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Abstract. For points in d real dimensions, we introduce a geometry for general digit sets.
We introduce a positional number system where the basis for our representation is a fixed
d by d matrix over Z. Our starting point is a given pair (A, D) with the matrix A assumed
expansive, and D a chosen complete digit set, i.e., in bijective correspondence with the
points in Zd/AT Zd . We give an explicit geometric representation and encoding with
infinite words in letters from D. We show that the attractor X (AT , D) for an affine Iterated
Function System (IFS) based on (A, D) is a set of fractions for our digital representation
of points in Rd . Moreover our positional ‘number representation’ is spelled out in the form
of an explicit IFS-encoding of a compact solenoid S A associated with the pair (A, D). The
intricate part (Theorem 6.15) is played by the cycles in Zd for the initial (A, D)-IFS. Using
these cycles we are able to write down formulas for the two maps which do the encoding
as well as the decoding in our positional D-representation. We show how some wavelet
representations can be realized on the solenoid, and on symbolic spaces.

1. Introduction
Let A be a d × d matrix over Z (the integers), and assume that its eigenvalues λ satisfy
|λ|> 1. In particular A is assumed invertible. Let Zd

[A−1
] be the associated discrete

group obtained as an inductive limit

Zd A
−→ Zd A

−→ Zd A
−→ · · ·
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i.e., Zd
[A−1
] =

⋃
∞

k=0 A−kZd , and let S A denote the corresponding dual compact Abelian
group, where duality is in the sense of Pontryagin: S A is a solenoid.

Let AT be the transposed matrix, and let i : Zd
[A−1
] → Rd be the natural embedding

(of groups), so i is a homomorphism of the respective additive groups. Now let î : Rd

→ S A be the dual homomorphism. Hence î embeds Rd as a subgroup of the compact
solenoid S A. We will need this generality in an application to the analysis of wavelet
multiresolutions. Here we use R̂d = Rd , i.e., Rd is its own Pontryagin dual. In a special
case of this construction, for d = 1, our embedding î corresponds to ergodic theoretic flows
on compact spaces studied in a variety of contexts in dynamics.

Note î(AT x)= σA(î(x)), x ∈ Rd , where σA : S A→ S A is the endomorphism induced
by A.

Motivated by classical number-theoretic problems in digital representations of fractions,
we explore here symbolic representations of points in S A. Our analysis uses an extension
of George Mackey’s semidirect product construction from representation theory (§3)
combined with a study of a family of combinatorial cycles (§4.1). In §6 we show that
our encoding theorems (§§4 and 5) apply to the construction of wavelet multiresolutions,
i.e., for generalized wavelet constructions where scaling in Rd corresponds to the
matrix multiplication x 7→ Ax , x ∈ Rd ; and the corresponding Z-action Z× Rd

3 (k, x)
7→ Ak x ∈ Rd .

1.1. Motivation from physics: the renormalization group. The idea of scale invariance
is old. Its best known modern formulation in mathematics takes the form of Iterated
Function Systems (IFSs), e.g., [Hut81]; and in physics it takes the form of a
Renormalization Group (RG). But scaling arguments are commonplace in pure (e.g.,
wavelets) and applied mathematics; for example in attempts at explaining turbulence.

The renormalization group makes its appearance in physics in different guises, often
as a mathematical trick to get rid of the infinities, for example in quantum field
theory, see, e.g., [Fed87, BOS91]. As a pure technique, it obtained maturity with, for
example, [Fed87, Fed94, KW88, KW91] among others. The technique was developed
also in quantum electrodynamics by R. Feynman, K. Wilson and others. The physicists
devised theories of mass and charge renormalization.

Old-style renormalization group (RG) techniques in physics have run into difficulties
with non-renormalizability of gravity. Still they are used in various guises as tools in solid
state physics, as they often get around divergence difficulties with the use of perturbation
theory.

As with IFSs, renormalization groups in physics attempt to describe infinite systems in
terms of block variables, i.e., some magnitudes which describe the average behavior of the
various constituent blocks, often approximately true in practice, and good enough, to a first
approximation. This more or less amounts to finding the long-term behavior of a suitable
RG transformation. When iterated many times, this RG transformation leads to a certain
number of fixed points analogous to those seen in (non-contractive) IFSs.
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1.2. Other motivations. It was suggested in the 1970s by Don Knuth and others that
there is an intriguing geometry behind computations in a positional number system. As is
known since Euclid, representation of numbers in a fixed basis entails expansions in powers
of the chosen base, say b. There is then a subset D of the integers Z of cardinality |b| such
that the corresponding ‘digital’ expansion of real numbers is encoded by finite or infinite
words in the ‘alphabet’ D. In fact Knuth [Knu76] stresses that for a fixed b, there are many
choices of digit sets D which yield a positional number system in a sense which is made
precise. Similarly Knuth suggested the use of a matrix in place of b. In §5 and 6 below,
we outline both the initial suggestion, the relevant literature, starting with [Odl78]; and we
present our main results. The first sections of our paper address tools from representation
theory central to our problem.

Both the choice of the base b, and the set of digits allows for a great deal of freedom,
even if we restrict numbers on the real line. Don Knuth suggested that this idea works
in higher dimensions, i.e., in encoding points in Rd this way. The case d = 2 of
course includes positional representations of complex numbers, and associated computer-
generated images in the plane. But by increasing the dimension further, this suggests using
instead, for scaling basis, a fixed d by d expansive matrix over Z, say A, in place of the
base number b, and a subset D of Zd of cardinality |det A| for digits. This leads to the
puzzling question, ‘In this geometric formulation, what are then the fractions as subsets of
Rd ?’ Early computer calculations by Knuth in two dimensions suggested that ‘fractions’
take the form of ‘dragon-like’ compact sets, ‘Twin Dragons’ etc. Knuth’s idea was taken
up in later papers (by other authors, e.g., Lagarias and Wang) under the name affine iterated
function systems (IFS), and the set of fractions associated to a fixed pair (A, D) in d real
dimensions have been made precise in the form of attractors for the IFS defined from
(A, D), see, e.g., [Hut81] and [BJ99].

For points in Euclidian space, we introduce matrix scaling and digit sets. Our aim is to
study the interplay between associated spectra and geometry. For a fixed matrix scaling and
digit set we introduce a positional number system where the basis for our representation is
a fixed d by d matrix A over Z. Specifically, a pair (A, D) is given, the matrix A assumed
expansive, and a finite set D a chosen as a complete digit set, i.e., the points in D are in
bijective correspondence with the finite group Zd/AZd .

Such higher-dimensional ‘number systems’ allow more flexibility than the classical one,
introducing a computational device for the study of, for example, exotic tilings, wavelet
sets and fractals. These are geometric structures in Rd , studied recently in [BMM99,
Cho07, JKS07, Shu03, Hut81, BHS05, FMM06, Rud89]. We take advantage of a
natural embedding of Rd in an associated solenoid, and we obtain an explicit solenoid
encoding of geometries in Rd , giving insight into notions of redundancy, and offering a
computational tool.

This expanded view also introduces novelties such as non-commutativity into encoding.
We give an explicit geometric representation and encoding for pairs pair (A, D)
(Theorem 4.9), i.e., an encoding with specific infinite words in letters from D.

Our positional ‘number representation’ takes the form of an explicit IFS encoding
of points in a compact solenoid S A associated with the pair (A, D). A crucial part
(Theorem 6.15) is played by certain extreme cycles in the integer lattice Zd for the initial
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(A, D)-IFS. Using these cycles we write down a formula for the two maps which do the
encoding as well as the decoding in our positional D-representation.

We will need basic tools from spectral theory (e.g., [Arv02]), but our aim is
computational, still using operator algebraic tools, analogous to those used in the analysis
of graphs and generalized multiresolutions, see, e.g., [BMM99, Cho07, JKS07, Shu03].
Our use of iterated function systems follows conventions from [Hut81, BHS05, FMM06].

When an invertible matrix A and a finite subset D in Rd are given, then we consider an
associated finite set of affine mappings τd , indexed by points d in D

τd(x) := A−1(x + d).

Under suitable conditions on the pair (A, D), see Definition 6.1, repeated iterations of the
combined system (τd)d∈D , then yields certain limit concepts. They take the precise form of
either certain compact subsets in Rd (attractors) or the form of limiting measures, so called
equilibrium measures. In this formulation, the theory was made precise by Hutchinson
in the paper [Hut81], and this gave rise to what is now known as affine iterated function
systems (IFS). As is known, e.g., [Hut81], to make the limit notions precise, one introduces
metrics on families of compact subsets in Rd , or on families of probability measures.
(In their primitive form these metrics generalize the known Hausdorff distance.)

In harmonic analysis a subclass of the IFSs have been studied extensively by
R. Strichartz and his co-authors, see [Str05, Str06]. The emphasis there is on discrete
potential theory, while our present focus is on tiling and coding questions. However much
of our motivation derives from harmonic analysis.

It was also realized that wavelet algorithms can be put into this framework, and, for fixed
(A, D), one is led to ask for Haar wavelets, and to wavelet sets. In this paper we show that
there is a representation-theoretic framework for these constructions involving a certain
discrete group that is studied in algebra under the name of the Baumslag–Solitar group.

In addition to our identifying wavelet sets in a solenoid encoding (§4), in §6 we further
show that the positional number representation for Rd associated to a given pair (A, D)
takes an algorithmic form involving both ‘fractions’ and ‘integer points’. Here the fractions
are represented by a Hutchinson attractor X (AT , D) and the ‘(A, D)-integers’ by a certain
lattice 0 which makes X (AT , D) tile Rd by 0 translations. To compute this lattice 0 which
makes an X (AT , D) tiling, we use a certain spectral duality (Lemma 6.25). Finally (§6.2)
the last mentioned duality is illustrated with specific planar examples, where both cycles
and lattices are worked out.

2. Iterated function systems
The setting of this paper is a fixed d by d matrix A over the integers Z, satisfying a certain
spectral condition, and its relation to the rank-d lattice Zd in Rd .

Traditional wavelet bases in L2(Rd) are generated by a distinguished finite family of
functions in L2(Rd) and the operations translation with the rank-d lattice Zd , and scaling
with powers of A j , j ∈ Z. But there are similar wavelet constructions, super-wavelets, in
other Hilbert spaces which we explore here. See also [BJMP05, DJ06b, DJ07a].

From the initial matrix A we form the discrete group Zd
[A−1
] generated by powers

of A j , j ∈ Z, applied to Zd ; and the compact dual solenoid group S A. This solenoid is
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related to [0, 1)d ×� where � is a compact infinite product of a fixed finite alphabet. But
the two S A and [0, 1)d ×� are different, and their relationships are explored below.

First recall that matrix multiplication by A induces an automorphism σA in S A. We are
interested in periodic points for this action, and in a certain family of extreme orbits called
cycles. As is well known, Rd is naturally embedded in S A.

Here we continue the study started in [Dut06] of the support of the representations
associated to super-wavelets. Starting with an embedding î of Rd into the solenoid, we
have some periodic characters χi in S A, associated to the cycles. Then we show that the
representation is supported on the union of χi î(Rd) where the multiplication here is just
the multiplication in S A.

We combine Mackey’s theory of induced representations with the analysis of S A-cycles.
In this connection, we find a dynamical obstruction for embeddings as follows. Intuitively,
one wants to encode the solenoid into a symbol space [0, 1)d ×�. This can be a problem
when one is dealing with matrices, as compared to the dyadic scaling in one dimension
which is the traditional context for wavelet analysis.

The reason for the obstruction is that the candidate [0, 1)d is not invariant under the
inverse branches τd(x)= (AT )−1(x + d), d ∈D where D is a chosen finite set of vectors
in Rd . These maps serve as inverse branches to the action by AT on Rd/Zd . The other
candidate different from [0, 1)d is the Hutchinson attractor X (AT , D) for τd , X (AT , D)
contained in Rd . But X (AT , D) might not tile Rd by Zd .

So one question is ’Can one choose D to be a complete set of representatives for the
finite quotient group Zd/AT Zd such that the attractor X (AT , D) of {τd} tiles Rd by Zd?’
If not, then how should one choose A such that this is possible? Or perhaps, one must
replace A with an iterate Ap of A for a suitable p?

The reader may find our use of the pair of scaling matrix A, and its transposed AT

confusing. It is unavoidable and is dictated by our essential use of Fourier duality: if A is
acting in d-space, then AT is acting in the dual vector variable (say frequency), see, e.g.,
Lemma 6.25. In deciding tiling properties for X = X (AT , D) our use of spectral theory is
essential as there seem to be no direct way of attacking the tiling problem for X .

While initially Knuth’s analysis [Knu69] of what is now called affine iterated function
systems (IFS) was motivated by the desire to introduce geometry into algorithms
for general digit sets in positional number systems, the idea of turning ‘digits’ into
geometry and tiling questions was followed up later by others, e.g., Odlyzko [Odl78],
Hutchinson [Hut81], Bratteli-Jorgensen [BJ99], and Lagarias-Wang [LW96a, LW96b,
LW96c, LW97, LW00]. In [LW96a] the authors suggest that the tiling issues implied by
the geometric positional ‘number’ systems are directly connected with wavelet algorithms.
In particular they pointed out that, for a fixed choice of A and D, the corresponding attractor
X (AT , D) as described above does not always tile Rd by translation vectors from the
unit-grid lattice Zd . When it does, we say that X (AT , D) is a Haar wavelet. The term
‘Haar wavelet’ is used because the corresponding indicator function is a scaling function
(father function) for an orthonormal basis (ONB) wavelet system in L2(Rd). The authors
of [LW96a] showed that in two dimensions, every expansive d by d matrix over Z has at
least one ‘digit’ set D such that X (AT , D) is a Haar wavelet. It was later proved that in five
dimensions, not every expansive 5× 5 matrix over Z can be turned into a Haar wavelet;
i.e., for such a matrix A that there is no choice of D for which X (AT , D) is a Haar wavelet.
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The fact that there are exotic 5× 5 expansive matrices A over Z, i.e., A in M5(Z)
for which no digit set D may be found such that X (AT , D) makes a Z5-tiling of R5 was
worked out in [LW96c, LW97, HLR02, HL04]. By digit set we mean a subset D in Z5,
in bijective correspondence with Z5/AT Z5. Such exotic matrices A are said to not allow
Haar wavelets. The question came up after Lagarias-Wang [LW97] showed that every
expansive A in M2(Z) allows digit sets in Z2 which make Z2 tile, i.e, they allow Haar
wavelets.

The aim of this paper is to revisit the geometry of sets X (AT , D) in light of recent
results on IFS involving dynamics and representation theory, see, e.g., [Dut06, DJ06a,
DJ06d, DJ06c, DJ07a].

3. Definitions and notation
While standard wavelet bases built on wavelet filters and on a fixed expansive d by d
matrix over Z, say A, refer to the Hilbert space L2(Rd), many naturally occurring wavelet
filters [Dut06] suggest other Hilbert spaces than L2(Rd), in fact Hilbert spaces containing
a copy of L2(Rd). This approach [Dut06] suggests the the name ‘super-wavelets’, and
naturally leads to representations of a Baumslag–Solitar group built on the matrix A, called
wavelet representations. Starting with a fixed A, there is a compact solenoid S A with the
property that matrix multiplication by A on Rd/Zd induces an automorphism σA on S A.

In the past decade the literature on self-affine sets, encoding and digit representations for
radix matrices has grown; in part because of applications to such areas as number theory, to
dynamics, and to combinatorial geometry. It is not possible here to give a complete list of
these directions. Our present work has been motivated by [AS05, Cur06, GY06, HLR02,
HL04, KLSW99, Li06, Li07, Saf98, ZLZ06, LW00].

Definition 3.1. Let A be a d × d matrix with integer entries. We say that the matrix A is
expansive if all its eigenvalues λ satisfy |λ|> 1.

Let A be a d × d expansive matrix with integer entries. Let

Zd
[A−1
] = {A− j k | j ∈ N, k ∈ Zd

}. (3.1)

Note that Zd
[A−1
] is the inductive limit of the group inclusions

Zd ↪→ A−1Zd ↪→ A−2Zd ↪→ · · ·

or equivalently

Zd A
→ Zd A

→ Zd A
→ · · · .

On Zd
[A−1
] we consider the discrete topology (even though Zd

[A−1
] is a subgroup

of Rd ).
On the group Zd

[A−1
], the map αA(x)= Ax , x ∈ Zd

[A−1
] defines an automorphism

of the group Zd
[A−1
].

For the use of these groups in C∗-algebras, see, e.g., [BJ99, BJKR01].

3.1. The group G A := Zd
[A−1
]oαA Z. The group G A := Zd

[A−1
]oαA Z is the

semidirect product of Zd
[A−1
] under the action of Z by the automorphisms αA. This
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means that

G A := {( j, b) | j ∈ Z, b ∈ Zd
[A−1
]},

( j, b) · (k, c)= ( j + k, α j
A(c)+ b) ( j, k ∈ Z, b, c ∈ Zd

[A−1
]). (3.2)

PROPOSITION 3.2. The group G A is generated by the elements u := (1, 0) and tk
= (0, k), k ∈ Zd

[A−1
]. Moreover

utku−1
= tAk (k ∈ Z) (3.3)

tA−nk := (0, A−nk)= u−n tkun, ( j, A−nk)= tA−nku j , (n ≥ 0, k ∈ Zd , j ∈ Z). (3.4)

Remark 3.3. From Proposition 3.2 we infer that a unitary representation of the group G A

is completely determined by giving some unitary operators Tk , k ∈ Zd and U subject to the
relation

U TkU−1
= TAk (k ∈ Z). (3.5)

In [DJ07b] we use induced representations of G A in the sense of Mackey in order to
encode wavelet sets for a fixed expansive d by d matrix over Z. Note that Mackey’s method
was developed for continuous groups, where encoding is done with co-adjoint orbits. In
contrast we show in the present paper that encoding in the solenoid is required for wavelet
representations, i.e., representations of discrete versions of higher rank ax + b groups.

3.2. The dual group of Zd
[A−1
]: the solenoid S A. The dual group of Zd is Td , where

Td
:= {(z1, . . . , zd) | |zi | = 1, i ∈ {1, . . . , d}}.

For x = (x1, . . . , xd) ∈ Rd let

e2π i x
:= (e2π i x1 , . . . , e2π i xd ) ∈ Td .

For k = (k1, . . . , kd) ∈ Zd and z = (e2π i x1 , . . . , e2π i xd ) ∈ Td , we use the notation

zk
:= e2π ik1x1+···+2π ikd xd = e2π ik·x

∈ T.

The duality between Zd and Td is given by

〈k , z〉 = zk (k ∈ Zd , z ∈ Td). (3.6)

For z = (e2π i x1 , . . . e2π i xd ) ∈ Td we write

z A
:= e2π i(AT )x

= (e2π i
∑d

j=1 a j1x j , . . . , e2π i
∑d

j=1 a jd xd ). (3.7)

Note that z Ak
= (z A)k for all k ∈ Zd .

Definition 3.4. The dual group of Zd
[A−1
] is the group S A defined by

S A := {(zn)n∈N | zn ∈ Td , z A
n+1 = zn, for all n ∈ Z}.

The group S A is called the solenoid of A. It is a compact Abelian group with the topology
induced from the product topology on TN.
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The duality is given by

〈A− j k , (zn)n∈N〉 = 〈k , z j 〉 = zk
j , ( j ∈ N, k ∈ Zd , (zn)n∈N ∈ S A). (3.8)

The dual of the automorphism αA on Zd
[A−1
], αA(x)= Ax is the shift

σA(z0, z1, . . .)= (z
A
0 , z0, z1, . . .) ((z0, z1, . . .) ∈ S A). (3.9)

We denote by θn the projection maps θn : S A→ Td , θn(z0, z1, . . .)= zn for n ∈ N.
Note that

θn+1 ◦ σA = θn, (θn+1(z0, z1, . . .))
A
= θn(z0, z1, . . .), (n ∈ N, (z0, z1, . . .)).

(3.10)

4. Embeddings of Rd into the solenoid S A

We saw in Proposition 3.2 that there is a natural semidirect-product discrete group G A

which carries a unitary wavelet representation. For wavelets in Rd , this construction begins
with a fixed expansive d by d matrix A, and the unitary representation will be acting in the
Hilbert space L2(Rd). It is known that a certain redundancy [BDP05, HL00] in wavelet
constructions dictates unitary representations in Hilbert spaces larger than L2(Rd), i.e.,
with L2(Rd) embedded as an isomorphic copy in an ambient Hilbert space. By introducing
a specific embedding of Rd in an ambient solenoid SA we are able to account for super
representations (Definition 4.5). The action of A induces an automorphism σA in SA.
By computing periodic points for σA we are able (Theorem 4.9) to account for the super
representations acting in an L2 space defined from an induced measure on SA.

In §§5 and 6 we will further study periodic points and cycles. It turns out that the notion
of cycle is different when referring to the integer points and the fractions. Starting with a
fixed radix pair (A, D), we will make ‘integer points’ precise in terms of associated lattices
(rank-d subgroups in Rd ), and the ‘fractions’ will take the form of compact subsets X in Rd

defined by an (A, D) self-similarity (Definition 6.1).
We begin by showing how the space Rd can be seen as subspace of the solenoid S A.

PROPOSITION 4.1. The inclusion i : Zd
[A−1
] → Rd has a dual î : Rd

→ S A

î(x)= (e2π i(AT )−n x )n∈N (x ∈ Rd). (4.1)

The map î is one-to-one, and onto the set of sequences (zn)n∈N ∈ S A with the property
that limn→∞ zn = 1 where 1= (1, . . . , 1) is the neutral element of Td .

The map î satisfies the following relation

î(AT x)= σA(î(x)) (x ∈ Rd). (4.2)

Proof. To see that î is one-to-one, we notice that if x, x ′ ∈ Rd and î(x)= î(x ′) then
(AT )−n x − (AT )−n x ′ ∈ Zd for all n ∈ N. Since A is expansive, the norm ‖(AT )−n

(x − x ′)‖ converges to 0 as n→∞. Thus, x and x ′ must be equal.
Since A is expansive, so is AT , so (AT )−n x converges to 0 for all x ∈ Rd . Therefore

e2π i A−n x converges to 1. Conversely, suppose (zn)n∈N is in S A and zn converges to 1.
Then zn = e2π i xn for some xn ∈ Rd and, for n large we can assume xn is close to 0.
Since we have z A

n+1 = zn , this implies that AT xn+1 ≡ xn mod Zd , so AT xn+1 = xn + l
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for some l ∈ Zd . But since both xn+1 and xn are close to 0, this implies that, for some
n0 ∈ N, we have (AT )xn+1 = xn for n ≥ n0. Let x := (AT )n0 xn0 . The previous argument

shows that (AT ) j xn0 ≡ xn0− j mod Zd for all j ≤ n0, so î(x)= (e2π i(AT )−n x )n∈N. Thus, î
is onto.

The other assertions follow from some direct computations, using the duality in (3.8). 2

Now that we have the embedding of Rd into the solenoid, we can transport the wavelet
representation on L2(Rd) to the solenoid S A.

Definition 4.2. On L2(Rd) we denote by Tk the translation operator (Tk f )(x)
= f (x − k), g ∈ L2(Rd), x ∈ Rd , k ∈ Zd , and by U the dilation operator (U f )(x)=
(1/
√
|det A|) f (A−1x). Their Fourier transform is

(T̂kh)(x)= e2π ik·x f (x),

(Ûh)(x)=
√
|det A|h(AT x) (h ∈ L2(Rd), x ∈ Rd , k ∈ Zd). (4.3)

The operators {U, Tk} (or {Û , T̂k}) define a representation of the group G A on L2(Rd).

Definition 4.3. We denote by S A(1) the set of sequences (zn)n∈N ∈ S A such that
limn→∞ zn = 1. On S A(1) consider the measure µ̃ defined by∫

S A(1)
f dµ̃=

∫
Td

∑
(zn)n∈S A(1),θ0((zn)n∈N)=z

f ((zn)n∈N) dµ(z), (4.4)

where µ is the Haar measure on Td .
On L2(S A(1), µ̃) define the operators

(T̃k f )(z0, z1, . . .)= zk
0 f (z0, z1, . . .), ((z0, z1, . . .) ∈ S A(1), k ∈ Zd), (4.5)

(Ũ f )(z0, z1, . . .)=
√
|det A| f (σA(z0, z1, . . .)) ((z0, z1, . . .) ∈ S A(1)). (4.6)

Our next theorem shows that this unitary representation of the reduced solenoid S A(1)
is a universal super representation of the wavelet group in that when A is given, then
via an intertwining isometry W : L2(Rd)→ L2(S A(1)) the standard A-wavelet-unitary
representation acting on L2(Rd) is naturally included in the S A(1) representation. The
details of the symbolic encoding of this pair of representations depends on a choice of
digit set D, and the structure of the associated (A, D)-cycles (we will give these details
in §6).

THEOREM 4.4. (i) The measure µ̃ satisfies the invariance property∫
S A(1)

f ◦ σA dµ̃=
1

|det A|

∫
S A(1)

f dµ̃ ( f ∈ L1(S A(1), µ̃)). (4.7)

(ii) The operators T̃k , k ∈ Zd and Ũ are unitary and they satisfy the relation

Ũ T̃kŨ−1
= T̃Ak (k ∈ Zd) (4.8)

so {Ũ , T̃k} generate a representation of the group G A on L2(S A(1), µ̃).
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(iii) The map î is a measure-preserving transformation between Rd and S A(1).
(iv) The operator W : L2(Rd)→ L2(S A(1), µ̃) defined by W f = f ◦ î−1 is an

intertwining isometric isomorphism,

W T̂k = T̃k W (k ∈ Zd), W Û = Ũ W. (4.9)

Proof.
(i) The Haar measure on Td satisfies the strong invariance property,∫

Td
f dµ=

1
|det A|

∫
Td

∑
y A=z

f (y) dµ(z) ( f ∈ L1(µ)). (4.10)

Using this, we have, for f ∈ L1(S A(1), µ̃),∫
S A(1)

f ◦ σA dµ̃ =
∫
Td

∑
(zn)n∈S A(1),z0=z

f (z A
0 , z0, z1, . . .) dµ(z)

=
1

|det A|

∫
Td

∑
y A=z

∑
(zn)n∈S A(1),z0=y

f (z A
0 , z0, z1, . . .) dµ(z)

=
1

|det A|

∫
Td

∑
(wn)n∈S A(1),w0=z

f (w0, w1, . . .) dµ(z)

=
1

|det A|

∫
S A(1)

f dµ̃.

(ii) Part(ii) follows from (i) and some direct computations.
(iii) First note that, by Proposition 4.1 (zn)n ∈ S A(1) with z0 = e2π i x if and only if

(zn)n = î(y) and e2π iy
= e2π i x , i.e., (zn)n = î(x + k) for some k ∈ Zd .

Let f ∈ L1(S A(1), µ̃). Then∫
Rd

f (î(x)) dx =
∫
[0,1)d

∑
k∈Zd

f (î(x + k)) dx

=

∫
[0,1)d

∑
(zn)n∈S A(1),z0=e2π i x

f (z0, z1, . . .) dx

=

∫
Td

∑
(zn)n∈S A(1),z0=z

f (z0, z1, . . .) dµ(x)=
∫

S A(1)
f dµ̃.

This proves that î is measure preserving.
(iv) Since î is measure preserving, W is an isometric isomorphism. The intertwining

relation (4.9) follows by a direct computation that uses (4.2). 2

4.1. Cycles. Next we will show how the ‘super-wavelet’ representations from [BDP05]
can be realized on the solenoid.

Definition 4.5. An ordered set C := {ζ0, ζ1, . . . , ζp−1} in Td is called a cycle if ζ A
j+1 = ζ j

for j ∈ {0, . . . , p − 2} and ζ A
0 = ζp−1, where p ≥ 1. The number p is called the period

of the cycle if the points ζi are distinct.
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Definition 4.6. Let C = {ζ0, ζ1, . . . , ζp−1} be a cycle. Denote by

HC := L2(Rd)⊕ · · · ⊕ L2(Rd)︸ ︷︷ ︸
p times

= L2(Rd
× Zp), (4.11)

where Zp = {0, . . . , p − 1} is the cyclic group of order p.
Define the operators on HC

TC,k( f0, . . . , f p−1)= (ζ
k
0 Tk f0, . . . , ζ

k
p−1Tk f p−1), (( f0, . . . , f p−1) ∈HC , k ∈ Zd)

(4.12)

UC ( f0, . . . , f p−1)= (U f p−1,U f0, . . . ,U f p−2), (( f0, . . . , f p−1) ∈HC ), (4.13)

where Tk and U are the operators on L2(Rd) from Definition 4.2. We will denote by T̂C,k

and ÛC the Fourier transform of these operators (the Fourier transform being applied on
each component of HC ).

Then a simple calculations shows the following.

PROPOSITION 4.7. The operators TC,k , k ∈ Zd and UC are unitary and satisfy the relation

UC TC,kU−1
C = TC,Ak (k ∈ Zd) (4.14)

so they define a representation of the group G A on HC .

Some examples and wavelet applications are also included in [Jor03].

Definition 4.8. Let C := {ζ0, . . . , ζp−1} be a cycle, ζ j = e2π iθ j , for some x j ∈ Rd ,
( j ∈ {0, . . . , p − 1}). We will use the notation θn := θn mod p, ζn := ζn mod p for all n ∈ Z.
We denote by

χC := (ζ0, . . . , ζp−1, ζ0, . . . , ζp−1, . . .) ∈ S A.

Let

S A(C) :=
p−1⋃
j=0

σ
− j
A (χC )î(Rd). (4.15)

Let îC : Rd
× Zp→ S A(C)

îC (x, j)= σ− j
A (χC )î(x)= (e

2π i((AT )−n x+θn+ j ))n∈N (x ∈ Rd , j ∈ Zp). (4.16)

Define the measure µ̃ on S A(C) by an equation similar to (4.4) (the only difference here is
the support S A(C) instead of S A(1))∫

S A(C)
f dµ̃=

∫
Td

∑
(zn)n∈S A(C),θ0((zn)n∈N)=z

f ((zn)n∈N) dµ(z).

Define the operators T̃k , k ∈ Zd and Ũ on L2(S A(C), µ̃) by the same formulas as in (4.5)
and (4.6).
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THEOREM 4.9.

(i) The point χC is periodic for σA, σ p
A (χC )= χC , and σA permutes cyclically the sets

σ− j (χC )î(Rd), j ∈ Zp.
(ii) The set S A(C) consists of exactly the points (zn)n∈N with the property that the

distance from zn to C converges to 0.
(iii) Let αA,p : Zd

× Zp→ Zd
× Zp

αA,p(x, j)= (AT x, j − 1) (x ∈ Rd , j ∈ Zp). (4.17)

The map îC is a bijective measure-preserving transformation that satisfies the
relation

îC ◦ αA,p = σA ◦ îC . (4.18)

(iv) The operator WC :HC = L2(Rd
× Zp)→ L2(S A(C), µ̃), WC f = f ◦ î−1

C , is an
intertwining isometric isomorphism:

WC T̂C,k = T̃k WC (k ∈ Zd), WCÛC = Ũ WC . (4.19)

Proof.

(i) Part (i) is trivial.

(ii) If (zn)n is in S A(C) then for some j , we have that (σ− j
A (χC ))

−1(zn)n is in î(Rd) so

ζ−1
j znp converges to 0. Therefore znp converges to ζ j so znp−l = z Al

np converges to ζ j−l for
all l ∈ Zp.

Conversely, suppose (zn)n ∈ S A and dist(zn, C) converges to 0. We claim that znp

converges to one of the points of the cycle ζi .

Pick an ε > 0 small enough such that for all i ∈ Zp, dist(zn, ζi ) < ε implies
dist(zn, ζi ′) > ε for i 6= i ′. There exists a δ > 0, δ < ε such that for all i ∈ Zp,
if dist(z, ζi ) < δ then dist(z Ap

, ζi ) < ε.

There exists an nε such that if n ≥ nε then dist(zn, C) < δ < ε. Then for some i ∈ Zp

we have dist(znε , ζi ) < ε. Also for some i ′ ∈ Zp we have dist(znε+p, ζi ′) < δ. This implies
that dist(znε , ζi ′) < ε so i ′ = i . By induction, we obtain that dist(znε+kp, ζi ) < δ < ε. And
since dist(zn, C) converges to 0 this shows that dist(znε+kp, ζi ) converges to 0. Applying
the map z A several times we conclude that znp converges to one of the elements of the
cycle, ζ j .

Then consider (wn)n := σ
j
A(χC )

−1(zn)n ∈ S A. Clearly wn converges to 1. By

Proposition 4.1, there exists an x ∈ Rd such that (wn)n = î(x). Thus (zn)n = σ
j
A(χC )î(x),

and this proves (ii).

(iii) Since î is bijective (Proposition 4.1), clearly îC is also bijective. To check that îC

is a measure-preserving transformation, since î is measure preserving by Proposition 4.1,
it is enough to check that multiplication by σ− j

A (χC ) leaves the measure µ̃ invariant, i.e.,

for a function f defined on σ− j
A (Rd),∫

σ
− j
A (χC )î(Rd )

f dµ̃=
∫

î(Rd )

f (σ− j
A (χC )(zn)n) dµ̃(zn)n ( j ∈ Zp). (4.20)
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It is enough to check this for j = 0. Using the translation invariance of the Haar measure µ
on Td , we have∫
χC î(Rd )

f dµ̃ =
∫
Td

∑
(zn)n∈χC î(Rd ),z0=z

f ((zn)n) dµ(z)

=

∫
Td

∑
(wn)n∈î(Rd ),w0=zζ−1

0

f (χC (wn)n) dµ(z)

=

∫
Td

∑
(wn)n∈î(Rd ),w0=z

f (χC (wn)n) dµ=
∫

î(Rd )

f (χC (wn)n) dµ̃(wn)n .

Equation (4.18) follows by a direct computation.
(iv) Follows from (4.18). 2

5. Encoding of integer points
The idea of using matrices and geometry in creating a positional number system for points
in Rd was initiated by Don Knuth, see especially [Knu76, Vol. 2, Ch. 4 (Arithmetic),
and §4.1] which introduces this geometric and algorithmic approach to positional number
system. In fact, the Twin Dragon appears in [Knu76, Vol. 2, page 206]. In our present
discussion, with a fixed expansive matrix AT playing the role of the basis number (or the
radix) in our radix representations, the natural question arises: ‘What is the role of the
integer lattice Zd relative to our radix system?’ This section gives a preliminary answer to
the question, and the next section is a complete analysis involving cycles.

As before, we begin with a choice of expansive matrix A (i.e., A is a fixed d by d
matrix over Z), and we choose a subset D in Zd (for digits), points in D in bijective
correspondence with Zd/AT Zd . As it turns out, ‘the integers’ relative to the (A, D)-radix
typically will not have finite radix (or Laurent) expansions in positive powers of AT . The
reason for this is the presence of certain non-trivial cycles C in Zd leading to infinite
repetitions, which we will take up systematically in the next section.

In this section we will show that when the pair (A, D) is fixed, there is an encoding
mapping φ which records the finite words in the alphabet D which will correspond to the
cycles in Zd that are associated with our particular choice of (A, D). However, once the
cycles in Zd are identified, there is a much more detailed encoding directly for Zd which
will be done in detail in Theorem 6.15.

So our present encoding mapping φ : Zd
→DN, depending on the pair (A, D), is

an introduction to our analysis of a refined solenoid encoding and of all cycles in the
next section. Still our starting point is a fixed radix pair (A, D). The fact that the
encoding mapping φ : Zd

→DN is injective is a consequence of the expansive property.
Corresponding to (A, D) there is a finite set of finite words F = F(A, D) in letters
from D. These words label the Zd -cycles, and the encoding mapping φ : Zd

→DN
(infinite Cartesian product) maps onto the set of infinite words which terminate in an
infinite repetition of one of the words from F .

Let d be given. Let B be a d × d matrix over Z, and assume⋂
k≥1

BkZd
= {0}. (5.1)

Note that this holds if B is assumed expansive.
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Let D ⊂ Zd be a complete set of representatives for Zd/BZd . Assume 0 ∈D. (This
assumption is for convenience and can be easily removed mutatis mutandis.)

Definition 5.1. Define a (B, D) encoding of Zd

φ(x) := d0d1d2 . . . , φ : Zd
→DN

as follows: when x ∈ Zd is given, there is a unique pair x1 ∈ Zd and d0 ∈D such that

x = d0 + Bx1. (5.2)

By the same argument, now determine d1, d2, . . . ∈D, and x2, x3, . . . ∈ Zd recursively
such that

xk = dk + Bxk+1. (5.3)

Definition 5.2. Set

� :=DN =
∞∏

n=0

D.

Elements ω ∈� are called infinite words in the alphabet D. If v is a finite word, we denote
by v the infinite repetition of this word vvv · · · . If there are finite words v and w such that
ω = (vw), we say that ω ends in a cycle.

PROPOSITION 5.3.
(i) The encoding mapping φ : Zd

→� is well defined.
(ii) φ is one-to-one.
(iii) φ maps onto a subset of � of all infinite words that end in cycles.

Proof.
(i) Part (i) is immediate from (5.2), (5.3).
(ii) Suppose x, y ∈ Zd and φ(x)= φ(y). Then an application of (5.3) shows that

x − y ∈ ∩k≥1 BkZd , and we conclude that x = y by an application of (5.1).
(iii) Part (iii) follows immediately from Theorem 6.15. 2

Remark 5.4.
(i) For x ∈ Zd , the encoding φ(x)= vw = d0d1d2 · · · with di ∈D, and v, w finite

words is unique; but the formal sum

d0 + Bd1 + B2d2 + · · · (5.4)

is not convergent unlessw = 0= 000 · · · infinite repetition. In that case there exists m ∈ N
such that v = d0 · · · dm−1 and

x = d0 + Bd1 + · · · + Bm−1dm−1.

(ii) Suppose v = ∅ and φ(x)= w, with w = l0l1 · · · lp−1. Then −x has the following
infinite, convergent, periodic fractional expansion:

−x =
∞∑

k=0

p−1∑
i=0

B−kp+i+1lp−1−i .

See Proposition 6.14 and Theorem 6.15 for the proof.
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Example 5.5. The following simple example in one dimension illustrates the cases (i) and
(ii) above.

Let d = 1 , B = 2, and D = {0, 3}. Let φ : Z→� be the encoding. We have φ(11)
= 300330, i.e., v = 3003 and w = 30. Also, we have φ(18)= 0330, i.e., v = 033 and
w = 0, corresponding to the finite representation

18= 0+ 3 · 2+ 3 · 22.

Finally φ(−2)= 03, i.e., v = ∅, and w = 03. Hence by (ii) we get the following infinite
fractional dyadic representation

2= 3 · 2−1
+ 0 · 2−2

+ 3 · 2−3
+ 0 · 2−4

+ 3 · 2−5
+ · · · .

Proposition 6.14 shows that the cycles are obtained by intersecting Z with the set
−X (B, D), where X (B, D) is the attractor of the maps τ0(x)= x/2, τ3(x)= (x + 3)/2.
In our example X (B, D)= [0, 3]. There are two cycles of length one {0} and {−3} and
one cycle of length two {−1,−2}.

The encoding mapping φ records the cycles as follows: the one-cycles φ(0)= 0,
φ(−3)= 3; the two-cycle φ(−1)= 30, φ(−2)= 03.

The next section takes up the encodings in general.

6. Encodings of the solenoid
In this section we return to the geometry of general digit sets in positional number systems,
turning ‘digits’ into geometry and tilings. The starting point is a given pair (A, D)
with A expansive over Z, and D a complete digit set. With the aid of the solenoid we
give an explicit encoding. Specifically, we show that the attractor X (AT , D) for the
corresponding affine IFS is a set of fractions for an (A, D)-digital representation of points
in Rd . Moreover our positional ‘number representation’ is spelled out in the form of an
explicit IFS encoding of the compact solenoid S A associated with the pair (A, D). The
intricate part (Theorem 6.15) is played by the cycles in Zd for the initial (A, D)-IFS. Using
the cycles we are able to write down formulas for the two maps which do the encoding as
well as the decoding in our positional D-representation.

Take a point (zn)n∈N in the solenoid S A. Then z0 ∈ Td , z A
1 = z0, z A

2 = z1, and so on.
Since z0 is in Td it can represented by e2π i x0 , where x0 ∈ Rd . Note that one has several

choices for x0, any of its integer translates x0 + k, k ∈ Zd , will do.
Then z A

1 = z0, so z1 is a ‘root’ of z0. There are |det A| choices: if z0 = e2π i x0 then z1

must be one of the points exp(2π i(AT )−1(x0 + d)), d ∈D, where D is some complete set
of representatives for Zd/AT Zd . Say z1 = exp(2π i(AT )−1(x0 + d0))= e2π i x1 .

At the next step z2 is a root of z1 so z2 = exp(2π i(AT )−1(x1 + d1)) for some d1 ∈D.
By induction, we get a sequence d1, d2, . . . in D.

Thus, picking a point (zn)n∈N in S A amounts to choosing an x0 ∈ Rd and an infinite
word d0d1 · · · ∈� :=DN. Thus we say that (zn)n∈N can be encoded as

(zn)n∈N↔ (x0, d0d1 · · · ).

Now note that changing the choice of x0 (to say x0 + k), affects the entire sequence
d0, d1, . . . . We want to make this choice unique in some sense. For this we need to find a
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subset F of Rd , such that for each z ∈ Td , there is a unique x ∈ F such that z = e2π i x . In
other words, F must tile Rd by Zd -translations.

Of course a first choice of this set F would be [0, 1)d . While this works in dimension
d = 1, it may be inappropriate for higher dimensions. The problem is that we would need
also z1 to come from e2π i x1 with x1 ∈ F , and this would mean that x1 = (AT )−1(x0 + d0)

is in F . Thus, our set F must have the following property⋃
d∈D

(AT )−1(F + d)⊂ F.

But since (z1, z2, . . .) is also an element of S A and z1 can be any point in Td , it follows
that we must actually have ⋃

d∈D
(AT )−1(F + d)= F. (6.1)

Of course, when we are interested only in measure theoretic notions, we can allow the
equalities to hold only almost everywhere.

When F is compact, this equation identifies F as the attractor of an affine iterated
function system.

Definition 6.1. Let D be a complete set of representatives for Zd/AT Zd . For every d ∈D,
we denote by τd the map on Rd defined by

τd(x)= (A
T )−1(x + d) (x ∈ Rd). (6.2)

With this notation, if F is compact, equation (6.1) says that F is the attractor of the
affine iterated function system (τd)d∈D . This identifies F as

F = X (AT , D) :=
{ ∞∑

j=1

(AT )− j d j

∣∣∣∣ d j ∈D
}
. (6.3)

To find an encoding of the solenoid S A means to find a subset F of Rd and a complete
set of representatives D of Zd/AT Zd such that, if x ∈ F then τd x ∈ F for all d ∈D, and
the decoding map d : F ×DN→ S A defined by

F ×DN 3 (x0, d0d1 · · · ) 7→ (e2π i x0 , e2π iτd0 x0 , e2π iτd1 τd0 x0 , . . .) ∈ S A

is a bijection.
Thus, to find this encoding of S A we need a subset F of Rd and a complete set of

representatives D that satisfy (6.1) and such that F tiles Rd by integer translations, i.e.,⋃
k∈Zd

(F + k)= Rd Lebesgue-a.e., and (F + k) ∩ (F + k′)= ∅ Lebesgue-a.e. (6.4)

So the problem of encoding the solenoid into the space F ×DN is equivalent to the
following question.

Question. Given an expansive d × d integer matrix A, is it possible to find a complete set
of representatives D of Zd/AT Zd such that the attractor X (AT , D) of the iterated function
system (τd)d∈D tiles Rd by Zd?

As explained in the introduction, while this is known to be true for dimension d = 1 or
d = 2, there are some 5× 5 matrices for which such a D does not exist.
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Definition 6.2.
(a) We say that a subset F ⊂ Rd tiles Rd by a lattice 0 if and only if the following two

properties hold

Rd
=

⋃
γ∈0

(F + γ ),

(F + γ ) ∩ (F + γ ′)= ∅, γ, γ ′ ∈ 0, γ 6= γ ′.

We say that F tiles Rd up to measure zero by the lattice 0 if these two properties hold up
to Lebesgue measure zero.

(b) By a lattice we mean a rank-d subgroup of Rd . We shall be interested in sublattices
0 ⊂ Zd . For a fixed 0 ⊂ Zd we say that 0 is of index k if the order of the quotient Zd/0

is k.

LEMMA 6.3. Suppose a relatively compact subset F ⊂ Rd tiles by some lattice 0 ⊂ Zd .
Then the lattice 0 is of index k if and only if the mapping F 3 x 7→ e2π i x

∈ Td is k-to-1
(up to measure zero).

Proof. It follows from the definition that F tiles by 0 if and only if the restriction to F
of the quotient mapping Rd

→ Rd/0 is bijective up to measure zero. Hence the assertion
that the given map is k-to-one is equivalent to the natural mapping Rd/0→ Rd/Zd being
a k-fold cover; but this is so by the induced isomorphism (Rd/0)/(Rd/Zd)∼= Zd/0. 2

PROPOSITION 6.4. Let � :=DN. Define the map d : Rd
×�→ S A by

d(x, ω0ω1 · · · )= (e
2π i x , e2π iτω0 x , e2π iτω1 τω0 x , . . .) (x ∈ Rd , ω0ω1 · · · ∈�). (6.5)

(i) For each x ∈ Rd , k ∈ Zd , and ω ∈� there is a unique ω′ = ω′(x, k, ω) ∈� such
that d(x, ω)= d(x + k, ω′). Moreover, if x, x ′ ∈ Rd and ω, ω′ ∈�, such that
d(x, ω)= d(x ′, ω′), then x ′ = x + k for some k ∈ Zd and ω′ = ω′(x, k, ω).

(ii) Let F be a subset of Rd . The restriction of the map d to F ×� is injective if and
only if F ∩ (F + k)= ∅ for all k ∈ Zd , k 6= 0.

(iii) The restriction of d to F ×� is onto if and only if⋃
k∈Zd

(F + k)= Rd .

(iv) The restriction of d to F ×� is bijective if and only if F tiles Rd by Zd -translations.
(v) Define the map ρ : Rd

×�→ Rd
×�

ρ(x, ω0ω1 · · · )= (τω0 x, ω1ω2 · · · ), (x ∈ Rd , ω0ω1 · · · ∈�). (6.6)

Then
d ◦ ρ = σ−1

◦ d. (6.7)

Proof.
(i) We want τω0 x ≡ τω′0(x + k). So (AT )−1ω0 ≡ (AT )−1(k + ω′0), i.e., ω′0 ≡ ω0 − k

mod AT Zd . Since D is a complete set of representatives for Zd/AT Zd , there is a unique
ω′0 ∈D such that this is satisfied. Proceeding by induction we see that ω′2, ω

′

3, . . . can be

uniquely constructed such that e2π iτωn ···τω0 x
= e

2π iτω′n ···τω′0
(x+k)

for all n ∈ N.
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If d(x, ω)= d(x ′, ω′) then e2π i x
= e2π i x ′ so x ′ = x + k for some k ∈ Zd . The rest

follows from the uniqueness of ω′(x, k, ω).
(ii) Suppose d restricted to F ×� is injective. Then, by (i), we cannot have x and x + k

in F for some k 6= 0. Conversely, if d is not injective on this set, then d(x, ω)= d(x ′, ω′)
for some x, x ′ ∈ F and ω, ω′ ∈�. Using (i) again we get that x ′ = x + l for some l ∈ Zd

so F ∩ (F + l) 6= ∅.
(iii) Suppose the restriction of d to F ×� is onto. Then for all y ∈ Rd , there is x ∈ F

and ω ∈� such that d(x, ω)= î(y). Then e2π i x
= e2π iy so y = x + k for some k ∈ Zd ,

and therefore y ∈ F + k. This shows that
⋃
(F + k)= Rd .

Conversely, take (zn)n∈N ∈ S A. There exist xn ∈ Rd such that zn = e2π i xn for all n.
By hypothesis we can take x0 ∈ F . Since z A

1 = z0 we have that, AT x1 ≡ x0 so for
some ω0 ∈D, τω0 x0 ≡ x1. Then, by induction we can construct ωn ∈D such that
τωn · · · τω0 x0 ≡ xn+1. This proves that d(x, ω)= (e2π i xn )n = (zn)n .

(iv) Part (iv) follows directly from (ii) and (iii).
(v) Part (v) requires nothing more that a simple computation. 2

PROPOSITION 6.5. Suppose F is a subset of Rd that tiles Rd by a sublattice 0 of Zd with
|Zd/0| = N. Then the restriction of the map d to F ×� is N-to-one.

Proof. Since
⋃

k∈Zd (F + k)⊃
⋃
γ∈0(F + γ )= Rd , it follows from Proposition 6.4(iii)

that the map is onto.
We claim that for each x ∈ F there are exactly N points k ∈ Zd such that x + k ∈ F .

Indeed, let d1, . . . dN be a complete list of representatives for Zd/0. Then for each
i ∈ {1, . . . , N } there is a unique γi ∈ 0 such that x + di ∈ F + γi . Then we can not have
di − γi = di ′ − γi ′ for i 6= i ′ (that would imply di ≡ di ′ mod 0) so the points di − γi are
distinct and x + (di − γi ) ∈ F .

Now we can use Proposition 6.4(i) to see that d restricted to F ×� is N -to-1. 2

Consider now the compact attractor X (AT , D) of the iterated function system (τd)d∈D
given in (6.3). It is known (see [LW96c, LW97]) that X (AT , D) always tiles Rd (up to
measure zero) by some sublattice 0 of Zd .

The connection between lattice tilings and spectral theory was studied systematically
in [Fug74] and [Ped96], and we will introduce spectrum in §6.2 below. From the choice
of digit set D for a fixed matrix A, we conclude that X (AT , D) has non-empty interior. In
fact the d-dimensional Lebesgue measure of X (AT , D) must be an integer. It is 1 if and
only if X (AT , D) tiles Rd by the ‘unit lattice’ Zd . By spectral theory we are referring to
the Hilbert space L2(X (AT , D)).

Definition 6.6. We say that (A, D) satisfy the tiling condition if X (AT , D) tiles Rd (up to
measure zero) by the lattice Zd .

In §6.2 below we give examples for d = 2 of pairs (A, D)which do not satisfy the tiling
condition. Nonetheless, even if some particular pair (A, D) in the plane does not satisfy
the tiling condition, it will be possible to change the digit set D into a different one D′,
while keeping the matrix A fixed, such that the modified pair (A, D′) will satisfy the tiling

https://doi.org/10.1017/S0143385708000904 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385708000904


Wavelet groups 1833

condition. But by going to higher dimensions (d = 5) as we noted there are matrices A for
which no D may be chosen making (A, D) satisfy the tiling condition.

LEMMA 6.7. For all d, d ′ ∈D, d 6= d ′ the intersection τd(X (AT , D)) ∩ τd ′(X (AT , D))
has Lebesgue measure zero.

Proof. We have the following relations, with µ the Lebesgue measure

X (AT , D)=
⋃
d∈D

τd(X (A
T , D)),

µ(τd(X (A
T , D)))=

1
|det A|

µ(X (AT , D)).

As a result we get

µ(X (AT , D))=
∑
d∈D

1
|det A|

µ(X (AT , D))− µ( combined overlap sets).

Therefore the combined overlap sets must have measure zero. 2

PROPOSITION 6.8. Suppose (A, D) satisfy the tiling condition. Then the function ρ

defined in (6.6) maps X (AT , D)×� onto itself and the restriction of ρ to X (AT , D)×�
is injective almost everywhere in the sense that the set of points x ∈ X (AT , D) with the
property that there exist x ′ ∈ X (AT , D), ω, ω′ ∈� ρ(x, ω)= ρ(x ′, ω′), has Lebesgue
measure zero. The inverse ρ−1 of this restriction is defined by

ρ−1(x, ω0ω1 · · · )= (A
T x − ωx , ωxω0ω1 · · · ) (x ∈ X (AT , D), ω0ω1 · · · ∈�),

(6.8)
where ωx is the unique element of D with the property x ∈ τωx (X (A

T , D)).

Proof. Since
X (AT , D)=

⋃
d∈D

τd(X (A
T , D)), (6.9)

it follows that ρ maps X (AT , D) onto itself.
Suppose now ρ(x, ω)= ρ(x ′, ω′) for x, x ′ ∈ X (AT , D), ω, ω′ ∈�, and (x, ω)

6= (x ′, ω′). So either x 6= x ′ or ω 6= ω′. When ω 6= ω′, since ρ(x, ω)= ρ(x ′, ω′) it
follows that ω1ω2 · · · = ω

′

1ω
′

2 · · · so ω0 6= ω
′

0. Also τω0 x = τω′0 x ′. But τω0(X (A
T , D))

∩ τω′0
(X (AT , D)) has measure zero (see Lemma 6.7), so x must be in a set of measure

zero. If ω = ω′ then ω0 = ω
′

0 so τω0 x = τω′0 x ′ implies x = x ′. This proves the injectivity
of ρ.

Since τd(X (AT , D)) are mutually disjoint, the element ωx of D is well defined. Then
it is easy to check that ρ−1 is indeed the inverse of the restriction of ρ. 2

6.1. Encodings of cyclic paths. Let D be a complete set of representatives of Zd/AT Zd .
And let � :=DN.

Consider now a cycle C := {ζ0, ζ1, . . . , ζp−1} and suppose ζ j = e2π iθ j for some
θ j ∈ Rd . If in addition, A and D satisfy the tiling condition we can pick θ j in X (AT , D).
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Then, since z A
1 = z0, there is a l0 ∈D such that θ1 = τl0θ0. Continuing this process,

we can find l0, l1, . . . , lp−1 such that τl j θ j = θ j+1 for j ∈ {0, . . . , p − 2} and τlp−1θp−1

= θ0. Thus the point χC = (ζ0, . . . , ζp−1, ζ0, . . . , ζp−1, ζ0, . . .) from S A can be encoded
by (θ0, l0 · · · lp−1l0 · · · lp−1, l0 · · · ), i.e., by an infinite repetition of the finite word
l0 · · · lp−1.

Definition 6.9. A finite set in Rd , C = {θ0, . . . , θp−1} is called a cycle if there exist
l0, . . . , lp−1 ∈D such that τl0θ0 = θ1, τl1θ1 = θ2, . . . , τlp−2θp−2 = θp−1 and τl p−1θp−1

= θ0. Thus θ0 is the fixed point of τlp−1 · · · τl0 , θ1 is the fixed point of τl0τl p−1 · · · τl1 ,

. . . , θp−1 is the fixed point of τl p−2 · · · τl0τlp−1 .
The points θ0, . . . , θp−1 are called cyclic points. We say that θ0 is the cyclic point

associated to l0 · · · lp−1, and we say that C = {θ0, . . . , θp−1} is the cycle associated to
l0 · · · lp−1.

Let C := {e2π iθ0 , . . . , e2π iθp−1} be a cycle associated to l0 · · · lp−1. Take now a point
(zn)n∈N in S A(C). We want to see how the encodings of points in S A(C) look like.

By Theorem 4.9, the point (zn)n∈N is in one of the sets σ− j
A (χC )î(Rd). Suppose

z0 = e2π i x for some x ∈ Rd . Then (zn)n∈N = σ
− j
A (χC )î(y) for some y ∈ Rd , and looking

at the 0 position, x ≡ θ j + y so y = x + k − θ j for some k ∈ Zd . Thus

(zn)n∈N = σ
− j
A (χC )î(x + k − θ j )= îC (x + k − θ j , j).

On the other hand, according to the previous discussion, (zn)n∈N is equal to
(e2π i x , e2π iτω0 x , e2π iτω1 τω0 x , . . .) for some infinite word ω0ω1 · · · . Thus we must have
some precise correspondence between the pair (k, j) ∈ Zd

× Zp and the infinite word
ω0ω1 · · · ∈�. Since zn is approaching the cycle C as n→∞ one might expect that the
infinite word ω0ω1 · · · ends in a repetition of the finite word l0 · · · lp−1 that generates the
cycle C . While this is often true, there might be some other cycles C ′ that are congruent
mod Zd to C that will affect this encoding ω. In any case, ω0ω1 · · · that corresponds to
(k, j) will be eventually periodic, and it will end in an infinite repetition of a finite word
that corresponds to such a cycle C ′.

Definition 6.10. We denote by l0 · · · lp−1 the infinite word in � obtained by the infinite
repetition of the word l0 · · · lp−1. Let

�C := {ω0 · · · ωnl0 · · · lp−1 | ω0, . . . , ωn ∈D, n ∈ N},

i.e., the set of infinite words that end in an infinite repetition of the word l0 · · · lp−1.

There are some cycles which have cycle points that differ by integers. Such cycles
would make our encoding ambiguous, so we avoid this situation.

Example 6.11. Let d = 1, A = 2 and D = {0, 3}. Then τ0x = x/2, τ3 = (x + 3)/2. Then
it is easy to check that the attractor X (AT , D) is [0, 3]. The set {1, 2} is a cycle that
corresponds to 30, and its points differ by an integer.

Definition 6.12. We say that the cycle C = {θ0, . . . , θp−1} is simple if θ j 6≡ θ j ′ mod Zd

for j 6= j ′.
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Following [BJ99], for a simple cycle C = {θ0, . . . , θp−1}, we define an
automorphism RC on the set Zd

− C . Note that since the cycle is simple, the sets Zd
− θ j

are mutually disjoint. The map RC is an extension of the division with remainder. Here we
‘divide’ by AT . For each point in a − θ j ∈ Zd

− θ j , there is a unique ‘quotient’ b − θ j+1

in Zd
− θ j+1 and a unique ‘remainder’ d0 ∈D such that

a − θ j = AT (b − θ j+1)+ d0.

Then RC (a − θ j ) is defined as the quotient RC (a − θ j )= b − θ j+1.
We used here the fact that AT θ j ≡ θ j−1 mod Zd , because τl j−1θ j−1 = θ j , for all j ∈ Z.

Recall also that we use the notation θ j := θ j mod p for j ∈ Z.

Definition 6.13. Let C = {θ0, . . . , θp−1} be a simple cycle. On Zd
− C =

⋃p−1
j=0

(Zd
− θ j ) we define the map RC as follows: for each a ∈ Zd and j ∈ {0, . . . , p − 1}

there exist a unique b ∈ Zd and d0 ∈D such that

a − θ j = AT (b − θ j+1)+ d0. We define RC (a − θ j ) := b − θ j+1. (6.10)

Therefore RC (a − θ j ) is defined by

(a − θ j )− AT RC (a − θ j ) ∈D.

Also, −RC (a − θ j )= τd0(−(a − θ j )), where d0 is the unique element of D such that
τd0(−(a − θ j )) ∈ Zd

− θ j+1.

The encoding of (k, j) ∈ Zd
× Zp is obtained by a generalized Euclidean algorithm.

Take k − θ j in Zd
− θ j , then ‘divide’ by AT and keep the remainder: k − θ j = AT RC

(k − θ j )+ ω0. Then take the quotient RC (k − θ j ), divide by AT and keep the remainder
ω1, and so on to infinity. The infinite sequence of remainders will give us ω.

But first, we need some properties of the map RC .

PROPOSITION 6.14. Let C = {θ0, . . . , θp−1} be a simple cycle. Let X (AT , D) be the
attractor of the iterated function system (τd)d∈D .
(i) A point t ∈ C − Zd is a cycle point for the iterated function system (τd)d∈D if and

only if there is some n ≥ 1 such that Rn
C (−t)=−t , i.e., −t is a periodic point for

RC . Moreover if t is associated to m0 · · · mq−1 then q is a multiple of p and

mn =Rn
C (−t)− AT Rn+1

C (−t) (n ∈ N).

(ii) For every t ∈ C − Zd there exists a l ≥ 0 such that Rl
C (−t) is periodic for RC , i.e.,

every point in Zd
− C is eventually periodic for RC . Moreover −Rl

C (−t) is in
(C − Zd) ∩ X (AT , D).

(iii) The intersection (C − Zd) ∩ X (AT , D) consists exactly of negative the periodic
points for RC .

Proof.
(i) If t0 = t ∈ θ j − Zd is a cyclic point for (τd)d∈D , then τm0 t0 = t1, τm1

t1 = t2, . . . , τmq−1 tq−1 = t0 for some m0, . . . , mq−1 ∈D and some t1, . . . , tq−1 ∈ Rd .
Then tq−1 = AT t0 − mq−1 so tq−1 ∈ θ j−1 − Zd (because AT θ j ≡ θ j−1). By induction
tl ∈ θ j+l−q − Zd for l ∈ {q − 1, q − 2, . . . , 0}.
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Since t0 ∈ θ j − Zd and also t0 ∈ θ j−q − Zd , as the cycle is simple, it follows that q
must be a multiple of p.

We have τm0 t0 = t1 so −t0 = AT (−t1)+ m0. Also −t1 ∈ Zd
− θ j+1. This means

that RC (−t0)=−t1 and m0 =−t0 − AT RC (−t0). By induction RC (−tn)=−tn+1 and
mn =−tn − AT RC (−tn). This proves one direction.

For the converse, if Rq
C (−t0)=−t0, for some t0 ∈ θ j − Zd , then for each n there

is some mn ∈D such that Rn
C (−t0)= AT Rn+1

C (−t0)+ mn . Thus the sequence {mn}

has period q, and τmn (−Rn
C (−t0))=−Rn+1

C (−t0), which proves that t0 is in the cycle

{−(−t0),−RC (−t0), . . . ,−Rq−1
C (−t0)}.

(ii) Since A is expansive there is a norm on Rd such that for some 0< c < 1,
‖(AT )−1x‖ ≤ c‖x‖ for all x ∈ Rd . Then if R > (c maxd∈D ‖d‖/1− c),

τd(B(0, R))⊂ B(0, R).

Indeed ‖τd x‖ ≤ c(‖x‖ + ‖d‖) < c(R + ‖d‖) < R for all x ∈ B(0, R) and all d ∈D.
Take now a − θ j ∈ Zd . Take some R >max{‖a − θ j‖, (c maxd∈D ‖d‖/1− c)}. Then

note that RC (a − θ j )=−τd(−(a − θ j )) for some d ∈D. Therefore RC maps B(0, R)
∩
⋃

j (Zd
− θ j ) into itself. So {Rn

C (a − θ j ) | n ∈ N} is a finite set. Therefore there exists

some n ∈ N, and q ≥ 0 such that Rn
C (a − θ j )=Rn+q

C (a − θ j ). Thus Rn
C (a − θ j ) is

periodic.
From (i) we have that −Rn

C (a − θ j ) is cyclic for (τd)d∈D . So −Rn
C (a − θ j ) is in the

attractor X (AT , D).
(iii) From (i) and (ii) it is clear that the periodic points for RC lie in (Zd

− C)
∩ (−X (AT , D)). For the other inclusion take t1 ∈ (Zd

− C) ∩ (−X (AT , D)). Then using
the formula (6.3), there exist d1, d2 · · · ∈D such that

−t1 = (A
T )−1d1 + (A

T )−2d2 + · · · .

Let −tn := (AT )−1dn + (AT )−2dn+1 + · · · . We have

AT (tn)+ dn = tn+1 (n ∈ N). (6.11)

Since t1 ∈ Zd
− C , equation (6.11) implies that t2 is in Zd

− C and t1 =RC (t2). By
induction tn+1 is in Zd

− C and RC (tn+1)= tn for all n ∈ N. But we have also tn
∈ −X (AT , D). And, since (Zd

− C) ∩ (−X (AT , D)) is finite, there exist n, m ≥ 1 such
that tn = tn+m . This implies that Rm

C (tn)=Rm
C (tn+m)= tn . Since Rn−1

C (tn)= t1, it
follows that t1 is periodic for RC . 2

THEOREM 6.15. Let C := {θ0, . . . , θp−1} be a simple cycle.
(i) For each k ∈ Zd and each j ∈ Zp there is a unique ω(k, j)= ω0ω1 · · · ∈� such

that for all x ∈ Rd

(e2π i x , e2π iτω0 x , e2π iτω1 τω0 x , . . .)

= îC (x + k − θ j , j)= σ− j
A (χC )î(x + k − θ j )

= (exp(2π i((AT )−n(x + k − θ j )+ θ j+n)))n∈N. (6.12)

Moreover there exists a cycle C ′ ∈ (C − Zd) ∩ X (AT , D) such that ω(k, j) ∈�C ′ .
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(ii) The infinite word ω(k, j) can be constructed as follows:

ωn =Rn
C (k − θ j )− AT Rn+1

C (k − θ j ) (n ∈ N). (6.13)

(iii) Suppose C ′ is a cycle in (C − Zd) ∩ X (AT , D), and ω ∈�C ′ . Then there is a unique
(k(ω), j (ω)) ∈ Zd

× Zp such that for all x ∈ Rd

(e2π i x , e2π iτω0 x , e2π iτω1 τω0 x , . . .)= îC (x + k(ω)− θ j (ω), j (ω)). (6.14)

(iv) (k(ω), j (ω)) can be constructed as follows. If ω ∈�C ′ has the form
ω0 · · · ωnp−1m0 · · · mq−1, then the fixed point η0 of τmq−1 · · · τm0 belongs to θ j (ω)

− Zd for some unique j (ω) ∈ Zp. And

k(ω)= ω0 + · · · + (A
T )np−1ωnp−1 + θ j (ω) − (A

T )npη0. (6.15)

(v) Let
�̃C :=

⋃
{�C ′ | C

′ cycle in (C − Zp) ∩ X (AT , D)}.

The maps
eC : Zd

× Zp→ �̃C , eC (k, j)= ω(k, j)

and
dC : �̃C → Zd

× Zp, dC (ω)= (k(ω), j (ω))

are inverse to each other.

Proof. Let (k, j) ∈ Zd
× Zp and let ω(k, j) be defined as in (ii). We prove that the

relation (6.12) is satisfied. We have

AT RC (k − θ j )+ ω0 = k − θ j , AT R2
C (k − θ j )+ ω1 =RC (k − θ j ), . . . .

Therefore

RC (k − θ j )= (A
T )−1(k − θ j )− (A

T )−1ω0,

R2
C (k − θ j )= (A

T )−2(k − θ j )− (A
T )−2ω0 − (A

T )−1ω1, . . . .

By induction

Rn
C (k − θ j )= (A

T )−n(k − θ j )− (A
T )−nω0 − · · · − (A

T )−1ωn−1.

So

τωn−1 · · · τω0 x = (AT )−n x + (AT )−nω0 + · · · + (A
T )−1ωn−1

= (AT )−n x + (AT )−n(k − θ j )−Rn
C (k − θ j ).

But Rn
C (k − θ j ) ∈ Zd

− θ j+n so

τωn−1 · · · τω0 x ≡ (AT )−n(x + k − θ j )+ θ j+n .

Therefore the relation (6.12) is satisfied.
Next we prove the uniqueness of ω. Suppose ω′ ∈� also satisfies (6.12). Then

τω′0
x ≡ τω0 x so (AT )−1ω′0 ≡ (A

T )−1ω0 which implies that ω′0 − ω0 ∈ AT Zd . Since D
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is a complete set of representatives for Zd/AT Zd , it follows that ω′0 = ω0. By induction
ω′n = ωn so ω′ = ω.

To see that ω(k, j) is in some ωC ′ for a cycle C ′ in (C − Zd) ∩ X (AT , D) we use
Proposition 6.14. There exists an l such that Rl

C (k − θ j ) is periodic for RC , so −Rl
C

(k − θ j ) is a cycle point for (τd)d∈D . Let C ′ its corresponding cycle. By
Proposition 6.14, C ′ is contained in (C − Zd) ∩ X (AT , D). By the construction of ω(k, j)
given in (ii), and by Proposition 6.14(i), we see that ω(k, p) ∈�C ′ .

Now let ω be of the form given in (iii). And let (k, j) := (k(ω), j (ω)) be as in (iv).
Since η0 ∈ θ j − Zd it follows that (AT )npη0 is also in θ j − Zd so k = k(ω) is indeed
an integer.

We check that if for (k, j) we construct ν = ν0ν1...= ω(k, j) as in (ii), then ν = ω.
This will prove also (v). From (6.15) we have, with t0 =−(k − θ j )

t1 : = τω0(t0)= τω0(−(k − θ j ))

= −ω1 − · · · − (A
T )np−2ωnp−1 + (A

T )np−1η0 ∈ θ j+1 − Zd ,

since η0 ∈ θ j − Zd implies that (AT )np−1η0 ∈ θ j−(np−1) − Zd
= θ j+1 − Zd . This shows

that RC (−t0)=−t1, and ν0 = ω0. By induction we obtain ν1 = ω1, . . . , νnp−1 = ωnp−1

and that−η0 =Rnp
C (−t0). And since the cycle C ′ of η0 is given by m0 · · · mq−1, it follows

by Proposition 6.14(i) that ν = ω0 · · · ωnp−1m0 · · · mq−1.
For the uniqueness of (k, j), suppose (k, j) and (k′, j ′) satisfy (6.14). Then

(AT )−n(k − θ j )+ θn+ j ≡ (A
T )−n(k′ − θ j ′)+ θn+ j ′ (n ∈ N).

Taking the limit as np→∞ we obtain θ j − θ j ′ ∈ Zd . Since the cycle is simple, j = j ′.
Therefore

(AT )−n(k − θ j )≡ (A
T )−n(k′ − θ j ) (n ∈ N).

But this means that î(k − θ j )= î(k′ − θ j ), and by Proposition 4.1 î is injective so k = k′. 2

We summarize our results in the following corollary.

COROLLARY 6.16. Suppose (A, D) satisfy the tiling condition (Definition 6.6). Let
C = {θ0, . . . , θp−1} be a simple cycle. Let

�̃C :=
⋃
{�C ′ | C

′ cycle in (C − Zd) ∩ X (AT , D)}.

(i) The maps

d : X (AT , D)× �̃C → S A(C), d(x, ω)= (e2π i x , e2π iτω0 x , e2π iτω1 τω0 x , . . .),

îC : Rd
× Zp→ S A(C), îC (x, j)= (exp(2π i((AT )−n x + θn+ j )))n∈N

are bijections.
(ii)

î−1
C (d(x, ω))= (x − θ j (ω) + k(ω), j (ω)) (x ∈ X (AT , D), ω ∈ �̃C ),

where k(ω), j (ω) are defined in Theorem 6.15(iv).

d−1(îC (x, j))= (y, ω(k, j)) (x ∈ Rd , j ∈ Zp),

where y ∈ X (AT , D), k ∈ Zd are uniquely defined by x + θ j = y + k, and ω(k, j)
is defined in Theorem 6.15(ii).
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(iii) The following diagram is commutative:

X (AT , D)× �̃C
d //

ρ−1

��

S A(C)

σA

��

Rd
× Zp

îCoo

αA,p

��
X (AT , D)× �̃C

d // S A(C) Rd
× Zp.

îCoo

COROLLARY 6.17. With the notation in Theorem 6.15, we have

j (ω1ω2 · · · )= j (ω0ω1 · · · )+ 1, (ω0ω1 · · · ∈ �̃C ). (6.16)

(AT )−n(x − θ j (ω0ω1··· ) + k(ω0ω1 · · · ))

= τωn−1 · · · τω0 x − θ j (ω0ω1··· )+n + k(ωnωn+1 · · · ) (6.17)

for all x ∈ X (AT , D), ω0ω1 · · · ∈ �̃C .

Proof. We apply the commutative diagram in Corollary 6.16 to ρn :

î−1
C dρn(x, ω) = îCd(τωn−1 · · · τω0 x, ωnωn+1 · · · )

= (τωn−1 · · · τω0 x − θ j (ωnωn+1··· ) + k(ωnωn+1 · · · ), j (ωnωn+1 · · · )).

α−n
A,p î−1

C d(x, ω) = α−n
A,p(x − θ j (ω0ω1··· ) + k(ω0ω1 · · · ), j (ω0ω1 · · · ))

= ((AT )−n(x − θ j (ω0ω1··· ) + k(ω0ω1 · · · )), j (ω0ω1 · · · )+ n).

Since the two quantities are equal to each other (by the commutative diagram in
Corollary 6.16), the relations follow. 2

With the aid of our cycles and associated encoding/decoding mappings we are now able
to state our main result regarding super representations. Notice that the introduction of
cycles yields the following improvement of Theorem 4.9 in §4 above.

COROLLARY 6.18. Suppose (A, D) satisfies the tiling condition, and let C be a simple
cycle of length p. On X (AT , D)× �̃C define the measure µ̆ by∫

X (AT ,D)×�̃C

f dµ̆=
∫

X (AT ,D)

∑
ω∈�̃C

f (x, ω) dx .

Define the operators T̆k , k ∈ Zd and Ŭ on L2(X (AT , D)× �̃C , µ̆) by

T̆k f (x, ω)= e2π ik·x f (x, ω), (x ∈ X (AT , D), ω ∈ �̃C ),

Ŭ f =
√
|det A| f ◦ ρ−1.

Then {T̆k, Ŭ } define a unitary representation of G A and W : L2(Rd
× Zp)

→ L2(X (AT , D), µ̆), W f = f ◦ d ◦ î−1
C is an isomorphism that intertwines this repre-

sentation with the one in Definition 4.6.

When (A, D) satisfy the tiling condition we can say a bit more about the possible extra
cycles in (C − Zd) ∩ X (AT , D).

PROPOSITION 6.19. Suppose (A, D) satisfies the tiling condition. Assume that there is a
cycle point θ0 ∈ X (AT , D) such that θ0 − k ∈ X (AT , D) for some k ∈ Zd , k 6= 0. Then the
entire cycle of θ0 is on the boundary of X (AT , D).
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Proof. Let X (AT , D)◦ denote the interior of X (AT , D). We will prove first that if a point x
is in X (AT , D) ∩ (X (AT , D)+ k) with k ∈ Zd , k 6= 0, then x is on the boundary of
X (AT , D). Suppose not, then x ∈ X (AT , D)◦. By [LW96c] we know that the closure
of X (AT , D)◦ is X (AT , D). This implies that the neighborhood X (AT , D)◦ of x must
intersect the set X (AT , D)◦ + k. But since X (AT , D) tiles Rd by Zd , this implies that the
interiors of X (AT , D) and X (AT , D)+ k cannot intersect (the intersection would have
positive Lebesgue measure). So x must be on the boundary of X (AT , D).

Now consider θ0 and let C = {θ0, . . . , θp−1} be the cycle of θ0 and let l0, . . . lp−1, the
corresponding digits. We have τlp−1 · · · τl j θ j = θ0 for all j ∈ {0, . . . , p − 1}. Suppose
one of the points θ j of the cycle C is in X (AT , D)◦. Since

X (AT , D)=
⋃
d∈D

τd(X (A
T , D)),

we obtain that τd(X (AT , D)◦)⊂ X (AT , D)◦ (τd is a homeomorphism). So if θ j is an
interior point for X (AT , D), then θ0 = τlp−1 · · · τl j θ j is also in the interior of X (AT , D).
This contradiction implies that C is contained in the boundary of X (AT , D). 2

To help the reader appreciate our encoding results we present some examples which at
the same time stress tiles versus spectrum. Since the technical points are illustrated already
for the real line we begin with dimension one, and then turn to the plane R2.

Example 6.20. Let us take d = 1, A = 2 and D = {0, 1}. The maps are τ0x = x/2,
τ1x = (x + 1)/2. Consider the simple cycle C := {θ0} = {0}. It corresponds to 0.

The attractor X (AT , D) is [0, 1]. The intersection (C − Z) ∩ X (AT , D)= (−Z)
∩ [0, 1] = {0, 1}, so it consists of the cycles C ′: {0} and {1}, which correspond to 0 and 1
respectively. Therefore �̃0 =�0 ∪�1, i.e., the words that end in an infinite repetition of
0 or an infinite repetition of 1.

We have the map

î−1
0 d : [0, 1)× (�0 ∪�1)→ R, î−1

0 d(x, ω)= x + k(ω),

(we used [0, 1) here instead of [0, 1] to have that the map î−1
0 d is a true bijection, not just

up to measure 0), and with formula (6.15):

k(ω0 · · · ωn0) = ω0 + 2 · ω1 + · · · + 2nωn, k(ω0 · · · ωn1)

= ω0 + 2 · ω1 + · · · + 2nωn − 2n+1.

Applying the commutative diagram in Corollary 6.16 to ρn , we have î−1
0 dρn(x, ω)

= (1/2n)î−1
0 d(x, ω), which implies that

1
2n (x + k(ω0ω1 · · · ))= τωn−1 · · · τω0 x + k(ωnωn+1 · · · ), (x ∈ [0, 1), ω ∈�0 ∪�1).

Example 6.21. Let d = 1, A = 2 and D = {0, 1}. Consider the simple cycle C :
= {θ0, θ1} = {1/3, 2/3}. It corresponds to 10 (because τ1(1/3)= 2/3, τ0(2/3)= 1/3).
The attractor is X (AT , D)= [0, 1]. Then (C − Z) ∩ [0, 1] = C , so �̃C =�C , i.e., the
words that end in 10.
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We have that the map

î−1
C d : [0, 1)×�C → R× Z2, î−1

C d(x, ω)= (x − θ j (ω) + k(ω), j (ω))

is a bijection, and

j (ω0 · · · ω2n−110)= 0, j (ω0 · · · ω2n−101)= 1,

k(ω0 · · · ω2n−110)= ω0 + 2 · ω1 + · · · + 22n−1ω2n−1 +
1
3 − 22n

·
1
3 ,

k(ω0 · · · ω2n−101)= ω0 + 2 · ω1 + · · · + 22n−1ω2n−1 +
2
3 − 22n

·
2
3 .

The map �C 3 ω 7→ (k(ω), j (ω)) ∈ Z× Z2 is a bijection.
As an example, let us show how to compute the ω ∈�C associated to (k, j)= (15, 0).

Take k − θ j = 15− 1
3 . We want a k1 ∈ Z and ω0 ∈D such that 15− 1

3 = 2(k1 −
2
3 )+ ω0.

We have

15− 1
3 = 2(8− 2

3 )+ 0 1− 1
3 = 2(1− 2

3 )+ 0

8− 2
3 = 2(4− 1

3 )+ 0 1− 2
3 = 2(0− 1

3 )+ 1

4− 1
3 = 2(2− 2

3 )+ 1 0− 1
3 = 2(0− 2

3 )+ 1

2− 2
3 = 2(1− 1

3 )+ 0 0− 2
3 = 2(0− 1

3 )+ 0

...

Thus ω(15, 0)= 00100110.

Remark 6.22. Our next example is in the plane, but it illustrates a more general picture in
Rd for any d . Start with a given pair (A, D) with the matrix A assumed expansive, and D a
chosen complete digit set, i.e., in bijective correspondence with the points in Zd/AT Zd . So
in particular, |D| = |det A|. In general it is not true that the same set D is a digit set for A,
i.e., that it is a bijective image of Zd/AZd . Here for d = 2, we give an explicit geometric
representation of a pair (A, D) for which the same D is a digit set for both the radix
representation with A and with the transposed matrix AT . Hence we get two attractors
X (AT , D) and X (A, D). Both will be referred to as Cloud Nine, a left-handed version, and
a right-handed version. That is because there are nine integer points, i.e., the intersections
with Z2 consists of nine points, and it is the same set for the two fractals. For each, there
are three one-cycles, and one six-cycle. While the six-cycles (for A and for AT ) are the
same as sets, we will see that they are traveled differently under the actions discussed in
our encodings from §§5 and 6 from above; the difference being essentially a reversal of
orientation. Hence our encoding with infinite words in letters from D will also be different
for the two cases, and the details are worked out below. Recall the attractor X (AT , D) is
the set of ‘fractions’ for our digital representation of points in R2. The attractor X (AT , D)
is also an affine IFS based on (A, D). Thus the Cloud Nine examples further illustrate the
intricate part played by the cycles in Z2 for the initial (A, D)-IFS. In each case, using these
cycles we are able to write down formulas for the two maps which do the encoding as well
as the decoding in our positional D-representation.
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For use of matrices in radix representation, the distinction between the radix matrix A
and its transpose AT is important. First the two matrices sit on separate sides in a Fourier
duality; and secondly, even if the chosen set of digits D is the same, the two attractors may
be different. In fact, in general the same D may not work for both A and AT . There is not
a natural connection between the two quotients Zd/AZd and Zd/AT Zd , i.e., the one for
A and the other one for the transposed.

But in the particular two-dimensional example below, Example 6.23, called Cloud Nine,
one may check by hand that, for this matrix A, with det A = 5, each of the two quotients
Z2/AZ2 and Z2/AT Z2 are in bijective correspondence with the same subset D in Z2. (See
details!)

As a result it makes sense to analyze the two different Hutchinson attractors X (AT , D)
and X (A, D); both compact and with non-empty interior. The first one, in a different
context, was studied earlier in [BJ99] and [Jor03], but both are interesting. Note that
while [BJ99] and [Jor03] use these examples the questions addressed in these papers are
completely different.

As we see, there is an intriguing connection between cycles, solenoids, and encodings
for the two.

Example 6.23. Take

d = 2, A =

(
1 −2
2 1

)
so AT

=

(
1 2
−2 1

)
,

and D =
{[

0
0

]
,

[
±3

0

]
,

[
0
±2

]}
.

We consider the trivial cycle C := {[0, 0]T }. We want to compute (C − Zd) ∩

X (AT , D), i.e., Zd
∩ X (AT , D).

First, we need to locate the attractor X (AT , D). For this we use the proof of
Proposition 6.14(ii), and conclude that if R := ‖(AT )−1

‖maxd∈D ‖d‖/1− ‖(AT )−1
‖

then the ball B(0, R) is invariant under all the maps τd , which implies that X (AT , D)
is contained in this ball.

Since ‖(AT )−1
‖ = 1/

√
5, we conclude that R = (3/(

√
5− 1))= 2.427 · · · . There are

21 points in Zd
∩ B(0, R) and we can check how RC acts on each of them.

If we want [
x
y

]
= AT

[
a
b

]
+

[
d1

d2

]
with

[
a
b

]
∈ Z2 and

[
d1

d2

]
∈D,

then we must have

(x − d1)− 2(y − d2)

5
= a,

2(x − d1)+ (y − d2)

5
= b. (6.18)

Thus, given [x, y]T , to find

RC

[
x
y

]
=

[
a
b

]
and

[
d1

d2

]
∈D,
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TABLE 1. Remainders for the elements in D.[
d1

d2

] [
0
0

] [
3
0

] [
−3

0

] [
0
2

] [
0
−2

]
(d1 − 2d2)mod 5 0 3 2 1 4

we first look for an element in D with d1 − 2d2 ≡ x − 2y mod 5 and 2d1 + d2 ≡ 2x + y
mod 5. Then we compute a, b as in (6.18).

It is interesting to note here also that if d1 − 2d2 ≡ x − 2y mod 5 then the other
equivalence mod 5 is satisfied too. This is because 2d1 + d2 ≡ 2(d1 − 2d2)mod 5 etc. We
can use Table 1.

We apply these ideas to the points in Z2
∩ B(0, R).[

0
0

]
= AT

[
0
0

]
+

[
0
0

]
so RC

[
0
0

]
=

[
0
0

]
and −

[
0
0

]
is a cycle that corresponds to

[
0
0

]
.[

1
0

]
= AT

[
1
0

]
+

[
0
2

]
so RC

[
1
0

]
=

[
1
0

]
and

[
−1

0

]
is a cycle that corresponds to

[
0
2

]
.[

−1
0

]
= AT

[
−1

0

]
+

[
0
−2

]
so RC

[
−1

0

]
=

[
−1

0

]
and

[
1
0

]
is a cycle that corresponds to

[
0
−2

]
.[

0
1

]
= AT

[
−1
−1

]
+

[
3
0

]
,

[
−1
−1

]
= AT

[
1
−1

]
+

[
0
2

]
,[

1
−1

]
= AT

[
0
−1

]
+

[
3
0

]
,[

0
−1

]
= AT

[
1
1

]
+

[
−3

0

]
,

[
1
1

]
= AT

[
−1

1

]
+

[
0
−2

]
,[

−1
1

]
= AT

[
0
1

]
+

[
−3

0

]
.

So [
0
1

]
RC
→

[
−1
−1

]
RC
→

[
1
−1

]
RC
→

[
0
−1

]
RC
→

[
1
1

]
RC
→

[
−1

1

]
RC
→

[
0
1

]
and {[

0
−1

]
,

[
1
1

]
,

[
−1

1

]
,

[
0
1

]
,

[
−1
−1

]
,

[
1
−1

]}
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is a cycle that corresponds to the word[
3
0

][
0
2

][
3
0

][
−3

0

][
0
−2

][
−3

0

]
.

Similar computations show that[
2
0

]
RC
→

[
1
2

]
RC
→

[
0
2

]
RC
→

[
0
0

]
,

[
−2

0

]
RC
→

[
−1
−2

]
RC
→

[
0
−2

]
RC
→

[
0
0

]
,[

1
−2

]
RC
→

[
1
0

]
,

[
2
1

]
RC
→

[
0
1

]
,

[
2
−1

]
RC
→

[
0
1

]
,[

−2
1

]
RC
→

[
0
−1

]
,

[
−2
−1

]
RC
→

[
0
−1

]
.

Thus we have three cycles of length one, and one cycle of length six.
Consider now the pair (AT , D), that is, replace the matrix A by AT , and D is also a

complete set of representatives for Zd/(AT )T Zd . As above we get the same cycles:[
0
0

]
is a one-cycle that corresponds to

[
0
0

]
;[

1
0

]
is a one-cycle that corresponds to

[
0
2

]
;[

−1
0

]
is a one-cycle that corresponds to

[
0
−2

]
.

We also obtain the six-cycle{[
0
1

]
,

[
1
−1

]
,

[
−1
−1

]
,

[
0
−1

]
,

[
−1

1

]
,

[
1
1

]}
.

This cycle corresponds to a different periodic word:[
3
0

][
0
−2

][
3
0

][
−3

0

][
0
2

][
−3

0

]
.

This means that the six-cycle is traveled by two different paths according to the matrix A
or AT .

6.2. Tiling and spectra in some examples. One of the uses of encoding is applications
to tiling questions in Rd . The simplest tiles X in Rd are measurable subsets which make a
tiling of Rd by translations with vectors from some lattice, say 0 (i.e, a rank d subgroup).
Since we work in the measurable category we allow different translates in the tiling X + γ ,
for γ ∈ 0 to overlap on sets of measure zero.

One might think that when X is given, then the presence of a suitable lattice 0 making
X into a translation tile for Rd could be decided by visual inspection, at least in the case
of d = 2. After all, when a pair (A, D) is given, then there are fast Mathematica programs
which produce excellent plots of the attractor sets X = X (AT , D), black on white; see for
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example [BJ99]. But except for isolated cases, it turns out that when the planar sets X
are represented in black on white, then there will typically be many white spots, or gaps,
disconnecting X in complicated ways. If some lattice 0 will make X into a translation
tile, then the white areas must be filled in by black under translations X + γ , γ ∈ 0. An
inspection of [BJ99] reveals that this is not easy to discern by visual inspection. Hence,
instead we resort below to spectral theoretic tools for locating the lattices which do the job.

A more complicated form of tilings (still with a single base tile) refer to the case when
the set 0 of translation vectors is a set which is not a lattice, e.g., translation sets of
quasiperiodic tilings. But for our present considerations lattice tilings will suffice.

The sets X which will interest us are the attractors X = X (AT , D) from affine IFSs as
described in Corollary 6.16. It is known that every such X is compact with non-empty
interior, and so in particular it has positive d-dimensional Lebesgue measure.

Hence it is of interest to ask for a spectral analysis of the Hilbert space L2(X), referring
to d-dimensional Lebesgue measure. In fact, using Pontryagin duality for Abelian groups,
one can check that X tiles Rd with a lattice if and only if the dual lattice makes an
orthogonal basis of complex exponentials in L2(X). The result is often referred to as
Fuglede’s theorem. For background, see [Fug74] and [Rud62].

To understand the correspondence between choice of translation lattice on the one hand
and spectrum on the other we need the following.

Definition 6.24. Let X ⊂ Rd be measurable with 0< µ(X) <∞ where µ denotes the
d-dimensional Lebesgue measure. For ξ ∈ Rd set eξ (x)= e2π iξ ·x , where ξ · x := 〈ξ , x〉
= ξ1x1 + · · · ξd xd and x = (x1, · · · , xd) ∈ Rd . If 0 ⊂ Rd is a discrete subgroup (in this
case a rank d lattice) set

EX (0) := {eξ |X : ξ ∈ 0}

where |X denotes restriction to the set X .
If 0 is a lattice we set

0◦ := {λ ∈ Rd
| λ · ξ ∈ Z for all ξ ∈ 0}

called the dual lattice.
If 3⊂ Rd is a discrete subset we say that it is a spectrum for X or that the pair (X, 3)
is a spectral pair if and only if EX (3) is an orthogonal basis in the Hilbert space
L2(X)= L2(X, µ).

LEMMA 6.25. (Fuglede [Fug74]) Let 0< µ(X) <∞ and 3 be a rank-d lattice. The
following conditions are equivalent.
(i) EX (3) is an orthonormal basis in L2(X).
(ii) X tiles Rd by the dual lattice 3◦.

Remark 6.26. We can draw the following stronger conclusion. When X is given, there
are no other tiling lattices for X than those which arise as in (ii) by spectral duality. The
reason is as follows. Every lattice 3 satisfies 3◦◦ =3, i.e., the double dual yields back
the initial lattice. To see this, use the following general observations which also serve to
make explicit the standard lattice operations which we will be using in the proof.
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Referring to the IFS of Definition 6.1 we note the following formula for the computation
of the L2(X (AT , D))-inner products. Set X = X (AT , D) and χ̂X (ξ) :=

∫
X eξ (x) dx .

Then

χ̂X (ξ)=

∞∏
n=1

mD(A
−nξ)

where

mD(ξ) :=
1

|det A|

∑
d∈D

ed(ξ).

Recall that |det A| = number of elements in D. Some remarks about lattices in Rd are in
order. Every lattice is by definition a rank-d subgroup of Rd and it can be shown that it
has the form 0 = MZd , where M is an invertible d × d matrix and where points in Zd

are represented by column vectors. We will write 0M to emphasize the matrix M that
completely determines the lattice. The next lemma is elementary.

LEMMA 6.27.
(i) 0M ⊂ Zd if and only if M ∈Md(Z).
(ii) If 0 = 0M then 0◦ = 0(MT )−1 . In other words if 0 is given by M then its dual is

given by (MT )−1.
(iii) 0◦◦ = 0.

We will use names from [BJ99] for the fractals X = X (AT , D) in R2. These names
refer both to their geometric appearance as planar sets X , as well as to a counting of Z2-
cycles, i.e., the number of points in (−X) ∩ Z2. See [BJ99, end of §9.3] for details. For
example, Cloud Nine has three one-cycles and one six-cycle in Z2.

What follows is a family of examples in two dimensions. In each case, we are asking the
following question. How much flexibility is there in selecting digits when the base for the
2D number system is fixed? In our case, we are using the positional radix representation
for vectors, and thus the base for our number system is a chosen matrix A. For several of
the examples below, we fix a particular A, and then we vary our choices of ‘digit’ sets D
in Z2. The points in D will serve as ‘digits’ in a positional representation.

We are motivated by Knuth’s algorithmic approach mentioned in §1. What are the
‘integers’ and what are the ‘fractions’ in a number system specified by a particular pair
(A, D)? What is the encoding, and what is the decoding? When the matrix A is fixed, how
do changes in D reflect themselves in the answer to the questions?

The examples below are sketched with Mathematica programming in [BJ99], and the
names we use for the fractals X are consistent with [BJ99], i.e., the the respective names of
the sets X , Cloud Nine etc. The examples when A is the same but D changes are referred
to by the name Cloud, followed by a number. The number indicates the cardinality of
(−X) ∩ Z2.

However the questions addressed here are different from those of [BJ99].
It is of interest to understand how much flexibility there is in selecting digits when the

base for the number system is fixed. In our case, the base for our vector number system is
the matrix A, and so we vary the choices for the companion set D. But when A is given,
the choice of D is always restricted by demanding a bijection D↔ Z2/AT Z2.
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• Cloud Three

A =

(
1 −2
2 1

)
, D =

{[
0
0

]
,

[
0
±1

]
,

[
0
±2

]}
.

Here the lattice 2Z× Z makes X tile R2. Cloud Three only has one-cycles on Z2,
i.e., (−X) ∩ Z2

= C1. Moreover X is not a Haar wavelet. It has measure equal to 2.
• Cloud Five

A =

(
1 −2
2 1

)
, D =

{[
0
0

]
,

[
±3

0

]
,

[
±1

0

]}
.

Cloud Five is a lattice tile with lattice Z× 2Z. So X is not a Haar wavelet. It has
measure equal to 2.

• Cloud Nine

A =

(
1 −2
2 1

)
, D =

{[
0
0

]
,

[
±3

0

]
,

[
0
±2

]}
.

Cloud Nine is a lattice tile with the lattice Z× 2Z. Cloud Nine X has three one-
cycles and one six-cycle. So Cloud Nine is not a Haar wavelet. It has measure equal
to 2.

• Twin Dragon

A =

(
1 1
−1 1

)
, D =

{[
0
0

]
,

[
1
0

]}
.

The Twin Dragon is a lattice tile with lattice Z2
= 0. So the Twin Dragon is a Haar

wavelet. It has measure equal to 1.
We are using Lemma 6.25 in identifying lattices which make the various Cloud

examples X tile R2. For this purpose we must identify our cycles relative to so-called
Hadamard systems as defined in [DJ07c]. A Hadamard system consists of a matrix A and
two sets D and L as dual digits, #D = #L= |det A|. By ‘dual’ we mean that the matrix
formed from the exponentials as

1
√
|det A|

(exp(2π i(AT )−1d · l))d∈D,l∈L. (6.19)

is a unitary |det A| × |det A| matrix.
Let N be the absolute value of the determinant, and let ZN be the cyclic group of

order N . Then the matrix UN for the Fourier transform on ZN is an example of a Hadamard
matrix as in (6.19); specifically the j, k entry in UN is (1/

√
N )ζ jk , j, k ∈ ZN , where

ζ = ζN is a fixed principal N ’th root of 1.

Proof. To find the lattices that give tiles for these examples, we use Lemma 6.25, and find
the dual lattices that give orthogonal bases of exponentials. For this we use the techniques
introduced in [DJ06b, DJ07c].

First let us look at the matrix A =
( 1 −2

2 1

)
for the cloud examples. We want to find

what is the lattice that makes X (AT , D)= {
∑
∞

j=1(A
T )− j d j | d j ∈D} tile R2. For this we

need a set L such that (1/
√
|det A|)(exp(2π i(AT )−1d · l))d∈D,l∈L is a unitary matrix, i.e.,
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(AT , D, L) is a Hadamard triple. It is enough to take L a complete set of representatives
for Z2/AZ2. We will take L to be

L :=
{[

0
0

]
,

[
±3

0

]
,

[
0
±2

]}
.

With this choice of L the reader may check that for each of the Cloud examples listed
above, the corresponding Hadamard matrix from (6.19) turns out, up to permutation, to
simply agree with the matrix U5 for the Fourier transform on Z5.

According to [DJ07c] we have to see if there are any proper invariant subspaces for A.
But those would give rise to real eigenvalues of A, and this is not the case. Thus,
by [DJ07c], the spectrum of X (AT , D), is determined only by the ‘mD -cycles’. These
are the cycles C = {x0, . . . , x p−1} for the ‘dual’ IFS σl(x)= A−1(x + l), l ∈ L with the
property that |mD(xi )| = 1 for all i ∈ {0, . . . , p − 1}.

Then, by [DJ06b, DJ07c], the spectrum of X (AT , D) is the smallest set3 that contains
−C for all the mD -cycles, and such that A3+ L⊂3.

Cloud Three. We have

mD(x, y)= 1
5 (1+ e2π iy

+ e−2π iy
+ e2π i2y

+ e−2π i2y).

If we want |mD(x, y)| = 1 then we must have that all the terms in the sum are 1 so y ∈ Z,
and x is arbitrary.

We are looking for mD -cycles, so |mD(σl(x, y))| = 1 for some l ∈ L so σl(x, y) must
have the second component in Z. The inverse of A is

A−1
=

1
5

(
1 −2
2 1

)
.

Thus (2(x + lx )+ (y + ly))/5 ∈ Z. This implies that x ∈ (1/2)Z.
We claim that 3= (1/2)Z× Z. For this, note first that A((1/2)Z× Z)+ L

⊂ (1/2)Z× Z. By the previous computation, (1/2)Z× Z contains the negative of all the
mD -cycles. Then, take w0 := (k/2, k′) ∈ (1/2)Z× Z. Then for l ∈ L

σl

(
−

k

2
,−k′

)
=

(
1

10
(−k + 2lx + 4k′ − 4ly),

1
5
(−k + 2lx − k′ + ly)

)
.

Note that there is a unique l0 ∈ L such that w1 := −σl0(−k/2,−k′) ∈ (1/2)Z× Z. As
in the proof of Proposition 6.14, there is a sequence l0, l1 · · · ∈ L such that if wn+1

=−τln (−wn), n ∈ N, then wn ∈ (1/2)Z× Z and, for some m, −wm is a cycle point for
(σl)l∈L. Note that since wn ∈ (1/2)Z× Z, −wm is a point in a mD -cycle.

Since wm =−τlm−1(wm−1), we have that wm−1 = Awm + lm−1 ∈ A(−C)+ L,
where C is the mD -cycle of −wm . By induction we obtain that w0 must be in 3. Thus
3= (1/2)Z× Z is the spectrum. Taking the dual we obtain that X (AT , D) tiles R2 by
2Z× Z.

Cloud Five. We have

mD(x, y)= 1
5 (1+ e2π i3x

+ e−2π i3x
+ e2π i x

+ e−2π i x ).

Therefore |mD(x, y)| = 1 if and only if x ∈ Z. For mD -cycles we must have that the first
component σl(x, y) must be in Z for some l ∈ L. This implies that y ∈ (1/2)Z.
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We claim that 3= (1/2)Z× Z. The proof works just as for the Cloud Three example
so we will leave it to the reader. Thus the dual lattice is 2Z× Z and X (AT , D).

Cloud Nine. We have

mD(x, y)= 1
5 (1+ e2π i3x

+ e−2π i3x
+ e2π i2y

+ e−2π i2y).

So |mD(x, y)| = 1 if and only if x ∈ (1/3)Z and y ∈ (1/2)Z. For mD -cycles we must
have (x, y)= (k/3, k′/2) with k, k′ ∈ Z and also |mD(σl(k/3, k′/2))| = 1 for some l ∈ L.
This implies that (2(k/3+ dx )− (k′/2+ dy))/5 ∈ (1/2)Z so k must be divisible by three.
Thus the mD -cycles are contained in Z× (1/2)Z.

Just as in the previous examples we get that 3= Z× (1/2)Z so the tiling lattice is
Z× 2Z.

Twin Dragon. For the matrix

A =

(
1 1
1 −1

)
,

there are no proper invariant subspaces so the analysis of the mD -cycles will suffice. We
can take

L :=
{[

0
0

]
,

[
1
0

]}
,

mD(x, y)= 1
2 (1+ e2π i x ).

Therefore |mD(x, y)| = 1 if and only if x ∈ Z.

A−1
=

1
2

(
1 −1
1 1

)
.

We want the first component of σl(x, y) to be in Z so (x − y)/2 ∈ Z, therefore y ∈ Z.
As in the previous examples we can check that 3= Z2 so the dual lattice is Z2. 2

The method used in our analysis of the examples may be formalized as follows. Stated
in general terms it applies to a large class of IFSs which carry a fairly minimal amount of
intrinsic duality. For the convenience of the reader, we begin with two definitions. This is of
interest as there are few results in the literature which produce formulas for lattices which
turn particular attractors X into tiles under the corresponding translations. For details we
refer to [DJ07c, DJ06b].

Definition 6.28.
(i) A Hadamard triple in Rd is a system (A, D, L) where A is expansive in Md(Z),

D, L are in Zd , and L is such that the matrix (6.19) is unitary.
(ii) For a Hadamard triple (A, D, L) the cycles C , that correspond to the IFS (σl)l∈L, for

which the absolute value of mD is 1 are called extreme relative to mD , or mD -cycles.

We are now ready to state our general tiling result.

COROLLARY 6.29. Let (A, D, L) be a Hadamard triple in Rd , and such that D is a
complete set of representatives for Zd/AT Zd , and let X = X (AT , D) be the corresponding
Hutchinson attractor. Suppose A has no proper invariant subspaces. Let3 be the smallest
lattice in Rd containing all the sets −C where C runs over the mD -extreme cycles, and
which is invariant under the affine mappings x 7→ Ax + l, for l ∈ L. Then the dual lattice
0 =3◦ makes X tile Rd with 0 translations.
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