
Ergod. Th. & Dynam. Sys. (2021), 41, 534–552
doi:10.1017/etds.2019.59

c© Cambridge University Press, 2019

Uniformly perfect finitely generated simple left
orderable groups

JAMES HYDE†, YASH LODHA‡, ANDRÉS NAVAS§¶ and CRISTÓBAL RIVAS‖
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Abstract. We show that the finitely generated simple left orderable groups Gρ constructed
by the first two authors in Hyde and Lodha [Finitely generated infinite simple groups
of homeomorphisms of the real line. Invent. Math. (2019), doi:10.1007/s00222-019-
00880-7] are uniformly perfect—each element in the group can be expressed as a product
of three commutators of elements in the group. This implies that the group does not
admit any homogeneous quasimorphism. Moreover, any non-trivial action of the group
on the circle, which lifts to an action on the real line, admits a global fixed point. It
follows that any faithful action on the real line without a global fixed point is globally
contracting. This answers Question 4 of the third author [A. Navas. Group actions on
1-manifolds: a list of very concrete open questions. Proceedings of the International
Congress of Mathematicians, Vol. 2. Eds. B. Sirakov, P. Ney de Souza and M. Viana.
World Scientific, Singapore, 2018, pp, 2029–2056], which asks whether such a group
exists. This question has also been answered simultaneously and independently, using
completely different methods, by Matte Bon and Triestino [Groups of piecewise linear
homeomorphisms of flows. Preprint, 2018, arXiv:1811.12256]. To prove our results,
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we provide a characterization of elements of the group Gρ which is a useful new tool in
the study of these examples.
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1. Introduction
In 1980 Rhemtulla asked whether there exist finitely generated non-trivial simple left
orderable groups (see [9] for a discussion around the history of the problem and
references). This question was answered in the affirmative by the first two authors in
[9]. The construction takes as an input a certain quasiperiodic labeling ρ of the set 1

2 Z,
which is a map

ρ : 1
2 Z→ {a, b, a−1, b−1

}

that satisfies a certain set of axioms. (See the preliminaries section for details.) Such
labelings exist and are easy to construct explicitly. For each such labeling ρ, one
constructs an explicit group action Gρ < Homeo+(R) which is a finitely generated simple
left orderable group.

Given a group G and an element f ∈ [G, G], the integer cl( f ) is defined as the smallest
k such that f can be expressed as a product of k commutators of elements in G. We state
our main theorem.

THEOREM 1.1. Let ρ be a quasiperiodic labeling. Then cl( f )≤ 3 for each element
f ∈ Gρ .

Recall that a homogeneous quasimorphism is a quasimorphism φ : G→ R with the
property that the restriction of φ to any cyclic subgroup is a homomorphism. As a
consequence of Theorem 1.1 we obtain that the stable commutator length vanishes, and
hence the group does not admit any non-trivial homogeneous quasimorphism. (We refer
the reader to [4] as a general reference for these concepts). Using the work of Ghys [7],
this allows us to show the following corollary.

COROLLARY 1.2. Let ρ be a quasiperiodic labeling. Then every faithful action of Gρ on
S1, which lifts to an action on the real line, admits a global fixed point on S1.

Recall that, for every action of a finitely generated group G by orientation-preserving
homeomorphisms of the real line without global fixed points, we have one of three
possibilities:
(i) there is a σ -finite measure µ that is invariant under the action;
(ii) the action is semiconjugate to a minimal action for which every small enough interval

is sent into a sequence of intervals that converge to a point under well-chosen
group elements, but this property does not hold for every bounded interval (here,
by a semiconjugacy we roughly mean a factor action for which the factor map is a
continuous, non-decreasing, proper map of the real line);

(iii) the action is globally contracting; more precisely, it is semiconjugate to a minimal
one for which the contraction property above holds for all bounded intervals.
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We obtain the following result as an immediate consequence of Corollary 1.2.

COROLLARY 1.3. Let ρ be a quasiperiodic labeling. Then any faithful action of the group
Gρ on R without global fixed points is of type (iii).

This answers the following question of the third author.

Question 1.4. [13, Question 4] Does there exist an infinite, finitely generated group that
acts on the real line all of whose actions by orientation-preserving homeomorphisms of
the line without global fixed points are of type (iii)?

Remark 1.5. The above question has been answered simultaneously and independently by
Matte Bon and Triestino in [12]. They provide a new family of finitely generated simple
left orderable groups, which are overgroups of the groups Gρ , and prove the analog of
Corollary 1.2 for that family. Their methods are completely different from ours.

Corollaries 1.2 and 1.3 should be compared with similar theorems for lattices in higher-
rank simple Lie groups. For these, it is known that every action on the circle has a finite
orbit; therefore, up to a finite-index group, they admit a global fixed point [3, 8]. However,
it is still unknown whether they admit non-trivial actions on the line or not, yet several
definitive results are known [10, 11, 14]. If one of these lattices admits such an action, it is
not hard to see that it would also provide an affirmative answer to Question 1.4 (see [6]).

The proof of Theorem 1.1 uses the following new description of the group which is the
main technical result of this paper. Let ρ be a quasiperiodic labeling. (Recall this notion
from [9], or see Definition 2.5.) Given an x ∈ R and n ∈ N, we define a word W(x, n)
of length 2n + 1 in the alphabet {a, a−1, b, b−1

} as follows. Let y ∈ 1
2 Z \ Z be such that

x ∈ [y − 1
2 , y + 1

2 ). Then

W(x, n)= ρ(y − 1
2 n)ρ(y − 1

2 (n − 1)) . . . ρ(y) . . . ρ(y + 1
2 (n − 1))ρ(y + 1

2 n).

For each integer n ∈ Z, we denote by ιn the unique orientation-reversing isometry ιn :
[n, n + 1)→ (n, n + 1]. We define the map ι : R→ R as

x · ι= x · ιn where x ∈ [n, n + 1) for n ∈ Z.

In what follows, by a countably singular piecewise linear homeomorphism we mean a
piecewise linear homeomorphism with a countable set of singularities (or breakpoints).

Definition 1.6. Let Kρ be the set of homeomorphisms f ∈ Homeo+(R) satisfying the
following conditions.
(1) f is a countably singular piecewise linear homeomorphism of R with a discrete set

of singularities, all of which lie in Z[ 12 ].
(2) f ′(x), wherever it exists, is an integer power of 2.
(3) There is a k f ∈ N such that:

(3.a) whenever x, y ∈ R satisfy

x − y ∈ Z, W(x, k f )=W(y, k f ),

we have
x − x · f = y − y · f ;
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(3.b) whenever x, y ∈ R satisfy

x − y ∈ Z, W(x, k f )=W−1(y, k f ),

we have
x − x · f = y′ · f − y′ where y′ = y · ι.

It is not hard to check that Kρ is a group. If this is not clear to the reader, it will be a
consequence of Theorem 1.8.

Remark 1.7. Note that, given an element f ∈ Kρ and a number k f ∈ N satisfying the
conditions of Definition 1.6, any number k′f ∈ N such that k′f > k f also satisfies the
conditions of the definition.

THEOREM 1.8. Kρ = Gρ .

This characterization provides a useful new definition of the groups Gρ as groups of
homeomorphisms of the real line satisfying a natural set of criterion. This also provides
useful new structural results such as the following proposition. (In what follows, we denote
by F ′ the commutator subgroup of Thompson’s group F .)

PROPOSITION 1.9. Let ρ be a quasiperiodic labeling. Given any element f ∈ Gρ , there
are elements g1, g2 ∈ Gρ such that:
(1) f = g1g2;
(2) g2 is a commutator in Gρ;
(3) there is a subgroup K < Gρ such that K is isomorphic to a direct sum of finitely

many copies of F ′ and g1 ∈ K .

2. Preliminaries
We assume that 0 ∈ N. All actions will be right actions, unless otherwise specified. Given
a group action G < Homeo+(R) and a g ∈ G, we denote by Supp(g) the set

Supp(g)= {x ∈ R | x · g 6= x}.

Note that Supp(g) is an open set, and that R can be replaced by another 1-manifold.
A homeomorphism f : [0, 1] → [0, 1] is said to be compactly supported in (0, 1) if
Supp( f )⊂ (0, 1). Similarly, a homeomorphism f : R→ R is said to be compactly
supported in R if Supp( f ) is contained in a compact interval in R. A point x ∈ R is
said to be a transition point of f if

x ∈ ∂ Supp( f )= Supp( f ) \ Supp( f ).

Our construction uses in an essential way the structure and properties of Thompson’s
group F . We shall only describe the features of F here that we need, and we direct the
reader to [5] and [2] for more comprehensive surveys. Recall that the group PL+([0, 1])
is the group of orientation-preserving piecewise linear homeomorphisms of [0, 1]. Recall
that F is defined as the subgroup of PL+([0, 1]) that satisfies the following conditions.
(1) Each element has at most finitely many breakpoints. All breakpoints lie in the set of

dyadic rationals, that is, Z[ 12 ].
(2) For each element, the derivatives, wherever they exist, are powers of 2.
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By breakpoint (or a singularity point) we mean a point where the derivative does not exist.
For r, s ∈ Z[ 12 ] ∩ [0, 1] such that r < s, we denote by F[r,s] the subgroup of elements
whose support lies in [r, s]. We now present some well-known facts that we shall need.
The group F satisfies the following properties:
(1) F is 2-generated;
(2) for each pair r, s ∈ Z[ 12 ] ∩ [0, 1] such that r < s, the group F[r,s] is isomorphic to F

and hence is also 2-generated;
(3) F ′ is simple and consists of precisely the set of elements g ∈ F such that Supp(g)⊂

(0, 1).
An interval I ⊆ [0, 1] is said to be a standard dyadic interval if it is of the

form [a/2n, (a + 1)/2n
] such that a, n ∈ N, a < 2n

− 1. The following lemmas give
elementary facts about the action of F on the standard dyadic intervals.

LEMMA 2.1. Let I, J be standard dyadic intervals in (0, 1). Then there is an element
f ∈ F ′ such that:
(1) I · f = J ;
(2) f � I is linear.

LEMMA 2.2. Let I1, I2 and J1, J2 be standard dyadic intervals in (0, 1) such that

sup(I1) < inf(I2), sup(J1) < inf(J2).

Then there is an element f ∈ F ′ such that:
(1) I1 · f = J1 and I2 · f = J2;
(2) f � I1 and f � I2 are linear.

Recall that we fix ι : (0, 1)→ (0, 1) as the unique orientation-reversing isometry. We
say that an element f ∈ F is symmetric if f = ι ◦ f ◦ ι. We say that a set I ⊂ (0, 1) is
symmetric if I · ι= I . Note that, given any symmetric set I with non-empty interior, we
can find a non-trivial symmetric element f ∈ F ′ such that Supp( f )⊂ int(I ). We extend
the map ι to R as follows. For each integer n ∈ Z, we denote the unique orientation-
reversing isometry

ιn : [n, n + 1)→ (n, n + 1].

For x ∈ R, we define the map ι : R→ R as

x · ι= x · ιn where x ∈ [n, n + 1) for n ∈ Z.

In this paper we shall also use the notation ι[x,y) : [x, y)→ (x, y] or ιI : I → I to
denote the unique orientation-reversing isometries between intervals of the form [x, y)
and (x, y] (for x, y ∈ R), or a compact subinterval I of R. The usage of this notation will
be made clear when it occurs. (Note that it differs from the ι defined above.)

Definition 2.3. We fix an element c0 ∈ F with the following properties:
(1) the support of c0 equals (0, 1

4 ) and x · c0 > x for each x ∈ (0, 1
4 );

(2) c0 � (0, 1
16 ) equals the map t→ 2t .

Let
c1 = ι ◦ c0 ◦ ι, ν1 = c0c1.
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Note that ν1 ∈ F is a symmetric element. We define a subgroup H of F as

H = 〈F ′, ν1〉.

Finally, we fix
ν2, ν3 : [0, 1] → [0, 1]

as chosen homeomorphisms whose supports are contained in ( 1
16 ,

15
16 ) and that generate

the group F[1/16,15/16].

The following lemma is [9, Lemma 2.4].

LEMMA 2.4. H is generated by ν1, ν2, ν3. H ′ is simple and consists of precisely the set
of elements of H (or F) that are compactly supported in (0, 1). In particular, H ′ = F ′.

Definition 2.5. We consider the additive group 1
2 Z= { 12 k | k ∈ Z}. A labeling is a map

ρ : 1
2 Z→ {a, b, a−1, b−1

}

which satisfies:
(1) ρ(k) ∈ {a, a−1

} for each k ∈ Z;
(2) ρ(k) ∈ {b, b−1

} for each k ∈ 1
2 Z \ Z.

We regard ρ( 1
2 Z) as a bi-infinite word with respect to the usual ordering of the integers.

A subset X ⊆ 1
2 Z is said to be a block if it is of the form

{k, k + 1
2 , . . . , k + 1

2 n}

for some k ∈ 1
2 Z, n ∈ N. Note that each block is endowed with the usual ordering inherited

from R. The set of blocks of 1
2 Z is denoted as B. To each block

X = {k, k + 1
2 , . . . , k + 1

2 n}

we assign a formal word

Wρ(X)= ρ(k)ρ(k + 1
2 ) . . . ρ(k +

1
2 n)

which is a word in the letters {a, b, a−1, b−1
}. Such a formal word is called a subword of

the labeling.
Recall that, given a word w1 . . . wn in the letters {a, b, a−1, b−1

}, the formal inverse
of the word is w−1

n . . . w−1
1 . The formal inverse of Wρ(X) is denoted by W−1

ρ (X).
A labeling ρ is said to be quasiperiodic if the following conditions hold:

(1) for each block X ∈ B, there is an n ∈ N such that whenever Y ∈ B is a block of size
at least n, then Wρ(X) is a subword of Wρ(Y );

(2) for each block X ∈ B, there is a block Y ∈ B such that Wρ(Y )=W−1
ρ (X).

Note that by subword in the above we mean a string of consecutive letters in the word.

A non-empty finite wordw1 . . . wn forwi ∈ {a, b, a−1, b−1
} is said to be a permissible

word if n is odd and the following condition holds. For odd i ≤ n one has wi ∈ {a, a−1
},

and for even i ≤ n one has wi ∈ {b, b−1
}.

The following lemma is [9, Lemma 3.1].

LEMMA 2.6. Given any permissible word w1 . . . wm , there is a quasiperiodic labeling ρ
of 1

2 Z and a block X ∈ B satisfying that Wρ(X)= w1 . . . wm .
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Following [9], we recall that to each labeling ρ we associate a group Gρ < Homeo+(R)
as follows.

Definition 2.7. Let H < Homeo+([0, 1]) be the group defined in Definition 2.3. Recall
from Lemma 2.4 that the group H is generated by the three elements ν1, ν2, ν3 defined
in Definition 2.3. In what appears below, by ∼=T we mean that the restrictions are
topologically conjugate via the unique orientation-preserving isometry that maps [0, 1]
to the respective interval. We define the homeomorphisms

ζ1, ζ2, ζ3, χ1, χ2, χ3 : R→ R

as follows: for each i ∈ {1, 2, 3} and n ∈ Z,

ζi � [n, n + 1] ∼=T νi if ρ(n + 1
2 )= b,

ζi � [n, n + 1] ∼=T (ι ◦ νi ◦ ι) if ρ(n + 1
2 )= b−1,

χi � [n − 1
2 , n + 1

2 ]
∼=T νi if ρ(n)= a,

χi � [n − 1
2 , n + 1

2 ]
∼=T (ι ◦ νi ◦ ι) if ρ(n)= a−1.

The group Gρ is defined as

Gρ := 〈ζ±1
1 , ζ±1

2 , ζ±1
3 , χ±1

1 , χ±1
2 , χ±1

3 〉< Homeo+(R).

We denote the above generating set of Gρ by

Sρ := {ζ±1
1 , ζ±1

2 , ζ±1
3 , χ±1

1 , χ±1
2 , χ±1

3 }.

We also define subgroups

K := 〈ζ±1
1 , ζ±1

2 , ζ±1
3 〉, L := 〈χ±1

1 , χ±1
2 , χ±1

3 〉

of Gρ that are both isomorphic to H , and

K′ ∼= L′ ∼= F ′.

Note that the definition of K, L requires us to fix a labeling ρ but we denote them as such
for simplicity of notation.

Recall that in [9] we fixed notation for the natural isomorphisms

λ : H →K, π : H → L

as follows: for each f ∈ H, n ∈ Z,

λ( f ) � [n, n + 1] ∼=T f if ρ(n + 1
2 )= b,

λ( f ) � [n, n + 1] ∼=T (ι ◦ f ◦ ι) if ρ(n + 1
2 )= b−1,

π( f ) � [n − 1
2 , n + 1

2 ]
∼=T f if ρ(n)= a,

π( f ) � [n − 1
2 , n + 1

2 ]
∼=T (ι ◦ f ◦ ι) if ρ(n)= a−1.

We also denote the naturally defined inverse isomorphisms by

λ−1
:K→ H, π−1

: L→ H.
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Note that the group Gρ is defined for every labeling ρ. The following theorem is proved
in [9].

THEOREM 2.8. Let ρ be a quasiperiodic labeling. Then the group Gρ is simple.

For simplicity of notation, in what follows we will not explicitly mention the labeling ρ
in what we now define. Recall that, given an x ∈ R and n ∈ N, we define a word W(x, n)
as follows. Let y ∈ 1

2 Z \ Z such that x ∈ [y − 1
2 , y + 1

2 ). Then we define

W(x, n)= ρ(y − 1
2 n)ρ(y − 1

2 (n − 1)) . . . ρ(y) . . . ρ(y + 1
2 (n − 1))ρ(y + 1

2 n).

Given a compact integer interval (i.e. with integer endpoints) J ⊂ R and n1, n2 ∈ N, we
define a word W(J, n1, n2) as follows. Let

y1 = inf(J )+ 1
2 , y2 = (J )− 1

2 .

Then we define

W(J, n1, n2)= ρ(y1 −
1
2 n1)ρ(y1 −

1
2 (n1 − 1)) . . . ρ(y1) . . . ρ(y2) . . .

ρ(y2 +
1
2 (n2 − 1))ρ(y2 +

1
2 n2).

If n1 = n2 = n, we denote W(J, n1, n2) simply as W(J, n).
We denote by W−1(x, n) and W−1(J, n) the formal inverses of the words W(x, n) and

W(J, n), respectively. We now state a few structural results about the groups Gρ that were
proved in [9]. For what follows, we assume that ρ is a quasiperiodic labeling. Note that the
statement of the first lemma is slightly modified to suit the needs of this paper. However,
the modification is entirely straightforward.

LEMMA 2.9. [9, Lemma 5.1] Let f ∈ Gρ be a non-identity element such that

f = w1 . . . wk, wi ∈ Sρ for 1≤ i ≤ k.

Then the following statements hold:
(1) the set of breakpoints of f is discrete and the set of transition points is also discrete;
(2) there is an m f ∈ N such that, for any compact interval J of length at least mf , f

fixes a point in J ;
(3) for each x ∈ R and each i ≤ k,

x · w1 . . . wi ∈ [x − (k + 1), x + (k + 1)].

LEMMA 2.10. [9, Lemma 5.3] The action of Gρ on R is minimal.

LEMMA 2.11. [9, Lemma 5.4] For each pair of elements m1, m2 ∈ Z and a closed interval
I ⊂ (m1, m1 + 1), there is a word w1 . . . wk in the generators Sρ such that

I · w1 . . . wk ⊂ (m2, m2 + 1)

and
I · w1 . . . wi ⊂ [inf{m1, m2}, sup{m1 + 1, m2 + 1}]

for each 1≤ i ≤ k.
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We next state an elementary corollary of the third part of Lemma 2.9. The natural
number m emerges as the word length of f in Sρ .

COROLLARY 2.12. Let f ∈ Gρ . There is an m ∈ N such that, for any x1, x2 ∈ R so that
x1 − x2 ∈ Z, the following statements hold:
(1) if W(x1, m)=W(x2, m) then

x1 − x1 · f = x2 − x2 · f ;

(2) if W−1(x1, m)=W(x2, m) then

x1 − x1 · f = x3 · f − x3 where x3 = x2 · ι.

Finally, we shall also need the following folklore result (see the Appendix in [1] for a
proof.)

THEOREM 2.13. Every element in F ′ can be expressed as a product of at most two
commutators of elements in F ′.

3. A characterization of elements of Gρ
The goal of this section is to establish the characterization of elements in Gρ as described
in the introduction (Definition 1.6). In effect, this requires us to prove Theorem 1.8.
Throughout this section we fix a quasiperiodic labeling ρ. Note that it follows from
Corollary 2.12 that Gρ ⊆ Kρ . Therefore much of the rest of the paper will be devoted
to proving that Kρ ⊆ Gρ . The proof of this requires us to establish some preliminary
structural results about the group Gρ .

The main structural result is Proposition 3.4. The proof of the main theorems and
corollaries will follow from it. Proposition 3.4 will be proved in a subsequent section, and
its proof involves the construction of a certain family of special elements in Gρ .

Definition 3.1. A homeomorphism f ∈ Homeo+(R) is said to be stable if there exists an
n ∈ N such that the following result holds. For any compact interval I of length at least n,
there is an integer m ∈ I such that f fixes a neighborhood of m pointwise. Given a stable
homeomorphism f ∈ Homeo+(R) and an interval [m1, m2], the restriction f � [m1, m2]

is said to be an atom of f , if:
(1) m1, m2 ∈ Z;
(2) there is an ε > 0 such that, for each x ∈ (m1 − ε, m1 + ε) ∪ (m2 − ε, m2 + ε), we

have x · f = x ;
(3) for any m ∈ (m1, m2) ∩ Z and any ε > 0, there is a point x ∈ (m − ε, m + ε) such

that x · f 6= x .
In other words, an atom is the restriction of f to the closure of a maximal open interval J
with the property that for each m ∈ J ∩ Z, f moves a point in any neighborhood of m.

Note that, given a stable homeomorphism f , there is a unique way to express R as a
union of integer intervals {Iα}α∈P such that f � Iα is an atom for each α ∈ P and different
intervals intersect in at most one endpoint. For simplicity, we will refer just to the intervals
Iα as the atoms of f .

Given an atom f � I , we refer to the intervals [inf(I ), inf(I )+ 1] and [sup(I )− 1,
sup(I )] as the head and the foot of the atom, respectively. Note that is it possible that
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an atom Iα has the same interval as head and foot, in which case |Iα| = 1. Two atoms
f � [m1, m2] and f � [m3, m4] are said to be conjugate if there is an integer translation
h(t)= t + z for z ∈ Z such that

f � [m1, m2] = h−1
◦ f ◦ h � [m3, m4]

and flip-conjugate if there is an integer translation h(t)= t + z for z ∈ Z such that

f � [m1, m2] = h−1
◦ (ι[m1,m2] ◦ f ◦ ι[m1,m2]) ◦ h � [m3, m4]

where
ι[m1,m2] : [m1, m2] → [m1, m2]

is the unique orientation-reversing isometry.
For a fixed n ∈ N, we consider the set of decorated atoms:

Tn( f )= {(Iα, n) | α ∈ P}.

We say that a pair of decorated atoms (Iα, n) and (Iβ , n) are equivalent if either of the
following statements holds:
(1) Iα, Iβ are conjugate and W(Iα, n)=W(Iβ , n);
(2) Iα, Iβ are flip-conjugate and W(Iα, n)=W−1(Iβ , n).

The element f is said to be uniformly stable if it is stable and there are finitely many
equivalence classes of decorated atoms for each n ∈ N. Note that if there are finitely many
equivalence classes of decorated atoms of f for some n ∈ N, then this holds for any n ∈ N.
This is true since there are finitely many words of length n in {a, b, a−1, b−1

}.

LEMMA 3.2. Let g ∈ Kρ . Then there exist g1, g2 ∈ Gρ , where g2 is a commutator of
elements in Gρ , such that g−1

1 (gg−1
2 )g1 ∈ Kρ is uniformly stable.

Proof. Since g ∈ Kρ , we know that there is a constant kg that witnesses the conditions of
Definition 1.6. Let x ∈ R be such that x · g > x . Since ρ is quasiperiodic, there is a y ∈ R
such that x − y ∈ Z and

W−1(y, kg)=W(x, kg).

It follows from (3.b) in Definition 1.6 that y′ · g < y′ for y′ = y · ι. Therefore, g admits a
fixed point p0 ∈ R. A similar conclusion is achieved by starting with a point x for which
x · g < x .

Assume that p0 ∈ R \ Z. The case where p0 ∈ R \ ( 1
2 Z \ Z) is dealt with similarly. We

find an element l2 ∈ F ′ such that l2 is a commutator in F ′ and g2 = λ(l2) coincides with
g on a neighborhood of p0. Note that this is possible since p0 is a fixed point of g and g
satisfies the first two conditions of Definition 1.6. It follows that gg−1

2 fixes pointwise a
subinterval I of non-empty interior.

Since the action of Gρ on R is minimal (see Lemma 2.11), we can find g1 ∈ Gρ such that
0 · g−1

1 ∈ I . It follows that g−1
1 (gg−1

2 )g1 fixes a neighborhood of 0. From an application
of quasiperiodicity and Definition 1.6, it follows that this element is uniformly stable. �

The core of the proof of Theorem 1.8 reduces to the following proposition. To state it
we first give the following definition.
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Definition 3.3. Let f ∈ Homeo+(R) be uniformly stable. Let ζ be an equivalence class of
elements in Tn( f ). We define the homeomorphism fζ as

fζ � Iα = f � Iα if (Iα, n) ∈ ζ,

fζ � Iα = id � Iα if(Iα, n) /∈ ζ.

If ζ1, . . . , ζm are the equivalence classes of elements in Tn( f ), then the list of
homeomorphisms fζ1 , . . . , fζm is called the cellular decomposition of f .

PROPOSITION 3.4. Given a uniformly stable element f ∈ Kρ , there is an n ∈ N such that
fζ ∈ Gρ for each ζ ∈ Tn( f ). In particular, it follows that f ∈ Gρ .

4. Special elements in Gρ
The proof of Proposition 3.4 requires the construction of a certain family of special
elements in Gρ . We define and construct them in this section. The construction of such
elements is also a useful tool to study the groups Gρ . Throughout the section we assume
that ρ is a quasiperiodic labeling.

Recall the definitions of the subgroups K, L≤ Gρ from the preliminaries. Also recall
the isomorphisms

λ : H →K, π : H → L.

We consider the set of triples

�= {(W, k1, k2) |W ∈ {a, b, a−1, b−1
}
<N, k1, k2 ∈ N such that |W | = k1 + k2 + 1}.

Definition 4.1. Given an element f ∈ F ′ and ω ∈�, we define the special element
λω( f ) ∈ Homeo+(R) as follows: for each n ∈ Z, we let

λω( f ) � [n, n + 1] = λ( f ) � [n, n + 1] if


W([n, n + 1], k1, k2)=W,

or

W([n, n + 1], k2, k1)=W−1,

λω( f ) � [n, n + 1] = id � [n, n + 1] otherwise.

Similarly, we define the special elements πω( f ) ∈ Homeo+(R) as follows: for each
n ∈ 1

2 Z \ Z, we let

πω( f ) � [n, n + 1] = π( f ) � [n, n + 1] if


W([n, n + 1], k1, k2)=W,

or

W([n, n + 1], k2, k1)=W−1,

πω( f ) � [n, n + 1] = id � [n, n + 1] otherwise.

Given ω = (W, k1, k2) where W = w−k1 . . . w0 . . . wk2 , we call w0 the central letter
of the word W .

Remark 4.2. Note the order of appearance of k1, k2 in W([n, n + 1], ·, ·) in the above
definition.

The following lemma is a direct consequence of the definitions.
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LEMMA 4.3. Consider ω1 = (W1, k1, k2) and ω2 = (W2, k2, k1) such that W1 =W−1
2 .

Then it follows that for each f ∈ F ′,

λω1( f )= λω2(ι ◦ f ◦ ι), πω1( f )= πω2(ι ◦ f ◦ ι).

In particular, by symmetry it follows that:
(1) λω1( f ) ∈ Gρ for each f ∈ F ′ if and only if λω2( f ) ∈ Gρ for each f ∈ F ′;
(2) πω1( f ) ∈ Gρ for each f ∈ F ′ if and only if πω2( f ) ∈ Gρ for each f ∈ F ′.

Remark 4.4. Note that λω( f ), πω( f ) for ω = (W, k1, k2) will be equal to the identity
homeomorphism, or the trivial element of Gρ , if W does not occur as a subword of the
labeling ρ. Finally, note that λω( f ) is trivial if w0 ∈ {a, a−1

} and πω( f ) is trivial if
w0 ∈ {b, b−1

}.

The key technical step in the proof of the main theorem is the following localization
result.

PROPOSITION 4.5. Let ω ∈� and f ∈ F ′. Then λω( f ), πω( f ) ∈ Gρ .

Proof. We show this for λω; the proof for πω is similar. Thanks to Lemma 4.3, we can
assume without loss of generality that ω = (W, k1, k2) satisfies that the central letter of W
equals b. As an appetizer, we first demonstrate the above proposition for k1, k2 ∈ {0, 1}.
The statement in its full generality will then follow using an induction on n which is
essentially similar to the base case.

The case k1 = k2 = 0. If W = b then λω( f )= λ( f ).

The case k1 = 0, k2 = 1 or k1 = 1, k2 = 0. Consider the case W = ba. Given an f ∈ F ′,
we wish to show that λω( f ) ∈ Gρ . Since F ′ is generated by commutators, it suffices to
show this in the case where f is a commutator. Since f ∈ F ′, there is an f1 ∈ F ′ such that

Supp( f1 f f −1
1 )⊂ ( 1

2 , 1).

Let f2 = f1 f f −1
1 . By self-similarity of F ′, we note that f2 is a commutator in F ′

[1/2,1].
Let

f2 = [ f3, f4] for f3, f4 ∈ F ′
[1/2,1] ⊂ F ′

[0,1].

Let f ′4 ∈ F ′
[0,1/2] ⊆ F ′

[0,1] be such that f ′4 = h f4h−1 where h(t)= t + 1
2 . We claim that

λω( f2)= [λ( f3), π( f ′4)].

Consider an interval [n, n + 1] where n ∈ Z. If either

ρ(n + 1
2 )ρ(n + 1)= ba

or
ρ(n)ρ(n + 1

2 )= a−1b−1

then
[λ( f3), π( f ′4)] � [n, n + 1] = λω( f2) � [n, n + 1].

If ρ(n)ρ(n + 1
2 )ρ(n + 1) ∈ {ab−1a, ab−1a−1, a−1ba−1

} then

(Supp(λ( f3)) ∩ [n, n + 1])
⋂
(Supp(π( f ′4)) ∩ [n, n + 1])= ∅
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and hence

[λ( f3), π( f ′4)] � [n, n + 1] = id � [n, n + 1] = λω( f2) � [n, n + 1].

Since the central letter of W is b, we obtain

λω( f )= λ( f −1
1 )λω( f2)λ( f1) ∈ Gρ .

The cases W ∈ {a−1b, ab, ba−1
} are very similar and are left as a pleasant visual

exercise for the reader.

The general case. We perform an induction on sup{k1, k2}. Let the inductive hypothesis
hold for n ∈ N. Consider a word

W = w−k1 . . . w0 . . . wk2 , wi ∈ {a, a−1, b, b−1
}

such that sup{k1, k2} = n + 1. There are three cases:
(1) k2 > k1;
(2) k1 > k2;
(3) k1 = k2.

The first two cases are symmetric, and we deal with k2 > k1 and k1 = k2.

The case k2 > k1. Assume as above that w0 = b. We wish to show that, given an f ∈ F ′,
λω ∈ Gρ . Since F ′ is generated by commutators, as above it suffices to show this in the
case where f is a commutator.

Since f ∈ F ′, there is an f1 ∈ F ′ such that

Supp( f1 f f −1
1 )⊂ ( 1

2 , 1).

Let
f2 = f1 f f −1

1 .

As before, by self-similarity of F ′, we note that f2 is a commutator in F ′
[1/2,1].

Let
f2 = [ f3, f4], f3, f4 ∈ F ′

[1/2,1] ⊂ F ′
[0,1].

Let f ′4 ∈ F ′
[0,1/2] ⊆ F ′

[0,1] be such that f ′4 = h f4h−1 where h(t)= t + 1
2 .

We define
W1 = w−k1 . . . w−1w0, W2 = w1 . . . wk2 ,

l1 = k1, l2 = 0, l3 = 0, l4 = k2 − 1, ω1 = (W1, l1, l2), ω2 = (W2, l3, l4).

Note that the central letter of W1 is b and the central letter of W2 isw1 ∈ {a, a−1
}. From

our inductive hypothesis, we know that λω1(h), λω2(h) ∈ Gρ for each h ∈ F ′. One checks
that:
(1) if w1 = a then

λω( f2)= [λω1( f3), πω2( f ′4)];

(2) if w1 = a−1 then

λω( f2)= [λω1( f3), πω2( f ′′4 )], f ′′4 = ι ◦ f ′4 ◦ ι.
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Since w0 = b, it follows that

λω( f )= λ( f −1
1 )λω( f2)λ( f1) ∈ Gρ .

The case k1 = k2. Assume as above that w0 = b. We wish to show that, given an f ∈ F ′,
λω ∈ Gρ . Once again, as above it suffices to show this in the case where f is a commutator.

Just as above, we fix an f1 ∈ F ′ such that

Supp( f1 f f −1
1 )⊂ ( 1

2 , 1).

Let
f2 = f1 f f −1

1 .

As before, by self-similarity of F ′, we note that f2 is a commutator in F ′
[1/2,1].

Let
f2 = [ f3, f4], f3, f4 ∈ F ′

[1/2,1] ⊂ F ′
[0,1].

Let f ′4 ∈ F ′
[0,1/2] ⊆ F ′

[0,1] such that f ′4 = h f4h−1 where h(t)= t + 1
2 . Let f5 ∈ F ′ be an

element such that
f5 � Supp( f3)= h−1(t) � Supp( f3).

Let
W1 = w−k1 . . . w0, W2 = w1 . . . wk2

and

l1 = k1 − 1, l2 = 1, l3 = 0, l4 = k2 − 1, ω1 = (W1, l1, l2), ω2 = (W2, l3, l4).

Note that w−1, w1 are the central letters of W1, W2, respectively.
Let

f ′′3 = ι ◦ f ′3 ◦ ι if w−1 = a−1

and
f ′′3 = f ′3 if w−1 = a.

Let
f ′′4 = ι ◦ f ′4 ◦ ι if w1 = a−1

and
f ′′4 = f ′4 if w1 = a.

From our inductive hypothesis, we know that λω1(k), λω2(k) ∈ Gρ for each k ∈ F ′. One
checks that

λω( f2)= [λ( f −1
5 )πω1( f ′′3 )λ( f5), πω2( f ′′4 )].

Since w0 = b, it follows that

λω( f )= λ( f −1
1 )λω( f2)λ( f1) ∈ Gρ . �
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5. Epilog
The goal of this section is to prove Proposition 3.4, and subsequently the results stated in
the Introduction. We consider a uniformly stable element f ∈ Kρ . Let {Iα}α∈P be the set
of atoms of f . From Definition 1.6, we know that there is a k f ∈ N such that parts (3.a),
(3.b) of the definition hold.

LEMMA 5.1. Let f ∈ Kρ and {Iα}α∈P be as above. There is a number l f > kf such that
the following statement holds. Consider n, m ∈ Z, α ∈ P such that [n, n + 1], [m, m + 1]
are respectively the head and the foot of Iα . Assume that n 6= m (and hence Iα has a
distinct head and foot). Then it follows that

W([n, n + 1], l f ) 6=W([m, m + 1], l f ),

W([n, n + 1], l f ) 6=W−1([m, m + 1], l f ).

Proof. First we claim that

W([n, n + 1], k f + 2) 6=W([m, m + 1], k f + 2).

From the definition of the atoms of f , there is an ε > 0 such that f fixes each point in
[n − ε, n + ε]. However, there is a point in [m − ε, m + ε] that is moved by f . It follows
from Definition 1.6 that either

W(n − 1
2 , k f ) 6=W(m − 1

2 , k f )

or
W(n + 1

2 , k f ) 6=W(m + 1
2 , k f ).

Therefore, the claim follows.
Let l = sup{|Iβ | | β ∈ P}. Note that from Definition 1.6 it follows that l is finite. For

l f = k f + l it follows that

W([n, n + 1], l f ) 6=W−1([m, m + 1], l f ).

(To see this, assume by way of contradiction that the equality holds. This would imply that
there is a number t ∈ [n, m] such that ρ(t)= ρ(t)−1, which is impossible.) It follows that
both inequalities hold for l f = k f + l. �

Definition 5.2. Given any f ∈ Kρ that is uniformly stable, we define the number emerging
from the proof of the above lemma as

l f = k f + l, l = sup{|Iβ | | β ∈ P}.

Note that l f satisfies both the conditions of Definition 1.6 and the conclusion of
Lemma 5.1.

Since f is uniformly stable, we can consider the cellular decomposition of f as
decorated atoms Tl f ( f ). Let ζ1, . . . , ζm be the equivalence classes of Tl f (g). The
homeomorphisms fζ1 , . . . , fζm form the resulting cellular decomposition. To prove
Proposition 3.4 we would like to show that fζ1 , . . . , fζm ∈ Gρ .
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LEMMA 5.3. Let f ∈ Kρ , {Iα}α∈P and Tl f ( f ) be as above. Consider n, m ∈ Z, α ∈ P
such that:
(1) [n, n + 1], [m, m + 1] are subintervals of Iα;
(2) [n, n + 1] is either the head or the foot of Iα and [m, m + 1] is neither the head nor

the foot of Iα .
Then it follows that

W([n, n + 1], l f ) 6=W([m, m + 1], l f ),

W([n, n + 1], l f ) 6=W−1([m, m + 1], l f ).

Proof. Assume that [n, n + 1] is the head of Iα . (The proof for the foot is similar.)
Note that by definition, f � (n − ε, n + ε)= id for some ε > 0. However, f � (m − ε,
m + ε) 6= id. So from part (3) of Definition 1.6 our conclusion follows. �

Definition 5.4. An element g ∈ Gρ is said to preserve the atoms of f if the following
statements hold:
(1) for each α ∈ P , g pointwise fixes a neighborhood of inf(Iα), sup(Iα);
(2) if (Iα, l f ) and (Iβ , l f ) are equivalent, then

g � Iα ∼=T g � Iβ if W(Iα, l f )=W(Iβ , l f ),

g � Iα ∼=T ιβ ◦ g ◦ ιβ � Iβ if W(Iα, l f )=W−1(Iβ , l f )

where ιβ : Iβ→ Iβ is the unique orientation-reversing isometry.
Note that these properties are closed under composition of elements, and hence we define
a subgroup of Gρ ,

M f = {g ∈ Gρ | g is atom preserving for f }.

Special elements in Gρ provide a natural source of atom-preserving elements, as is
observed in the proof of the following lemma.

LEMMA 5.5. The restriction M f � int(Iα) for each α ∈ P does not admit a global fixed
point.

Proof. Let x ∈ int(Iα). We would like to show the existence of an element g ∈M f such
that x · g 6= x . Let n1 = inf(Iα), n2 = sup(Iα). There are two cases:
(1) x ∈ ( 1

2 Z \ Z) ∩ int(Iα);
(2) x ∈ (n − 1

2 + ε, n + 1
2 − ε) for n ∈ Z ∩ int(Iα) and ε > 0.

Let g ∈ F ′ be an element such that (ε, 1− ε)⊂ Supp(g). In the latter case, from an
application of Lemmas 5.1 and 5.3, it is easy to see that the special element πω1(g) for

ω1 = (W([n − 1
2 , n + 1

2 ], l f ), l f , l f )

is atom preserving. Moreover, x · πω1(g) 6= x , since (ε, 1− ε)⊂ Supp(g).
In the former case, the special element is λω2(g) for

ω2 = (W(x, l f ), l f , l f )

is atom preserving, and x · λω2(g) 6= x since 1
2 ∈ (ε, 1− ε)⊂ Supp(g). �
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Proof of Proposition 3.4. Let fζ j be an element in the cellular decomposition of f . We
would like to show that fζ j ∈ Gρ . For each α ∈ P , let

Jα = Supp( fζ j ) ∩ Iα.

From an application of Lemma 5.5, we find an element g ∈M f < Gρ such that for each
α ∈ P such that Jα 6= ∅ one of the following statements holds:
(1) Jα · g is a subset of the head of Iα;
(2) Jα · g is a subset of the foot of Iα .
Indeed, if α, β ∈ P are such that W−1(Iα, l f )=W(Iβ , l f ), then Jα · g being a subset of
the head of Iα implies that Jβ · g is a subset of the foot of Iβ .

It follows from an application of Lemmas 5.1 and 5.3 that

g−1 fζ j g = λω(h)

where h ∈ F ′ and
ω = (W(Iα, l f ), l f , l f )

for some (or any) Iα such that Jα · g is a subset of the head of Iα . In particular,

fζ j = gλω(h)g−1.

Since, by Proposition 4.5, λω(h) ∈ Gρ , we conclude that fζi ∈ Gρ . �

We can now finish the proof of Theorem 1.8, Proposition 1.9, Theorem 1.1, and
Corollaries 1.2 and 1.3.

Proof of Theorem 1.8. We know that Gρ ≤ Kρ . It remains to show that, given g ∈ Kρ ,
one has g ∈ Gρ . Using Lemma 3.2, we know that there exist g1, g2 ∈ Gρ such that
h = g−1

1 (gg−1
2 )g1 ∈ Kρ is uniformly stable. Using Proposition 3.4, we conclude that

h ∈ Gρ . Therefore it follows that g ∈ Gρ . �

Proof of Proposition 1.9. Let h ∈ Kρ = Gρ . Thanks to Lemma 3.2, we know that there
are elements f1, f2 ∈ Gρ such that f2 is a commutator of elements in Gρ and the element
f = f −1

1 (h f −1
2 ) f1 is uniformly stable.

CLAIM. There is a subgroup K < Gρ such that K ∼= F ′ ⊕ · · · ⊕ F ′ and f ∈ K .

Note that the claim implies that

h f −1
2 ∈ f1 K f −1

1 < Gρ, f1 K f −1
1
∼= F ′ ⊕ · · · ⊕ F ′.

So the conclusion of Proposition 1.9 for h follows from this claim.

Proof of Claim. We know that f ∈ Gρ is a uniformly stable element. Let {Iα}α∈P be the
atoms of f . Let l f be the constant from Definition 5.2. Let the cellular decomposition
of f as decorated atoms Tl f ( f ) be fζ1 , . . . , fζm . Here we represent the equivalence
classes of decorated atoms in Tl f ( f ) as ζ1, . . . , ζm . For each 1≤ i ≤ m, set L i = |Iα|
where (Iα, l f ) ∈ ζi . (Recall that |Iα| = |Iβ | whenever (Iα, l f ), (Iβ , l f ) ∈ ζi .) For each
1≤ i ≤ m, define the canonical isomorphism

φi : F ′→ F ′
[0,L i ]

where F[0,L i ] is the standard copy of F supported on the interval [0, L i ].
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For each 1≤ i ≤ m, we have

{W(Iα, l f ) | (Iα, l f ) ∈ ζi } = {Wi , W−1
i }

for words W1, . . . , Wm . Define a map

φ : ⊕1≤i≤m F ′→ Homeo+(R)

as follows. For α ∈ P and 1≤ i ≤ m,

φ(g1, . . . , gm) � Iα ∼=T φi (gi ) if (Iα, l f ) ∈ ζi and W(Iα, l f )=Wi ,

φ(g1, . . . , gm) � Iα ∼=T ιL i ◦ φi (gi ) ◦ ιL i if (Iα, l f ) ∈ ζi and W(Iα, l f )=W−1
i

where ιL i : [0, L i ] → [0, L i ] is the unique orientation-reversing isometry. It is easy to
check that this is an injective group homomorphism. Moreover, the image of each element
under φ satisfies the conditions of Definition 1.6. Therefore, the image of φ lies in
Kρ = Gρ and contains f = φ(φ−1

1 ( fζ1), . . . , φ
−1
m ( fζm )). �

Proof of Theorem 1.1. Let f ∈ Gρ . We know from Lemma 3.2 that there is a commutator
f1 ∈ Gρ and an f2 ∈ Gρ such that f0 = f2( f f −1

1 ) f −1
2 is uniformly stable. By Proposition

1.9, we know that there is a subgroup of Gρ that contains f0 and is isomorphic to a direct
sum of copies of F ′. Since by Theorem 2.13 every element in F ′ can be expressed as a
product of at most two commutators of elements in F ′, the same holds for a direct sum of
copies of F ′. It follows that f0 can be expressed as a product of at most two commutators of
elements in Gρ . Therefore, f can be expressed as a product of at most three commutators
of elements in Gρ . �

Proof of Corollary 1.2. This follows from a theorem of Ghys [7], according to which such
an action by orientation-preserving homeomorphisms of the circle induces a homogeneous
quasimorphism (the rotation number), which is non-trivial in case of absence of a global
fixed point. Since by Theorem 1.1 the stable commutator length of Gρ vanishes, this
quasimorphism must be trivial. Therefore, every such action of Gρ on S1 must admit a
global fixed point. �

Proof of Corollary 1.3. The group Gρ for a quasiperiodic labeling ρ cannot admit a type
(i) action since it is not locally indicable (recall that Gρ is a simple group). For a type (ii)
action of Gρ it is easy to construct an element h ∈ Homeo+(R) such that h commutes with
each element of Gρ . Upon taking a quotient, this provides a faithful fixed-point-free action
of Gρ on the circle, which contradicts Corollary 1.2. �
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