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We report an experimental study of the distributions of temperature and solid fraction
of growing NH4Cl–H2O mushy layers that are subjected to periodical cooling from
below, focusing on late-time dynamics where the mushy layer oscillates about an
approximate steady state. Temporal evolution of the local temperature T(z, t) at
various heights in the mush demonstrates that the temperature oscillations of the
bottom cooling boundary propagate through the mushy layer with phase delays
and substantial decay in the amplitude. As the initial concentration C0 increases,
we show that the decay rate of the thermal oscillation with height also decreases,
and the propagation speed of the oscillation phase increases. We interpret this
as a result of the solid fraction increasing with C0, which enhances the thermal
conductivity but reduces the specific heat of the mushy layer. We present a new
methodology to determine the distribution of solid fraction φ(z) in mushy layers
for various C0, using only measurements of the temperature T(z, t). The method
is based on the phase behaviour during thermal modulation, and opens up a new
approach for inferring mushy-layer properties in geophysical and engineering settings,
where direct measurements are challenging. In our experiments, profiles of the solid
fraction φ(z) exhibit a cliff–ramp–cliff structure with large vertical gradients of φ
near the mush–liquid interface and also near the bottom boundary, but much more
gradual variation in the interior of the mushy layer. Such a profile structure is
more pronounced for higher initial concentration C0. For very low concentration, the
solid fraction appears to be linearly dependent on the height within the mush. The
volume-average of the solid fraction, and the local fluctuations in φ(z) both increase
as C0 increases. We suggest that the fast increase of φ(z) near the bottom boundary
is possibly due to diffusive transport of solute away from the bottom boundary and
the depletion of solute content near the basal region.
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1. Introduction
Understanding the fundamental physics of a solidifying aqueous binary fluid is

important in a wide range of sciences, including geophysics, oceanography, metallurgy
and electrical engineering (Chalmers 1964; Rosenberger 1979; Loper & Roberts
1983; Hobbs 2010). When a binary fluid is cooled and solidified from a horizontal
plane boundary, the growing solid phase can form a dendritic structure of crystals
called a mushy layer (see Part 1, Ding, Wells & Zhong (2019), for a more detailed
discussion). Mushy layers are reactive porous materials with interstitial melt that can
flow in response to externally applied forces. The dynamics of the interstitial flow
is resisted by the porous structure, which depends on the local solid fraction φ, the
volume ratio of the solid to the mixture. The porosity 1− φ is simply related to the
solid fraction.

Since the liquid and solid phases have different thermal and mechanical properties
(such as heat conductivity, heat capacity, etc.), the field equations that describe the
evolution of temperature and melt concentration within the mushy layers involve
governing parameters strongly dependent on φ. Accurate information about φ,
including its variation in both space and time, thus plays a crucial role in improving
modelling of mushy-layer growth. Early theoretical work by Huppert & Worster
(1985) considered the solid fraction as an important parameter in the governing
equations for mushy-layer growth. This pioneering theoretical model treated the
mushy layer as a continuum, with the physical properties of the solid and liquid
being averaged over the mush region. It predicted the growth rate, temperature and
concentration profiles of mushy layers that were in agreement with experimental
results. In more advanced theoretical models (e.g. Worster 1986, 1991) predictions
were made for the solid fraction evolving in space and time. The large specific
surface area allows interstitial gradients of heat and solute to relax rapidly to a
state of local thermodynamic equilibrium, with the temperature and concentration
in the liquid pore space coupled via a liquidus constraint. Then, knowledge of the
bulk phase-weighted concentration and temperature is sufficient to predict the solid
fraction φ (see Worster (2000), for a summary). Thus macroscopic temperature
changes or solute transport through the mushy layer can modify the solid fraction.
A particularly striking modification of solid fraction arises from convective flow
within the mushy layer, which can dissolve solid-free channels or chimneys in the
mushy layer, through which buoyant plumes of fluid drain into the neighbouring
fluid region (see reviews by Worster (1997) and Zhong et al. (2012)). This process
is sometimes called gravity drainage, and is a primary mechanism for solute fluxes
from a growing mushy layer (Notz & Worster 2009) providing a coupled feedback on
mushy layer solid fraction and permeability. Experimental studies of the solid fraction
with adequate resolution in both space and time will advance our understanding of
the fluid dynamics involved in solidifying binary fluids.

Due to the fact that mushy layers are porous materials that consist of solid crystals,
they are optically opaque. Direct measurements of the solid fraction in mushy layers
through optical methods are challenging. Moreover, since growing mushy layers have
a three-dimensional dendritic structure on multiple scales (Huppert 1990; Golden
et al. 2007) determining φ through statistical analysis of experimental data requires
high-resolution measurement, and it is particularly challenging to capture porosity
evolution during growth. In early experimental studies, Chen & Chen (1991) and Chen
(1995) applied X-ray tomography to measure the solid fraction in a mushy layer using
a post-mortem measurement after solidifying an aqueous ammonium chloride solution.
It was observed that the solid fraction decreases significantly towards the mush–liquid
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interface. Wettlaufer, Worster & Huppert (1997) determined the time evolution of the
vertically averaged solid fraction in an aqueous sodium chloride mushy layer by
measuring the volumetric change during solidification due to the density difference
between water and ice. A variety of experimental systems have been used to show
that the melting of a reactive mixed-phase region can result in solidification deeper
within that region as a result of convection, and investigated the evolution of the solid
fraction (Hallworth & Huppert 2004; Hallworth, Huppert & Woods 2005; Yu et al.
2015; Huguet et al. 2016). Several authors (Shirtcliffe, Huppert & Worster 1991;
Chiareli & Worster 1992; Notz, Wettlaufer & Worster 2005) developed methods to
measure the electrical resistance in the melt, which varies with the local solid fraction
and allows the evolution of φ(z) to be determined as it evolves during solidification.
This method has been extended and employed for in situ field measurements of sea ice
(Notz & Worster 2008, 2009) which is a geophysical example of a mushy layer. Such
a method was also successfully applied to the growth of a mushy layer under high
gravity (Huguet et al. 2016). Bulk concentration and solid fraction have also been
inferred from measurements of the complex dielectric permittivity and temperature of
sea ice using embedded probes (Backstrom & Eicken 2006), via surface impedance
tomography (Sampson et al. 2011) or via electromagnetic induction (Hunkeler et al.
2015). Aussillous et al. (2006) used magnetic resonance imaging to study how the
fine structure and solid fraction evolve during solidification of a mushy layer. The
solid fraction increases in the lower part of the layer after the onset of internal
convection. Finally, we note that a range of post-mortem measurements have been
taken from cores of sea ice, which is necessarily destructive, as the sample is removed
for analysis. Solid fraction can be inferred from measured ice temperature, assumed
local thermodynamic equilibrium and bulk salinity measured from melted slices of
the sample (e.g. see discussion in Hunke et al. 2011), or via scanning methods using
magnetic resonance imaging or micro-computed tomography (e.g. Eicken et al. 2000;
Lieb-Lappen, Golden & Obbard 2017).

Despite a variety of methods having been attempted, very few high-resolution
measurements have been made to determine the distribution of solid fraction and its
evolution in growing mushy layers through well-controlled laboratory experiments. To
date, all such measurements used either destructive post-mortem sampling, freezing
of instruments into a growing mushy layer, or encounter difficulties of growing
small samples of mushy layer within the confines of an imaging scanner. In this
paper, we report experimental studies of the profiles of solid fraction φ in a mushy
layer formed when an aqueous ammonium chloride solution is cooled from below
with a periodically varying boundary temperature. We measure the local temperature
T(z, t) at various heights within the mushy layer, and characterize how the phases
of temperature oscillations propagate from the bottom boundary through the mushy
layer, and how the amplitude decays with height. We show that the decay rate of
the thermal oscillation decreases with an increasing initial concentration C0, but the
propagation speed of the oscillation phases increases with C0. These behaviours are
consistent with an increase in solid fraction which enhances the thermal conductivity
but reduces the specific heat of the mushy layer. Using high-resolution measurements
of T(z, t) we present a method for determining the distribution of solid fraction
φ(z) for various C0, based on the dependence of thermal material properties on φ.
Our analysis of the time-dependent heat transport equation reveals that when the
mush temperature varies periodically in response to the modulation of the cooling
boundary, the increment of the fluid internal energy can be appropriately correlated to
the local conductive heat transports, as presented in a heat-flux diagram. With these
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experimental findings, we extract accurate results of the local thermal diffusivity and
hence determine the distribution of the solid fraction φ(z) in the mushy layer. Our
approach provides a method to estimate solid fraction using only measurements of
temperature within the mushy layer.

In the next section, we summarize the apparatus, experimental methods and
procedures that are described in more detail in Part 1 (Ding et al. 2019), which
considered the early-time growth characteristics of a mushy layer with the boundary
temperature modulated periodically in time. In § 3 we describe experimental
measurements of temperature during the corresponding late-time period of mushy-layer
growth, where the mushy layer is modulated about a nearly steady background
state. The results compare well to a simplified theoretical model for thermal wave
propagation due to diffusive heat transfer with uniform material properties (derived
in appendix B). In § 4 we analyse heat transfer within the mushy layer, outlining an
algorithm to estimate the solid fraction via the thermal properties, and investigate
how the solid fraction varies in space and time. The mean solid fraction estimated
from mushy-layer temperature variation compares well to an independent estimate
from global solute conservation and measurements of concentration in the overlying
liquid. In § 5 we summarize the results and discuss the implications for future work.

2. Experimental methods
The construction of the apparatus and the experimental environment have been

described in detail in Part 1 (Ding et al. 2019). Here we briefly review the
experimental procedure, and introduce the experimental components and methods
that are relevant to our temperature and concentration measurements. A thermally
shielded 80 mm × 80 mm × 150 mm tank of aqueous NH4Cl solution is cooled
from below, with the bottom temperature Tb(t)= Tb,0 + A sin(ωt+ φ0) controlled and
modulated over time t about a background temperature Tb,0, with amplitude A, angular
frequency ω and initial phase φ0. A vertically stacked array of thermistors measures
temperature T(z, t) at different heights z in the mushy layer, and shadowgraphy
images were analysed to infer the mush thickness h(t). See Part 1 (Ding et al. 2019)
for further details on the configuration, methods used and procedure for initializing
the experiment.

Fluid concentration and temperature within the liquid region were measured using
a dual probe consisting of a four-electrode microscale conductivity sensor and a
thermocouple (MSCTI, Precision Measurement Engineering, model 125). The probe
was mounted on a computer-controlled positioner. Its conductivity sensor and the
thermocouple junction were located at the same vertical level and 3 mm apart
horizontally. When measuring the vertical profiles of C(z) and T(z), the dual probe
traversed vertically through the liquid region at a constant speed of 0.4 mm s−1

(figure 1a). Both the conductivity and temperature signals were recorded at a sampling
frequency of 1 Hz, yielding a vertical resolution of 0.4 mm for each profile. In each
profile measurement the probe travelled 80 mm, taking 200 s. Such a time span is at
least one order of magnitude less than the modulation period τ = 2π/ω, and is much
less than the time scale of mushy-layer growth. During the measurements data were
always recorded while the probe was traversed downwards, with the two sensors
ahead of the probe holder, to minimize any disturbances in the measured region.
Several scans were made within each modulation period to determine the mean solid
fractions 〈φ〉 as we discuss in § 4.4.

The conductivity sensor and the thermocouple were calibrated before and after each
experiment against NH4Cl solutions of known concentrations at various temperatures
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FIGURE 1. (Colour online) (a) Shadowgraph image that shows the mush region (black
area near the bottom), narrow salt-finger plumes near the mush–liquid interface, wider
plumes rising from chimneys and the double-diffusive layers in the liquid region. The
image is captured at the beginning of the sixth modulation period in an experiment with
initial concentration C0 = 29 wt%, A = 10 K and τ = 4000 s. The vertical red line
marks the path along which the MSTCI probe traverses when temperature and salinity
measurements are taken in the liquid region. (b) The mushy-layer height h as a function
of time. Inset: a segment of h(t) from the fourth to the sixth modulation periods.

that cover the entire experimental parameter range, with an accuracy of 0.1 wt% in
concentration and 0.02 K in temperature. The voltage signal of the thermocouple was
first turned into temperature using a fitted six-order polynomial function. The output
voltage from the conductivity sensor was then translated into concentration based
on the calibrated conductivity–concentration relations (Head 1983). Measurements
of C(z) and T(z) were made in late modulation periods with t > 5τ with mush
temperature measurements performed at the same time. In these late periods, our
temperature measurements indicate that the thermal properties and hence the porosity
structure of the mushy layers show no long-term trend, with the signal repeatable
between modulation periods (figures 2 and 10). As discussed in § 4.4, we estimate
the mean solid fraction 〈φ〉 in the mushy region, applying conservation of solute and
using the concentration profile measured in the liquid region. These results for 〈φ〉
are compared with an alternative estimated based on our temperature measurements
within the mushy layers.

Various initial liquid concentrations C0 were initially investigated. For a better
resolution in measuring the mushy-layer thickness h(t) and the mush temperature
T(z, t), we chose C0 in the range of 26 wt% 6 C0 6 32 wt%. The solution was
prepared at an initial temperature T0 above the liquidus temperature T0 > TL(C0) to
avoid crystallization prior to the experiment.

3. The mushy-layer growth and the temperature distribution
The dynamical growth of mushy layers in early periods of periodic cooling has

been discussed in Part 1 (Ding et al. 2019) revealing modulation of the mushy-layer
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FIGURE 2. (Colour online) Time series of temperature at various heights T(z, t) measured
from the fifth to the seventh modulation period. The coloration represents the height on
a linear scale, as indicated by the upper colour bar. The red curve shows the position of
the mush–liquid interface. Local minima and maxima of T(z, t) in the mush region are
marked by blue and red circles, respectively. Results for A= 10 K and τ = 4000 s, with
initial concentration C0 of (a) 26 wt%, (b) 28 wt%, (c) 30 wt% and (d) 32 wt%.

thickness around a background state in the absence of modulation. The experimental
data of the mushy-layer thickness h(t) were shown to be broadly consistent with
theoretical predictions from a numerical model of mushy-layer growth. In this
section we present measurements of h(t) and the temperature distribution T(z, t)
within the mushy layers at relatively late modulation periods when the mushy layer
nearly approaches a constant thickness. We also discuss how temperature oscillations
propagate through the mushy layer in this state.

The shadowgraph image in figure 1(a) presents the typical morphology of the
mushy-layer and flow structures in the liquid region during the late modulation
periods. As is commonly seen when NH4Cl–H2O solutions are cooled from
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below (e.g. see review by Zhong et al. 2012) the shadowgraph reveals multiple
buoyant solute-depleted plumes rising from chimneys in the mushy layer, with
smaller solute-depleted plumes near the mush–liquid interface. In § 4.4 we suggest
that the white near-horizontal bands in the background fluid are likely the result
of double-diffusive layering due to the cold plumes cooling a solute stratification.
Formation of double-diffusive layers has also been observed in earlier experiments of
solidification of a mushy layer (Beckermann & Viskanta 1988; Chen 1997). The speed
at which the mush–liquid interface advances towards the liquid region is obtained
through our image processing method using a sequence of shadowgraph images
(see discussions in Part 1, Ding et al. (2019)). Figure 1(b) depicts results of the
mushy-layer height h(t) from an experiment with an initial concentration C0= 29 wt%.
It is clearly seen that oscillations appear in h(t) about a background growth curve
which at early times is reminiscent of the scaling h0(t)∝ t1/2 characteristic of diffusive
growth into a deep fluid layer with constant basal cooling. In the later periods the
oscillation amplitude decays and the mean of h(t) finally becomes nearly independent
of time (inset of figure 1b) with small oscillations about a nearly steady state. As
we will elucidate in detail in the following sections, during the late growth periods
convective heat transport through the mushy layer becomes negligible. Therefore
the growth of the mushy layer is dictated mainly by thermal conduction and its
advance speed is determined by the thermal gradient at the mush–liquid interface.
The mush thickness eventually reaches a statistically steady state where the heat flux
from the mush balances the turbulent heat flux from compositional convection at the
mush–liquid interface. Modulated by the cooling boundary, the mush temperature and
thus the thermal gradient varies periodically in time with a nearly constant mean, and
gives rise to the periodic oscillations of the growth curve h(t).

To gain further insights into the growth of the mushy layer, we examine the spatial
and temporal evolution of the mush temperature T(z, t) during late modulation periods.
Figure 2 shows the fluid temperature measured at various different heights for four
initial fluid concentrations. The time traces of temperature show the prominent feature
of periodic oscillations, with oscillation amplitudes and phases dependent on height.
They demonstrate propagation of thermal oscillations with substantial decay through
the mushy layer. For a quantitative analysis, we determine the amplitudes and phases
of the temperature oscillation by the maxima (minima) in T(z, t), marked by the
red (blue) circles in figure 2. The temperature amplitude, δT = Tp − Tv, is given by
the difference between the maximum (Tp) and minimum (Tv) temperature within one
oscillation period. The phase of oscillation, δφ = 2π[t(Tv)− t(Tb,v)]/τ , is defined as
the phase difference between Tv and the cooling boundary temperature Tb(t). Results
of δT and δφ at different mush heights are depicted in figure 3. We see that at late
times the oscillation phase of T(z, t) lags behinds Tb(t), and δφ increases almost
linearly with increasing mush height z. Thus, thermal oscillations propagate with a
constant velocity through the mushy layer. The propagation speed, v=ω dz/d(δφ), is
determined by the slope of the phase-lag profile δφ(z) and depicted as a function of
the initial concentration C0 in figure 4(a). The oscillation amplitudes in T(z, t) are
shown to decrease exponentially with increasing height within the mush: δT ∝ e−γ z

(figure 3b). The decay rates of the amplitude γ are determined by the profiles of δT(z).
Results of γ for various C0 are shown in figure 4(b).

In appendix B we describe a simplified theoretical calculation with assumed
constant material properties. Modulation with small amplitude A�1T0=Tb,0−TL(Ci)

and high-frequency modulation compared to the time scale of diffusion, ωh2
0/α� 1,
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FIGURE 3. (Colour online) Properties of temperature oscillations in T(z, t) as functions
of the mushy-layer height for various initial concentrations. (a) The phase lags between
the minima of T(z, t) and the cooling boundary temperature Tb(t). (b) The peak-to-trough
temperature amplitude δT = Tp − Tv . Data are measured from the fifth to the sixth
modulation period and extracted from the temperature traces shown in figure 2, for
different concentrations.

produces a long-time solution

T = Tb,0 +1T0
z
h0
+ Ae−z

√
ω/2α sin

(
ωt− z

√
ω

2α
+ φ0

)
, (3.1)

where Ci is the concentration at the mush–liquid interface, h0 is the steady-state
mushy-layer thickness at long times in the absence of modulation and α is the
thermal diffusivity of the mushy layer (here assumed to be spatially uniform). The
time-dependent perturbation to the steady state yields a classical thermal wave solution
for diffusion with periodically modulated boundary temperature (cf. § 2.6 of Carslaw
& Jaeger 1959). This predicts a constant propagation speed v =

√
2αω for the phase

of the sinusoidal oscillations of temperature (giving rise to the nomenclature of a
thermal wave). It also predicts exponential decay of the oscillation amplitude with
height over the length scale γ −1

=
√

2α/ω which corresponds to a length scale for
diffusion over a modulation period. This captures the observed pattern of phase
propagation and exponential decay of amplitude with height seen in figures 2 and 3.
Furthermore, the theory predicts that the combination of scales vγ = ω, which is
independent of α and other parameters. This is in reasonable agreement with the
data in figure 4(c), where ω= 1.57× 10−3 rad s−1 is constant. The agreement seems
surprisingly good, given that we have neglected variation of the material properties
with z, and that the assumption A � 1T0 is rather marginal. Hence we conclude
that the temperature evolution seen in figure 2 is consistent with a diffusive thermal
wave superimposed on a background steady state, with the decay rate γ −1

=
√

2α/ω
and phase propagation velocity v =

√
2αω varying with an effective diffusivity α

which depends on concentration C0. This suggests the propagation of temperature
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FIGURE 4. (Colour online) (a) Propagation speed of the thermal waves v for different
C0, where v is determined by the initial slope of the phase-lag profiles δφ(z) shown in
figure 3(a). (b) The decay rates γ of the amplitude of temperature oscillations for different
C0 calculated from figure 3(b). (c) Product of vγ as a function of C0. The red line shows
the theoretical prediction vγ =ω= 1.57× 10−3 rad s−1.

oscillations through a mushy layer is substantially influenced by the initial fluid
concentration, since the latter may significantly alter the thermal properties of the
mushy layer. In general, solidification of a binary aqueous solution with a higher
initial concentration results in a mushy layer with larger mean solid fraction. Based
on the volume-weighted average, the mean thermal conductivity of the mushy layer
km= ksφ+ kl(1− φ) becomes greater, and the specific heat cpm= cpsφ+ cpl(1− φ) is
less, which increases the effective thermal diffusivity α = km/cpm. (Here the thermal
conductivity k and heat capacity per unit volume cp have subscript s in the solid
phase, subscript l in the liquid phase and subscript m for the weighted value for
the mushy layer.) Thus a larger concentration leads to thermal waves with a faster
propagation speed and a smaller decay rate.

Another notable feature of the mush temperature shown in figure 2 is that the
evolution of T(z, t) during one modulation period becomes highly repeatable at each
height near the bottom cooling boundary. For a given z, oscillations of the mush
temperature are very close to periodic, with nearly identical amplitudes and phases in
different modulation periods. The well-repeated temperature responses in the mushy
layer to the applied thermal modulation indicate that there is no significant trend in
the variation of local thermal properties in the mush over time. This is suggestive

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.257


156 G.-Y. Ding, A. J. Wells and J.-Q. Zhong

0 0.2 0.4
z*

T*

0.6 0.8

1/4 2/4

Tb

t/†
3/4 4/4

1.0

1.0

0.5

0

-0.5

FIGURE 5. (Colour online) Normalized vertical temperature profiles of the mushy layer
T∗(z∗)= T/Ti(t) as a function of z∗(t)= z/h(t) measured at four phases during the sixth
modulation period. Filled symbols: data for C0 = 26 wt%; open symbols: data for C0 =

29 wt%. The inset sketches the variation of the bottom temperature in these four phases.
Results for A= 10 K, τ = 4000 s.

of either an approximately time-independent porosity structure in the mush region,
particularly near the bottom cooling boundary, or else one that oscillates periodically
in time. Such a stationary mush structure appears in the late growth periods when
convection in the interstitial melt diminishes and the mushy layer becomes stagnant.
This limits changes to the bulk concentration of the ice via gravity drainage, and
creates an appropriate condition for studying the distributions of solid fraction through
temperature measurements (see § 4).

For a direct comparison of the temperature distribution in the mushy layers that
grow from different initial concentrations, we present in figure 5 normalized vertical
temperature profiles T∗(z∗) measured at four moments (t = i/4τ , i= 1, 2, 3, 4). Here
the mush temperature is non-dimensionalized, T∗(t)= (T(z, t)− Tb,0)/(Ti(t)− Tb,0)=

T(z, t)/Ti(t), with the mean cooling boundary temperature being Tb,0 = 0 ◦C and
Ti(t) the temperature at the mush–liquid interface. The height is normalized by the
mushy-layer thickness z∗(t) = z/h(t). Results for both C0 = 26 and 29 wt% imply
that variations of the mush-temperature profiles can be categorized into two phases
that depend on variations of cooling boundary temperature Tb. In a decreasing phase
(τ/4 6 t < 3τ/4) when Tb is decreasing in time, the slope of T∗(z∗) decreases with
increasing height. Thus curves of T∗(z∗) in this phase are convex. However, when Tb

is increasing (0 6 t< τ/4 and 3τ/4 6 t< τ ), T∗(z∗) is concave with slope increasing
with z∗. As discussed above, such a depth dependence of the mush temperature is due
to the finite thermal diffusivity that causes time delays when the bottom-temperature
oscillations diffuse through the mushy layer, with the phase lag of T(z, t) behind
Tb(t) increasing when the height increases (see figure 3a).
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It is worth noting that a negative slope of T∗(z∗) appears at small mush heights
when Tb is near a maximum (t= τ/4). A negative temperature gradient in the mushy
layer is indicated as well in figure 2 near the maxima of T(z, t) at low heights (where
the time traces for different heights cross). We attribute this phenomenon to the mush
temperature varying more rapidly near the base due to thermal modulations than
the slower diffusive propagation of the temperature oscillations through the mushy
layer to greater heights. This can be rationalized using the approximate thermal wave
solution (3.1). Setting φ0= 0 and letting γ =

√
ω/2α, then from (3.1) the temperature

gradient in the mushy layer is

∂T
∂z
=
1T0

h0
− γAe−γ z

[sin(ωt− γ z)+ cos(ωt− γ z)]. (3.2)

For a given depth z, this has a minimum value 1T0/h0 −
√

2γAe−γ z at times
ωt− γ z=π/4+ 2nπ for integers n. For large enough values of γA, the temperature
gradient ∂T/∂z will be negative for small z during an interval of time about ωt− γ z≈
π/4+ 2nπ. For example, for C0 = 29 wt%, figure 4(b) gives γ = 0.074 mm−1 whilst
A = 10 K in figure 5, yielding γA

√
2 ≈ 1.0 K mm−1, whilst 1T0/h0 ≈ 0.5 K mm−1.

Hence, the thermal wave solution predicts that ∂T/∂z|z=0 will be negative for a
period of time centred around t = τ/8 into the modulation period. Note that periods
with ∂T/∂z|z=0 < 0 will have a positive heat flux from the cooling plate into the
mushy layer, despite the overall trend for cooling by the lower boundary. We further
expect that this effect is more pronounced for low initial concentrations, when
the background temperature gradient is smaller (cf. figure 2), and in experimental
conditions with large modulation amplitude and frequency, when the thermal wave
component dominates the variation of the mush temperature.

Results in figure 5 also suggest that the mush temperature profiles are dependent
on the initial fluid concentration. Large deviations in T∗(z∗) are seen from the
profiles with different C0 when Tb reaches a maximum (t = τ/4) or a minimum
(t = 3τ/4). For a lower C0 the temperature span crossing the mushy layer Ti − Tb
is smaller due to the lower liquidus temperature Ti = TL(Ci), and hence there is a
larger oscillation amplitude in the dimensionless temperature T∗. When Tb = 0 ◦C
(t = 2τ/4, 4τ/4) profiles of T∗(z∗) for the two concentrations appear closer to each
other. However, there are still notable differences between the two curves in these
phases, indicative of differing thermal properties of the mushy layer due to the
differing fluid concentrations. Finally we note that the variations of the profiles
T∗(z∗) within one modulation cycle shown in figure 5 are typical and repeatable in
different modulation periods (cf. figure 2).

4. Inferring the solid-fraction distribution in mushy layers
4.1. Heat transports within a mushy layer

In growing mushy layers, heat transport between the mush and the liquid region
occurs mainly through two types of processes. At early times, convection mainly
occurs at the mush–liquid interface in the form of small-scale salt fingers in
the presence of a stabilizing thermal gradient. This boundary-mode convection is
driven by the compositional gradient that is established due to the formation of a
solute-depleted boundary layer ahead of the growing mushy layer. As the mushy
layer grows and reaches a critical height, a second type of convection occurs as a
result of a hydrodynamic instability due to density gradients within the mushy layer
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(Worster 1992). In this mushy-layer mode convection, large-scale plumes emanate
from solid-free chimneys dissolved in the interior of the mushy layer, in a process
often called gravity drainage. Heat and solute transport through the mushy-layer mode
convection plays an important role in determining the heat budget of growing mushy
layers. During late growth periods, however, mushy-layer convection approaches an
asymptotic state when the growth rate approaches zero (Tait & Jaupart 1989). The
time-integrated expulsion of light solution modifies the concentration in the liquid
region and causes the liquid concentration Cl just above the mushy layer to decrease.
In the following we will demonstrate that convection driven by the buoyancy force
within the mushy layer carries a negligible heat transport compared to thermal
conduction within the mushy layer.

The governing equation of the temperature distribution T(z, t) within a mushy layer
reads

∂T
∂t
+

cpl

cpm
w
∂T
∂z︸ ︷︷ ︸

Fc

=
1

cpm

∂

∂z

(
km
∂T
∂z

)
︸ ︷︷ ︸

Fd

+
L

cpm

∂φ

∂t︸ ︷︷ ︸
FL

, (4.1)

relevant to a vertical measurement profile located away from chimneys. The physical
parameters are cp the specific heat, k the thermal conductivity and L the latent
heat. The subscripts m and l indicate the quantities in the mush and pure liquid
region, respectively. The convective Darcy velocity w arises in the mushy layer
due to the gravity drainage. Previous theoretical and numerical modelling work
suggests that significant horizontal thermal gradients occur in a narrow boundary
layer near each chimney due to the cooling effect of cold solute-depleted plumes.
However, the temperature gradient is predominantly vertical in the mushy layer
further away from the chimneys (Wells, Wettlaufer & Orszag 2010; Rees Jones &
Worster 2013). We have hence neglected horizontal temperature gradients for profiles
taken outside of the chimneys and their associated thermal boundary layers. This heat
equation expresses that temperature evolution in a mushy layer, ∂T/∂t, depends on
heat-transport components including thermal advection Fc, thermal conduction Fd and
the latent heat flux FL (all normalized by cpm). In the following, we estimate the
magnitude of the convective heat transport Fc and the latent heating FL, and their
contribution to the heat budget of the system.

In order to estimate the convective heat transfer Fc in a mushy layer, we estimate
the fluid velocity of the large-scale plume flows from the chimneys. Figure 6(b)
presents two snapshots of the plumes emanating from chimneys in the interior of
the mushy layer, in which the upward wavy motion of the plumes is clearly seen.
Assuming that the waves are generated by a generalization of the Kelvin–Helmholtz
instability (following similar analysis of saline plumes; Pesci, Porter & Goldstein
2003), the vertical fluid velocity W within the chimney plume can be determined
through (W − u)/2 = c, where c is the propagation speed of the wave and u is the
vertical velocity in the background fluid surrounding the plume (with u � W).
Using the time interval 1t = 5.3 s between the two images, and the vertical
displacement 1z = 15 mm that the left crest of the wavy plume has made, we
obtain c = 1z/1t = 2.8 mm s−1 and W = 2c + u ≈ 2c = 5.6 mm s−1. The mean
diameter of the chimney d = 0.8 mm and the mean spacing between two chimneys
in this period D = 40 mm are determined using a large amount of statistical data
from the top-view images of the mushy layer. Assuming that the upward volume flux
from the mush to the liquid region is mainly driven by the plumes, through mass
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FIGURE 6. (Colour online) (a) Components of the heat equation estimated at the
mid-height (z = 12 mm) of the mushy layer. Here the latent heating contribution FL =

1.3 × 10−2 mK s−1 is determined by the difference of 〈φ〉 measured in the fifth and
sixth modulation periods, whilst the convective contribution Fc is discussed further in the
text. (b) Shadowgraph images illustrate the dynamical features of the plume flows from
chimneys that undergo coiling instability. Results for an initial concentration C0= 29 wt%,
A= 10 K and τ = 4000 s.

conservation we obtain the mean downward vertical velocity through the mush–liquid
interface 〈w〉 ≈πd2W/(2D)2= 1.8× 10−3 mm s−1, where we have assumed that each
channel has circular cross-section and lies within a square-cross-sectional cell.

In figure 6a we compare the magnitudes of ∂T/∂t with the convective heat transport,
Fc, and the latent heating, FL (where the latter two are rescaled by cpm). Here the
mean trend in FL = 1.3 × 10−2 mK s−1 is determined by the difference of 〈φ〉
using the concentration data measured in the liquid region during the fifth and sixth
modulation periods, following the experimental procedure discussed in § 4.4. The
results imply that in the late modulation periods the contribution to the heat equation
from the trend in latent heating is negligible, since the mushy layer barely grows
and the mean internal solid fraction hardly changes over a modulation period. In
appendix A we consider the potential magnitude of periodic latent heating and cooling
due to periodic oscillations in φ(z, t). This effect is fairly modest, and is neglected
below. Over the whole modulation period, heat transport by convection is a lot
smaller than the rate of change of the specific heat. According to (4.1), heat transport
through the mushy layer is mainly by thermal conduction. Such a weak-convection
simplification is appropriate in late growth periods. In the following section we will
compute various components in the heat equation using the temperature data T(z, t)
measured inside the mushy layer, and determine the solid-fraction distribution φ(z)
of the mushy layer.

4.2. Theoretical approach in analysing the temperature data
We have measured the heat-transfer terms and shown that when the mushy layer
grows in an asymptotic state, the advection term does not play an important role in
the heat transport equation (4.1). Furthermore, the porosity structure of the mushy
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FIGURE 7. (Colour online) (a–c) Results for ∂T/∂t, ∂2T/∂z2 and ∂T/∂z as a function of
time measured during the sixth modulation period at z = 12 mm. (d) Phases for ∂T/∂t,
∂2T/∂z2 and ∂T/∂z measured at different heights. Results for an initial concentration C0=

29 wt%, A= 10 K and τ = 4000 s.

layer shows no long-term trends over time as revealed by the temperature distribution
data (figure 2), and the corresponding latent heat flux is negligible (see figure 6).
We therefore approximate φ(z) and the resulting local mush properties (such as k
and cp) by their time-averaged values over the time scale of each modulation period.
The potential impact of neglecting time-periodic variations in φ(z, t) is discussed in
appendix A, where we estimate that neglecting such variations results in an error
of less than 0.1 in estimates of φ. With all these considerations, the heat transport
equation in the mushy layer is reduced to a one-dimensional conduction equation

∂T
∂t︸︷︷︸
Ft

= αm
∂2T
∂z2
+

1
cpm

∂km

∂z
∂T
∂z︸ ︷︷ ︸

Fα

, (4.2)

where αm = km/cpm is the thermal diffusivity. All of the temperature derivatives are
calculated from the experimental data T(z, t) as follows. We apply the first-order
forward scheme to calculate the first derivative of T(z, t). A cubic smoothing spline
is used to filter out the noise in ∂T/∂z due to local temperature fluctuations. Then
the first-order backward scheme is applied to the results of ∂T/∂z to evaluate the
second-order derivative ∂2T/∂z2. The thermal diffusivity αm, specific heat cpm and
thermal conductivity km are functions of the solid fraction φ, and thus (4.2) reduces
to an equation that can be solved for φ at each height z.

We examine the temporal properties of each term in equation (4.2). Figure 7
presents ∂T/∂t, ∂2T/∂z2 and ∂T/∂z as functions of time at a given height z= 12 mm.
We see that both the temporal and spatial derivatives vary periodically in time in
response to the modulation of Tb. If one assumes that φ and hence the material
properties evolve much slower than the rapid variations of temperature, then the
phases of FT and Fα are given by the phases of ∂T/∂t and ∂T/∂z, respectively.
Moreover, the phases of both sides of equation (4.2) must be the same.

A first glance at figure 7 suggests that the phases of ∂2T/∂z2 and ∂T/∂t are close
to each other. Thus the magnitude of Fα should be relatively small. However, closer
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Quantity Symbol Value Unit

Specific heat of crystal per unit volume cps 2.28× 106 J m−3 K−1

Specific heat of solution per unit volume cpl 3.68× 106 J m−3 K−1

Thermal conductivity of crystal ks 2.2 J m−1 s−1 K−1

Thermal conductivity of solution kl 0.54 J m−1 s−1 K−1

TABLE 1. The parameter values used in calculation (Peppin, Huppert & Worster 2008).

inspection of the data reveals that there are still slight phase differences between
∂2T/∂z2 and ∂T/∂t. Figure 8(a) shows ∂2T/∂z2 against ∂T/∂t measured at different
heights. If ∂2T/∂z2 and ∂T/∂t have the same phase, then data points in the figure
should collapse into a straight line with ∂T/∂t ∝ ∂2T/∂z2. However, one can see
that the data points in fact constitute a curve with the shape of a tilted ellipse,
indicating there is a non-trivial difference in phase between FT and Fα and thus the
first-derivative term Fα is non-negligible.

To account for the effect of the periodically varying mush temperature and the fact
that FT dominates the conductive heat transport, we adopt a mathematical scheme to
resolve αm from the heat equation. We rewrite (4.2) in the following form:

αm
∂2T
∂z2
=
∂T
∂t
− pm

∂T
∂z
, (4.3)

where pm = 1/cpm(∂km/∂z). We first determine pm at each depth, using the fact that
the phase of ∂T/∂t− pm∂T/∂z should be identical to that of ∂2T/∂z2. The calculation
of pm is achieved through a shooting scheme, with the value of pm initially given and
adjusted according to the phase difference between ∂T/∂t − pm∂T/∂z and ∂2T/∂z2.
Having determined pm, we then solve for the thermal diffusivity αm given by the
constraint that the magnitudes of both sides in (4.2) have to be the same. With
pm determined through this scheme, we plot ∂T/∂t − Fα as a function of ∂2T/∂z2

in figure 8(b). Data points in figure 8(b) collapse into straight lines crossing the
origin. The thermal diffusivity αm is then determined by linear fitting of the data
using a least-squares method. We find results of αm(z) are nearly independent of
the modulation period, thus validating the assumption that φ has no long-term trend
over time and is insensitive to the rapid variations of temperature (see also results in
figure 10). Profiles of the solid fraction φ are finally determined from αm(z)= km/cpm,
where km and cpm are expressed in terms of φ using the physical parameters shown
in table 1. Note that the collapse seen in figure 8(b) shows some similarities to
the method used by Pringle et al. (2007) to determine the thermal conductivity of
sea ice from a fit of km∂

2T/∂z2 versus ρ∂U/∂t − (∂km/∂z)(∂T/∂z), where U is
the sea-ice internal energy per unit mass and ρ the density. However, in order to
determine the internal energy the approach of Pringle et al. (2007) used independent
measurements of bulk concentration as a function of depth from sea-ice cores along
with the temperature, whilst we infer φ without independent knowledge of the bulk
concentration.

In our numerical scheme αm and pm are determined independently, based on the
equalities of the phases and magnitudes on both sides of (4.3). Since

pm(z)=
1

cpm

∂km

∂z
=

ks − kl

cpsφ + cpl(1− φ)
dφ
dz
, (4.4)
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FIGURE 8. (Colour online) Heat-flux diagrams: (a) ∂T/∂t as a function of ∂2T/∂z2 and
(b) ∂T/∂t−Fα as a function of ∂2T/∂z2. Results for an initial concentration C0= 29 wt%,
A= 10 K and τ = 4000 s.

a second estimate of the solid fraction, represented by φp(z), can be obtained given
by the profiles of pm(z). We solved (4.4) using a fourth-order Runge–Kutta method,
integrating from the mush–liquid interface to the bottom. To reduce the error caused
by the difference of height between the thermistors and the mush–liquid interface, we
have employed a shooting method scheme, with the initial solid fraction φi (at the
uppermost thermistor in the mush) adjusted to minimize the difference between φp

and φ. Comparing φp with φ provides a consistency check on the method.

4.3. Distributions of solid fraction in mushy layers with various initial concentrations
Figure 9(a) presents results of solid-fraction profiles φ(z) for different initial
concentration C0. The mushy-layer height as well as the mean solid fraction φ̄
appear to increase as C0 increases. The general features of the profiles φ(z) also
depend on C0. For a high initial concentration C0, the solid fraction φ(z) exhibits a
cliff–ramp–cliff structure: near the bottom and interface φ(z) decreases rapidly as z
increases; but in the bulk of the mushy layer, φ(z) varies relatively slowly with z. The
cliff–ramp–cliff structure is more pronounced for higher C0. Larger local fluctuations
of φ with height are also seen for higher C0. These results suggest that as the
mushy layer thickness increases for higher initial concentration, the internal dendritic
structure of the mushy layer becomes more complex and varies more erratically in
space. On the other hand, for low C0 the solid fraction φ(z) decreases almost linearly
with z with smaller fluctuations at each height, indicating the dendritic structure of
the mushy layer is relatively simple. The dependence of the solid fraction profiles on
the initial concentration is further demonstrated in figure 9(b), where we show φ as
a function of the normalized height z∗ = z/h. We speculate that such variability in φ
might result from prior local solute fluxes caused by gravity drainage, although this
is not conclusively demonstrated here. In the inset of figure 9(a), we compare results
of φ(z) and φp(z) that were derived from αm(z) and pm(z). The spatial fluctuation
of φ is in general larger than that of φp. Fluctuations are likely smoothed by the
method used to determine φp, because the process of numerical integration acts as a
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FIGURE 9. (Colour online) Profiles of φ(z) for different initial concentrations. (a) The
solid fraction φ as a function of height z within the mushy layer. (b) The solid fraction
φ as a function of the normalized height z∗ = z/h. The error bars indicate the difference
between φ and φp determined from (4.4). Inset in (a): a comparison of φ (solid line) and
φp (dashed line) obtained from the separate approaches. Measurements are taken in the
sixth modulation period with A= 10 K and τ = 4000 s.
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FIGURE 10. (Colour online) Profiles of φ(z) measured at different modulation periods.
Results for (a) C0 = 29.0 wt% and (b) C0 = 32.0 wt% with A = 10 K and τ = 4000 s.
The error bars indicate the difference between φ and φp determined from (4.4).

natural smoothing filter for high-frequency fluctuations. Beyond the fluctuations, the
patterns of depth dependence of φ and φp are mainly consistent. The deviation of φp
from φ is greater when C0 increases, indicating the greater spatial variance of the
mushy-layer structure for higher C0.

In figure 10 we compare results of φ(z) measured at different modulation periods
(t= 6τ , 7τ and 8τ ) with two initial concentrations C0= 29.0 and 32.0 wt%. The error
bar represents the difference between φ and φp. We see that the solid fraction φ(z)
becomes approximately independent of time throughout much of the depth in these
late modulation periods, as the three profiles nearly overlap with each other (the other
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experiments not shown in figure 10 also have a similar level of time-independence of
φ(z) for t > 7τ ). Their consistency is better near the cooling boundary than close to
the mush–liquid interface. These results suggest that, in the late-time period, growth
of the mushy layer is already in the asymptotic state in which both thickness and
the dendritic structure of the mushy layer show only a weak long-term temporal
trend. Whilst there may be some fluxes of comparatively fresh water from selected
chimneys which may cause some change in bulk concentration and drift in the solid
fraction, we conclude that the resulting changes to φ are small in the interior of the
mushy layer over this time scale (sixth to eighth modulation periods). It is possible
that the slight retreat of the mean position of the mush–liquid interface (as seen in
figure 2d) is linked to the greater variation in φ seen near the mush–liquid interface.
However, the fluid advection and the turbulent heat transport are notable close to
the mush–liquid interface, and may give rise to large temperature fluctuations there.
Hence our measurements of φ(z) based on the local fluid temperature data may be
less repeatable very close to the mush–liquid interface. It is worth noting that results
for the local fluctuations of φ(z) in the mid-height region (5 mm 6 z 6 20 mm) are
in close agreement in the three runs. Thus they may reveal the fine structures in
the solid fraction profiles: there are large excursions of the mush porosity along the
vertical profiles when growing with high initial concentrations.

The cliff–ramp–cliff structure of φ(z) measured here was also observed by Chen
(1995) through computed tomography, and by Aussillous et al. (2006) using magnetic
resonance imaging. It seems not to agree with the measurements of Shirtcliffe
et al. (1991) and Worster (1992). The reason for this disagreement may be that the
present study measured at late times where the dendritic structure of the mushy
layer was nearly independent of time. However, measurements of Shirtcliffe et al.
(1991) and Worster (1992) were performed in an early period when the growth
and development of the dendritic structure in the mushy layer are significant. The
accumulated effects of solute diffusion grow over time, and hence it is possible that
the observed basal ramp feature may be a result of solute transport. Because of
the coupling of temperature and concentration by the liquidus relation, the thermal
gradient at the cold lower boundary leads to a corresponding solute gradient. Thus
solutal diffusion transports solute towards the boundary. Unlike heat, solute cannot
be removed through the lower boundary, and hence builds up over time, with a
tendency towards local supersaturation of NH4Cl that is relieved by enhanced
solidification in a diffusive boundary layer near to the base. Using a solutal diffusivity
Ds = 1.3 × 10−3 mm2 s−1 (Neufeld & Wettlaufer 2008) the diffusion length after
24 000 s is

√
Dst ≈ 6 mm. This is commensurate with the basal boundary-layer

thickness in figure 10 after six modulation periods, lending further support to the
hypothesized role of solute diffusion.

4.4. The mean solid fractions measured in the mush and liquid region
We also performed measurements of the concentration and temperature distributions
in the liquid region during the experiment. Profiles of C(z) and T(z) were collected
by a conductivity–temperature probe traversing vertically across the liquid region (see
§ 2 and figure 1a). Figure 11(a) shows three sets of temperature profiles T(z) for
initial fluid concentrations C0 = 26, 29 and 30 wt%, respectively. There is a sharp
statically stable temperature gradient in the near field above the mushy layer and
overall an increasing mean temperature as the height increases. With a larger C0 we
observed a smaller temperature gradient just above the mushy layer due to the higher
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FIGURE 11. (Colour online) Vertical temperature (a) and concentration (b) profiles
measured in the liquid region in the middle of the sixth modulation period with A =
10 K and τ = 4000 s. Blue curve: C0 = 26 wt%; green curve: C0 = 29 wt%; red curve:
C0 = 30 wt%. Positions of the inflection points (where the vertical gradient is maximum)
along the curves C(z) in (b) coincide with the top and bottom interfaces of the
double-diffusive layers indicated by pairs of horizontal dashed lines for C0 = 29 wt%.

interfacial temperature. Moreover, the temperature field becomes more uniform in the
far field near the top boundary of the liquid region. Further examinations of these
temperature profiles reveal several sharp changes of the temperature gradient with z,
for large C0. Such fine structures are superimposed on the background of a large
temperature gradient in the near field, most clearly seen with C0=29 wt%. We ascribe
the formation of these structures to double-diffusive convection that enhances local
thermal mixing of the fluid within each convection cell (figure 1a), as discussed below.

Driven by the mushy-layer mode convection, relatively low-density fluid was
continuously transported by plumes from chimneys in the mushy region, upwards
through the overlying liquid region (figure 1a). By the late modulation periods, a
stable compositional stratification is established in the liquid region, and we observed
the formation of double-diffusive layers with a horizontal temperature gradient created
by the cold chimney plumes. (The formation of the double-diffusive layers is through
flow intrusions in the stratified background fluid driven by the horizontal thermal
gradient; see discussions in Thorpe, Hutt & Soulsby (1969), Jeevaraj & Imberger
(1991) and Wettlaufer et al. (1997).) The signature of these double-diffusive layers is
more pronounced in the concentration profiles C(z) shown in figure 11(b). We find
that the vertical positions of C(z) with the sharpest gradient coincide with those of
the double-diffusive layer interfaces indicated by pairs of horizontal dashed lines (see
the supplementary materials in Part 1 for movies that capture the evolution of the
double-diffusive layers in a state with background convection of the liquid region
above a growing mushy layer, in both constant cooling and periodic cooling modes).

The results of T(z) and C(z) shown in figure 11 enable us to independently
determine the mean solid fraction in the mushy layer. Assuming local thermodynamic
equilibrium is reached in the mushy layer with T = TL(C) = TE + Γ (C − CE), then
applying solute conservation to the entire depth of the tank yields

h〈φ〉 + (1− 〈φ〉)
∫ h

0

(
T − TE

Γ
+CE

)
dz+

∫ H

h
C(z) dz=C0H, (4.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.257


166 G.-Y. Ding, A. J. Wells and J.-Q. Zhong

26 27 28
C0 (wt%)

29 30 31 32

0.40

0.35

0.30

0.25¯ƒ˘

0.20

0.15

0.10

FIGURE 12. (Colour online) The depth-mean solid fraction in the mushy layer plotted
as a function of the initial liquid concentration C0. Results φ are obtained from
temperature data analysis (filled circles) and 〈φ〉 from direct concentration measurements
in the liquid region (open diamonds). The error bars indicate the standard deviation of
φp − φ for temperature data analysis φ, and maximum difference between measurements
for the concentration method 〈φ〉. The dotted straight line shows a linear regression
φ = 0.0323C0 − 0.7.

where H is the height of the tank, the solid concentration Cs=1 and 〈φ〉 is the average
solid fraction weighted by the total concentration over the mushy layer. Formally,
〈φ〉 is defined by Cs〈φ〉 + C(1 − 〈φ〉) = Csφ +C(1− φ), where overbars denote a
vertical average over the mushy region. For each initial concentration C0 we have
made measurements of C(z) by scanning the probe over the entire depth of the liquid
region several times during the sixth modulation period, Results of the averaged C(z)
are used to determine 〈φ〉 through (4.5).

Meanwhile we determine the mean depth-averaged solid fraction φ by depth-
integrating profiles of φ(z) that were obtained from the thermal response of the
mushy layer (figure 9). Results for 〈φ〉 and φ obtained in both methods are shown
as a function of the initial concentration C0 in figure 12. We find that for low C0
the mean solid fraction φ is slightly overestimated in the temperature-measurement
approach, possibly because a relatively lower resolution for φ(z) was obtained in
thinner mushy layers. With high initial concentration C0, there is better agreement
of φ and 〈φ〉. Overall, the good agreement of the two sets of data obtained from
independent experimental approaches indicates that our method of temperature-data
analysis is adequate to provide relatively accurate results for the mean solid-fraction
distribution in a mushy layer.

5. Summary and discussion
This paper presents experimental studies of the distributions of temperature and

solid fraction of growing mushy layers that are subjected to periodical cooling from
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below. A new method is presented for determining vertical profiles of solid fraction
in the mushy layer based on high-resolution temperature measurements. Here we
summarize the main results and discuss questions that are still open for future
investigation.

The evolution of the local temperature T(z, t) at various heights demonstrates
that the temperature oscillations of the bottom boundary Tb propagate through the
mushy layer with substantial decay in the amplitude and phase delays. We find that
the phase lag of T(z, t) behind Tb increases approximately linearly with increasing
height, which indicates a constant propagation speed of the thermal oscillations. The
oscillation amplitude of T(z, t) decays exponentially in depth. Both features are
consistent with the classical thermal wave behaviour for diffusive transport subject
to a varying surface temperature. The decay rate decreases with an increasing initial
concentration, but the propagation speed increases with increasing concentration.
Comparing to the thermal wave problem, these observations suggest that a higher
fluid concentration leads to a greater solid fraction on average, which enhances the
thermal conductivity and reduces the specific heat in the mushy layer.

We compared the scaled vertical temperature profiles T∗(z∗) at different oscillation
phases. The results show that a negative temperature gradient may appear near to the
bottom boundary of the mush when the boundary temperature Tb is close to minimum.
We attribute this phenomenon to the finite propagation speed of the temperature
oscillations through the mushy layer. This effect is more pronounced in late growth
periods and with large initial concentrations, when a larger mush thickness reduces the
average temperature gradient across the mushy layer. Experimental results during the
late growth periods show that the temperature evolution within a modulation period is
highly repeatable at each height near the bottom boundary (figure 2), indicating that
the thermal properties and therefore the porosity structure of the mushy layer become
nearly independent of time near z= 0. The conclusion is supported as well by direct
solid-fraction measurements as shown in figure 10. However, near the mush–liquid
interface we find φ(z) is still slightly drifting in time in this stage (figure 10). The
small variations of φ(z) near z = h may be due to the brine flux carried by the
chimney plumes that still exist in late modulation periods as shown in figure 1(a),
acting in concert with a slight retreat of the position of the mush–liquid interface as
seen in figure 2(d).

Through measurements of temperature we determine the various components of
heat transport through the mushy layer and reveal that neither the advection heat
flux nor the latent heat transfer plays an important role in the heat equation at late
times, when the mushy layer is oscillating about a nearly steady background state.
The heat transport through conduction is the main component that determines the rate
of change of the specific heat. Based on these experimental findings, we developed a
mathematical scheme to solve for the depth dependence of the thermal conductivity
and the specific heat coefficient, and hence determine the solid-fraction profiles in
the mushy layer for various initial concentrations. The method uses the response
to small-to-moderate amplitude modulation of the boundary temperature in order to
infer the material properties. In this theoretical scheme we separately consider the
amplitude and the phase of terms in the heat equation, and determine the thermal
diffusivity αm from the amplitude and the associated variable pm = (∂km/∂z)/(cp)m
from the phase. Estimates of the solid fraction determined by these two approaches
are in good agreement with each other. We note that this approach to determining
φ relies on well-resolved measurements of periodic temperature oscillations in the
mushy layer. Because the amplitude of the thermal waves decays with height, this
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means that the signal-to-noise ratio will likely decrease with height through the mush.
Hence solid fraction estimates very close to the mush–liquid interface may be less
reliable if the thermal wave amplitude becomes comparable to convective fluctuations
in the overlying fluid. The decay length scale

√
2αm/ω scales with the diffusion length

over a modulation period, and hence modulation periods approaching the diffusion
time h2/αm across the full mushy-layer depth will give a larger signal for probing
the structure near the mush–liquid interface. The analysis also relies on a relatively
small heat transport via convection within the mushy layer, and a comparatively small
change in φ over a modulation period due to macroscopic solute transport (such as
via gravity drainage). Understanding the impact of modulated thermal forcing on the
dynamics of gravity drainage remains an open question.

Our experimental results show that profiles of the solid fraction φ(z) exhibit a
cliff–ramp–cliff structure with a rapid decrease in φ with increasing z near the
bottom and mush–liquid interface, but less variation in the interior of the mushy
layer. This structure is more pronounced for higher initial concentration C0. For very
low concentrations the solid fraction appears to be linearly dependent on height. The
volume average of the solid fraction, and the local fluctuations in φ(z) both increase
as C0 increases. We suggest that the basal ramp structure of the solid-fraction profiles
is possibly due to the diffusive transport of solute towards the bottom boundary. As
a result of local thermodynamic equilibrium, the temperature gradient through the
mush leads to an accompanying gradient in the liquid concentration which allows a
diffusive solute flux which cannot be lost through the impermeable lower boundary.
The increasing build-up of solute leads to local solidification and the increasing solid
fraction near the bottom boundary.

Finally we performed measurements of the fluid concentration in the liquid
region. Through the conservation law for salinity, these measurements provide an
independent evaluation of the mean solid fraction of the mushy layer. The agreement
between both sets of experimental results suggests the adequateness of the present
temperature-measurement approach in probing variation of the thermal properties in
mushy layers. The measurements of fluid concentration and temperature also reveal
interesting structures, which are broadly consistent with double-diffusive features
formed by the interaction of a stable solute stratification with lateral cooling by the
cold solute-depleted plumes rising from the mushy layer. Whilst peripheral to this
study, these features may present an interesting topic for future work.

The solid fraction φ, or porosity 1− φ, of solidifying alloys can have an important
control on the material properties of the mushy layer, including the phase-weighted
thermal, electrical and mechanical properties, along with the permeability to fluid
transport. The solid fraction φ(z) and liquid concentration C(z) also control the
bulk phase-weighted composition of alloys that are rapidly quenched in industrial
solidification processes (Copley et al. 1970). Hence, quantification of φ is relevant to
a range of engineering, geophysical and geological settings (as discussed by Zhong
et al. 2012). The analysis presented in § 4 provides a potential methodology to infer
the solid fraction φ in settings where the mushy layer is subject to small-amplitude
modulations in thermal forcing, and temperature measurements are readily available.
An interesting potential application is the growth and evolution of sea ice, which is a
mushy layer of salty brine and ice (Feltham et al. 2006). In addition to the varying
material properties, the evolving porosity controls biological habitats and chemical
transport within the sea-ice pore space (Hunke et al. 2011). Furthermore, estimates
of φ(z, t) and T(z, t) can be combined with the assumption of local thermodynamic
equilibrium to estimate bulk salinity and infer a record of past salt fluxes from sea
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ice into the ocean (Notz & Worster 2008) which drive mixing in the polar oceans.
Temperature measurements are frequently made via thermistor strings embedded
within boreholes in the evolving ice (cf. Richter-Menge et al. 2006; Jackson et al.
2013) but non-destructive estimates of solid fraction are more challenging and less
common. Sea ice is subject to fluctuating atmospheric and oceanic forcing on a
variety of time scales (including a diurnal cycle in spring and summer, which is
shorter than the seasonal evolution of sea-ice thickness). This may offer a potential
pathway to infer the solid fraction of sea ice from the response to fluctuating thermal
forcing (although further work is needed to disentangle the response to the broad
range of frequencies usually experienced in environmental settings). We hope that the
results here provide useful insight for developing measurements of the solid fraction
of mushy layers, both in sea ice and other environmental and engineering settings.
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Appendix A. Neglect of latent heating
In this appendix, we estimate the likely magnitude of the error incurred by

neglecting the latent heating term in the analysis of § 4. From (4.1), the heat equation
yields

cpm
∂T
∂t
=
∂

∂z

(
km
∂T
∂z

)
+ L

∂φ

∂t
, (A 1)

where we have neglected convective heat transport (w = 0) following the analysis
in § 4. Figure 10 suggests that φ varies little between modulation periods, so that
φ(t) has no significant long-term trend (but could still vary periodically in time over
a modulation period). We now estimate the contribution of periodic modulation of φ.
In Part 1 (Ding et al. 2019) we estimated ∂φ/∂t from solute conservation, neglecting
solute transport at early times before there is significant modification of the bulk
concentration by gravity drainage. Motivated by the lack of trend in φ(t) in figure 10
between modulation periods, we again assume that solute transport is weak at late
times, so that the bulk phase-weighted solute concentration

Cbulk(z)= φCs + (1− φ)C(z, t) (A 2)

is locally constant in time, at late times. In constructing this argument we allow for
the possibility that the bulk concentration may vary with height with Cbulk(z) <C0, as
a result of solute fluxes from gravity drainage at earlier times. The condition (A 2)
rearranges to yield

φ =
Cbulk −CL(T)
CS −CL(T)

=
TL(Cbulk)− T
TL(CS)− T

, (A 3)
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where T = TL(C) = TE + Γ (C − CE) is the assumed linear liquidus relation in the
mushy layer, with inverse C = CL(T). Taking the derivative of (A 3) and using the
chain rule yields

∂φ

∂t
=

dφ
dT
∂T
∂t
, with

dφ
dT
=

φ − 1
TL(Cs)− T

. (A 4)

Using (A 4) to eliminate ∂φ/∂t from (A 1) results in a nonlinear diffusion equation
for T

cpeff
∂T
∂t
=
∂

∂z

(
km
∂T
∂z

)
, where cpeff = cpsφ + cpl(1− φ)+

L(1− φ)
TL(Cs)− T

(A 5)

is an effective heat capacity. Thus the latent heating term provides an equivalent
effect to modifying the liquid heat capacity by an additive factor L/[TL(Cs) − T].
Using L = 0.428 J mm−3, Γ = 4.72 ◦C wt%−1, TE = −15.4 ◦C, CE = 19.7 wt%
and CS = 100 wt% (Neufeld & Wettlaufer 2008), then an approximate temperature
range of −10 ◦C < T < 20 ◦C within the mushy layer (see figure 2) results in
1.15 × 10−3 J mm−3 K−1 < L/[TL(Cs) − T] < 1.25 × 10−3 J mm−3 K−1. This
corresponds to 30 %–34 % of the liquid specific heat cpl from table 1, so that
setting ∂φ/∂t = 0 has a similar effect to an order 30 % change in the liquid heat
capacity. Propagating this error through the estimate of φ(z) from αm yields a potential
underestimate of φ no larger than 1φ = 0.1, which is comparable to the error bars
in figure 9.

Appendix B. Thermal wave solution with constant material properties
In this appendix, we outline the derivation of a diffusive thermal wave behaviour

arising from modulation of the boundary temperature. To yield an analytically
tractable problem that captures the essence of the full system, we approximate
cpeff and km as constants in (A 5), and define a constant diffusivity α = km/cpeff .
In contrast to the early-time behaviour considered in Part 1 (Ding et al. 2019), we
consider a late-time limit where the mushy layer oscillates about a steady state of
thickness h0 where conduction of heat through the mushy layer balances the heat
flux FT from the overlying liquid. We further consider a limit with high-frequency
modulation ωh2

0/α � 1, so that the modulation period τ = 2π/ω is much shorter
than the diffusion time scale h2

0/α across the mushy-layer depth. To build insight
into the impact of boundary modulation we use a perturbative approach, assuming
the scaled modulation amplitude ε = A/1T0 � 1, where 1T0 = TL(Ci) − Tb,0 is the
temperature difference between the mush–liquid interface (with concentration Ci)
and the mean basal temperature Tb,0. One can replace TL(Ci) ≈ TL(C0) below with
reasonable accuracy. The separation of scales is marginal since 0.18 6 ε 6 0.53 for
5 ◦C 6 A 6 15 ◦C and 1T0 = 28.5 ◦C, but we still find that the expansion provides
useful insight.

With the assumed constant material properties, (A 5) yields

∂T
∂t
= α

∂2T
∂z2

, (B 1)

which is subject to boundary conditions

T = Tb,0 + ε1T0 sin (ωt+ φ0) at z= 0, T = Tb,0 +1T0 at z= h, (B 2a,b)
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and the Stefan condition

S1T0
dh
dt
= α

∂T
∂z

∣∣∣∣
z=h

−
FT

cpm
, S =

cpl[Tl − TL(Cl)] + Lφi

cpeff1T0
, (B 3a,b)

where Tl is the far-field temperature of the overlying liquid and φi the assumed
interfacial solid fraction (cf. equations (3.4), (3.6) and (3.7) in Part 1, Ding et al.
2019). Expanding T = T0 + εT1 + · · · and h = h0 + εh1 + · · · we find that the
leading-order problem at O(ε0) is

∂T0

∂t
= α

∂2T0

∂z2
, T0 = Tb,0 at z= 0, T0 = Tb,0 +1T0 at z= h0. (B 4a−c)

The long-time steady-state solution to (B 4) and (B 3) is

T0 = Tb,0 +1T0
z
h0
, h0 =

αcpeff1T0

FT
, (B 5a,b)

where the steady mush thickness h0 is maintained by the balance between conduction
and the heat flux FT in the liquid.

At O(ε), the linearized perturbations to (B 1) and (B 2) satisfy

∂T1

∂t
= α

∂2T1

∂z2
, T1 =1T0 sin (ωt+ φ0) at z= 0, T1 + h1

∂T0

∂z
= 0 at z= h0,

(B 6a−c)

with the linearized perturbation to (B 3) yielding

1T0S
dh1

dt
= α

∂T1

∂z

∣∣∣∣
z=h0

+ h1 α
∂2T0

∂z2

∣∣∣∣
z=h0

. (B 7)

Note that we have here Taylor-expanded functions of the form f (h0 + εh1)= f (h0)+
εh1f ′(h0) + · · · for ε � 1. We analyse the system (B 6)–(B 7) in the limit of high-
frequency modulation ωh2

0/α� 1. We solve using complex variable methods, setting
T1 = Im[T̃(z)eiωt+iφ0] and h1 = Im[h̃eiωt+iφ0] for complex T̃ and h̃. Substituting this
ansatz into (B 7) and eliminating derivatives of T0 using (B 5) one can show that

h̃=
α

iωS
1
1T0

∂T̃
∂z

∣∣∣∣
z=h0

. (B 8)

Hence (B 6) reduces to

iω
α

T̃ =
∂2T̃
∂z2

,
T̃
1T0
= 1 at z= 0,

T̃
1T0
= 0+O

(
1
S
α

ωh2
0

)
at z= h0, (B 9a−c)

where we again use (B 5) to eliminate T0.
Neglecting the terms of O(α/ωh2

0), the solution to (B 9) is

T̃
1T0
=

e−mz
− e−m(2h0−z)

1− e−2mh0
, m= (1+ i)

√
ω

2α
. (B 10)
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This is easiest to interpret by exploiting the limit |mh0| =
√
ωh2

0/α� 1, from which
we recover the classical thermal wave solution for diffusion in a deep layer with
sinusoidally varying boundary temperature (e.g. see § 2.6 of Carslaw & Jaeger 1959)
with T̃ =1T0e−mz and

T = T0(z, t)+ Ae−z
√
ω/2α sin

(
ωt− z

√
ω

2α
+ φ0

)
. (B 11)

The amplitude of the perturbation decays exponentially with e-folding length scale
√

2α/ω set by the approximate length scale for diffusion over a modulation cycle,
whilst the phase z

√
ω/2α varies linearly with height over the same length scale, which

recovers the internal thermal variation seen in figure 4.

REFERENCES

AUSSILLOUS, P., SEDERMAN, A. J., GLADDEN, L. F., HUPPERT, H. E. & WORSTER, M. G. 2006
Magnetic resonance imaging of structure and convection in solidifying mushy layers. J. Fluid
Mech. 552, 99–125.

BACKSTROM, L. G. E. & EICKEN, H. 2006 Capacitance probe measurements of brine volume and
bulk salinity in first-year sea ice. Cold Reg. Sci. Technol. 46 (3), 167–180.

BECKERMANN, C. & VISKANTA, R. 1988 Double-diffusive convection due to melting. Intl J. Heat
Mass Transfer 31, 2077–2089.

CARSLAW, H. S. & JAEGER, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford University
Press.

CHALMERS, B. 1964 Principles of Solidification. Wiley.
CHEN, C. F. 1995 Experimental study of convection in a mushy layer during directional solidification.

J. Fluid Mech. 293, 81–98.
CHEN, C. F. & CHEN, F. 1991 Experimental study of directional solidification of aqueous ammonium

chloride solution. J. Fluid Mech. 227, 567–586.
CHEN, F. 1997 Formation of double-diffusive layers in the directional solidification of binary solution.

J. Cryst. Growth 179, 277–286.
CHIARELI, A. O. P. & WORSTER, M. G. 1992 On measurement and prediction of the solid fraction

within mushy layers. J. Cryst. Growth 125 (3–4), 487–494.
COPLEY, S., GIAMEI, A., JOHNSON, S. & HORNBECKER, M. 1970 The origin of freckles in

unidirectionally solidified castings. Metall. Mater. Trans. B 1 (8), 2193–2204.
DING, G.-Y., WELLS, A. J. & ZHONG, J.-Q. 2019 Solidification of binary aqueous solutions under

periodic cooling. Part 1. Dynamics of mushy-layer growth. J. Fluid Mech. 870, 121–146.
EICKEN, H., BOCK, C., WITTIG, R., MILLER, H. & POERTNER, H. O. 2000 Magnetic resonance

imaging of sea-ice pore fluids: methods and thermal evolution of pore microstructure. Cold Reg.
Sci. Technol. 31 (3), 207–225.

FELTHAM, D. L., UNTERSTEINER, N., WETTLAUFER, J. S. & WORSTER, M. G. 2006 Sea ice is
a mushy layer. Geophys. Res. Lett. 33, L14501.

GOLDEN, K. M., EICKEN, H., HEATON, A. L., MINER, J., PRINGLE, D. J. & ZHU, J. 2007 Thermal
evolution of permeability and microstructure in sea ice. Geophys. Res. Lett. 34 (16), L16501.

HALLWORTH, M. A. & HUPPERT, H. E. 2004 Crystallization and layering induced by heating a
reactive porous medium. Geophys. Res. Lett. 31, L13605.

HALLWORTH, M. A., HUPPERT, H. E. & WOODS, A. W. 2005 Dissolution-driven convection in a
reactive porous medium. J. Fluid Mech. 535, 255–285.

HEAD, M. J. 1983 The Use of Miniature Four-electrode Conductivity Probes for High Resolution
Measurement of Turbulent Density or Temperature Variations in Salt-stratified Water Flows.
University of California, San Diego.

HOBBS, P. V. 2010 Ice Physics. Oxford University Press.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.257


Mushy-layer solidification subjected to periodic cooling. Part 2 173

HUGUET, L., ALBOUSSIERE, T., BERGMAN, M. I., DEGUEN, R., LABROSSE, S. & LESCEUR, G.
2016 Structure of a mushy layer under hypergravity with implications for earth’s inner core.
Geophys. J. Intl 204, 1729–1755.

HUNKE, E. C., NOTZ, D., TURNER, A. K. & VANCOPPENOLLE, M. 2011 The multiphase physics
of sea ice: a review for model developers. Cryosphere 5 (4), 989–1009.

HUNKELER, P. A., HENDRICKS, S., HOPPMANN, M., FARQUHARSON, C. G., KALSCHEUER, T.,
GRAB, M., KAUFMANN, M. S., RABENSTEIN, L. & GERDES, R. 2015 Improved 1D inversions
for sea ice thickness and conductivity from electromagnetic induction data: inclusion of
nonlinearities caused by passive bucking multifrequency EM sea ice inversions. Geophysics
81 (1), WA45.

HUPPERT, H. E. 1990 The fluid mechanics of solidification. J. Fluid Mech. 212, 209–240.
HUPPERT, H. E. & WORSTER, M. G. 1985 Dynamic solidification of a binary melt. Nature 314,

703–707.
JACKSON, K., WILKINSON, J., MAKSYM, T., MELDRUM, D., BECKERS, J., HAAS, C. & MACKENZIE,

D. 2013 A novel and low-cost sea ice mass balance buoy. J. Atmos. Ocean. Technol. 30 (11),
2676–2688.

JEEVARAJ, C. G. & IMBERGER, J. 1991 Experimental study of double-diffusive instability in sidewall
heating. J. Fluid Mech. 222, 565–586.

LIEB-LAPPEN, R. M., GOLDEN, E. J. & OBBARD, R. W. 2017 Metrics for interpreting the
microstructure of sea ice using x-ray micro-computed tomography. Cold Reg. Sci. Technol.
138, 24–35.

LOPER, D. E. & ROBERTS, P. H. 1983 Compositional convection and the gravitationally powered
dynamo. Stellar and Planetary Magnetism (ed. A. M. Soward), pp. 297–327. Gordon and
Breach Science Publishers.

NEUFELD, J. A. & WETTLAUFER, J. S. 2008 An experimental study of shear-enhanced convection
in a mushy layer. J. Fluid Mech. 612, 363–385.

NOTZ, D., WETTLAUFER, J. S. & WORSTER, M. G. 2005 A non-destructive method for measuring
the salinity and solid fraction of growing sea ice in-situ. J. Glaciol. 51, 159–166.

NOTZ, D. & WORSTER, M. G. 2008 In situ measurements of the evolution of young sea ice.
J. Geophys. Res. Oceans 113 (C3), C03001.

NOTZ, D. & WORSTER, M. G. 2009 Desalination processes of sea ice revisited. J. Geophys. Res.
Oceans 114 (C5), C05006.

PEPPIN, S. S. L., HUPPERT, H. E. & WORSTER, M. G. 2008 Steady-state solidification of aqueous
ammonium chloride. J. Fluid Mech. 599, 465–476.

PESCI, A. I., PORTER, M. A. & GOLDSTEIN, R. E. 2003 Inertially driven buckling and overturning
of jets in a Hele-Shaw cell. Phys. Rev. E 68, 056305.

PRINGLE, D. J., EICKEN, H., TRODAHL, H. J. & BACKSTROM, L. G. E. 2007 Thermal conductivity
of landfast Antarctic and Arctic sea ice. J. Geophys. Res. Oceans 112 (C4), C04017.

REES JONES, D. & WORSTER, M. 2013 Fluxes through steady chimneys in a mushy layer during
binary alloy solidification. J. Fluid Mech. 714, 127–151.

RICHTER-MENGE, J. A., PEROVICH, D. K., ELDER, B. C., CLAFFEY, K., RIGOR, I. & ORTMEYER,
M. 2006 Ice mass-balance buoys: a tool for measuring and attributing changes in the thickness
of the Arctic sea-ice cover. Ann. Glaciol. 44, 205–210.

ROSENBERGER, F. E. 1979 Fundamentals of Crystal Growth I: Macroscopic Equilibrium and
Transport Concepts. Springer.

SAMPSON, C., GOLDEN, K. M., GULLY, A. & WORBY, A. P. 2011 Surface impedance tomography
for Antarctic sea ice. Deep-Sea Res. II 58 (9), 1149–1157.

SHIRTCLIFFE, T. G. L., HUPPERT, H. E. & WORSTER, M. G. 1991 Measurement of the solid
fraction in the crystallization of a binary melt. J. Cryst. Growth 113 (3–4), 566–574.

TAIT, S. & JAUPART, C. 1989 Compositional convection in viscous melts. Nature 338 (6216), 571–574.
THORPE, S. A., HUTT, P. K. & SOULSBY, R. 1969 The effect of horizontal gradients on thermohaline

convection. J. Fluid Mech. 38, 375–400.
WELLS, A. J., WETTLAUFER, J. S. & ORSZAG, S. A. 2010 Maximal potential energy transport: a

variational principle for solidification problems. Phys. Rev. Lett. 105 (25), 254502.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.257


174 G.-Y. Ding, A. J. Wells and J.-Q. Zhong

WETTLAUFER, J. S., WORSTER, M. G. & HUPPERT, H. E. 1997 Natural convection during
solidification of an alloy from above with application to the evolution of sea ice. J. Fluid
Mech. 344, 291–316.

WORSTER, M. G. 1986 Solidification of an alloy from a cooled boundary. J. Fluid Mech. 167,
481–501.

WORSTER, M. G. 1991 Natural convection in a mushy layer. J. Fluid Mech. 224, 335–359.
WORSTER, M. G. 1992 On measurement and prediction of the solid fraction within mushy layers.

J. Cryst. Growth 125, 487–494.
WORSTER, M. G. 1997 Convection in mushy layers. Annu. Rev. Fluid Mech. 29, 91–122.
WORSTER, M. G. 2000 Perspectives in Fluid Dynamics: A Collective Introduction to Current

Research, pp. 393–446. Cambridge University Press.
YU, J., BERGMAN, M. I., HUGUET, L. & ALBOUSSIERE, T. 2015 Partial melting of a Pb-Sn mushy

layer due to heating from above, and implications for regional melting of Earth’s directionally
solidified inner core. Geophys. Res. Lett. 42, 7046–7053.

ZHONG, J.-Q., FRAGOSO, A. T., WELLS, A. J. & WETTLAUFER, J. S. 2012 Finite-sample-size
effects on convection in mushy layers. J. Fluid Mech. 704 (2), 89–108.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

25
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.257

	Solidification of binary aqueous solutions under periodic cooling. Part 2. Distribution of solid fraction
	Introduction
	Experimental methods
	The mushy-layer growth and the temperature distribution
	Inferring the solid-fraction distribution in mushy layers
	Heat transports within a mushy layer
	Theoretical approach in analysing the temperature data
	Distributions of solid fraction in mushy layers with various initial concentrations
	The mean solid fractions measured in the mush and liquid region

	Summary and discussion
	Acknowledgements
	Appendix A. Neglect of latent heating
	Appendix B. Thermal wave solution with constant material properties
	References


