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A spoofing attack on a global navigation satellite system (GNSS) receiver is a threat to a sig-
nificant community of GNSS users due to the high stakes involved. This paper investigates the
use of slope based metrics for the detection of spoofing. The formulation of slope based met-
rics involves monitoring correlators along with tracking correlators in the receiver’s channel,
which are slaved to the prompt tracking correlator. In this study, using some candidate metrics,
detectors have been formed through the analysis of simulated spoofing attacks. A theoretical
variance of each metric has also been calculated as a reference for the threshold. A threshold
is estimated using the measured variance from the clean signals, for specific false alarm rate.
By using the measured threshold, detectors are formed based on slope metrics. These detectors
have been tested using TEXBAT data. The results show that the differential slope metrics have
good performance. The results have also been compared with some other techniques of spoofing
detection.
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1. INTRODUCTION. Global navigation satellite systems (GNSS) are becoming a pri-
mary source of position, navigation and timing applications in a variety of fields and have a
big user base (Ioannides et al., 2016; Psiaki and Humphreys, 2016). GNSS signals are vul-
nerable to environmental effects, interference, jamming and spoofing due to their low power
and open signal structure (Juang, 2009; Huang et al., 2016). Navigation and timing services
can be easily interrupted by interference or jamming, or misled by a spoofer through coun-
terfeit signals. An intermediate spoofing attack that leverages a genuine signal in space to
create counterfeit signals, transmitted from a single antenna, is the preferred method for
the attacker because it does not break the receiver tracking loop lock on the signal and, as
a result, does not panic the user. The spoofer produces a misleading signal that replicates
the structure of an authentic signal to deceive the user. However, the basic problem for the
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spoofer is to break the lock of the user receiver tracking loop from the authentic signal and
make it lock on the counterfeit signal generated by the spoofer, without alerting the user.
In order to do this, the spoofer has to follow a sequence of initial operations to launch the
intermediate spoofing attack (Humphreys et al., 2012). This sequence includes getting the
signal parameters at user position, starting the attack by hiding the spoofing signal under
the authentic signal and then dragging the spoofing signal away from the authentic signal
to complete the attack (Humphreys et al., 2012).

The study of spoofing techniques and their mitigation is therefore an active area of
study. Jafarnia-Jahromi et al. (2012) provide a classification of known spoofing techniques,
while Ioannides et al. (2016) and Psiaki and Humphreys (2016) provide thorough coverage
of spoofing attacks and mitigation techniques. Of many classes of technique discussed in
Jafarnia-Jahromi et al. (2012), signal quality monitoring (SQM) is the one technique that
has been used by many researchers including Cavaleri et al. (2010) and Ali et al. (2014).
SQM techniques are effective during the phase of spoofing where the distortion due to
the availability of the authentic and the counterfeit signal is significant. Likewise, there
are other SQM techniques like delta metric, early-late phase metric, magnitude difference
metric, etc. (Wesson et al., 2011). Each of these SQM techniques uses a combination of the
correlator outputs or measurements and threshold/detection test to detect abnormality on
account of multipath, spoofing, signal integrity, satellite failure, etc.

A set of SQM metrics based on normalised auto-correlation function (ACF) shape was
proposed by Phelts et al. (2003). Here the author endeavoured to devise a reliable method
for determining a set of SQM metrics for evil waveform detection. The paper describes a
flexible, straightforward and quantitative approach to computing a set of highly-effective
detection metrics, for the real-time SQM monitoring of the wide area augmentation system
(WAAS) signal. The metrics described in the paper contain polynomial fit metrics that use
the least squares method to fit linear and quadratic polynomials to the ACF. The method
described in Phelts et al. (2003) for linear fit has been used to find the slope of the ACF in
this study.

The present paper discusses a method based on slope metric that calculates the slope of
ACF at the tracking point to obtain a signal quality metric that is sensitive to distortion in
the ACF due to spoofing. The slope metric technique is based on the work of Townsend
and Fenton (1994) and Phelts et al. (2003), which primarily addresses multipath and evil
waveform detection issues. The technique uses normalised ACF for metric formulation.
The normalisation of the measurement correlator using a tracking correlator is done in
many SQM metrics (Pirsiavash et al., 2017). The normalisation by a tracking correlator
gives an advantage in comparing the metric values. However, in fading channels when the
direct signal is obstructed, such normalisation could lead to changes in the noise level of
the signal (Alonso-Arroyo et al., 2017). Such situations may be detected by measuring the
carrier to noise density ratio (C/Ny) of the signal and the decision-making process could be
stopped when C/Nj drops below a certain level.

The results of the slope based detector are compared with some recent studies in which
the results are reported quantitatively (Wang et al., 2017; Wesson et al., 2018; Gross et al.,
2019) and using the similar dataset in their studies. The spoofing detector reported by Wang
etal. (2017) had a better detection rate than the proposed combination detector for only case
2 of TEXBAT; however, a complete comparison remains challenging because the numer-
ical value of probability of false alarm (Pgy) is not reported in the results. Wesson et al.
(2018) have given simulation results for their PD detector and the experimental results
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using TEXBAT cases except for case 7 where it uses a combination of symmetric differ-
ence metric and power measurement for classification of environment as clean, multipath,
spoofing and jamming. Gross et al. (2019) improved upon the Wesson’s work using the
maximum-likelihood estimator to estimate the authentic signal parameters. It can be seen
here that the combination detector performs equally well. If compared with legacy SQM
detectors, etc. the proposed detector can easily outperform them, as these detectors use
legacy tracking correlator outputs and Doppler measurement. Advanced spoofers, how-
ever, generate an attack in such a way as to disturb the Doppler and tracking correlator as
little as possible and for a very short period of time.

The proposed method is found to be effective in the pull-off phase, which is the time
when the delay between the spoofing and authentic signals is significant. The technique is
also found to be effective in matched power as well as over-powered cases.

2. BACKGROUND. A spoofer is a device capable of generating a signal similar to an
authentic satellite signal that can deceive the victim receiver in such a way that it deduces
an incorrect position, time or both. A detailed study of spoofing is presented below to
understand how spoofing can be detected.

2.1.  Classification of spoofing attack. Spoofing attacks through the generation of
satellite signals can be classified as simplistic, intermediate or sophisticated based on
the complexity of the spoofer (Humphreys et al., 2008). A simplistic attack is conducted
through a satellite simulator that is not synchronised to the current user environment. The
intermediate and sophisticated spoofer uses a receiver to obtain the current satellite sig-
nal state and produce an output in synchronisation to the situation at the user receiver.
An intermediate attack is launched through a single transmitter and can be detected
through the angle of arrival discrimination methods. A sophisticated attack can be launched
through multiple transmitters to overcome the victim’s defences using the angle of arrival
discrimination (Humphreys et al., 2008).

2.2. Details of the intermediate attack. An intermediate spoofing attack uses a GNSS
receiver to estimate the critical parameters, such as frequency, code phase and amplitude,
during the alignment phase. These parameters are required in order to match the counter-
feit and genuine signal, so that both signals appear as one in the target receiver correlation
function. Separate parameters for each satellite are estimated to generate the data stream
for each satellite. All data streams are combined and adjusted for power and then trans-
mitted (Humphreys et al., 2012). After the alignment phase, the counterfeit signal power
is increased to control the tracking loops of the target receiver. The counterfeit signal is
then steered away from the authentic signal by changing the code phase (Humphreys et al.,
2012). This process is called pull-off, and generates ACF distortion. When the pull-off
phase is complete and the receiver is locked on the spoofed signal, away from the genuine
signal, the phase is known as the capture phase. The spoofer now has complete control over
the target receiver (Humphreys et al., 2008). Table 1 provides an overview of the spoofing
sequence of each phase in the TEXBAT data (Humphreys et al., 2012).

2.3. Dataset. To evaluate the slope metric publicly available datasets and indepen-
dent field recordings were used.

2.3.1. Spoofing dataset. The spoofing dataset was comprised of the TEXBAT dataset
and the synthetic spoofing data (Khan et al., 2018). TEXBAT is the battery of recorded
spoofing cases compiled by researchers at the University of Texas, Austin. It includes
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Table 1. Phases of intermediate spoofing sequence and spoofing status.

Phase description Spoofing status
Alignment: Spoofer sets the code and carrier phase according to the target position Un-spoofed
Control: Spoofer increases the power to control the tracking loop, but does not steer it away  Spoofing starts
Pull-off: Spoofer drags the counterfeit signal away from the authentic signal Spoofing
Capture: Spoofer hijacks the receiver Spoofing

Table 2. Summary of TEXBAT cases.

Spoofing case description Spoofer power advantage (dB)
1: Static Switch N/A

2: Static Overpowered Time Push 10

3: Static Matched Power Time Push 1.3

4: Static Matched Power Position Push 0-4

5: Dynamic Overpowered Time Push 99

6: Dynamic Matched Power Position Push 0-8

7: Static Matched Power Time Push N/A

8: Static Matched Power Time Push N/A

clean static and dynamic cases and eight spoofing attack cases datasets. Table 2 provides a
description of the spoofing cases and the spoofer power advantage. Spoofer power advan-
tage is the ratio of the power of the spoofing signal to the authentic signal as seen by the
target receiver. In order to generate spoofing cases, corresponding clean cases have been
replayed using a vector signal generator (VSG). The output of the VSG has been split
and one part is given to the receiver inside the spoofer to extract the required parameter
and the other part is combined with the output of the spoofer to make the spoofing signal.
The combined signal is recorded using vector signal analyser (VSA), with a bandwidth of
20 MHz, and digitised as complex 16-bit samples at a rate of 25 MSps (Humphreys et al.,
2008).

2.3.2. Non-spoofing dataset. The non-spoofing dataset comprised of clean TEXBAT
data, RNL Multipath War-drive data (Wesson et al., 2011), and data recorded in the field.

The RNL multipath and interference data contains static and dynamic cases in both light
and dense urban environments around Austin, Texas. It exhibits mild-to-severe multipath
and mild unintentional interference. The data is quantised in 16 bit and the recording is
cantered at 1575-42 MHz (GPS L1) and at a complex sampling rate of 37 MSps.

The data acquired from the field consists of clean and multipath affected record-
ings using commercial satellite signal recorders. The signal recorders used have either
MAX2769 Front-end, with complex sampling rate of 16-368 MSps, with IF of 4.092 MHz
or NT1065 Front-end with sampling rate of 53 MSps, with IF of 14-58 MHz. The signal
recorders were equipped with TCXO with an accuracy of about &5 x 1077 s/s. The data
has been logged in clean, obstruction-free places as well as in urban places where high
multipath and mild unintentional interferences were present.

2.3.3. Pre-processing. During the pre-processing phase, the data samples that have
C/Nj below 28 dB-Hz have been removed from the dataset, to avoid normalisation issues
that may occur under low signal-to-noise ratio. The choice of minimum C/Nj of 28 dB-Hz
(Kaplan and Hegarty, 2005) eliminates most of the samples that can produce false alarm
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due to low signal strength while not affecting the detection in the receiver in tracking state
under nominal conditions.

3. PROPOSED SLOPE BASED METRICS. Quality monitoring is a process of mea-
suring of the difference between the available or measured and the desired results. SQM
techniques are based on either an observation of the measured ACF distortion or modelled
characteristics of measured noise (Mitelman et al., 2000). The goal of slope based spoof-
ing detection technique is to measure the signal quality by analysing the slope of ACF.
A legacy receiver has three coherent tracking correlators for each channel. However, the
SQM receiver uses additional monitoring correlators for computing metrics (Phelts et al.,
2003). These monitoring correlators are linked to the tracking correlators and are at a spec-
ified distance from them. These monitoring correlators are used to measure slope metric
value. Figure 1 depicts two different pairs of monitoring correlators along with tracking
correlators. In the current section, a discussion on slope based metrics is presented.

3.1. Mathematical model of ACF.  After passing through the front-end and baseband
section, a signal from a satellite, its reflection and the spoofing signal are accumulated for
integration time, 7. The accumulated value is an instantaneous measured ACF, given by

N—-1
[é} =2 [Z ad(n + T )e(n + z,)el 71 +No(n>} c(n+ T)e (1)

n=0 s

where subscript ‘s’ is used for different delayed versions due to spoofing or multipath and
subscript ‘i’ is used for different correlators. a5 is amplitude of sth form of signal, ¢(n) is
locally generated replica PRN code and e/ %/ is the locally generated replica carrier,
7; is the delay between locally generated code sequence and the received code for the ith
correlator. t; = 0 for the prompt correlator. NV is the number of samples in integration time
T and is defined as N =f.. T, where f. is the analog-to-digital conversion sampling rate.
¢/ @7/ i transmitted carrier, ¢, is transmitted carrier phase for sth version of signal, z, is
the delay of sth signal from the direct signal.

After rearranging and simplification, the accumulated value in the in-phase branch of

the correlator becomes
M+1

1‘[[ = Z as cos(¢y)R(t; — 7)) + Nrm (2)

s=0

where there are M multipath signals, a direct and a spoofing signal are assumed to be
present, Ny, is the noise components after accumulation,R() is an ideal ACF of GPS C/A

code that is defined as
N-1

R(t)=)_ cme(n— 1), 3)

n=0
The ideal ACF is approximately equal to the following (Kaplan and Hegarty, 2005)

N |:1 — mi| for |7] < T,
R(7) = Te , 4)

0 otherwise

The ideal ACF has the shape of a triangle as given in Figure 1.
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Figure 1. Tracking and monitoring correlators used to track and capture the slopes on a normalised ACF.

3.1.1. Slope calculation. Using the method given in Phelts et al. (2003), the slope of
an ACF can be calculated using the least square method by solving the following equation,
which estimates the slope (M) and y-intercept (/,,) in the least square sense

T0 1 I
M -
a1 [P | )
T2 1 Y 1
where Li =1, 79, 71 and 7, are selected delays for calculating the slope.
However, if 7; is at the centre point between 7 and 13, it can be shown from Equation (5)
that the slope can be calculated by the following equation
I,-1, 1I,-1,
Ms(t9,73) = —— = ——— (6)
=17 lo[r2 — 7]

where 7 and 7, can have any values and the t; is the mean value of 7y and 1.

In order to understand the effect of multipath or spoofing, a direct and counterfeit signal
is simulated with fixed spoofer power advantage and different time delays between the
spoofing and authentic signal. The slope on the early and late side of the prompt tracking
point is calculated using Equation (6). Figure 2 depicts the constituent signals ACF, the
combined signal ACF, the tracking points and monitoring points at 25% and 75% of chip
period (0-257, and 0-757;) on the ACF. The spoofer power advantage considered here is
0-8 dB corresponding to the matched power case. The tracking results are shown for delays
of 0-2, 0-8 and 1-3 chips between the two signals. It can be observed that the slope value
changes as the delay between the signal changes.

Figure 3 shows the same receiver parameters as shown in Figure 2, for the spoofer power
advantage of 9 dB that corresponds to overpowered cases. It can be observed here that with
such high spoofer advantage, there is little change in slope value of the measured ACF.

3.2. Metric formulation. The choice of placement of monitoring correlators is a crit-
ical factor in metric formulation. Noise will be enhanced if the monitoring correlators
are very close to each other, because of the factor of t, — 7 in the denominator of the
Equation (6). To make a reasonable separation, the monitoring correlators used in this study
are at 10%—-90% and 25%—75% of the chip period.
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for spoofer power advantage of 9 dB and spoofing signal as 0-8 chips away from the authentic signal.

Equation (6) can be used to calculate early and late side slopes, where My (—1, — 1)
produces early slope value and M;(t;, 7o) produces late slope value for (7, t;) monitoring
correlators. In order to find an effective metric for spoofing detection, several metrics have
been formulated consisting of slope metrics and the symmetric and asymmetric difference
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of slope metrics. The slope metrics are
My = Ms(0-1,0-9)
Mg, = Mg(—0-1,—0-9)
Ms; = Ms(0-25,0-75)
Msq = Ms(—0-25,—0-75)

(7

In order to create symmetric difference metrics from early and late pairs of slope
measurement, their values are added in the following metric,

Mpy = Mgz + Mgy

(8)
Mpy = Mgy + Mg,

where the Mg;—Ms, values are defined in Equation (7) and the Mp; and M), are symmetric
differential slope metrics. The asymmetrical one-sided differential metrics can be formed
by taking the difference of metrics on early or late sides as follows,

Mpsz = Ms3 — Mg,

)
Mpy = Mgy — My,

where Mp3; and Mp, are early and late side differential metrics. Considering the structure,
the Mp, and Mp,metrics are similar to the double delta metric as described in Pirsiavash
et al., (2017), except for the choice of monitoring correlators. However, Mp; and Mp4 are
novel in the sense that they use the one-sided monitoring correlators in metric formulation.
The double delta metric is defined as follows:

(I—0.1 — L+0.1) — (U—0.05 — L+0.05)
Iy '

Mpr =

Next, we calculate the nominal variation of the metrics that occurs due to the influence of
thermal noise, as given in Irsigler (2008) for the slope metrics, given in Equations (7-9).
Details of variance calculation are given in Appendix A.

Table 3 summarises the metrics and their variance for different C/N, values.

The variance calculated and presented in Table 3 is based on only the C/Nj value of the
signal. The values have been calculated here for the purposes of having a reference to the
clean signal. The calculated variance may also be used as a sanity check on the calculated
threshold.

In order to develop a metric suitable for the detection of a spoofing attack, we have simu-
lated the spoofing attack scenario for a different power ratio between authentic and spoofer
signal power. Slope metric values for different delays between authentic and spoofing sig-
nals are shown in Figures 4—6. Figure 4 contains the slope metrics (Mg;—Ms4) values. It
can be noted here that the slope metric values change from their typical un-spoofed posi-
tion (when At =0) for even a very small change in the spoofing and authentic signal
delay. Figure 5 contains the symmetrical differential slope metrics (Mp;, Mp;). The met-
rics have a low sensitivity (metric value does not change from the typical value) for small
delays in the authentic and spoofing signals; however, they also have low sensitivity for the
matched power cases. Figure 6 contains the asymmetrical one-sided differential slope met-
rics (Mp3, Mp4). It shows that there is very little change in the slope values for the small
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Table 3. Summary of slope based metrics, calculated statistics including expected value and variance formulas
and values at different C/Nj.

Variance @ 28 dB-Hz Variance @ 45 dB-Hz

Selected metric Mean fi,, Variance o7 T=1s T=1s
1.5
Mg, -1 —_— 0-0012 0-000023
2-C/Ny-T
Ms, 1
3
Ms3 -1 —_— 0-00237 0-000047
2-C/Ny-T
Mgy 1
M, 0 12 0-0095 0-00018
D 2-C/Ng-T
M, 0 73 0-0059 0-00011
D2 2-C/No- T
2065
Mp3 0 —_— 0-00163 0-000032
2-C/Ny-T
Mps
0-2
Double delta metric Mpt 0 _— 0-000025 0-000003
2.C/Ny-T
(@1s (b) 15
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Figure 4. Slope value for monitoring correlators at (a) 25%—75% location at early and late side and (b)
10%—-90% location at early and late side. Authentic and spoofing signals are simulated for different delay
profiles and Spoofer Power Advantage.

delay between the authentic and spoofing signal, even if the power ratio varies. For the
larger delays, however, the value of the slope changes considerably. This makes the choice
of the asymmetrical one-sided difference slope metric more suitable for spoofing detection,
as spoofing eventually has a large delay when the spoofer drags the signal away from the
authentic signal (Humphreys et al., 2008).

3.3. Threshold calculation. A threshold for every metric is necessary for the detec-
tion process (Phelts et al., 2003). In order to calculate a reasonable threshold, statistical
analysis has been performed to implement a Neyman Pearson (NP) detector. Here, we
consider two hypotheses: the null hypothesis, Hy, which is considered when there is no
spoofer present, and the alternate hypothesis, H;, which is considered when the spoofer is
present.
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Hp: When the spoofer is not present, the correlation results contain power from an
authentic signal, thermal noise, the multipath components, and other variations.

Under the null hypothesis

HO:ngﬂm

(10)

where M, is any slope metric value and pu,, is its mean value.

: When the spoofer is present, the correlation results contain the power from spoofing

signal too. The expected value of the metric is changed under the spoofing, hence

Hy @ My # [
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In order to build an NP detector in the absence of completely defined distribution of alter-
nate hypothesis, the likelihood function can be defined from Equations (10) and (11),
as

*C(Mx) = |M\t - Mm| (12)

Using the likelihood function, the Pg, for a given threshold y can be calculated from the
following,

Pra(y) = p(IMx — pim| > v |Ho) 13)

where y is the detection threshold, p(-) is the probability function and M, is the desired
slope based metric.

If Pga is given, the detection threshold y can be determined by inverting the prob-
ability function. As the slope based metrics are linear combinations of the accumulator
outputs which are Gaussian (Huang et al., 2016; Pirsiavash et al., 2017), they are consid-
ered Gaussian with theoretical statistics given in Table 3, the threshold can be calculated
using,

v =N 20erfc" (2 - Ppa) (14)

where erfc™! is the inverse Gaussian function.
The probability of detection (Pp) or detection rate can be theoretically calculated by

Pp(y) = p(IMy — | > vI|H)) (15)

As the statistical distribution of the disturbance due to the spoofing cannot be determined,
however, an empirical solution for finding the detection rate has therefore been chosen in
the results section, below.
3.4. Spoofing detector. Using the threshold, a statistical detector can be built from
Equations (13) and (15)
Hy
|Mv_Mm| §V (16)
H,

A combination of metrics can also be used to form a detector. In this case Equation (16) can
be used for detection using individual metrics and their detection results can be combined
to achieve the final results, as below,

My, — m,| > y1 ot [My, — ftm,| > y2  decide H,
otherwise decide Hy

a7

where the subscripted values correspond to two different metric values and threshold.

4. RESULTS. Inorder to gain an insight into slope based metrics, detectors based on the
metrics listed in Table 3 and a combination detector have been considered for examination,
using the datasets described previously. The non-spoofing datasets have been used for the
Ppry calculation and the spoofing datasets have been used for calculation of Pp.

A software defined receiver (SDR) (Borre et al., 2006) with additional monitoring corre-
lators has been used to generate tracking results. The integration time (7) has been selected
as 1s, whereas the correlation result is produced every 1 ms, and post-correlation integra-
tion for metric calculation has been carried out by coherent integrators. The SDR produces
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Table 4. Results of slope metrics including calculated and measured thresholds and Pp for each case from
TEXBAT and synthetic data for 0-1% Ppa.

Pp Pp Pp Pp Pp Pp Pp Pp
Case2 Case3 Case4 Case5S Case6 Case7 Case8  Synth
Metric Ye Ym [%] [%] [%] [%] [%] [%] [%] [%]
Mg 0-0145  0-09 0 27-76 45.97 0 10 69-67 92-43 0
My 0-0145  0-11 0 8:36 44.97 0 31.72 55 7243 8-45
Mgz 0-0207  0-09 3.34 40-80 73-15 0 10-69 65 92-43 0
Mgy 0-0207  0-11 89-30 77-26 26-51 0 30-69 64 91-89 5-63
Mp 0-0415  0-064 0 23-41 57-05 1.03 331 64-67 91-89 9-86
Mpo 0-0328  0-064 0 20-74 30-87 0 40 69-33 9243 11.27
Mp3 0-0172  0-017 96-66 76-92 94.63 979 97-6 70 92-43 92:25

Mpas 0-0172  0-028 96-66 92.31 94-63 99-32 96-9 68-67 92-43 39-44
Mpa3 0-0172  0-028 96-66 93.65 95.3 99.32 98-62 70-67 92.33 93.66
Mpr 0-015 0-044 535 21-40 3591 1.71 41-38 77-67 92-43 94.37

tracking and monitoring results every 7 seconds for each tracking channel. The value of
each metric under study is calculated and a detection is considered if the metric value is
greater than the threshold.

The study also includes a combination detector for the examination using Mp; and Mpy.
The detector is formed as described by Equation (17). A single threshold for both con-
stituent metrics has been used during the measurement of Pra and P for the combination
detector.

4.1. Selection of threshold for specific Pra. To calculate the measured threshold (y,,)
for 0-1% Pga, an arbitrary starting value of threshold is selected for each spoofing detection
metric, for which detection is decided using Equation (16), using the data from the available
set of satellites in non-spoofing cases. P, is calculated as the number of samples in which
spoofing is detected out of total samples in which the spoofing is tested, which is effectively
the averaging of detection in all satellites. The threshold value has been iteratively varied
and a value is finally selected which gives the required Pga of 0-1%. Before the detection
process, the data samples that have C/Nj below 28 dB-Hz have been removed from the
dataset, to avoid normalisation issues that may occur under low signal-to-noise ratio. The
measured threshold computed through the described method for each metric is given in
Table 4.

The calculated threshold (y,) has been computed using Equation (14) for C/Nj at 45 dB-
Hz and Pga of 0-1%. The C/Nj has been chosen, based on the average carrier-to-noise ratio
in the complete dataset. The result of the calculated threshold is also shown in Table 4.

4.2. Measurement of Pp. To calculate Pp, a non-spoofing dataset has been used. The
measured threshold (y,,) that produces specific Pra is used in the detector. The spoofing
period has been considered to be from the onset of spoofing until the end of the dataset, as
given by the spoofing delay profile (spoofer delaying/advancing the spoofing signal com-
pared with authentic signal) as described by Humphreys et al. (2012) and Lemmenes et al.
(2016), and synthetic data delay profile as described by Khan et al. (2018).

By using the metrics values and employing Equation (16), the detection is declared
for each measurement in each channel. The detection rate (Pp) has been calculated as the
number of samples in which spoofing is detected out of total samples in which the spoofing
is tested using measured threshold (y,,), for each satellite, for each case listed in Table 2,
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effectively averaging the detection rate of all satellites. The detection rate (Pp) for each
spoofing case is also listed in Table 4.

4.3. Discussion of results. The results of the experiments are summarised in Table 4
with thresholds and detection rates for each metric under study in different spoofing cases.
It can be seen that the simple slope metrics, symmetric difference metrics, and the double
delta metric could not perform well for spoofing detection. The measured threshold for
these metrics is also found to be comparatively higher, showing that there are more nominal
variations in these metrics. This indicates that these methods are more sensitive to the
multipath and hence may be better suited for the multipath detection. On the other hand,
the metric Mp; and Mp, (asymmetric one-sided differential metrics on early and late side)
performed better with high detection rate for the same rate of false alarms. They also have
a comparatively smaller threshold and a small difference between measured threshold (y;,)
and the calculated threshold (y.), suggesting that these metrics are less sensitive to the
multipath and other nominal disturbances. It can also be observed that there is a difference
between the detection rates of Mp3; and Mp4 metrics which is due to the pull-off direction of
the spoofer. The spoofer always tries to adjust the pull-off direction of the spoofing signal
such that the authentic signal appears as multipath. This may not be possible, however,
in position-push cases where each satellite signal has to be steered such that a different
position is deduced by the victim receiver and hence a different pull-off direction in some
channels is necessary. Due to this fact, one metric has a higher detection rate than the other
one. Therefore, the performance of a combination detector Mp43 which uses the results of
both metrics surpasses that of the other detectors.

It can also be observed that method Mp43 performs better in case 2 and case 5 where
the spoofer power advantage is very high. The high detection rate could be attributed to
two phenomena. The first is the fact that the method is found good for even a very high
spoofer advantage, as evident from Figure 6, which shows a significant metric value for
different spoofer power advantages. Second, the overpowered cases are more similar to the
multipath cases, but due to the random nature of multipath, and the inherent averaging in
the method, it could differentiate between the multipath and spoofing. It can also be noted
that case 2 and case 5 are time-push cases, which means that the spoofer delay profile is
the same for all the channels, so detection is similar for each channel, which is not the
case with position-push cases. Also in over-powered cases, the variation in signals due to
spoofing starts early.

The results show that the slope based detector, when compared with some recent studies
in which the results are reported quantitatively (Wang et al., 2017; Wesson et al., 2018;
Gross et al., 2019), performs equally well. However, these methods require a larger number
of correlators and a detector that is based on a complex detection procedure. On the other
hand, the method proposed in this study uses a smaller number of monitoring correlators
and the metric is composed of a simple linear combination of correlator value and detector
output that is produced by applying a threshold. The structure of the slope metric based
detector is therefore simpler than the comparable methods, and therefore it produces less
computational burden. It is also evident from Table 4 that the double delta metric, whilst
demonstrating good performance in detecting multipath (Irsigler, 2008), does not show a
similar performance in the detection of spoofing.

In order to gain a complete insight into the performance of the detectors, the receiver
operating characteristics (ROC) curve of selected detectors has been constructed and is
given in Figure 7. For the purposes of building the ROC curve, the Pr,4 (using non-spoofing
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Figure 7. ROC curve of slope metric based detectors: (a) complete ROC (b) expanded view of ROC for

performance comparison in low PFA.

dataset) and Pp values (using spoofing dataset) have been calculated and plotted as the
threshold used in both calculations is varied simultaneously. The ROC curve is built by
using the signals from all available satellites in the complete datasets used in this study.
Looking into the ROC it can be seen that the Area Under the Curve (AUC), which is an
important parameter in comparing detector performance, of the detector based on Mp; and
Mpy is almost similar showing similar performance by them. However the AUC of the
combination detector (Mpy43) is much higher.
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Looking into the expanded view of the ROC curve it can be seen that the performance
of the combination detector on the selected dataset is high for even a lower threshold value,
suggesting that the threshold in the experiments can be further lowered with a very small
decrease in detection rate but a significant decrease in false alarm rate.

5. CONCLUSION. The study presented here has focussed on detecting spoofing
attacks. This paper has proposed various slope based metrics for spoofing detection in
intermediate/sophisticated spoofing attacks. The detectors based on asymmetrical differen-
tial slope metrics have been found to be robust and sensitive to spoofing attacks in matched
power as well as overpowered cases as deduced from the simulation and demonstrated
through experimental results. A combination detector based on two slope metrics has also
been discussed in this paper and has been found to outperform other detectors. The combi-
nation detector has performed equally well in static and dynamic cases and on synthetically
generated spoofing attacks. The detector performs better because of its sensitivity to the
longer delay between authentic and spoofing signal, which can be attributed to spoofing.
The double delta metric, well known for multipath detection, is also tested with the same
method and found not to be suitable for spoofing detection, which may be attributed to the
use of only legacy correlators. In most cases the distortions due to the spoofing do not affect
the legacy correlators.

The slope metrics have been analysed in simulation and a theoretical variance of each
metric has also been calculated that has been used as sanity check and can be used as a
theoretical limit to the threshold. In the future, studies may be conducted to investigate the
utilisation of more complex detectors and usage of the slope metric in multipath mitigation
and other related studies.
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APPENDIX A. METRIC VARIANCE CALCULATION

To calculate variance due to noise in the slope metrics (Mg;—Msgy) of a form
(U, —I,))/(1X — Y|I,)) as given in Equation (6) following the equation from Irsigler
(2008) can be used

_ 2R(@)[1 — R(za — )] + [R(z2) — R(zD][2R(71 — 70) — 2R(T2 — 70) + (R(72) — R(71))/(R(%)))]
2(ty — 11)2CNo - T - R3(79)

m

(A1)

where 1,, 71 and 7j are the relative delay of the in-phase measurement correlator in ref-
erence of prompt correlator, i.e. 7o = 0, R() is the autocorrelation function, CN is the
carrier-to-noise ratio and 7' is the integration time.

For the differential slope metric (Mp—Mps4), which generally has a form
((Ir, = I)) /(112 — t1lly,)) — (Uz, — Ir,)/(IT4 — 1311,)), the variance can be also calculated
by using the method given in Irsigler (2008). Using the referenced method, the variance
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can be calculated from the following equation

ADAT
On = ———, (A2)
2-CNo-T
where
_ |: 1 —1 1 —1 R(Tz — ‘L'1)
|72 — T1R(10) |72 — T1|R(70) |74 — T3|R(T0) |74 — T3|R(T0) |72 — 71 |R*(70)
R —mn) ]
|74 — 13|R?(10)
1 Rty —1) Rtz —1) R(ma—713) R(r2 —70)
R(ti — ©) 1 R(ti — 1) R(t1 —13) R(ti — 1)
D= R(l’4 — ‘L'2) R(‘L’4 — 7,']) 1 R(‘L’4 — T3) R(7,'4 — ‘L'o)
Rtz — 1) R(zzs —711) R(t3 —14) 1 R(t3 — 10)
R(ty— 1) R(tvp—1t1) R(to—t) R(tg—13) 1

where the 7y, 75, 73, and 74 are the relative delays of measurements with reference to the
reference correlator .
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