*Bull. Aust. Math. Soc.* **104** (2021), 218–227 doi:10.1017/S0004972720001501

# SUMS OF FOUR SQUARES WITH A CERTAIN RESTRICTION

# YUE-FENG SHE<sup>®</sup> and HAI-LIANG WU<sup>®</sup><sup>∞</sup>

(Received 3 November 2020; accepted 30 November 2020; first published online 14 January 2021)

### Abstract

Z.-W. Sun ['Refining Lagrange's four-square theorem', *J. Number Theory* **175** (2017), 169–190] conjectured that every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  (*x*, *y*, *z*,  $w \in \mathbb{N} = \{0, 1, ...\}$ ) with x + 3y a square and also as  $n = x^2 + y^2 + z^2 + w^2$  (*x*, *y*, *z*,  $w \in \mathbb{Z}$ ) with  $x + 3y \in \{4^k : k \in \mathbb{N}\}$ . In this paper, we confirm these conjectures via the arithmetic theory of ternary quadratic forms.

2020 Mathematics subject classification: primary 11E25; secondary 11E12, 11E20.

Keywords and phrases: sums of four squares, ternary quadratic forms.

# 1. Introduction

The Lagrange four-square theorem states that every positive integer can be written as the sum of four integral squares. In 1917, Ramanujan [8] claimed that there are at most 55 positive-definite integral diagonal quaternary quadratic forms that can represent all positive integers. Later, Dickson [2] confirmed that Ramanujan's claim is true for 54 forms in Ramanujan's list and pointed out that the quaternary form  $x^2 + 2y^2 + 5z^2 +$  $5w^2$  included in his list represents all positive integers except 15.

In 2017, Z.-W. Sun [11] studied some refinements of Lagrange's theorem. For instance, he showed that for any  $k \in \{4, 5, 6\}$ , each positive integer *n* can be written as  $x^k + y^2 + z^2 + w^2$  with  $x, y, z, w \in \mathbb{N} = \{0, 1, ...\}$ . Sun called the integer polynomial P(X, Y, Z, W) a *suitable polynomial* if every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  ( $x, y, z, w \in \mathbb{N}$ ) with P(x, y, z, w) a square. In the same paper, Sun showed that the polynomials X, 2X, X - Y, 2X - 2Y are all suitable. Also, he showed that every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  ( $x, y, z, w \in \mathbb{N}$ ) with x + 2y a square and he conjectured that X + 2Y is a suitable polynomial. This conjecture was later confirmed by Y.-C. Sun and Z.-W. Sun in [9]. See [6, 12, 14] for recent progress on this topic. Sun [11] also investigated the polynomial X + 3Y and obtained the following result.



This research was supported by the National Natural Science Foundation of China (grant no. 11971222). The second author was supported by NUPTSF (grant no. NY220159).

<sup>© 2021</sup> Australian Mathematical Publishing Association Inc.

THEOREM 1.1 [11, Theorem 1.3(ii)]. Assuming the GRH (Generalised Riemann Hypothesis), every positive integer n can be written as  $x^2 + y^2 + z^2 + w^2$  (x, y, z,  $w \in \mathbb{Z}$ ) with x + 3y a square.

Based on calculations, Sun posed the following conjecture.

CONJECTURE 1.2 [11, Conjecture 4.1]. X + 3Y is a suitable polynomial, that is, each positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$   $(x, y, z, w \in \mathbb{N})$  with x + 3y a square.

**REMARK** 1.3. With the help of a computer, Sun [13] verified this conjecture for *n* up to  $10^8$ . Later, the authors verified the conjecture for *n* up to  $4 \times 10^9$ . For example,

 $9996 = 58^2 + 14^2 + 6^2 + 80^2$  and  $58 + 3 \times 14 = 10^2$ ,  $99999999 = 139^2 + 19^2 + 6866^2 + 7269^2$  and  $139 + 3 \times 19 = 14^2$ ,  $3999999999 = 2347^2 + 18^2 + 12671^2 + 15295^2$  and  $2347 + 3 \times 18 = 49^2$ .

We confirm this conjecture via the arithmetic theory of ternary quadratic forms.

**THEOREM** 1.4. Every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  (*x*, *y*, *z*,  $w \in \mathbb{N}$ ) with x + 3y a square.

If we omit the condition that  $x, y, z, w \in \mathbb{N}$ , then Sun [12, Theorem 1.2(iii)] proved that every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  ( $x, y, z, w \in \mathbb{Z}$ ) with  $x + 3y \in \{4^k : k \in \mathbb{N}\}$  provided that any positive integer  $m \equiv 9 \pmod{20}$  can be written as  $5x^2 + 5y^2 + z^2$  with  $x, y, z \in \mathbb{Z}$  and  $2 \nmid z$ . Motivated by this, Sun also posed the following conjecture.

CONJECTURE 1.5. For every positive integer *n*, there exist  $x, y, z, w \in \mathbb{Z}$  such that  $n = x^2 + y^2 + z^2 + w^2$  and  $x + 3y \in \{4^k : k = 0, 1, ...\}$ .

**REMARK** 1.6. Note that there are infinitely many positive integers which do not satisfy the above conjecture if we add the condition that  $x, y, z, w \in \mathbb{N}$ . In fact, it is known that each integer of the form  $4^{2r+1} \times 2$  ( $r \in \mathbb{N}$ ) has only a single partition into four squares (see [4, page 86]), that is,

$$2 \times 4^{2r+1} = (2 \times 4^r)^2 + (2 \times 4^r)^2 + 0^2 + 0^2$$

Clearly Conjecture 1.5 does not hold for any integer of this type if we add the condition that  $x, y, z, w \in \mathbb{N}$ .

We confirm the conjecture and obtain the following result.

THEOREM 1.7. Every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  (*x*, *y*, *z*,  $w \in \mathbb{Z}$ ) with  $x + 3y \in \{4^k : k = 0, 1, ...\}$ . Moreover, if  $4 \nmid n$ , then there are *x*, *y*, *z*,  $w \in \mathbb{Z}$  such that  $n = x^2 + y^2 + z^2 + w^2$  and  $x + 3y \in \{1, 4\}$ .

**REMARK** 1.8. For example,

99997 = 
$$(-98)^2 + 34^2 + 119^2 + 274^2$$
 and  $-98 + 3 \times 34 = 4$ ,  
99999 =  $(-29)^2 + 10^2 + 33^2 + 313^2$  and  $-29 + 3 \times 10 = 1$ .

In Section 2 we will introduce some notation and prove some lemmas which are key elements in our proofs of the theorems. The proofs of our main results will be given in Section 3.

### 2. Notation and preparations

Throughout, for any prime p, we let  $\mathbb{Z}_p$  denote the ring of p-adic integers and  $\mathbb{Z}_p^{\times}$  the group of invertible elements in  $\mathbb{Z}_p$ . In addition, we set  $\mathbb{Z}_p^{\times 2} = \{x^2 : x \in \mathbb{Z}_p^{\times}\}$  and let  $M_3(\mathbb{Z}_p)$  denote the ring of  $3 \times 3$  matrices with entries contained in  $\mathbb{Z}_p$ . We also adopt the standard notation of quadratic forms (see [1, 7]). Let

$$f(X, Y, Z) = aX^2 + bY^2 + cZ^2 + rYZ + sZX + tXY$$

be an integral positive-definite ternary quadratic form. Its associated matrix is

$$M_f := \begin{pmatrix} a & t/2 & s/2 \\ t/2 & b & r/2 \\ s/2 & r/2 & c \end{pmatrix}.$$

Let *p* be an arbitrary prime. We introduce the notation

$$q(f) := \{ f(x, y, z) : (x, y, z) \in \mathbb{Z}^3 \},\$$
$$q_p(f) := \{ f(x, y, z) : (x, y, z) \in \mathbb{Z}_p^3 \}.$$

For p > 2, we say that f is unimodular over  $\mathbb{Z}_p$  if its associated matrix  $M_f \in M_3(\mathbb{Z}_p)$ and is invertible. We also let gen(f) denote the set of quadratic forms which are in the genus of f.

For any positive integer *n*, we say that *n* can be represented by gen(f) if there exists a form  $f^* \in gen(f)$  such that  $n \in q(f^*)$ . When this occurs, we write  $n \in q(gen(f))$ . By [1, Theorem 1.3, page 129],

$$n \in q(gen(f)) \Leftrightarrow n \in q_p(f)$$
 for all primes  $p$ . (2.1)

The first lemma involves local representations over  $\mathbb{Z}_2$ .

LEMMA 2.1 [5, pages 186–187]. Let f be an integral positive-definite ternary quadratic form and let n be a positive integer. Then  $n \in q_2(f)$  if and only if

$$f(X, Y, Z) \equiv n \pmod{2^{r+1}}$$

is solvable, where r is the 2-adic order of 4n.

The next lemma concerns the global representations by the form  $x^2 + 10y^2 + 10z^2$ .

**LEMMA 2.2.** (i) Let  $n \equiv 1, 2 \pmod{4}$  be a positive integer and  $\lambda$  be an odd integer with  $0 < \lambda \le \sqrt{10n}$  and  $5 \nmid \lambda$ . Then there are  $x, y, z \in \mathbb{Z}$  such that

$$10n - \lambda^2 = x^2 + 10y^2 + 10z^2.$$

#### Sums of four squares

(ii) Let  $n \equiv 3 \pmod{4}$  be a positive integer and  $\delta$  be an integer with  $0 < \delta \le \sqrt{10n}$ ,  $4 \mid \delta$  and  $5 \nmid \delta$ . Then there are  $x, y, z \in \mathbb{Z}$  such that

$$10n - \delta^2 = x^2 + 10y^2 + 10z^2.$$

(iii) Let *n* be a positive odd integer and  $\mu$  be an integer with  $0 < \mu \le \sqrt{10n}$ ,  $\mu \equiv 2 \pmod{4}$  and  $5 \nmid \mu$ . Then there are  $x, y, z \in \mathbb{Z}$  such that

$$10n - \mu^2 = x^2 + 10y^2 + 10z^2.$$

**PROOF.** Part (i). Let  $f(X, Y, Z) = X^2 + 10Y^2 + 10Z^2$ . For any prime  $p \neq 2, 5$ , it is clear that f(X, Y, Z) is unimodular over  $\mathbb{Z}_p$  and hence  $q_p(f) = \mathbb{Z}_p$ . As  $5 \nmid \lambda$ , we have  $10n - \lambda^2 \in q_5(f)$  by the local square theorem (see [7, Section 63:1]). When p = 2, since  $n \equiv 1, 2 \pmod{4}$ , we have  $10n - \lambda^2 \equiv 1, 3 \pmod{8}$ . By the local square theorem again,  $10n - \lambda^2 \in \mathbb{Z}_2^{\times 2}$  if  $n \equiv 1 \pmod{4}$  and  $10n - \lambda^2 \in 3\mathbb{Z}_2^{\times 2}$  if  $n \equiv 2 \pmod{4}$ . This implies that  $10n - \lambda^2 \in q_2(f)$  and hence  $10n - \lambda^2 \in q(gen(f))$ .

There are two classes in gen(*f*) and the one not containing *f* has a representative  $g(X, Y, Z) = 4X^2 + 5Y^2 + 6Z^2 + 4ZX$ . By (2.1), either  $10n - \lambda^2 \in q(f)$  or  $10n - \lambda^2 \in q(g)$ . If  $10n - \lambda^2 \in q(f)$ , then we are done. Suppose now that  $10n - \lambda^2 \in q(g)$ , that is, there are *x*, *y*, *z*  $\in \mathbb{Z}$  such that

$$10n - \lambda^2 = g(x, y, z) = 4x^2 + 5y^2 + 6z^2 + 4zx.$$

Clearly  $2 \nmid y$ . As  $10n - \lambda^2 \equiv 2n - 1 \equiv 5 + 2z^2 \pmod{4}$ , we obtain  $z \equiv n + 1 \pmod{2}$ . If  $n \equiv 1 \pmod{4}$ , then  $10n - \lambda^2 \equiv 1 \equiv 4x^2 + 5 \pmod{8}$  and hence  $x \equiv 1 \pmod{2}$ . This gives  $x - y - z \equiv 0 \pmod{2}$  in the case  $n \equiv 1 \pmod{4}$ . In the case  $n \equiv 2 \pmod{4}$ , as  $z \equiv 1 \pmod{2}$  and

$$g(X, Y, Z) = g(X + Z, Y, -Z),$$
 (2.2)

there must exist  $x', y', z' \in \mathbb{Z}$  with 2 | x' - y' - z' such that  $10n - \lambda^2 = g(x', y', z')$ . One can also easily verify that

$$f(X, Y, Z) = g\left(\frac{X - Y - Z}{2}, -Y + Z, Y + Z\right).$$
(2.3)

By this equality and the above discussion, it is easy to see that  $10n - \lambda^2 \in q(f)$ .

Part (ii). Keep notation as above. For the same reasons as in (i),  $10n - \delta^2 \in q_p(f)$  for any prime  $p \neq 2$ . When p = 2, by the local square theorem,

$$\mathbb{Z}_{2}^{\times} \subseteq \{2x^{2} + 5y^{2} + 5z^{2} : x, y, z \in \mathbb{Z}_{2}\}.$$
(2.4)

Hence,  $5n - \delta^2/2 \equiv 2x^2 + 5y^2 + 5z^2 \pmod{8}$  is solvable. This implies that the congruence  $10n - \delta^2 \equiv f(x, y, z) \pmod{16}$  is solvable. By Lemma 2.1 and the above, we obtain  $10n - \delta^2 \in q(gen(f))$ .

By (2.1), we have either  $10n - \delta^2 \in q(f)$  or  $10n - \delta^2 \in q(g)$ . If  $10n - \delta^2 \in q(f)$ , then we are done. Suppose that  $10n - \delta^2 \in q(g)$ , that is, there are x, y, z such that  $10n - \delta^2 = g(x, y, z)$ . Then clearly 2 | y. As  $10n - \delta^2 \equiv 2 \equiv 2z^2 \pmod{4}$ , we

221

[4]

obtain  $2 \nmid z$ . Hence, by (2.2), there must exist  $x', y', z' \in \mathbb{Z}$  with  $x' - y' - z' \equiv 0 \pmod{2}$  such that  $10n - \delta^2 = g(x', y', z')$ . By (2.3), we clearly have  $10n - \delta^2 \in q(f)$ .

Part (iii). Keep notation as above. Clearly  $10n - \mu^2 \in q_p(f)$  for any prime  $p \neq 2$ . When p = 2, by (2.4), the equation  $5n - \mu^2/2 \equiv 2x^2 + 5y^2 + 5z^2 \pmod{8}$  is solvable. This implies that the equation  $10n - \mu^2 \equiv x^2 + 10y^2 + 10z^2 \pmod{16}$  is solvable. By Lemma 2.1 and the above, we have  $10n - \mu^2 \in q(gen(f))$ .

By (2.1), either  $10n - \mu^2 \in q(f)$  or  $10n - \mu^2 \in q(g)$ . If  $10n - \mu^2 \in q(f)$ , then we are done. Suppose now that  $10n - \mu^2 \in q(g)$ , that is, there are x, y, z such that  $10n - \mu^2 = g(x, y, z)$ . Then clearly  $2 \mid y$ . Since  $10n - \mu^2 \equiv 2 \equiv 2z^2 \pmod{4}$ , we get  $2 \nmid z$ . Then, by (2.2), there are  $x', y', z' \in \mathbb{Z}$  with  $x' - y' - z' \equiv 0 \pmod{2}$  such that  $10n - \mu^2 = g(x', y', z')$ . By (2.3), we clearly have  $10n - \mu^2 \in q(f)$ . This completes the proof.  $\Box$ 

**REMARK 2.3.** Note that

$$\{x^2 + 10y^2 + 10z^2 : x, y, z \in \mathbb{Z}\} = \{x^2 + 5y^2 + 5z^2 : x, y, z \in \mathbb{Z} \text{ and } 2 \mid y - z\}.$$

Sun has studied the latter set in [10].

Sun and Sun [9, Theorem 1.1(ii)] proved that every positive integer *n* can be written as  $x^2 + y^2 + z^2 + w^2$  (*x*, *y*, *z*, *w*  $\in \mathbb{N}$ ) with *x* + 2*y* a square. Motivated by this, we obtain the following stronger result.

LEMMA 2.4. Every odd integer  $n \ge 8 \times 10^6$  can be written as  $x^2 + y^2 + z^2 + w^2$ (x, y, z,  $w \in \mathbb{N}$ ) with  $x \le y$  and x + 2y a square.

**PROOF.** We first note that

$$8 \times 10^6 > \left[ \left( \frac{2}{5^{1/4} - (4.5)^{1/4}} \right)^4 \right],$$

where [·] denotes the floor function. If  $n \ge 8 \times 10^6$ , then  $(5n)^{1/4} - (4.5n)^{1/4} > 2$  and hence there is an integer *m* with  $(4.5n)^{1/4} \le m \le (5n)^{1/4}$  such that  $m \equiv \frac{1}{2}(n-1) \pmod{2}$ .

Now let  $h(x, y, z) = x^2 + 5y^2 + 5z^2$ . By [3, pages 112–113],

$$q(h) = \{x \in \mathbb{N} : x \not\equiv \pm 2 \pmod{5} \text{ and } x \neq 4^k(8l+7) \text{ for any } k, l \in \mathbb{N}\}.$$
 (2.5)

As  $5n - m^4 \ge 0$ ,  $5n - m^4 \equiv 1$ , 2 (mod 4) and  $5n - m^4 \ne \pm 2$  (mod 5), we have  $5n - m^4 \in q(h)$  by (2.5). Hence, there exist  $s \in \mathbb{Z}$  and  $z, w \in \mathbb{N}$  such that  $5n - m^4 = s^2 + 5z^2 + 5w^2$ . Clearly  $-\sqrt{5n - m^4} \le s \le \sqrt{5n - m^4}$ . Replacing s by -s if necessary, we may assume that  $s \in \mathbb{Z}$  and  $s \equiv -2m^2$  (mod 5). By the inequality

$$s + 2m^2 \ge -\sqrt{5n - m^4} + 2m^2 = \frac{5m^4 - 5n}{\sqrt{5n - m^4} + 2m^2} > 0,$$

we may write  $s + 2m^2 = 5y$  for some  $y \in \mathbb{N}$ . This gives

$$5n - m^4 = (5y - 2m^2)^2 + 5z^2 + 5w^2$$

and hence

$$n = (m^2 - 2y)^2 + y^2 + z^2 + w^2.$$
 (2.6)

Let  $x := m^2 - 2y$ . Then

$$5x = 5m^2 - 10y = m^2 - 2s \ge m^2 - 2\sqrt{5n - m^4} = \frac{5(m^4 - 4n)}{m^2 + 2\sqrt{5n - m^4}} > 0.$$

This gives x > 0. Moreover,

$$5(y-x) = 3s + m^2 \ge -3\sqrt{5n - m^4} + m^2 = \frac{10(m^4 - 4.5n)}{m^2 + 3\sqrt{5n - m^4}} \ge 0.$$

This gives  $x \le y$ . In view of the above, we can write  $n = x^2 + y^2 + z^2 + w^2$  with  $x, y, z, w \in \mathbb{N}, x \le y$  and  $x + 2y = m^2$ . This completes the proof.

**LEMMA 2.5.** For every integer  $n \neq 0 \pmod{4}$  such that  $n \geq 4 \times 10^8$ , we can write  $n = x^2 + y^2 + z^2 + w^2$   $(x, y, z, w \in \mathbb{N})$  with  $x + 3y = 2m^2$  for some  $m \in \mathbb{N}$ .

**PROOF.** We divide our proof into two cases.

*Case 1.*  $n \equiv 2 \pmod{4}$ . In this case, we write n = 2n' for some odd integer  $n' \ge 4 \times 10^7$ . By Lemma 2.4, we can write  $n' = x'^2 + y'^2 + z'^2 + w'^2$   $(x', y', z', w' \in \mathbb{N})$  with  $x' \le y'$ ,  $z' \le w'$  and  $x' + 2y' = m_0^2$  for some  $m_0 \in \mathbb{N}$ . Then

$$n = 2n' = (y' - x')^{2} + (y' + x')^{2} + (w' - z')^{2} + (z' + w')^{2}.$$

Letting x := y' - x', y := y' + x', z := w' - z' and w := z' + w',

$$n = x^2 + y^2 + z^2 + w^2$$

with  $x + 3y = (y' - x') + 3(y' + x') = 2(x' + 2y') = 2m_0^2$ .

Case 2. n is odd. We first note that

$$4 \times 10^8 > \left[ \left( \frac{4\sqrt{2}}{10^{1/4} - 9^{1/4}} \right)^4 \right]$$

If  $n \ge 4 \times 10^8$ , then  $(10n)^{1/4}/\sqrt{2} - (9n)^{1/4}/\sqrt{2} > 4$  and hence there is an integer *m* with  $(9n)^{1/4}/\sqrt{2} \le m \le (10n)^{1/4}/\sqrt{2}$  such that  $2 \nmid m$  and  $5 \nmid m$ . By Lemma 2.2(iii), there exist  $t \in \mathbb{Z}$  and  $z, w \in \mathbb{N}$  such that

$$10n - 4m^4 = t^2 + 10z^2 + 10w^2.$$

Clearly  $-\sqrt{10n - 4m^4} \le t \le \sqrt{10n - 4m^4}$ . Replacing t by -t if necessary, we may assume that  $t \equiv -6m^2 \pmod{10}$ . By the inequality

$$t + 6m^2 \ge -\sqrt{10n - 4m^4} + 6m^2 = \frac{10(4m^4 - n)}{6m^2 + \sqrt{10n - 4m^4}} > 0,$$

we can write  $t + 6m^2 = 10y$  for some  $y \in \mathbb{N}$ . This implies that

$$10n - 4m^4 = (10y - 6m^2)^2 + 10z^2 + 10w^2$$

and hence

$$n = (2m^2 - 3y)^2 + y^2 + z^2 + w^2.$$

Let  $x := 2m^2 - 3y$ . Then

$$10x = 2m^2 - 3t \ge 2m^2 - 3\sqrt{10n - 4m^4} = \frac{10(4m^4 - 9n)}{2m^2 + 3\sqrt{10n - 4m^4}} \ge 0.$$

This gives  $x \ge 0$ . In view of the above, we can write  $n = x^2 + y^2 + z^2 + w^2$   $(x, y, z, w \in \mathbb{N})$  with  $x + 3y = 2m^2$ .

This completes the proof of Lemma 2.5.

## 3. Proofs of the main results

**PROOF OF THEOREM 1.4.** We prove our result by induction on *n*. When  $n < 4 \times 10^9$ , we can verify the desired result by computer. Assume now that  $n \ge 4 \times 10^9$ . We divide the remaining proof into two cases.

*Case 1.*  $n \equiv 0 \pmod{4}$ . If 16 | *n*, the desired result follows immediately from the induction hypothesis. We now assume that 16  $\nmid n$ . Then we can write n = 4n' with  $n' \neq 0 \pmod{4}$ . By Lemma 2.5, there exist  $x_1, y_1, z_1, w_1, m_1 \in \mathbb{N}$  such that  $n' = x_1^2 + y_1^2 + z_1^2 + w_1^2$  and  $x_1 + 3y_1 = 2m_1^2$ . Clearly we can write  $n = 4n' = x^2 + y^2 + z^2 + w^2$  with  $x + 3y = (2m_1)^2$ , where  $x = 2x_1, y = 2y_1, z = 2z_1, w = 2w_1 \in \mathbb{N}$ .

*Case 2.*  $n \equiv 1, 2, 3 \pmod{4}$ . We first note that

$$4 \times 10^9 > \left[ \left( \frac{8}{10^{1/4} - 9^{1/4}} \right)^4 \right] > \left[ \left( \frac{4}{10^{1/4} - 9^{1/4}} \right)^4 \right].$$

If  $n \ge 4 \times 10^9$ , then we have  $(10n)^{1/4} - (9n)^{1/4} > 8$ . Hence, we can find an integer *m* with  $(9n)^{1/4} \le m \le (10n)^{1/4}$  satisfying the following condition:

$$\begin{cases} 2 \nmid m \text{ and } 5 \nmid m & \text{if } n \equiv 1, 2 \pmod{4}, \\ 4 \mid m \text{ and } 5 \nmid m & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

By Lemma 2.2, there exist  $u \in \mathbb{Z}$  and  $z, w \in \mathbb{N}$  such that

$$10n - m^4 = u^2 + 10z^2 + 10w^2.$$

Clearly  $-\sqrt{10n - m^4} \le u \le \sqrt{10n - m^4}$ . Replacing *u* by -u if necessary, we may assume that  $u \in \mathbb{Z}$  and  $u \equiv -3m^2 \pmod{10}$ . By the inequality

$$u + 3m^2 \ge -\sqrt{10n - m^4} + 3m^2 = \frac{10(m^4 - n)}{\sqrt{10n - m^4} + 3m^2} > 0,$$

we can write  $s + 3m^2 = 10y$  for some  $y \in \mathbb{N}$ . This gives

$$10n - m^4 = (10y - 3m^2)^2 + 10z^2 + 10w^2$$

and hence

$$n = (m^2 - 3y)^2 + y^2 + z^2 + w^2.$$

224

Let  $x := m^2 - 3y$ . Then

$$10x = m^2 - 3u \ge m^2 - 3\sqrt{10n - m^4} = \frac{10(m^4 - 9n)}{m^2 + 3\sqrt{10n - m^4}} \ge 0.$$

This gives  $x \ge 0$  and hence  $n = x^2 + y^2 + z^2 + w^2$   $(x, y, z, w \in \mathbb{N})$  with  $x + 3y = m^2$ . These conclusions complete the proof.

**PROOF OF THEOREM 1.7.** When n = 1, 2, ..., 10, we can verify our result by computer. Now assume that n > 10. By Lemma 2.2(i)–(ii), for any positive integer n with  $4 \nmid n$ , there are integers a, z, w such that

$$10n - \varepsilon^2 = a^2 + 10z^2 + 10w^2,$$

where

$$\varepsilon = \begin{cases} 1 & \text{if } n \equiv 1, 2 \pmod{4}, \\ 4 & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Without loss of generality, we assume that  $a \equiv -3\varepsilon \pmod{10}$  (otherwise we can replace a by -a). Writing  $a = 10y - 3\varepsilon$ ,

$$10n - \varepsilon^2 = (10y - 3\varepsilon)^2 + 10z^2 + 10w^2$$

and hence

$$n = (\varepsilon - 3y)^2 + y^2 + z^2 + w^2.$$

Letting  $x := \varepsilon - 3y$ ,

$$n = x^{2} + y^{2} + z^{2} + w^{2}$$
 and  $x + 3y = \varepsilon$ . (3.1)

In addition, according to Lemma 2.2(iii), for any positive odd integer *n*, there are  $b, z', w' \in \mathbb{Z}$  such that

$$10n - 2^2 = b^2 + 10z'^2 + 10w'^2.$$

As above, we may write b = 10y' - 6 for some  $y' \in \mathbb{Z}$ . This gives

$$10n - 2^2 = (10y' - 6)^2 + 10z'^2 + 10w'^2$$

and hence

$$n = (2 - 3y')^2 + y'^2 + z'^2 + w'^2.$$

Letting x' = 2 - 3y',

$$n = x'^{2} + y'^{2} + z'^{2} + w'^{2}$$
 and  $x' + 3y' = 2.$  (3.2)

Now let  $n = 2n' \equiv 2 \pmod{4}$  be a positive integer. By (2.5), we see that there are integers  $a_1, z'_1, w'_1$  such that

$$5n' - \eta^2 = a_1^2 + 5z_1'^2 + 5w_1'^2,$$

where

$$\eta = \begin{cases} 4 & \text{if } n' \equiv 1 \pmod{4}, \\ 1 & \text{if } n' \equiv 3 \pmod{4}. \end{cases}$$

Without loss of generality, we can assume that  $a_1 \equiv -2\eta \pmod{5}$  and then write  $a_1 = 5y'_1 - 2\eta$ . This gives

$$5n' - \eta^2 = (5y'_1 - 2\eta)^2 + 5z'_1^2 + 5w'_1^2$$

and hence

$$n' = (\eta - 2y'_1)^2 + y'_1^2 + z'^2 + w'^2.$$

Letting  $x'_1 := \eta - 2y'_1$ , we obtain  $n' = x'_1^2 + y'_1^2 + z'_1^2 + w'_1^2$  with  $x'_1 + 2y'_1 = \eta$ . As

$$n = 2n' = (y'_1 - x'_1)^2 + (y'_1 + x'_1)^2 + (z'_1 - w'_1)^2 + (z'_1 + w'_1)^2,$$

letting  $x_1 := y'_1 - x'_1, y_1 := y'_1 + x'_1, z_1 = z'_1 - w'_1$  and  $w_1 := z'_1 + w'_1$ ,

$$n = x_1^2 + y_1^2 + z_1^2 + w_1^2$$
 and  $x_1 + 3y_1 = 2\eta$ . (3.3)

By (3.2) and (3.3), for every positive integer  $n_0$  with  $4 \nmid n$  there are integers  $x_0, y_0, z_0, w_0$  such that

$$n_0 = x_0^2 + y_0^2 + z_0^2 + w_0^2$$
 and  $x_0 + 3y_0 \in \{2 \times 1, 2 \times 2^2\}.$  (3.4)

Now we prove our result by induction on *n*. If  $16 \mid n$ , then the desired result follows from the induction hypothesis. If  $4 \nmid n$ , then (3.1) implies the desired result. If n = 4n' for some  $n' \not\equiv 0 \pmod{4}$ , then by (3.4) one can easily verify our result.

These conclusions complete the proof.

## Acknowledgements

We thank Professor Zhi-Wei Sun for his helpful comments. We also thank the referee for helpful comments.

### References

- [1] J. W. S. Cassels, Rational Quadratic Forms (Academic Press, London, 1978).
- [2] L. E. Dickson, 'Quaternary quadratic forms representing all integers', Amer. J. Math. 49 (1927), 39–56.
- [3] L. E. Dickson, *Modern Elementary Theory of Numbers* (University of Chicago Press, Chicago, IL, 1939).
- [4] E. Grosswald, Representation of Integers as Sums of Squares (Springer, New York, 1985).
- [5] B. W. Jones, *The Arithmetic Theory of Quadratic Forms*, The Carus Mathematical Monographs, 10 (Mathematical Association of America, Buffalo, NY, 1950).
- [6] D. Krachun and Z.-W. Sun, 'On sums of four pentagonal numbers with coefficients', *Electron. Res. Arch.* 28 (2020), 559–566.
- [7] O. T. O'Meara, Introduction to Quadratic Forms (Springer, New York, 1963).
- [8] S. Ramanujan, 'On the expression of a number in the form  $ax^2 + by^2 + cz^2 + dw^2$ ', *Proc. Cambridge Philos. Soc.* **19** (1917), 11–21.

.

226

[9]

### Sums of four squares

- [9] Y.-C. Sun and Z.-W. Sun, 'Some variants of Lagrange's four squares theorem', Acta Arith. 183 (2018), 339–356.
- [10] Z.-W. Sun, 'On universal sums of polygonal numbers', Sci. China Math. 58 (2015), 1367–1396.
- [11] Z.-W. Sun, 'Refining Lagrange's four-square theorem', J. Number Theory 175 (2017), 169–190.
- [12] Z.-W. Sun, 'Restricted sums of four squares', Int. J. Number Theory 15 (2019), 1863–1893.
- [13] Z.-W. Sun, 'Sequence A300666' (10 March 2018), in: The Online Encyclopedia of Integer Sequences, http://oeis.org
- [14] H.-L. Wu and Z.-W. Sun, 'On the 1-3-5 conjecture and related topics', Acta Arith. 193 (2020), 253–268.

YUE-FENG SHE, Department of Mathematics, Nanjing University, Nanjing 210093, People's Republic of China e-mail: she.math@smail.nju.edu.cn

HAI-LIANG WU, School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China e-mail: whl.math@smail.nju.edu.cn

[10]