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We consider a system consisting of a server alternating between two service points.
At both service points, there is an infinite queue of customers that have to undergo
a preparation phase before being served. We are interested in the waiting time of
the server. The waiting time of the server satisfies an equation very similar to Lind-
ley’s equation for the waiting time in the GI/G/1 queue. We will analyze this
Lindley-type equation under the assumptions that the preparation phase follows a
phase-type distribution, whereas the service times have a general distribution. If
we relax the condition that the server alternates between the service points, then
the model turns out to be the machine repair problem. Although the latter is a well-
known problem, the distribution of the waiting time of the server has not been
studied yet. We derive this distribution under the same setting and we compare the
two models numerically. As expected, the waiting time of the server is, on average,
smaller in the machine repair problem than in the alternating service system, but
they are not stochastically ordered.

1. INTRODUCTION

In this article, we study a model that involves one server alternating between two
service points. The model applies in many real-life situations and it is described by
a Lindley-type equation. This equation is identical to the original Lindley equation
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except for a plus sign that is changed into a minus sign. To better illustrate the
model, we give a simple example.

Consider an ophthalmologist who performs laser surgeries for cataracts. Since
the procedure lasts only 10 min and is rather simple, he will typically schedule
many consecutive surgeries in one day. Before surgery, the patient undergoes a prep-
aration phase, which does not require the surgeon’s attendance. In order to optimize
the doctor’s utilization, the following strategy is followed. There are two operating
rooms that work nonstop. While the surgeon works in one of them, the next patient
is being prepared in the other one. As soon as the surgeon completes one operation,
he moves to the other room and a new patient starts his preparation period in the
room that has just been emptied.

Apart from the above example, we may think of a hairdresser that has an assis-
tant to help with the preparation of the customers or of a canteen with one employee
and two counters that the employee serves in turns. This model arises naturally also
in a two-carousel bidirectional storage system, where a picker serves in turns two
carousels; see, for example, Park et al. [9] and Vlasiou et al. [ 14].

We want to analyze the waiting time of the server (i.e., the surgeon in the above
example). We assume that except for the customer that is being served, there is
always at least one more customer in the system. In other words, there is always at
least one customer in the preparation phase, which means that the server has to wait
only because the next customer may not have completed his preparation phase.
Furthermore, the server is not allowed to serve two consecutive customers at the
same service point and must alternate between the service points.

This condition is crucial. If we remove this condition, then the problem turns
out to be the classical machine repair problem. In that setting, there is a number of
machines working in parallel (two in our situation) and one repairman. As soon as
a machine fails, it joins the repair queue in order to be served. The machine repair
problem, also known as the computer terminal model (see, e.g., Bertsekas and Gal-
lager [3]) or the time sharing system (Kleinrock [6, Sect. 4.11]), is a well-studied
problem in the literature. It is one of the key models to describe problems with a
finite input population. A fairly extensive analysis of the machine repair problem
can be found in Takécs [12, Chap. 5]. In the following, we will compare the two
models and discuss their performances.

The issue that is usually investigated in the machine repair problem is the wait-
ing time of a machine until it becomes operational again. In our situation, we are
concerned with the waiting time of the repairman. This question has not been treated
in the classical literature, perhaps because in the machine repair problem, the oper-
ating time of the machine is usually more valuable than the utilization of the repair-
man. In Section 5, we compare the waiting times of the repairman in the classical
machine repair problem and our model. We show that the random variables for the
waiting time in the two situations are not stochastically ordered. However, on aver-
age, the alternating strategy leads to longer waiting times for the server. Further-
more, we will show that the probability that the server does not have to wait is
larger in the alternating service system than in the nonalternating one. This result is
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perhaps counterintuitive, since the inequality for the mean waiting times of the server
in the two situations is reversed.

In the following section, we introduce the model and explain the interesting
aspects of it and the implications in the analysis of the different sign in the Lindley-
type equation for the waiting time. In Section 3, we derive the distribution of the
waiting time of the server, provided that the preparation time of a customer follows
an Erlang or a phase-type distribution. Continuing with Section 4, we introduce the
machine repair model and analyze the waiting time of the repairman; in other words,
we remove the restriction that the server alternates between the service points. We
compare the two models in Section 5 and we conclude with some numerical results
in Section 6.

2. THE MODEL

We consider a system consisting of one server and two service points. At each ser-
vice point, there is an infinite queue of customers that needs to be served. The server
alternates between the service points, serving one customer at a time. Before being
served by the server, a customer must undergo a preparation phase first. Thus, the
server, after having finished serving a customer at one service point, may have to
wait for the preparation phase of the customer at the other service point to be com-
pleted. We are interested in the waiting time of the server. Let B, denote the prep-
aration time for the nth customer and let A, be the time the server spends on this
customer. Then the waiting times W, of the server satisfy the following relation:

vvn+1 = maX{()’ Bn+l _An - Wn}'

We assume that {A,} and {B,} are independent and identically distributed (i.i.d.)
sequences of nonnegative random variables, which are mutually independent and
have finite means. Further, for every n, A, follows some general distribution F,(-)
and B, follows a phase-type distribution denoted by Fg(-). Clearly, the stochastic
process {W,} is an aperiodic regenerative process with a finite mean cycle length
with the time points where W, = 0 being the regeneration points. Therefore, there
exists a unique limiting distribution. In the following we shall suppress all sub-
scripts when we refer to the system in equilibrium. Let W be the random variable
with this limiting distribution; then

W 2 max{0,B — A — W}, 2.1

where A and B are independent and distributed according to F4(-) and Fp(-)
respectively.

Note the striking similarity to Lindley’s equation for the waiting times in a
single-server queue. If only the sign of W, were different, then we would be ana-
lyzing the waiting time in the GI/PH/1 model. Lindley’s equation is one of the
most studied equations in queueing theory. For excellent textbook treatments we
refer to Asmussen [2] and Cohen [4] and the references therein. It is a challenging
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problem to investigate the implications of this subtle difference between the two
equations.

For this model we shall try to obtain an explicit expression for the distribution
Fy () of the waiting time W. Let w(-) denote the Laplace transform of W; that is,

w(s) = fwe’” dFy(x).

The derivative of order i of the transform is w(-), and by definition w©(.) =
w(+). Similarly, we define the Laplace transform «(-) of the random variable A. To
keep expressions simple, we also use the function ¢ (+), defined as ¢(s) = w(s) a(s).
We can now proceed with the analysis.

3. THE WAITING TIME DISTRIBUTION

In the following we shall derive the distribution of the waiting time of the server,
assuming that the service time A follows some general distribution and the prepa-
ration time B follows a phase-type distribution. The phase-type distributions that
we will consider are mixtures of Erlang distributions with the same scale param-
eters. Therefore we will first consider the case where B follows an Erlang-n distri-
bution, which we denote by E,,(-).

3.1. Erlang Preparation Times

Let B be the sum of n independent random variables X,..., X, that are exponen-
tially distributed with parameter u. The use of Laplace transforms is a standard
approach for the analysis of Lindley’s equation. Hence it is natural to try this approach
for equation (2.1). Then we can readily prove the following theorem.

THEOREM 1 (Alternating service system): The waiting time distribution has a

mass pg at the origin, which is given by

=P[B<W+A]=1- Z _H)l ¢ (),

and has a density fy/(-) on [0,00) that is given by

n—1 _1 n*l*i
fw(x) =" _’“2 .) ¢V (u )ﬁ- (3.1

In the above expression

o) = 3 <;>w<k><p)a<f-k><u>

k=0
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and the parameters o' (u) fori =0,...,n — 1 are the unique solution to the system
of equations
S Lo (wa" ()
= 1 — —)! 1 - sz
w(p) ;< 1) ( e )ZO prIZEY
! it EDF =i+ =1 G 0@ (wa P (u) (3.2)

O (u) = EO 2 i 1) A~ K-k

fort{=1,...,n—1.

ProoF: We use the following notation: E[X;A] = E[X- 1[4;]. Consider the Laplace
transform of (2.1); then we have that

w(s) =EleV]=P[B<W+A]+E[e*E " B=W+ A]
=P[B<W+A]+E[e*® V4. X, =W+ A]

n—1
+ D E[eEWV X + o+ X, =SWHASX 4+ -+ X ). (33)

i=1

Using standard techniques and the memoryless property of the exponential distri-
bution, one can show that

E[e "X, = W+ A]

= E[em s et X)W X = 4 4]

n—1
=< “) E[e "X~ W=4: X, = W+ A]

(,m
-

(— o () (). (G

E[e *X1=W=4|X, = W+ A]P[X, = W + A]

p )
H+s
'i ) P[X, = W+ A] (due to the memoryless property)
u
u+ s>

Additionally, for ¥; = X; + --- + X; we have that

E[e WAy =W+A=Y.,]

n—i—1
=< - ) E[e Ui WAy, =W+ A=Y, [P, =W+A=Y,,]
u+ts

n—i (—y\i A
:< u ) (—w)'ep (,U)' 3.5)

uts i!
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Finally, we calculate the probability P[B < W + A] by substituting s = 0
in (3.3) and using equations (3.4) and (3.5). Straightforward calculations give us
now that

w(s)=1- 2 _“) 3( )( <L>> (3.6)

nts

Inverting the transform yields the density (3.1).

Furthermore, the terms @) (u), i = 0,...,n — 1, that are included in ¢ (u)
still need to be determined. To obtain the values of w(”(,u), fori=0,...,n—1, we
differentiate (3.6) n — 1 times and we evaluate w'”(s), i = 0,...,n — 1 at the point
s = p. This gives us the system of equations (3.2). The fact that the solution of the
system is unique follows from the general theory of Markov chains that implies that

there is a unique equilibrium distribution and thus also a unique solution to (3.2).
|

COROLLARY 1: The throughput 6 satisfies

(—)

o' =E[W]+E[A]= E (W~ (n—i) — a'(0).

It is quite interesting to note that the density of the waiting time can be rewrit-
ten as

fw(x) = pe ™ E pi (MX)l)!

where

_ (=" " ()
pi (n—i)!

is the probability that directly after a service completion exactly i exponential phases
of B remain.

As is clear from Figure 1, with probability p; the distribution of the waiting
time is Erlang-i, for i = 1,..., n. Furthermore, the probability p, that the server does
not have to wait, or equivalently that at least n exponential phases have expired, is

po=1- z?zlpi-

n n-—1 i Lo preparation
| | | | | | | phases remaining

[ [ [ [ [ [ I
W+ A

FIGURE 1. The waiting time has a mixed Erlang distribution.
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So practically the problem is reduced to obtaining the solution of an n X n
linear system. Extending the above result to mixtures of Erlang distributions is
simple.

3.2. Phase-Type Preparation Times

For n = 1,..., N, let the random variable X,, follow an Erlang-n distribution with
parameter u and let the random variable B of the preparation times be equal to X,
with a probability k. In other words, the distribution function of B is given by

Fy) = K,l<1 —e-ﬂxg (”,x)j>, x=0. 3.7)

n=1

This class of phase-type distributions may be used to approximate any given dis-

tribution for the preparation times arbitrarily close; see Schassberger [10]. Below

we show that Theorem 1 can be extended to service distributions of the form (3.7).
By conditioning on the number of phases of B, we find that

N
w(s) =E[eV]=P[B<W+A]+ D k,E[e*X WV X =W+ A].
n=1
Since X,, now follows an Erlang-n distribution, the last equation is practically a
linear combination of equation (3.3), summed over all probabilities «, for
n = 1,...,N. This means that we can directly use the analysis of Section 3 to
calculate the Laplace transform of W in this situation (cf. equation (3.6)). So we

have that
-] )
i V(|1 uts , 3.8

where the terms ¢)(u) can be calculated in a similar fashion as previously. In-
verting (3.8) yields the density of the following theorem (cf. Theorem 1).

n—

w(s)=l—§l<,,z

1
0

THEOREM 2: Let (3.7) be the distribution of the random variable B. Then the dis-
tribution of the server’s waiting time has mass po at zero, which is given by

po=PB<W+A]=1- ZE Kn(_l.—l;y(b“)(p),

n=1 i=0
and has a density on [0,00) that is given by
N n—1 (_1 i ) xn—l—i
fw(x) = 2 ke X —— ¢V () ———— |-
n=1 i—o ! (n—1—=1i)

One can already see from Theorem 2 the effect of the different sign in the
Lindley-type equation that describes our model. The waiting time distribution for
the GI/PH/1 queue is a mixture of exponentials with different scale parameters
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(cf. Adan and Zhao [1]). In our case we have that the waiting time distribution is a
mixture of Erlang distributions with the same scale parameter for all exponential
phases.

As we have mentioned, the practice of alternating between the service points is
inevitably followed in many situations. Still it seems reasonable to argue that it
would be more efficient to choose to serve the first customer that has completed his
preparation time. If we drop the assumption that the server alternates between the
service points, then we have the classical machine repair problem.

4. THE MACHINE REPAIR PROBLEM

In the machine repair problem there are a number of machines that are served by a
unique repairman when they fail. The machines are working independently and as
soon as a machine fails, it joins a queue formed in front of the repairman where it
is served in order of arrival. A machine that is repaired is assumed to be as good as
new. The model described in Section 2 is exactly the machine repair problem after
we drop the assumption that the server alternates between the service points. There
are two machines that work in parallel (the two service points), the preparation time
of the customer is equivalent to the lifetime of the machine until it fails and the
service time of the customer is the time the repairman needs to repair the machine.

What we are interested in is the waiting time of the repairman until a machine
breaks down or, in other words, the waiting time of the server until the preparation
phase of one of the customers is completed. It is quite surprising that although the
machine repair problem under general assumptions is thoroughly treated in the
literature, this question remains unanswered. We would like to compare the two
models and to this end we first need to derive the distribution of the waiting time
of the server, when the system is in steady state. In the following we will refer to the
server or customers instead of the repairman or machines in order to illustrate the
analogies between the two models.

Let B be the random variable of the time needed for the preparation phase and
R be the remaining preparation time just after a service has been completed. Then,
obviously, the waiting time of the server is W = min{B, R}. The random variables
B and R are independent, so in order to calculate the distribution of W we need the
distribution of R. In agreement with the alternating service model, B follows an
Erlang-n distribution. Note that we do not have a simple Lindley-type recursion for
W and therefore this system cannot be easily treated with Laplace transforms. That
means that we have to try an alternative approach.

The system can be fully described by the number of remaining phases of prep-
aration time that a customer has to complete, immediately after a service comple-
tion. The state space is finite, since there can be at most n phases remaining and the
Markov chain is aperiodic and irreducible, so there is a unique equilibrium distri-
bution {7;,i = 0,...,n}. After completing a service, the other customer may be
already waiting for the server (so the n exponential phases of the Erlang-n dis-
tribution of the preparation have expired) or he is in one of the n phases of the
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preparation time. This means that the remaining preparation time R that the server
sees immediately after completing a service follows the mixed Erlang distribution
Fr(x)=mg+ m E|(x) + - + 7,E,(x).

So in order to derive the distribution of R (and consequently the distribution of
W), we need to solve the equilibrium equations 77; = >, 7 pyi, i = 0,...,n, in con-
junction with the normalizing equation X, 7, = 1, where p,; are the one-step tran-
sition probabilities. Let us determine the probabilities p,;, for all i, j € {0,...,n}.

A transition from state i to state j, for i,j € {l,...,n}, can be achieved in two
ways: either the customer that has just been served or the other one will finish the
preparation phase first. Suppose that the customer that has just been served finishes
first. In that case we know that the last event just before the service starts is that the
nth phase of that customer expired. The other customer was in phase k, and during
the service time the other customer reached state j (i.e., k — j phases of that cus-
tomer have expired). The probability of this event is given by

N N T
S6) ()

where a(+) is as before the Laplace transform of the service time. Note that in the
above expression we have that

(=
(k—=j)!

Similarly, we can determine the probability of a transition from state i to
state j in the second case. So in the end we have that for all i,j € {1,...,n},

(I ik nti=k=N\](ptd
-1 67 I [ Qe B P | R

P[exactly k — j exp(u) phases expired during [0,A)] = a* =D (u).

“4.1)
The transition probabilities from state O to any state i = 1,...,n are
(=" "
poi = a7 (), 4.2)
(n—1)!

since starting from state 0 means that the other customer was already waiting when
the repairman finished a service and reaching state i means that during the service
time, exactly n — i exponential phases expired. For the transition from state O to
state O we have that during the service time at least n exponential phases expired, so

Poo = Z ((_ @ (w). 4.3)
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Similarly, we have that, fori = 1,...,n,
S NTR n i —k—1 n+i—k—1
pio kgl 2 n—1 n—k

(—u)’
()

where (:) =0for0<a<b.

X (Z a(”(u)>, 4.4)

With the one-step transition probabilities one can determine the equilibrium
distribution and thus Fg(-). Then we have that the distribution of the waiting time of
the server, if we drop the assumption that he is alternating between the service points,
is given by the following theorem.

THEOREM 3 (Nonalternating service system): The waiting time distribution is
Fy(x) = Fr(x) + Fp(x) = Fr(x) Fp(x),

where Fy(-) is the distribution of the remaining preparation time of a customer and

is equal to

Fr(x) =mg+m E\(x) + -+ + 7, E,(x).
In the above expression, {m;,i = 0,...,n} is the unique solution to the system of
equations

n n
m= > mpu and X, m=1, fori=0,...,n,
k=0

k=0
where p; are given by equations (4.1)—(4.4).

Remark 1: The above results can be easily extended to phase-type preparation times
of the form (3.7). However this extension does not contribute significantly to the
analysis, since it is along the same lines of the analysis in this section.

This method of defining a Markov chain through the remaining phases of the
preparation time after a service has been completed and using the equilibrium dis-
tribution in order to calculate the mixing probabilities of R can, of course, also be
used in the alternating service system. In that case, the waiting time W is exactly the
remaining preparation time R. Then the probabilities p;, for i = 0,...,n as defined
in Section 3, will be the equilibrium distribution of the underlying Markov chain.
Furthermore, the system of equations (3.2) can be rewritten as

5 D

-1 2!
nopi(—) 7 G+ €= 1)!
€3] = = —_
' (u) ,:21 il =1 for€¢=1,...,n—1.
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In the next section we shall study various performance characteristics of the
two systems.

5. PERFORMANCE COMPARISON

One may wonder if there is any connection between the waiting time of the server
in the two models that can help in understanding how the models perform. From
this point on we will use the superscript A (NA) for all variables associated with the
(non)alternating service system when we specifically want to distinguish between
the two situations. Otherwise the superscript will be suppressed. So, for example,
the random variable W will be the waiting time of the server in the alternating
service system.

5.1. Stochastic Ordering

Suppose that the distributions of the two random variables X and Y have a common
support. Then the stochastic ordering X =, Y is defined as (cf. [7,8,11])

P[X = x]=P[Y=x], forallxin the support,

and we say that X dominates Y.

Intuitively one may argue that W =, WNA since one expects that large wait-
ing times occur with higher probability in the alternating service system. However
this is not true. Let us imagine the situation where the service times are equal to
zero. Then in the alternating service system we will have that the waiting time of
the server is zero if B; = B, for some i. So, since P[B; = B,,,] > 0, we have
P[W# = 0] > 0. In the nonalternating system however, we will have zero waiting
time only if both preparation phases finish at exactly the same instant. Since the
preparation times are continuous random variables, we have that P[B; = B;,] =0
for every i and thus P[WNA = 0] = 0. In Figure 2 we have plotted the distribution
of the waiting time for both situations in the case where the service times are equal
to zero and B follows an Erlang-5 distribution with u = 5.

The situation that we have described above is not a rare example. In fact, the
following result holds.

THEOREM 4: For any distribution of the preparation and the service time, we have
that P[]W A = 0] = P[WN* = 0].

Proor: Both processes regenerate when a zero waiting time of the server occurs.
Therefore in a cycle there is precisely one customer for whom the server did not
have to wait. This means that the fraction of customers for whom the server does
not wait is

P[W =0]= EINT
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alternating

0.2 / — — nonalternating

X
1 2 3 4 5

FIGURE 2. W# and W™ are not stochastically ordered.

where E[N] is the average number of customers in a cycle (i.e., the mean cycle
length). So it suffices to show that E[N4] = E[N™].
To prove this, we will couple the two systems and use sample path arguments.
We will show that, for a given initial state and for any realization of preparation and
service times, the number of customers in a cycle is greater in the alternating case
than in the nonalternating case. To couple the systems we will use the same real-
izations for the preparation and the service times. To this end, let {B;} be a sequence
of preparation times and {A;} a sequence of service times. We need to observe the
system until the completion of the first cycle. For both systems assume that the
server starts servicing the first customer at time O while at the other service point a
customer has just started his preparation phase B;. Additionally, let R, be the remain-
ing preparation time for the nth customer, immediately after the service of the n — 1
customer has finished. As long as R, = B, |, both processes are identical, since
both servers will alternate between the two service points. In addition, all waiting
times until that point will be strictly positive. As soon as R, > B, |, the alternating
service system will regenerate for the first time, since we will have that W = R,
and W, = 0. The nonalternating system, however, does not necessarily regener-
ate. For this system we have that WN* =B, ,, and RN, =R, — B, — A,,. There-
fore, if RN2, = 0, then WNA = 0 and both processes regenerate. Otherwise the
nonalternating system will not regenerate. Hence, for each realization we have that
NNA = N2 which implies that the mean cycle length E[NN*] of the nonalternating
system is at least as long as the mean cycle length E[N*] of the alternating system.
|
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5.2. Mean Waiting Times

Although the waiting times in the two situations are not stochastically ordered, we
have however that the mean waiting time of the server of the alternating service
model E[W 4] is larger than or equal to the mean waiting time of the server in the
nonalternating system E[WNA]. This is quite natural since we expect the non-
alternating system to perform better in terms of throughput, regardless of the dis-
tribution of the preparation phase.

To prove this result for the mean waiting times, we will again couple the two
systems. We will make use of the same realizations {B;} and {A;} for the prepara-
tion and the service times respectively and we will continue with sample path argu-
ments. We assume that the initial conditions for both systems are the same; that is,
at time O the server starts servicing the first customer, while at the other service
point a customer has just started his preparation phase. Then, for the alternating
service system, define:

D}*: the ith departure time
H?: the time the server can start serving the other service point after time D

Also define in the same way DN* and HM* for the nonalternating system. We
need the following lemma.

LEMMA 1: For all i, we have that D = DN and H» = HN*.

Proor: We will apply induction. For i = 1 we have that D{* = DM and H{* = H)*,
since

Df=A,=A, =DM
and thus
H{} = max{D{, B,} = max{DN,B,} = HNA.

Suppose that for some i we have that D, = D4 and H® |, = HN4. We will
prove that D* = DN and H* = H* and this will conclude the proof.

The first relation is obvious. From the induction hypothesis we have
HA, = HM, so

Df = HA, + A, =min{HN, DM + B;} + A, = DM

For the second inequality, first notice that

HA = max{D?,D2,+ B;} and HM =max{D max{HN4,DNA + B;}},
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because, for example, in the nonalternating case the other service point will either
be ready at time D¥* when the previous customer departs or it will be ready after
the preparation phase at this point is completed, at the time point equal to the max-
imum of HY4 and D4 + B;.

To prove that

HA = max{D?,D2 | + B;} = max{D ,max{HN,DNA + B;}} = HN*, (5.1)

we will show that the maximum term of the left-hand side of the inequality (5.1) is
greater than or equal to any term of the right-hand side, thus also greater than or
equal to the maximum of them.

Assume that H* = D{*. Then D/* = DM as we have proven above; further-
more D = H2 | + A; = H since H? , = H4; and finally, since H* = D{, then
D = D2, + B; = DM} + B,. The case for H* = D, + B, follows similarly.

|

A corollary of the previous result follows.
COROLLARY 2: For all i, ;W =, 3 WNA,
ProoF: The proof is a direct consequence of the fact that for the coupled systems
WA+A + - +WAHA, =DA=DM=WN+ A, + ... + WM+ A, ]

So, although the random variables W and W™ are not stochastically ordered,
the partial sums of the sequences W;* and WN* are

Itis also interesting to note that Lemma 1 immediately implies that the through-
put is greater in the nonalternating system than in the alternating system since

i i
0” = llm—A_llm m_ﬁNA
i DA i D)

Moreover, we have that 6 = (E[W] + E[A])"!, so we can readily establish the

following result:

THEOREM 5: Given any distribution for the preparation and the service time, we
have that E[WA] = E[WNA].

Figure 3 demonstrates a typical situation. For two values of the ratio
r = E[A]/E[B] we have plotted the normalized waiting time E[W]/E[A] versus
the squared coefficient of variation ¢} of the service time A. We have chosen the
mean service time to be E[A] = 1 and the preparation time to be composed of five
exponential phases. As before, A stands for the alternating service system and NA
for the nonalternating system. One can see from these two examples that the
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— |——-NA. r=1.2

FIGURE 3. E[W ] is greater than or equal to E[WNA],

average waiting time in the alternating service system is longer than in the non-
alternating system. As in the case for the GI/G/1 queue, the waiting time depends
almost linearly on c3. As c3 increases, the waiting time also increases, and for the
alternating case the rate of change is greater. The difference in the mean waiting
times in the alternating and the nonalternating cases is eventually almost constant
and this difference increases as the value of r decreases. In the Appendix we give
more details on the way we chose the distribution for the service time.

Remark 2: From Theorems 4 and 5 we can conclude that there is at least one point
where the waiting time distributions of both systems intersect. However, Figure 2
suggests that this point is unique. So, because both mean waiting times are finite,
this implies that W™ is smaller than W* with respect to the increasing convex
ordering, namely

E[¢(W Y] = E[¢(WH)]

for all increasing convex functions ¢ for which the mean exists. This follows as a
direct application of the Karlin—-Novikoff cut criterion (cf. Szekli [11]).

6. NUMERICAL RESULTS
This section is devoted to some numerical results. In Figure 3 we have already

shown how the normalized waiting time changes when the squared coefficient of
variation of the service time is modified.
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Figure 4 shows the normalized waiting time plotted against the squared coef-
ficient of variation of the preparation time. The preparation time is assumed to fol-
low an Erlang distribution. We chose E[A] = 1 and c¢; = 0.2 and we fitted a mixed
Erlang distribution according to the procedure described in the Appendix. We have
plotted the normalized waiting time for three different values of the ratio r; namely
for r = 0.4, which implies that the service time is 40% of the preparation time, up
to r = 1.2. The latter implies that for the alternating service model the server in
general does not have to wait long. One can see that the normalized waiting time
depends almost linearly on ¢ for the alternating service system, but for the non-
alternating system it is almost insensitive to ¢ and thus to the number of exponen-
tial phases of the preparation time. This can be explained by the fact that Erlang
loss models are insensitive to the service time distribution apart from its first moment;
see, for example, Kelly [5]. More specifically, one can view the machine repair
model that we have described, as an E,/G/2/2 loss system. Here the repairman
would act as the Poisson source of an Erlang loss model if B would follow an expo-
nential distribution. However the preparation times are a sum of exponentials and
that causes the slight fluctuation in the mean waiting time.

Figure 5 shows the normalized waiting time plotted against the mean prepara-
tion time. We have chosen c3 to be equal to 0.8 and we have fitted a mixed Erlang
distribution to the mean service time and the squared coefficient of service. As
expected, the normalized waiting time E[W]/E[A] depends almost linearly on the
mean preparation time. For larger values of the mean preparation time, the normal-
ized waiting time increases.

E[W]
E[W] . .
T ) , E[A] Machine Repair Model
E[A] Alternating service system
1.2 1.2
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 == 0.2
c? c
0.2 0.4 0.6 0.8 1 B 0.2 0.4 0.6 0.8 1 B
E[A]=1,c2=0.2 r=0.4 .- r=0.8 -—- r=1.2

FIGURE 4. The normalized waiting time is almost insensitive to c3 in the non-
alternating system.
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E[A] Alternating service system

c%-0.8

——EA=1

E[A] Machine Repair Model

= - : : ' ELB]
2 4 6 8 10

FIGURE 5. The normalized waiting time versus E[B].
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APPENDIX
Fitting Distributions

In Figure 3 we chose the mean service time E[A] to be equal to one and we plotted the
normalized waiting time versus c3. For each setting we fitted a mixed Erlang or hyper-
exponential distribution to E[A] and c3, depending on whether the squared coefficient
of variation was less than or greater than 1 (see, e.g., Tijms [13]). More specifically, if
1/n<c3=1/(n—1) for some n = 2,3,..., then the mean and squared coefficient of vari-
ation of the mixed Erlang distribution

n—2 j n—1 J
FA(x)=p<le_‘”‘2 (,wc) >+(1p)<le"‘"2ﬂ>, x=0,
= J! - J!
Jj=0 J
matches with E[A] and ¢3, provided the parameters p and u are chosen as
n—p
P=Tra [nc2 —{n(1+ c2) — n2c3}"?], = Bl

On the other hand, if ¢} > 1, then the mean and squared coefficient of variation of the hyper-
exponential distribution

Fy(x) =pi(I—e™*) +py(1 —e),  x=0,

match with E[A] and c¢3 provided the parameters u;, u», p, and p, are chosen as

SRy =1
Pl*z 2+ , P2= P,

2p, 2p,

E[A] M7 E[A]

Hy
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