x, y, z ∈ Z such that

10n − µ2
= x2
+ 10y2

+ 10z2.

PROOF. Part (i). Let f (X, Y , Z) = X2
+ 10Y2

+ 10Z2. For any prime p , 2, 5, it is

clear that f (X, Y , Z) is unimodular over Zp and hence qp( f ) = Zp. As 5 ∤ λ, we have

10n − λ2 ∈ q5( f ) by the local square theorem (see [7, Section 63:1]). When p = 2,

since n ≡ 1, 2 (mod 4), we have 10n − λ2 ≡ 1, 3 (mod 8). By the local square theorem

again, 10n − λ2 ∈ Z×2
2

if n ≡ 1 (mod 4) and 10n − λ2 ∈ 3Z×2
2

if n ≡ 2 (mod 4). This

implies that 10n − λ2 ∈ q2( f ) and hence 10n − λ2 ∈ q(gen( f )).

There are two classes in gen( f ) and the one not containing f has a representative

g(X, Y , Z) = 4X2
+ 5Y2

+ 6Z2
+ 4ZX. By (2.1), either 10n − λ2 ∈ q( f ) or 10n − λ2 ∈

q(g). If 10n − λ2 ∈ q( f ), then we are done. Suppose now that 10n − λ2 ∈ q(g), that

is, there are x, y, z ∈ Z such that

10n − λ2
= g(x, y, z) = 4x2

+ 5y2
+ 6z2

+ 4zx.

Clearly 2 ∤ y. As 10n − λ2 ≡ 2n − 1 ≡ 5 + 2z2 (mod 4), we obtain z ≡ n + 1 (mod 2).

If n ≡ 1 (mod 4), then 10n − λ2 ≡ 1 ≡ 4x2
+ 5 (mod 8) and hence x ≡ 1 (mod 2). This

gives x − y − z ≡ 0 (mod 2) in the case n ≡ 1 (mod 4). In the case n ≡ 2 (mod 4), as

z ≡ 1 (mod 2) and

g(X, Y , Z) = g(X + Z, Y , −Z), (2.2)

there must exist x′, y′, z′ ∈ Z with 2 | x′ − y′ − z′ such that 10n − λ2
= g(x′, y′, z′). One

can also easily verify that

f (X, Y , Z) = g

(

X − Y − Z

2
, −Y + Z, Y + Z

)

. (2.3)

By this equality and the above discussion, it is easy to see that 10n − λ2 ∈ q( f ).

Part (ii). Keep notation as above. For the same reasons as in (i), 10n − δ2 ∈ qp( f )

for any prime p , 2. When p = 2, by the local square theorem,

Z×2 ⊆ {2x2
+ 5y2

+ 5z2 : x, y, z ∈ Z2}. (2.4)

Hence, 5n − δ2/2 ≡ 2x2
+ 5y2

+ 5z2 (mod 8) is solvable. This implies that the congru-

ence 10n − δ2 ≡ f (x, y, z) (mod 16) is solvable. By Lemma 2.1 and the above, we obtain

10n − δ2 ∈ q(gen( f )).

By (2.1), we have either 10n − δ2 ∈ q( f ) or 10n − δ2 ∈ q(g). If 10n − δ2 ∈ q( f ),

then we are done. Suppose that 10n − δ2 ∈ q(g), that is, there are x, y, z such

that 10n − δ2 = g(x, y, z). Then clearly 2 | y. As 10n − δ2 ≡ 2 ≡ 2z2 (mod 4), we
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obtain 2 ∤ z. Hence, by (2.2), there must exist x′, y′, z′ ∈ Zwith x′ − y′ − z′ ≡ 0 (mod 2)

such that 10n − δ2 = g(x′, y′, z′). By (2.3), we clearly have 10n − δ2 ∈ q( f ).

Part (iii). Keep notation as above. Clearly 10n − µ2 ∈ qp( f ) for any prime p , 2.

When p = 2, by (2.4), the equation 5n − µ2/2 ≡ 2x2
+ 5y2

+ 5z2 (mod 8) is solvable.

This implies that the equation 10n − µ2 ≡ x2
+ 10y2

+ 10z2 (mod 16) is solvable.

By Lemma 2.1 and the above, we have 10n − µ2 ∈ q(gen( f )).

By (2.1), either 10n − µ2 ∈ q( f ) or 10n − µ2 ∈ q(g). If 10n − µ2 ∈ q( f ), then we are

done. Suppose now that 10n − µ2 ∈ q(g), that is, there are x, y, z such that 10n − µ2
=

g(x, y, z). Then clearly 2 | y. Since 10n − µ2 ≡ 2 ≡ 2z2 (mod 4), we get 2 ∤ z. Then,

by (2.2), there are x′, y′, z′ ∈ Z with x′ − y′ − z′ ≡ 0 (mod 2) such that 10n − µ2
=

g(x′, y′, z′). By (2.3), we clearly have 10n − µ2 ∈ q( f ). This completes the proof. �

REMARK 2.3. Note that

{x2
+ 10y2

+ 10z2 : x, y, z ∈ Z} = {x2
+ 5y2

+ 5z2 : x, y, z ∈ Z and 2 | y − z}.

Sun has studied the latter set in [10].

Sun and Sun [9, Theorem 1.1(ii)] proved that every positive integer n can be written

as x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ N) with x + 2y a square. Motivated by this, we obtain

the following stronger result.

LEMMA 2.4. Every odd integer n ≥ 8 × 106 can be written as x2
+ y2
+ z2
+ w2

(x, y, z, w ∈ N) with x ≤ y and x + 2y a square.

PROOF. We first note that

8 × 106 >

[(

2

51/4 − (4.5)1/4

)4]

,

where [·] denotes the floor function. If n ≥ 8 × 106, then (5n)1/4 − (4.5n)1/4 > 2 and

hence there is an integer m with (4.5n)1/4 ≤ m ≤ (5n)1/4 such that m ≡ 1
2
(n − 1)

(mod 2).

Now let h(x, y, z) = x2
+ 5y2

+ 5z2. By [3, pages 112–113],

q(h) = {x ∈ N : x . ±2 (mod 5) and x , 4k(8l + 7) for any k, l ∈ N}. (2.5)

As 5n − m4 ≥ 0, 5n − m4 ≡ 1, 2 (mod 4) and 5n − m4
. ±2 (mod 5), we have 5n − m4 ∈

q(h) by (2.5). Hence, there exist s ∈ Z and z, w ∈ N such that 5n − m4
= s2
+ 5z2

+ 5w2.

Clearly −
√

5n − m4 ≤ s ≤
√

5n − m4. Replacing s by −s if necessary, we may assume

that s ∈ Z and s ≡ −2m2 (mod 5). By the inequality

s + 2m2 ≥ −
√

5n − m4
+ 2m2

=

5m4 − 5n
√

5n − m4
+ 2m2

> 0,

we may write s + 2m2
= 5y for some y ∈ N. This gives

5n − m4
= (5y − 2m2)2

+ 5z2
+ 5w2
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and hence

n = (m2 − 2y)2
+ y2
+ z2
+ w2. (2.6)

Let x := m2 − 2y. Then

5x = 5m2 − 10y = m2 − 2s ≥ m2 − 2
√

5n − m4
=

5(m4 − 4n)

m2
+ 2
√

5n − m4
> 0.

This gives x > 0. Moreover,

5(y − x) = 3s + m2 ≥ −3
√

5n − m4
+ m2

=

10(m4 − 4.5n)

m2
+ 3
√

5n − m4
≥ 0.

This gives x ≤ y. In view of the above, we can write n = x2
+ y2
+ z2
+ w2 with

x, y, z, w ∈ N, x ≤ y and x + 2y = m2. This completes the proof. �

LEMMA 2.5. For every integer n . 0 (mod 4) such that n ≥ 4 × 108, we can write

n = x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ N) with x + 3y = 2m2 for some m ∈ N.

PROOF. We divide our proof into two cases.

Case 1. n ≡ 2 (mod 4). In this case, we write n = 2n′ for some odd integer n′ ≥ 4 × 107.

By Lemma 2.4, we can write n′ = x′2 + y′2 + z′2 + w′2 (x′, y′, z′, w′ ∈ N) with x′ ≤ y′,
z′ ≤ w′ and x′ + 2y′ = m2

0
for some m0 ∈ N. Then

n = 2n′ = (y′ − x′)2
+ (y′ + x′)2

+ (w′ − z′)2
+ (z′ + w′)2.

Letting x := y′ − x′, y := y′ + x′, z := w′ − z′ and w := z′ + w′,

n = x2
+ y2
+ z2
+ w2

with x + 3y = (y′ − x′) + 3(y′ + x′) = 2(x′ + 2y′) = 2m2
0
.

Case 2. n is odd. We first note that

4 × 108 >

[(

4
√

2

101/4 − 91/4

)4]

.

If n ≥ 4 × 108, then (10n)1/4/
√

2 − (9n)1/4/
√

2 > 4 and hence there is an integer m

with (9n)1/4/
√

2 ≤ m ≤ (10n)1/4/
√

2 such that 2 ∤ m and 5 ∤ m. By Lemma 2.2(iii),

there exist t ∈ Z and z, w ∈ N such that

10n − 4m4
= t2
+ 10z2

+ 10w2.

Clearly −
√

10n − 4m4 ≤ t ≤
√

10n − 4m4. Replacing t by −t if necessary, we may

assume that t ≡ −6m2 (mod 10). By the inequality

t + 6m2 ≥ −
√

10n − 4m4
+ 6m2

=

10(4m4 − n)

6m2
+

√
10n − 4m4

> 0,

we can write t + 6m2
= 10y for some y ∈ N. This implies that

10n − 4m4
= (10y − 6m2)2

+ 10z2
+ 10w2

https://doi.org/10.1017/S0004972720001501 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972720001501


224 Y.-F. She and H.-L. Wu [7]

and hence

n = (2m2 − 3y)2
+ y2
+ z2
+ w2.

Let x := 2m2 − 3y. Then

10x = 2m2 − 3t ≥ 2m2 − 3
√

10n − 4m4
=

10(4m4 − 9n)

2m2
+ 3
√

10n − 4m4
≥ 0.

This gives x ≥ 0. In view of the above, we can write n = x2
+ y2
+ z2
+ w2 (x, y, z,

w ∈ N) with x + 3y = 2m2.

This completes the proof of Lemma 2.5. �

3. Proofs of the main results

PROOF OF THEOREM 1.4. We prove our result by induction on n. When n < 4 × 109,

we can verify the desired result by computer. Assume now that n ≥ 4 × 109. We divide

the remaining proof into two cases.

Case 1. n ≡ 0 (mod 4). If 16 | n, the desired result follows immediately from the

induction hypothesis. We now assume that 16 ∤ n. Then we can write n = 4n′ with

n′ . 0 (mod 4). By Lemma 2.5, there exist x1, y1, z1, w1, m1 ∈ N such that n′ = x2
1
+

y2
1
+ z2

1
+ w2

1
and x1 + 3y1 = 2m2

1
. Clearly we can write n = 4n′ = x2

+ y2
+ z2
+ w2

with x + 3y = (2m1)2, where x = 2x1, y = 2y1, z = 2z1, w = 2w1 ∈ N.

Case 2. n ≡ 1, 2, 3 (mod 4). We first note that

4 × 109 >

[(

8

101/4 − 91/4

)4]

>

[(

4

101/4 − 91/4

)4]

.

If n ≥ 4 × 109, then we have (10n)1/4 − (9n)1/4 > 8. Hence, we can find an integer m

with (9n)1/4 ≤ m ≤ (10n)1/4 satisfying the following condition:














2 ∤ m and 5 ∤ m if n ≡ 1, 2 (mod 4),

4 | m and 5 ∤ m if n ≡ 3 (mod 4).

By Lemma 2.2, there exist u ∈ Z and z, w ∈ N such that

10n − m4
= u2

+ 10z2
+ 10w2.

Clearly −
√

10n − m4 ≤ u ≤
√

10n − m4. Replacing u by −u if necessary, we may

assume that u ∈ Z and u ≡ −3m2 (mod 10). By the inequality

u + 3m2 ≥ −
√

10n − m4
+ 3m2

=

10(m4 − n)
√

10n − m4
+ 3m2

> 0,

we can write s + 3m2
= 10y for some y ∈ N. This gives

10n − m4
= (10y − 3m2)2

+ 10z2
+ 10w2

and hence

n = (m2 − 3y)2
+ y2
+ z2
+ w2.
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Let x := m2 − 3y. Then

10x = m2 − 3u ≥ m2 − 3
√

10n − m4
=

10(m4 − 9n)

m2
+ 3
√

10n − m4
≥ 0.

This gives x ≥ 0 and hence n = x2
+ y2
+ z2
+ w2 (x, y, z, w ∈ N) with x + 3y = m2.

These conclusions complete the proof. �

PROOF OF THEOREM 1.7. When n = 1, 2, . . . , 10, we can verify our result by com-

puter. Now assume that n > 10. By Lemma 2.2(i)–(ii), for any positive integer n with

4 ∤ n, there are integers a, z, w such that

10n − ε2
= a2

+ 10z2
+ 10w2,

where

ε =















1 if n ≡ 1, 2 (mod 4),

4 if n ≡ 3 (mod 4).

Without loss of generality, we assume that a ≡ −3ε (mod 10) (otherwise we can replace

a by −a). Writing a = 10y − 3ε,

10n − ε2
= (10y − 3ε)2

+ 10z2
+ 10w2

and hence

n = (ε − 3y)2
+ y2
+ z2
+ w2.

Letting x := ε − 3y,

n = x2
+ y2
+ z2
+ w2 and x + 3y = ε. (3.1)

In addition, according to Lemma 2.2(iii), for any positive odd integer n, there are

b, z′, w′ ∈ Z such that

10n − 22
= b2

+ 10z′2 + 10w′2.

As above, we may write b = 10y′ − 6 for some y′ ∈ Z. This gives

10n − 22
= (10y′ − 6)2

+ 10z′2 + 10w′2

and hence

n = (2 − 3y′)2
+ y′2 + z′2 + w′2.

Letting x′ = 2 − 3y′,

n = x′2 + y′2 + z′2 + w′2 and x′ + 3y′ = 2. (3.2)

Now let n = 2n′ ≡ 2 (mod 4) be a positive integer. By (2.5), we see that there are

integers a1, z′
1
, w′

1
such that

5n′ − η2
= a2

1 + 5z′21 + 5w′21 ,
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where

η =















4 if n′ ≡ 1 (mod 4),

1 if n′ ≡ 3 (mod 4).

Without loss of generality, we can assume that a1 ≡ −2η (mod 5) and then write

a1 = 5y′
1
− 2η. This gives

5n′ − η2
= (5y′1 − 2η)2

+ 5z′21 + 5w′21

and hence

n′ = (η − 2y′1)2
+ y′21 + z′2 + w′2.

Letting x′
1

:= η − 2y′
1
, we obtain n′ = x′2

1
+ y′2

1
+ z′2

1
+ w′2

1
with x′

1
+ 2y′

1
= η. As

n = 2n′ = (y′1 − x′1)2
+ (y′1 + x′1)2

+ (z′1 − w′1)2
+ (z′1 + w′1)2,

letting x1 := y′
1
− x′

1
, y1 := y′

1
+ x′

1
, z1 = z′

1
− w′

1
and w1 := z′

1
+ w′

1
,

n = x2
1 + y2

1 + z2
1 + w2

1 and x1 + 3y1 = 2η. (3.3)

By (3.2) and (3.3), for every positive integer n0 with 4 ∤ n there are integers

x0, y0, z0, w0 such that

n0 = x2
0 + y2

0 + z2
0 + w2

0 and x0 + 3y0 ∈ {2 × 1, 2 × 22}. (3.4)

Now we prove our result by induction on n. If 16 | n, then the desired result follows

from the induction hypothesis. If 4 ∤ n, then (3.1) implies the desired result. If n = 4n′

for some n′ . 0 (mod 4), then by (3.4) one can easily verify our result.

These conclusions complete the proof. �
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