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It is known that the dripping of a liquid film on the underside of a plate can be
suppressed by tilting the plate so as to cause a sufficiently strong flow. This paper
uses two-dimensional numerical simulations in a closed-flow framework to study several
aspects of this phenomenon. It is shown that, in quasi-equilibrium conditions, the onset
of dripping is closely associated with the curvature of the wave crests approaching a
well-defined maximum value. When dynamic effects become significant, this connection
between curvature and dripping weakens, although the critical curvature remains a useful
reference point as it is intimately related to the short length scales promoted by the
Rayleigh–Taylor instability. In the absence of flow, when the film is on the underside
of a horizontal plate, the concept of a limit curvature is relevant only for small liquid
volumes close to a critical value. Otherwise, the drops that form have a smaller curvature
and a large volume. The paper also illustrates the peculiarly strong dependence of the
dripping transition on the initial conditions of the simulations. This feature prevents
the development of phase maps dependent only on the governing parameters (Reynolds
number, Bond number, etc.) similar to those available for film flow on the upper side of an
inclined plate.

Key words: thin films, absolute/convective instability, coating

1. Introduction

After the pioneering work of the Kapitzas (Kapitza 1948; Kapitza & Kapitza 1949),
the flow of a liquid film down an inclined plane was recognized as an important topic
for scientific and technological reasons, and it has been the object of a vast literature,
including monographs (Alekseenko, Nakoryakov & Pokusaev 1994; Chang & Demekhin
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2002; Kalliadasis et al. 2011), review articles (see e.g. Chang 1994; Oron, Davis & Bankoff
1997; Kondic 2003; Weinstein & Ruschak 2004; Craster & Matar 2009) and numerous
research papers (see e.g. Rohlfs & Scheid 2015; Rohlfs, Pischke & Scheid 2017; Denner
et al. 2018; Dietze 2019, and others cited below for recent examples). The majority of this
literature concerns the situation in which the film flows on the upper side of the plate
with a strong convective instability generating large-amplitude waves when the Reynolds
number exceeds an inclination-dependent critical value. Much smaller is the number of
studies addressing the converse situation with the film ‘hanging’ from the underside of
the plate. The difference between the two situations is major in that, in the latter one,
the Rayleigh–Taylor instability combines and competes with the convective, or Kapitza,
instability. When the former mechanism is dominant, drops detach from the film while,
when the latter one prevails, stable waves form and propagate along the film. In addition
to its scientific interest, this situation is of practical importance in liquid coating, film
cooling and some geophysical processes (see e.g. Whitehead 1988; Lister & Kerr 1989;
Fermigier et al. 1992; Bertagni & Camporeale 2017; Ledda et al. 2020, 2021; Lerisson
et al. 2020).

Early experiments were conducted with layers of very viscous oils on the underside
of a nearly horizontal plate (i.e. having an angle of inclination β close to 180◦) and
focused on pattern formation of falling drops (Fermigier et al. 1992; Limat et al. 1992).
However, dripping can be suppressed in various ways such as plate oscillations (see e.g.
Wolf 1969; Talib & Juel 2007; Sterman-Cohen, Bestehorn & Oron 2017), Marangoni
flow (see e.g. Deissler & Oron 1992; Sterman-Cohen & Oron 2020), electric fields
(Tomlin, Cimpeanu & Papageorgiou 2020), substrate curvature (Trinh et al. 2014) and,
notably, by a gravity-driven flow along the underside of the plate, as demonstrated by
Indeikina, Veretennikov & Chang (1997) and Brun et al. (2015), in both of which works
no drops were shown to form for sufficient inclinations.

Babchin et al. (1983) investigated a related situation in which a layer of lighter fluid
rests on a horizontal plate under a large mass of immiscible heavier fluid and considered
the saturation of this Rayleigh–Taylor-unstable situation by the motion of the plate in its
own plane. Surface tension was identified as the mechanism responsible for this result.
Specifically, the flow induced by the plate causes the formation of large-amplitude waves at
the interface between the two fluids. Convection shortens the horizontal scale of the waves
thus increasing their curvature so much that the surface-tension-induced overpressure
prevents additional light liquid from entering them thus stopping their growth. The same
mechanism is described by Kalliadasis & Chang (1994) as stabilizing the waves on a
liquid-coated vertical fibre and by Indeikina et al. (1997) as preventing drop formation
in the three-dimensional rivulets covering the underside of a tilted plate. Yiantsios &
Higgins (1989) show that, if the plate is stationary, no compression of the wave takes
place, the surface deformation does not stop and a drop of lighter fluid may ultimately form
and detach unless the effect of surface tension is strong enough. An interesting remark in
this paper, also taken up in Kofman et al. (2018), connects the shape of the largest stable
deformation with that of a pendant drop under a horizontal plate at zero contact angle
studied by Pitts (1973). We return to this point later.

While these studies conclusively demonstrate the crucial role of surface tension in
preventing drop formation, they leave open the question of the precise conditions and
physical mechanism under which this happens. The question is particularly intriguing
given the remarkably sharp transition from the dripping to the non-dripping regime as
the slope of the plate is increased (see e.g. Kofman et al. 2018, and below). Motivated
by the work of Duprat et al. (2007) on fluid flow down a vertical fibre, the behaviour of
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which was interpreted as a transition from an absolute to a convective instability, Brun
et al. (2015) introduced the hypothesis that a similar transition could be associated with
the dripping phenomenon. The idea is that, in the case of an absolute instability, (such as
the one prevailing on the underside of a horizontal plate) perturbations remain localized
in space leading to dripping while, with a convective instability, growing perturbations
move along the inclined plate. The experiments of Brun et al. (2015), carried out with
a very viscous liquid at negligible Reynolds number, were in rough agreement with this
hypothesis. The recent work by Tomlin et al. (2020) appeals to the same idea to explain
the stabilizing effect of an electric field showing that the absolute–convective transition
criterion provides an order-of-magnitude estimate for the electric field strength required to
suppress dripping.

The matter was examined theoretically, including inertia, by Scheid, Kofman & Rohlfs
(2016) who made use of the two-dimensional reduced model based on the weighted
integral boundary layer approach developed by Ruyer-Quil & Manneville (2000). For
each value of the Kapitza number, defined below, a maximum inclination angle was
identified below which the instability is always convective while it can be of either
type above it. The absolute/convective transition is non-monotonic, with the region of
absolute Rayleigh–Taylor instability flanked by two regions of convective instability, a
small-Reynolds-number one dominated by surface tension and a larger-Reynolds-number
one dominated by inertia. The authors pointed out that their results cannot be
unequivocally connected to dripping because it could well happen that, if the waves
grow sufficiently as they propagate, dripping might still occur downstream of the position
where the liquid is injected. For this reason, while they carefully demarcated the
absolute/convective transition as a function of the governing parameters, they did not
attempt to establish a specific link between dripping and the nature of the instability.

This aspect was examined in a later paper by the same authors and colleagues
(Kofman et al. 2018) reporting results of two-dimensional numerical simulations in a
computational domain of fixed streamwise extent subject to periodicity conditions, the
so-called ‘closed-flow’ paradigm that we also adopt. This set-up permitted them to study
whether a wave continued to grow eventually leading to drop detachment and, in this
way, it permitted them to address the dripping/non-dripping ambiguity associated with
a convective instability. They found that the dripping/non-dripping transition was not well
correlated with a change of the nature of the instability but, rather, with the existence
of inclination-dependent mechanisms capable of saturating the growth of the wave. The
necessarily nonlinear nature of these mechanisms further weakens the absolute/convective
hypothesis which can only be studied in the linear regime. Another important feature noted
in this study, as well as some earlier ones (Yiantsios & Higgins 1989; Rohlfs et al. 2017),
is the strong influence of initial conditions on the dripping transition. This important issue
is examined in § 7 below.

From this summary it may be concluded that no clarity exists as to the
dripping/non-dripping transition of a liquid film flowing on the underside of an inclined
plate. In this paper we address this problem adopting the same closed-flow set-up of
Kofman et al. (2018), Sterman-Cohen et al. (2017), Sterman-Cohen & Oron (2020) and
Rohlfs et al. (2017) (the last authors also used the open flow set-up). We study the
two-dimensional version of the problem in spite of its somewhat idealized nature vis-à-vis
the actual physical situation. Indeed, it is well-known that the Rayleigh–Taylor instability
acts on the film not only in the vertical direction, but also in the spanwise direction,
leading to the formation of rivulets from which, in appropriate conditions, droplets can
detach. This aspect has been studied both experimentally and theoretically in several
papers (Indeikina et al. 1997; Lin, Kondic & Filippov 2012; Rietz et al. 2017; Charogiannis
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et al. 2018; Ledda et al. 2020, 2021; Lerisson et al. 2020). However, the fact that many
of the theoretical studies mentioned before deal with the two-dimensional problem (e.g.
Lin & Kondic 2010; Rohlfs & Scheid 2015; Rohlfs et al. 2017; Sterman-Cohen et al.
2017; Denner et al. 2018; Kofman et al. 2018; Dietze 2019; Sterman-Cohen & Oron
2020, and many others) is a proof of the continuing relevance and usefulness of this
idealization. In the first place, the three-dimensional structures take some distance to
develop downstream of the inlet and are preceded by two-dimensional waves (see e.g.
Rietz et al. 2017), unless they are artificially generated directly at the inlet as, e.g. in Ledda
et al. (2020) and Lerisson et al. (2020). Secondly, the large literature on this general topic
is an eloquent demonstration of the subtlety and complexity of the physical processes
involved. A frontal attack on the complete problem may not be the most efficient way to
unravel them not only for intellectual, but also for practical reasons due to the need for
extensive computation and the considerably longer time required by three-dimensional vs
two-dimensional simulations. Progress on the simpler two-dimensional problem would be
faster and may be expected to provide useful keys for the complete understanding of the
more relevant three-dimensional one. Finally, the two-dimensional problem is of interest
in itself as a test bed for the development of long-wave asymptotic methods (see e.g. Chang
1994; Oron et al. 1997; Ruyer-Quil & Manneville 2000; Kalliadasis et al. 2011) and as a
relatively tractable example of an infinite-dimensional dynamical system (see e.g. Pumir,
Manneville & Pomeau 1983; Chang & Demekhin 2002; Lin & Kondic 2010).

After a brief outline of the numerical method (§ 2), the paper starts by describing
simulations of waves on the underside of a plate the inclination of which is very slowly
reduced (§ 3). In this situation, dripping happens under quasi-equilibrium conditions and
is characterized by the curvature at the wave crest approaching a limit value (§ 4). When
dynamic effects gain importance, the connection between curvature and dripping weakens,
but can still be recognized (§ 5). The case of dripping from a horizontal plate is useful in
understanding the dripping from plates which are only slightly inclined and as a paradigm
for situations far from critical conditions (§ 6). The last topic is the importance of initial
conditions which is illustrated with several examples (§ 7).

2. Numerical simulations

We carry out two-dimensional numerical simulations in the so-called closed-flow
framework in which the Navier–Stokes equations are solved in a computational domain
of length L along the flow direction x and the flow fields satisfy periodicity boundary
conditions at x = 0 and x = L; y is the coordinate normal to the plate. The no-slip
condition is applied at the plate surface located at y = 0.

The calculations have been performed with the open-source code Basilisk (http://
basilisk.fr), an improved version of the code Gerris used by Kofman et al. (2018). The
code adopts a second-order time- and space-adaptive finite volume methodology based
on a projection method with a quadtree discretization (Scardovelli & Zaleski 1999;
Popinet 2009). A conservative, non-diffusive, geometric volume-of-fluid method is used
to simulate a gas–liquid two-phase flow. The interface between the phases is described
by a volume fraction field which is governed by an advection equation. An improved
version of the continuum surface force method (Brackbill, Kothe & Zemach 1992; François
et al. 2006) is used to account for surface-tension effects. We have assigned a density and
viscosity 1000 times smaller than those of the liquid to the gas phase, thus approximating a
situation in which the gas has negligible dynamical effects on the liquid. By varying these
ratios we have confirmed that, with the choices made, the gas phase indeed has a negligible
influence on the calculations. We have allowed a maximum grid refinement down to 2−11L
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Figure 1. Comparison of the present simulations (continuous lines) with the published results in figures 2(a)
and 2(b) of Kofman et al. (2018).

finding good numerical convergence. A comparison of the results of our simulations (solid
lines) with the Gerris data taken from the published figures 2(a) and 2(b) of Kofman et al.
(2018) (circles), shown in figure 1, supports the reliability of our simulations.

The cases simulated can be characterized in terms of four dimensionless parameters.
We choose V/h2

0, the volume of liquid V in the computational domain (per unit spanwise
length) non-dimensionalized by the mean film thickness h0, the inclination angle β

(defined so that the plate is vertical for β = π/2 and horizontal with the film on its
underside for β = π) and the Reynolds and Bond numbers. It has been customary in the
literature on film flow on the upper side of inclined plates to incorporate the inclination
angle into the definition of these numbers

Re = h3
0g sin β

3ν2 , Bo = ρh2
0g sin β

σ
, (2.1a,b)

with g the acceleration of gravity, ν and ρ the liquid kinematic viscosity and density and
σ the surface-tension coefficient. The same definitions are used by several authors also
for film flow on the underside of inclined plates. However, when the effect of gravity
normal to the plate becomes critical, as in this latter configuration, the effect of the angle
cannot be completely captured by these definitions and this is the reason we consider the
angle itself as a separate fourth parameter. Following other researchers (see e.g. Rohlfs
et al. 2017; Charogiannis et al. 2018), in order to characterize the simulations we use the
so-called vertical version of the Reynolds and Bond numbers, Re⊥ and Bo⊥, defined as
above by setting sin β = 1. Another dimensionless quantity encountered in the literature
is the Kapitza number Ka which can be expressed in terms of our primary dimensionless
quantities as Ka = (3Re)2/3/Bo, and Ka⊥ = (3Re⊥)2/3/Bo⊥. The capillary length �c =√

σ/ρg, not adjusted for the plate inclination, is related to the vertical Bond number by
h0/�c = √

Bo⊥.

3. The quasi-equilibrium case

We carried out simulations with the slope of the plate very slowly reduced (i.e. the angle
β slowly increased towards 180◦) starting from a computed steady non-dripping Kapitza
wave. The rate of increase of the angle was 0.05◦ per dimensionless time unit

√
g/h0 t = 1

and was therefore so slow that the results can be considered as essentially progressing
through a sequence of steady states until dripping sets in. By the way these simulations
have been conducted, the gradual approach to the onset of dripping changes the liquid
momentum of the growing wave at a very slow rate. The dripping that eventually sets in
when the plate inclination is small enough is therefore little influenced by dynamic effects
normal to the plate and essentially occurs when surface tension can no longer support the
wave crest against gravity. For this reason, the dripping thresholds that we determine in
this way can be considered upper limits. Indeed, we will show later examples in which,
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Figure 2. (a) Dripping threshold vs the perpendicular Bond number Bo⊥ for V/h2
0 = 40 and, in descending

order, Re⊥ = 100, 50 and 20. (b) Dripping threshold vs Bo⊥ for Re⊥ = 50 and, in descending order, V/h2
0 =

20, 40, 60 and 80.

due to the rapid growth of the Rayleigh–Taylor instability, dripping takes place at smaller
angles for the same values of Re⊥, Bo⊥ and V/h2

0.
Figures 2(a) and 2(b) show some results for the dripping threshold as a function of

the problem parameters Re⊥, Bo⊥ and V/h2
0. The limit points for β = 180◦ shown in the

figures correspond to the minimum liquid volume necessary for dripping from a horizontal
plate and are explained in § 6. Figure 2(a) shows that the wave is increasingly stable as
the Reynolds number Re⊥ is increased from 20 (squares, purple) to 50 (circles, green) to
100 (diamonds, blue), so that the angle corresponding to the dripping threshold increases
and the plate inclination decreases. As the Bond number decreases, the effect of surface
tension increases, a smaller flow rate is sufficient to stabilize the wave and the dripping
angle increases.

Figure 2(b) shows that increasing the total liquid volume has a destabilizing effect,
which causes the dripping angle to decrease and the plate inclination necessary for stability
to increase. The primary reason is that, with more liquid available, the wave crest can grow
fed by liquid that can flow into it remaining relatively far from the wall and, therefore,
relatively unimpeded by the viscous shear caused by the no-slip condition. A heavier
wave crest requires a stronger surface-tension effect to be supported against gravity and,
therefore, a decreasing Bo⊥ has a stabilizing effect. While increasing the liquid volume
from 20 to 40 has a strong effect, further increases have a progressively weaker influence
because for V/h2

0 = 40 there is already enough liquid able to flow into the wave crest.
Some of these considerations are amplified and better justified later in § 6.

Figure 3 shows three examples of the waveform at the instant at which β = 160◦ with
Bo⊥ = 0.4, V/h2

0 = 40 and Re⊥ = 20, 50 and 100, all of which are stable cases. It is
interesting to note the thickening of the wave tail as the Reynolds number is increased.
This feature is reminiscent of the phenomenon encountered when a plate is pulled out of
a liquid bath, in which process the thickness of the film left on the plate increases with
the withdrawal velocity for a fixed Kapitza number (see e.g. Orsini & Tricoli 2017). By
conservation of volume, the thickening of the wave tail decreases the wave amplitude,
the volume of liquid in the crest and the crest curvature. We will return in § 5 on the
importance of these factors in stabilizing the wave.
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y/h0 g
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2
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Figure 3. Three examples of the stable (non-dripping) wave shapes for β = 160◦ for Re⊥ = 20 (purple), 50
(green) and 100 (blue) with Bo⊥ = 0.4 and V/h2

0 = 40.

4. Curvature of the wave crest

An interesting feature of the simulations just described is illustrated in figure 4 for a few
cases (Re⊥ = 50 and 100, Bo⊥ = 0.4, 0.6 and 0.8, and V/h2

0 = 20, 40 and 80) but the
same feature is also present in all the other cases used to generate the dripping thresholds
of figure 2. Panel (a) of the figure shows the dimensionless growth rate (dhw/dt)/

√
gh0

of the amplitude hw of the wave under the plate while (b) shows κw, the curvature at
the wave crest, non-dimensionalized by the capillary length �c, both as functions of the
dimensionless time

√
g/h0t. In all cases, the growth rate of the waves starts to increase very

rapidly once the dimensionless maximum curvature approaches a particular value κcr �
1.187/�c. We have found that, if the angle of inclination of the plate is kept constant just
before this value is reached, the wave remains steady while, if it is stopped just above, the
wave amplitude keeps increasing until a drop forms and detaches. This fact suggests that
κcr corresponds to or, at least, is correlated with, the dripping threshold in the condition
of these simulations.

After reaching κcr, the tip curvature continues to increase rapidly approaching a
maximum value close to κ‖ = √

2/�c and then, equally rapidly, it starts to decrease until a
drop forms and detaches at approximately the time the curvature has returned to κcr. The
volumes (areas) of these drops are found to be very close to each other and approximately
given by 4.6�2

c . A similar sequence can be observed in figure 10(b) of Yiantsios & Higgins
(1989), in which the curvature of the drop tip is seen to increase up to the point at which
the drop develops inflection points with vertical tangents, after which it starts to decrease.

The shapes of the wave as the angle of inclination gradually increases (i.e. the plate slope
decreases) are shown in figure 5 for the case Re⊥ = 50, Bo⊥ = 0.6 and V/h2

0 = 40; those
for the other cases go through a similar progression. As the slope decreases the amplitude
of the wave increases. The last profile shown is taken at the point at which the curvature
reaches its maximum just before the base of the drop starts to shrink prior to detaching.

In order to rationalize these results we refer to the observation of Pitts (1973) who
studied the static equilibrium of a given amount of liquid attached to the underside of
a horizontal plate with a prescribed contact angle. He calculated the volume (per unit
spanwise length) of liquid which remains in equilibrium under the action of gravity and
surface tension as a function of hdrop, the elongation of the drop under the plate and,
for each volume, found two values of hdrop, the larger one corresponding to unstable and
the smaller one to stable equilibrium. For a zero contact angle, the two branches come
together at a maximum volume Vcr � 5.211�2

c , at which point the height of the drop is
hcr � 2.374 �c with the tip curvature κcr � 1.187/�c. No equilibrium solution exists for
liquid volumes greater than Vcr.

While Pitts used an energy argument, his results on the equilibrium drop shape are
readily obtained from the relation which expresses the balance of surface tension and
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Figure 4. (a) Growth rate of the wave amplitude. (b) Curvature of the wave crest vs time as the slope of the
plate is slowly reduced. The plate inclination angles at the instants marked by the vertical dashed lines are,
from left to right, 171.4◦, 165.2◦, 168.2◦, 164.3◦, 160.5◦ and 157.6◦.

gy/h0

x/h0

2

4

0

0 10 20

150° 155°
160° 161° 161.2°

30 40

Figure 5. Wave shapes at different plate inclination angles for the case Re = 50, Bo = 0.6 and V/h2
0 = 40 of

the previous figure; the dimensionless times are
√

g/h0 t = 250, 350, 450, 470 and 474.

gravity for a pendant drop under a horizontal plate, namely (see Appendix A)

σκ(z) = σκ0 − ρgz. (4.1)

Here, z is the vertical distance from the tip of the pendant drop to the generic point on
the drop surface, κ(z) the surface curvature at that point and κ0 the curvature at the drop
tip. Figure 6(a) shows the dimensionless pendant drop volume (per unit spanwise length)
Vdrop/�

2
c vs the dimensionless elongation hdrop/�c for zero contact angle and agrees with

figure 3 of Pitts (see also figure 12 of Yiantsios & Higgins 1989).
Figure 4 implies that the balance argument of Pitts is relevant not only for the

equilibrium drop under a horizontal plate, but also for the crest of a quasi-steady Kapitza
wave. Kofman et al. (2018) also referred to Pitts’ result using directly the limit volume
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Figure 6. (a) Volume of a static pendant drop under a horizontal plate vs drop elongation under the plate for
zero contact angle; the dashed lines mark the stability limit. (b) Curvature vs drop elongation. (c) Drop shape
when �cκcr = 1.187. (d) Drop shape when �cκ‖ = √

2.

Vcr � 5.211�2
c , with �c adjusted for the inclination of the plate, as an indicator of the

dripping threshold. Possibly because of fluid momentum effects in their waves, and even
though they subtracted the volume of the liquid substrate (the definition of which may be
somewhat uncertain, due to the fact that a significant amount of liquid accumulates in the
tail of the wave above the substrate) their results were only moderately successful ranging
from ∼ 4�2

c to ∼ 8�2
c about Pitts’ value Vcr = 5.211�2

c . Some considerations on the scaling
suggested by Kofman et al. (2018) can be found in Appendix B.

The way in which we propose to use Pitts’ result is less direct but not dependent on the
ambiguity associated with the drop volume or, because of the way the results of figure 4
were generated, on momentum effects. According to figure 6(a), Pitts’ drop volume is
in a one-to-one correspondence with the drop elongation. By establishing a connection
between the drop elongation hdrop and the tip curvature we can then relate the limit volume
Vcr to the curvature of the drop tip κcr. For this purpose we note that it is a simple
consequence of (4.1) that, for a zero contact angle, the curvature at the tip of the drop
satisfies the relation

κ0 = hdrop

2�2
c

. (4.2)

This result, together with other considerations related to (4.1), is proven in Appendix A.
The relation (4.2) permits us to cast the drop elongation hdrop = hcr corresponding to the
limit volume Vcr into a critical value for the curvature at the drop tip, �cκcr � 1.187 marked
in figure 4. The correspondence between the tip curvature and the drop elongation shows
that the former is closely related to the ability of surface and potential energies to balance
each other. The drop shape corresponding to the tip curvature κcr is shown in figure 6(c);
this shape is the same as that shown in figure 12 of Yiantsios & Higgins. The significance
of the conditions under which the tip curvature reaches κcr is that, past this point, the
release of potential energy associated with a further increase of the drop elongation can no
longer be balanced by a corresponding increase of surface energy. Conservation of energy
requires the appearance of another pathway to channel the excess potential energy released,
and this is the kinetic energy of the forming and detaching drop, with the attendant viscous
dissipation.

There is another pendant drop configuration that is worthy of specific attention. As
the elongation of a pendant drop increases, its width near the base narrows and, at
some point, a shape develops characterized by vertical tangents at the inflection points as
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shown in figure 6(d). The special importance of this configuration resides in the fact that,
when it occurs, the surface tension force acts vertically and is therefore most effective in
counteracting gravity. As shown in Appendix A, the corresponding crest curvature equals
κ‖ = √

2/�c and is also marked in figure 4. In equilibrium conditions, the pressure along
the line joining the two inflection points is evidently the constant external pressure and,
if the volume of liquid under this line is VM , equilibrium requires that ρgVM = 2σ or
VM = 2�2

c . Any increase beyond VM of the amount of liquid in the region below the line
cannot be sustained by surface tension and a drop must eventually detach. The total liquid
volume corresponding to the curvature κ‖ is calculated in Appendix A for zero contact
angle and it is found to be V‖ � 4.793�2

c . It is therefore smaller than that corresponding to
κcr, but the result κ‖ = √

2/�c can be derived without reference to the total liquid volume,
just focusing on the portion of the pendant drop between the tip and the points of vertical
tangency. Thus, unlike κcr, κ‖ is independent of the total amount of liquid under the
plate and characterizes the largest liquid volume that can be sustained by surface tension
under equilibrium conditions. This feature confers to this value of the curvature and the
associated volume VM a special importance as we will see.

It is interesting to observe that, as can be seen in the examples of figure 7, the actual
shape of the wave crest closely approximates the shapes shown in figures 6(c) and 6(d)

at the instants when its curvature reaches κcr and κ‖. In the figure the two drop shapes
of figures 6(c) and 6(d) are rotated and superposed on the wave crest at these times
without any further adjustment. The axis of the drop shapes are nearly coincident with the
direction of gravity, also shown by the arrows in the figure, with the slight misalignment
a consequence of the wave momentum. This alignment justifies the use of �c as defined
before without any adjustment for the plate inclination. The match between the drop and
wave shapes is very nearly perfect for panels (b) and (d), for which κw = κ‖. These results
imply that the balance between surface and gravitational energies, that determines the
dripping stability of a static drop under a horizontal plate, also determines, to a good
approximation, the stability of quasi-equilibrium Kapitza waves. This connection between
tip curvature and drop formation suggests that processes tending to stretch the base of
the crest, thus preventing its curvature from approaching the critical value, will have a
stabilizing effect against dripping. This appears to be a major mechanism by which flow
stabilizes the wave as will be further argued below.

This mechanism is inherently nonlinear and is therefore incompatible with an
explanation based on the transition from absolute to convective instability of Brun
et al. (2015) and others. The mechanism proposed by Babchin et al. (1983), who saw
the convective steepening of the wave as stabilizing the Rayleigh–Taylor instability by
increasing, rather than decreasing, the curvature of the wave crest, is only superficially
incompatible with our proposal. What happens is that, indeed, the increasing curvature
initially opposes the growth of the Rayleigh–Taylor instability but, if it were to be allowed
to continue, it would shrink the base of the crest so much that a drop would form and
detach. To stabilize the wave, therefore, it is necessary that the growth of the crest curvature
be arrested before it becomes critical.

5. Normal momentum

It is evident from the wave shapes such as those shown in figure 5 that dripping may be
influenced by the entire wave, but is ultimately a phenomenon localized at the wave crest.
In the quasi-equilibrium situations of the previous section, the curvature of the crest is
significant because it quantifies the amount of liquid in the crest and the crest length scale,
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Figure 7. Drop shapes of figures 6(c) and 6(d) rotated and superimposed on the wave profiles at the moment
the corresponding curvatures are reached for Re = 50; (a,b) Bo = 0.4, V/h2

0 = 80, β � 165◦; (c,d) Bo = 0.8,
V/h2

0 = 40, β � 150◦. The arrows indicate the direction of gravity.

which determine the propensity to instability thanks to the fact that the dominant forces at
play are surface tension and gravity. The very fact that results obtained for the curvature
of an equilibrium drop match well the results of quasi-equilibrium dynamical simulations
gives a clear indication of the small importance of inertia and flow in the phenomena
simulated in §§ 3 and 4. Of course there is recirculation in the wave (see e.g. Reck &
Aksel 2015; Rohlfs & Scheid 2015; Rohlfs et al. 2017), but the associated flow is so weak
that its effect is not noticeable in the results of the previous two sections. As the flow is
allowed to develop naturally rather than being guided, as it were, through a succession of
quasi-equilibrium states, other channels for the potential energy released by the falling of
the liquid near the crest become available beyond surface energy, namely kinetic energy
and viscous dissipation. Furthermore, localized disturbances can also affect the wave and,
in particular, its crest. It may well be expected, therefore, that at the stability limit the direct
relation between curvature and stability valid for quasi-static equilibrium will be affected
when dynamic effects become significant.

Figure 8 shows some typical examples of how the momentum of the developing wave
normal to the plate affects the curvature of the wave crest when the calculation is started
from a sinusoidal perturbation

h(x, t = 0)

h0
= 1 + A sin

2πx
L

, (5.1)

with an initial amplitude A = 0.2; here, Re⊥ = 50, Bo⊥ = 0.6 and V/h2
0 = 40. With

h0 = 1 mm and typical properties of a silicone oil, σ = 21 mN m−1, ρ = 971 kg m−3,
ν = 8 × 10−6 m2 s−1, we find Bo⊥ = 0.45 and Re⊥ � 51. The parameter choice can
therefore be considered as representative of real situations. In the figure, the various lines
correspond to different angles of inclination, kept fixed for each simulation. A prominent
feature of these results is the evidence of finite-amplitude oscillations of the crest curvature
which highlight the fundamental difference with the earlier simulations of figure 4. A
closer inspection shows the presence of a smaller and faster oscillations super-imposed
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Figure 8. Curvature vs time as waves evolve for different fixed inclination angles with Re⊥ = 50, Bo⊥ = 0.6,
V/h2

0 = 40. The wave shapes are taken at the instant marked in the figure.

on a slower one. The computations show that the faster oscillation is caused by the
absorption of a small disturbance at the front of the wave associated with the initial rapid
phase of growth. For each image pair in figure 8 this disturbance is visible in the frame
corresponding to the first peak and is shown more clearly for one example in movie 1 of
the supplementary material associated with this paper available at https://doi.org/10.1017/
jfm.2021.1032. Similar oscillations can also be seen in the supplemental material of Zhou
& Prosperetti (2020). The slower oscillations reflect the oscillations of the entire wave
and are reminiscent of those mentioned in Babchin et al. (1983) who write ‘As a result
of the combined effect of these three factors – destabilizing gravity, flow-induced scale
contractions, and stabilizing surface tension – finite-amplitude oscillations set in’.

A sequence showing wave profiles over the course of the slow oscillation is shown
in figure 9 for the case β = 145◦ of figure 8. The figure shows successive images of
the wave separated by equal time intervals

√
g/h0 �t = 2 starting from

√
g/h0 t = 13.

The faster, small-amplitude oscillation is revealed by a careful look at the waveforms,
but the slower, larger one is quite clear. As the oscillation amplitude decreases, liquid
is pushed back toward the plate and tends to flow forward (possibly because of the low
surface-tension-induced pressure at the foot of the wave), thus increasing the apparent
speed of the wave front. In this process the tail grows ‘stretching’ the back of the wave,
increasing the length scale of the crest and, with it, decreasing the crest curvature.

A portion of the waveform at the maximum points of the curvature oscillations is shown
in the small images surrounding the main panel of figure 8. Here the crest shape is not
determined solely by a surface-tension/gravity equilibrium, but is significantly influenced
by dynamic effects. This can be seen, for example, from the difference between the first
crest shape for β = 125◦ (middle inset on the left) and the shape shown in figure 6(c) in
spite of the fact that, in both cases, the tip curvature is close to κcr. A careful inspection of
the insets for β = 135◦, 145◦ and 155◦ shows that the wave tail thickens as the inclination
increases; we will see later in figure 14 that, conversely, the tail is very strongly reduced by
further decreases of the plate inclination. The same thickening is shown in figure 3 where
it is produced by the increase of the Reynolds number. For the same substrate thickness,
a thicker tail takes liquid away from the crest thus limiting the amount of liquid available
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Figure 9. A sequence of wave shapes for the case β = 145◦ of figure 8; the images are separated by equal time
intervals

√
g/h0 �t = 2 starting from

√
g/h0 t = 13. Note how the growth of the tail ultimately ‘stretches’ the

wave crest and diminishes its curvature.

to form a drop and ‘stretches’ the wave, thus increasing the length scale of the crest. Both
factors increase with the inclination of the plate and exert a stabilizing effect on the wave.

In all cases of figure 8 excepting the last one for 155◦, the crest curvature ultimately
decays without drop formation. When the curvature exceeds κ‖ = √

2/�c the wave shape
closely resembles the one shown in figure 6(d), both for the stable case β = 145◦ and the
unstable case β = 155◦. In the former, the wave shape is close to that of figure 6(d), but the
tangents at the inflection points of the wave shape do not quite become parallel to gravity
and no drop forms. For the unstable β = 155◦ case, however, the wave shape has evidently
just passed the point of vertical tangency and, indeed, the wave becomes unstable and a
drop detaches. These results suggest that κ‖ maintains its correlation with the maximum
liquid volume that can be supported by surface tension even in the presence of moderate
dynamic effects. We have encountered stable waves with maximum curvatures temporarily
larger than κ‖ only when the wave was excited by short-wavelength disturbances, stronger
than the ones giving rise to the oscillations visible in figure 8 mentioned before. In these
cases, however, the large curvature was not associated with a sufficient liquid volume to
overcome surface tension and, in any case, the large curvature did not last long enough
to allow for the formation and detachment of a drop. Generalizing, it might be said
that, in most cases, the shortest length scales that can arise are those generated by the
Rayleigh–Taylor instability for which the crest curvature is a good indicator.

It may also be noted that here we find dripping for β = 155◦ while, for the same
parameter values, in the quasi-equilibrium case of figure 4 dripping did not occur until
the inclination reached an angle β = 160.5◦. The decrease of the dripping angle that we
encounter here arises from the fact that, evolving from the initial condition, the wave
is off-equilibrium. As the liquid gets re-distributed and the velocity field develops, a
sufficient and sufficiently persistent accumulation of liquid in the wave crest can occur to
overcome the restraining power of surface tension. Through this process, dynamic effects
can render unstable a situation that would be stable in quasi-equilibrium conditions. These
considerations support the interpretation of the conditions of figure 4 as providing an upper
limit for dripping. We will see further examples when we explore the effect of initial
conditions in § 7.

6. Horizontal and nearly horizontal plate

Up to this point we have considered plate inclination angles lower than, or just above, the
critical angle for dripping. In preparation for the study of phenomena occurring farther
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from criticality, it is useful to consider the largest possible angle, i.e. a horizontal plate
with β = 180◦. As we will see, away from criticality the evolution of the system can be
quite different from the one outlined in the previous sections and conclusions based on
the quasi-equilibrium picture become less and less applicable. Some qualitative features
of the results that we find in this case will also be encountered in the next section where,
in the study of the effect of initial conditions, we encounter situations far from criticality
because of conditions other than the angle of inclination of the plate. As will be noted in
the next section, this is a consequence of the large (actually, infinite) dimensionality of the
parameter space of the problem at hand which can in no way be reduced to considerations
based on linear theory.

A fundamental study of the Rayleigh–Taylor instability with a horizontal plate was
conducted by Yiantsios & Higgins (1989) who considered two superposed fluids in the
Stokes flow limit. The same configuration was studied by others (see e.g. Whitehead
1988; Lister & Kerr 1989), but we refer to Yantsios & Higgins’ study as, although their
configuration is different from ours, many of their results are relevant. For example, these
authors demonstrated the strong effect of initial conditions, a feature that we have already
encountered and which we will illustrate further in the next section. They pointed out the
limitations of predictions based on the (linear) fastest growing wavelength which may or
may not dominate the final outcome of the instability and, in addition, they demonstrated
the importance of the total liquid volume. Another somewhat distantly related work is that
of Elgowainy & Ashgriz (1997) who studied an unsupported liquid layer subjected to a
pressure difference on its two sides. The absence of a supporting plate makes the results
of this study of limited use for our intents, but the growth of the so-called Rayleigh–Taylor
spikes has some similarities with the example shown later in figure 11.

We focus on the dependence of the crest curvature on the total liquid volume in the
computational domain. Of particular interest is the maximum curvature which is reached
just before a drop starts to form. We fix L/�c, the domain length normalized by the
capillary length, and study the effect of varying the normalized film thickness h0/�c.
The initial interface configuration is prescribed as before in (5.1) with A = 0.1. Several
examples of the time dependence of the drop tip curvature are shown in figure 10 for
L/�c = 10 and different normalized liquid volumes V/Vcr = Lh0/Vcr. In the present
situation in which there is no travelling wave, a suitable dimensionless quantity to
characterize the effect of viscosity is the Ohnesorge number

Oh = μ√
σρh0

= Ka−3/4
⊥ Bo−1/4

⊥ , (6.1)

which is a measure of the viscous damping rate to the frequency of capillary waves. For the
examples of figure 10 Oh ranges, from left to right, from 0.050 to 0.120. In all cases, at first
the curvature increases with time. As the initial wave crest gradually forms into a pendant
drop, the curvature attains a maximum value soon after the free surface has developed
two inflection points with vertical tangents. The curvature then briefly relaxes as the drop
forms and starts to fall away from the plate reaching the bottom of the computational
domain. The simulations are stopped at this point. We have found very similar results for
L/�c = 8, 12 and 15. The Ohnesorge number controls the speed of the process but also,
not coincidentally, the maximum curvature, which is seen to increase as the process is
slowed down, which causes an increase of the importance of viscosity and a concomitant
decrease of dynamic effects.

Smaller values of Oh facilitate the formation of drops that are larger than the volumes
Vcr and V‖ of figures 6(c) and 6(d) and have a curvature smaller than κcr and κ‖. An
example is shown in figure 11 which compares the pendant drop shape for Oh = 0.05 and
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Figure 10. Time dependence of the curvature at the tip of a pendant drop under a horizontal plate for L/�c =
10. From left to right, the curves are for Ohnesorge numbers, defined in (6.1), equal to 0.050, 0.071, 0.091,
0.105, 0.112, 0.115 and 0.120. The computations show that the maximum curvature is reached just after the free
surface develops two inflection points with vertical tangents and then relaxes as the base of the drop shrinks
leading to detachment. The dashed line is a guide to the eye.

105
x/�c

y/�c

0
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5

0

Figure 11. An example of the shape of a pendant drop under a horizontal plate at the moment at which two
inflection points with vertical tangents appear; here, Oh = 0.05 and L/�c = 10. The dashed line permits a
comparison with the equilibrium shape of Pitts shown in figure 6(d) and drawn to the same scale.

L/�c = 10, at the moment inflection points with vertical tangents appear, with the drop of
figure 6(d) drawn at the same scale. In this case, the volume of the drop that ultimately
detaches is more than three times as large as the volume of the drops that detach when
the waves of figure 4 become unstable. A similar finding was reported by Abdelall et al.
(2006) who experimented with drop detachment from the underside of a porous plate.
The reason is that, unlike the drops found following Pitts’ analysis, the drop shapes that
develop in these conditions are not equilibrium solutions of the gravity–surface-tension
balance relation (4.1). An intuitive explanation of these results may be given noting that
a liquid flow accelerating in the direction of gravity is, in a very rough sense, equivalent
to a reduced gravity since, if the liquid was in a free fall, the apparent gravity would
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Figure 12. The maximum curvature reached by a pendant drop under a horizontal plate (i.e. the curvature
corresponding to the maxima in figure 10) as a function of the normalized liquid volume Lh0/Vcr. All the
lines, except the second one from the left (upside down triangles, yellow) have Ka⊥ = 21.5. From left to right,
the lines are for L/�c = 8 (circles, blue), 10 (upside down triangles, yellow, with Ka⊥ = 54.3), 10 (triangles,
orange), 12 (squares, green) and 15 (diamonds, purple).

vanish. A smaller g would increase the value of �c thus reducing κ‖ and increasing the drop
volume, for both of which �c is the characteristic length scale. The relative rapidity with
which drops form as Oh is reduced may be interpreted by noting that Oh can be decreased
by reducing the liquid viscosity, which permits a freer flow of liquid into the wave crest
under the action of the gravity-induced pressure gradient. An equivalent interpretation
may rely on reducing Oh by increasing the mean thickness of the liquid layer h0. As can
be seen from (5.1), the initial wave amplitude is given by Ah0, and therefore a larger h0
places a proportionately larger amount of liquid below the average liquid depth and far
from the wall with a similar effect.

Figure 10 shows a monotonic increase of the maximum curvature as the crest growth
is slowed down. This effect is made clearer by figure 12, which shows the maximum
curvature as a function of Lh0/Vcr, with Vcr � 5.211�2

c Pitts’ minimum volume for
drop formation. Each line connects points obtained with the same values of L/�c and
Ka⊥ = 21.5 or 54.3; the results seem to depend mostly on the total liquid volume with Ka
having a minor effect. As V/Vcr → 1, the maximum curvature increases past Pitts’ κcr,
although a limit value, if it exists, is not apparent from the figure. This effect is caused by a
small residual amount of liquid which remains trapped on the plate near the main pendant
drop. This liquid cannot readily flow into the main drop due to the strong viscous effect
in the thin layer that separates it from the main drop. A similar effect was reported by
Yiantsios & Higgins (1989) (see e.g. the last example in their figure 8) and, more recently,
by Lister, Rallison & Rees (2010) and Lerisson et al. (2020). The effect is negligible
when Lh0/Vcr is large, but becomes noticeable when it prevents the volume ratio to get
sufficiently close to 1. Because of this residual volume, the data in the figure should not
really be plotted against the nominal value Lh0/Vcr used in the horizontal axis of the graph,
but rather against an effective volume (Lh0 − Vresidual)/Vcr.

Figure 13(a) shows the data of figure 12 near V/Vcr = 1 which are seen to lie
approximately on straight lines. We have found that the effect of the residual volume is
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Figure 13. Panel (a) shows a subset of the data of figure 12 near V/Vcr = 1. Panel (b) shows the same data
adjusted by the subtraction of Vresidual as explained in the text. See the caption to figure 12 for an explanation
of the symbols.

negligible for the case with L/�c = 8. Extrapolation of the line connecting the data for
this case (open blue circles in the figure) toward Lh0/Vcr = 1 leads to κw � κ‖. This
fact suggests that this should be the limit for the other cases as well if the effect of the
residual volume could be accounted for. In order to estimate Vresidual we extrapolate the
straight lines of figure 13(a) to κw = κ‖ and run a simulation using this initial volume
with the same initial condition as before. Eventually two pendant drops are left, a larger
one and a smaller one. We identify the volume of the latter with Vresidual and re-plot the
data of figure 13(a) as functions of (Lh0 − Vresidual)/Vcr as shown in figure 13(b). All
the lines now converge very closely to κ‖ as (V − Vresidual)/Vcr → 1. This procedure
therefore leads to the conclusion that κ‖ is indeed associated with Vcr when the liquid
volume is just enough to cause dripping under a horizontal plate. It may be noted that
the agreement with Pitts’ result is not obvious a priori given that the present simulations
were conducted under the assumption of spatial periodicity, which implies a fixed contact
line at the end points of the domain, rather than fixed contact angle, conditions. A similar
conclusion as to the existence of a minimum amount of liquid necessary for drop formation
under conditions similar to the present ones was reached by Yiantsios & Higgins (1989)
(reiterated in Kofman et al. 2018) and, for the three-dimensional case, by Fermigier et al.
(1992).

The association of Vcr with κ‖, rather than κcr, may appear somewhat unexpected.
However, it is known from Pitts’ work that Vcr is the largest liquid volume for which a
drop on the underside of a horizontal plate can be stable and, as pointed out in § 4, the
curvature κ‖ corresponds to drop shapes for which surface tension is most effective in
opposing gravity. We have seen the importance of κ‖ already in figure 4 as the maximum
curvature reached when drops start to form and detach, in figure 8 as being mostly close
to the maximum curvature in the oscillations of Kapitza waves and in figure 10 as an
upper limit for the curvature as drop formation under a horizontal plate is progressively
retarded. In the first case κcr was found to play a role at the threshold, but did not appear
to be associated in particular with drop formation. In the other two, the crest curvature
reached and surpassed κcr without any particular feature or event marking the passage.
The crucial difference between the two special values of the curvature, which explains the
different importance of their roles, is that κcr is dependent on the overall wave shape and
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Figure 14. Continuation of figure 8 showing the curvature vs time for fixed inclination angles with Re⊥ = 50,
Bo⊥ = 0.6, V/h2

0 = 40. The data for β = 155◦ are the same as shown in figure 8 and permit a comparison with
those for β = 165◦ and 175◦ in which cases the formation of the drop resembles that under a horizontal plate.

total liquid volume while, as already noted, the association of maximum surface-tension
effect and κ‖ is based only on the local features of the wave shape near the crest.

In this light, the results reported in figure 4 are not surprising: even in a flowing film,
the first drops that are possible when the equilibrium provided by surface tension becomes
unstable are drops with the characteristics of the (quasi-)equilibrium situation. The wave
first becomes unstable when κcr is attained, but drops do not start to form and detach until
the curvature reaches κ‖ because it is at this point that surface tension becomes unable to
support the volume of liquid in the crest. Since these are the first possible drops, one would
expect that their features would be nearly independent of the total amount of liquid in
the computational domain. Indeed, for example, the cases with Re⊥ = 50 and Bo⊥ = 0.6
in figure 4 go through essentially the same sequence irrespective of whether the liquid
volume is V/h2

0 = 20 or V/h2
0 = 80. As figure 2(b) shows, with a larger liquid volume,

drops can form at a larger plate inclination (smaller β) but the process of their formation
is otherwise similar.

The residual liquid left on the plate may have a curious effect when the total liquid
volume is just above Vcr. We have found that, in this case, the volume of the pendant drop,
deprived of the residual liquid, may be below the critical value. However, the very slow
motion induced by tilting the plate by as little as 1◦ – from 180◦ to 179◦ – is sufficient
for the pendant drop to pick up the residual liquid growing sufficiently to start to drip. As
pointed out by Yiantsios & Higgins (1989) and Lister et al. (2006), given enough time the
residual volume might flow into the main drop (unless the film evaporates or breaks under
the action of the disjoining pressure caused by van der Waals forces) so that it is possible
that even the pendant drop on the horizontal plate might ultimately become unstable. The
practical consequences of this possibility – if any – are hard to assess.

It is evident that the physics determining the evolution of the interface for a horizontal
plate will not appear abruptly when the inclination angle reaches 180◦, but will set in
gradually as this condition is approached. For this reason, the horizontal plate results shed
light on what happens when the inclination of the plate studied in § 5 is decreased to
β = 165◦ and 175◦ (figure 14). As we have already mentioned, the case with β = 155◦,
repeated in figure 14, is close to the critical angle and, accordingly, dripping is associated
with a crest curvature close to κ‖. The other two, however, are farther from the critical
angle: the wave shape is markedly different, most noticeably in the tail, which is greatly
diminished, and in the crest curvature, which is smaller. The amplitudes vs time of
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Figure 15. (a) Time dependence of the amplitude of the wave crests for β = 180◦, 175◦, 165◦, 148◦ (all
unstable) and 145◦ (stable). The first three very nearly superpose and are hardly distinguishable. The
corresponding maximum curvatures are shown in figure 16. (b) Two-dimensional pendant drop shapes for
the three largest inclination angles at

√
g/h0 t = 20, 21 and 22; the arrow indicates the direction of gravity. The

drops slowly translate with respect to their initial position in the top panel due to the inclination of the plate.

180160

β (deg.)
140

κw�c

120
1.0

1.4
2

1.8

Figure 16. The maximum curvatures reached by the waves of figures 8 and 14 (augmented by the results of
three additional simulations with β = 180◦, β = 148◦ and 140◦) vs the inclination angle of the plate. The filled
and open symbols denote dripping and non-dripping cases, respectively.

the waves for β = 180◦, 175◦, 165◦, 148◦ (all unstable) and 145◦ (stable) are shown in
panel (a) of figure 15. Remarkably, the time dependence of the first three amplitudes
is virtually indistinguishable. The corresponding wave shapes, taken at the same times
at three successive instants, are shown in panels (b) of the same figure, with the arrow
indicating the direction of gravity. For these nearly horizontal plates the Rayleigh–Taylor
instability develops very rapidly, much before the flow, which starts from rest, is able to
generate a Kapitza wave. When the plate tilt is increased to 155◦ (not shown) and 148◦,
the growth rate weakens and finally stabilizes for an inclination of 145◦.

Figure 16 collects the maximum curvatures of figures 8 and 14. The filled and open
symbols denote dripping and non-dripping cases, respectively. As the dripping angle
for the particular initial condition used in these simulations is approached from below,
the maximum curvature of the wave increases slightly overshooting the value κ‖. This
is an indication that the length scale of the wave crest diminishes, a tendency which
clearly favours dripping. As the angle increases past the dripping threshold, the maximum
curvature decreases similarly to what we have seen for the horizontal plate case as
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one moves farther away from the critical condition with increasing liquid volume and
decreasing viscous effects.

7. Effect of initial conditions

A peculiarity of the present system already noted by Yiantsios & Higgins (1989), is that
‘the final state of the interface can be different depending on different initial conditions
and always present disturbances’. A similar point was mentioned by Rohlfs et al. (2017)
who note that ‘droplet (or ligament) detachment is sensitive to the initial condition,
so that dripping . . . can also occur for lower inclination numbers if a favorable initial
condition is used’. Kofman et al. (2018) modified their original initial conditions to avoid
‘a temporal development of the wave . . . characterized by an overshoot in amplitude . . .

which accentuates the phenomenon of dripping’. While, as these quotes show, this aspect
of the problem has been noted before, it does not seem to have received much attention
in spite of its obvious importance. For example, it is obvious that this feature prevents
the development of a phase map of possible outcomes dependent only on the problem
parameters (Reynolds number etc.) such as, for example, the one developed by Rohlfs &
Scheid (2015) for waves on the top side of an inclined plate. In order to be successful,
any phase map must also include information on a suitable characterization of initial
conditions.

The proper interpretation of these complex features must be based on concepts familiar
from the theory of dynamical systems. It is well known that, when a dynamical system has
more than one attractor, the phase space is divided into domains, or basins, of attraction
of each one of them, with one or the other limiting behaviours ultimately prevailing
depending on the particular domain of attraction in which the initial condition happens to
be located (see e.g. Lichtenberg & Lieberman 1983; Wiggins 1988; Ott 2003). In a system
with an infinite number of degrees of freedom like the present one, the phase space is a
Sobolev space but the notion of domains of attraction still applies. There will be a domain
of attraction of the dripping solution, a domain of attraction of the Kapitza wave with one
hump and, possibly, domains of attraction of Kapitza waves with two or more humps,
an outcome that we have occasionally encountered with long computational domains
but not studied in detail. A complete characterization of these domains of attraction
requires a significant effort because it must be carried out iteratively accounting for the
full nonlinearity of the problem. Tools for this sort of nonlinear non-modal analysis are
currently being developed (see e.g. Gallino, Schneider & Gallaire 2018; Kerswell 2018)
but we will not pursue the matter here, limiting ourselves to the presentation of results
of some exploratory calculations that illustrate the effect and highlight the subtlety of the
influence of initial conditions.

We begin by describing the results of two types of simulations, in both of which
the initial condition is given by (5.1). In the first type we start the simulations with
perturbations of the same shape but different amplitudes. In the second one we use the
fact that the Rayleigh–Taylor instability is dependent on the component of gravity normal
to the plate, g cos β, while the Kapitza instability is primarily dependent on the component
parallel to the plate, g sin β. If a simulation is started without the g cos β component, which
is then restored later, the Kapitza instability is allowed to develop for a while in the absence
of the other instability. This would be equivalent to imposing an initial condition on the
system at the instant at which the g cos β component is restored.

Figure 17(a) shows the wave amplitude vs time when the amplitude of the initial
sinusoidal perturbation (5.1) is varied from 0.1 to 0.8; the vertical Reynolds number is
Re⊥ = 50, the Bond number Bo⊥ = 0.6, the liquid volume V/h2

0 = 40 and the plate
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Figure 17. (a) Wave amplitude vs time starting from initial amplitudes A = 0.8, 0.5, 0.3, 0.2 and 0.1 in
descending order; Re = 50, Bo = 0.6, V/h2

0 = 40, β = 140◦. (b) Wave amplitude with the gravity component
normal to the plate restored at different times marked by arrows; Re = 50, Bo = 0.6, V/h2

0 = 40, β = 152◦. An
animation of the wave growth when gravity is restored at

√
g/h0 t = 10 and

√
g/h0 t = 15 is shown in movie 2

of the supplementary material associated with this paper.

inclination angle β = 140 ◦. From figure 4, the critical inclination angle for these conditions
is 160.5◦ so that one would expect a stable non-dripping Kapitza wave in quasi-equilibrium
conditions. For A = 0.3, 0.5 and 0.8, the vertical velocity component develops very
quickly and the amplitude of the wave rapidly grows, leading to the formation and ultimate
detachment of a drop. For A = 0.1 and 0.2, however, the wave initially grows, reaches a
maximum, and then decreases settling down to a constant value. This asymptotic value
is independent of the initial amplitude, showing that both initial conditions with A = 0.1
and 0.2 are situated in the domain of attraction of the stable steady state. Even in these
stable cases, the power of the Rayleigh–Taylor instability manifests itself in causing the
overshoot above the eventual steady-state level, as noted by Kofman et al. (2018); a similar
phenomenon is responsible for the oscillation of figure 9. The smallest amplitude used
here, while small, is not small enough to justify the application of linear theory. We have
found that, with a truly small initial amplitude, the interface develops in a complex way
with a combination of small waves with the wavelength dictated by the fastest growing
Rayleigh–Taylor mode. A similar outcome is shown in figure 5 of Yiantsios & Higgins
(1989).

The detaching drops in the three unstable cases of figure 17(a) are shown in figure 18
where it is evident that their volume increases with A. The reason is that, as anticipated
in the previous section, there is a well-defined critical dripping amplitude associated with
the initial condition, inclination angle and control parameters used for this simulation.
Increasing A increases the distance from this critical dripping amplitude which leads to
larger detaching drops. Qualitatively, this is the same tendency found for a horizontal plate
in § 6 for diminishing Ohnesorge numbers. A physical interpretation is that a larger initial
amplitude places more liquid into the crest of the wave at some distance from the wall
from which this liquid can flow into the forming drop relatively unhindered by the viscous
shear caused by the no-slip condition at the distant wall. Conversely, with a smaller initial
amplitude, it takes longer for a liquid mass sufficient for dripping to collect in the wave
crest as liquid flow is hindered by viscosity. Therefore, the Kapitza instability has more
time to establish itself and stabilize the dripping instability by stretching the wave crest
and ‘opening up’ the base of the drop.
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Figure 18. Drops about to detach for the three unstable cases of figure 17(a). From left to right the images
correspond to A = 0.8, 0.5 and 0.3. The slight deviation of the trajectory away from the direction of gravity
is due to the drag exerted by the second fluid in the computational domain as explained in § 2. Note that the
structures shown here are actually two-dimensional, not real three-dimensional droplets.

Turning now to the second type of simulation, we show some results in figure 17(b)

with the same parameter values as for the previous figure except the inclination angle that
here is β = 152◦, again smaller than the critical angle for quasi-equilibrium conditions.
The initial condition is the same sinusoid (5.1) as before with A = 0.2. The particular
value of the inclination angle used here has been chosen because it is slightly above the
stability threshold for the conditions of figure 8 and therefore, under normal conditions, it
should produce an unstable wave. The curves correspond to restoring the g cos β gravity
component at progressively later times. If the Kapitza instability is not allowed enough
time to develop before the normal gravity component is restored, the wave grows and a
drop eventually forms as expected. On the other hand, the film is stabilized if the action of
the normal gravity component is delayed and, with it, the development of vertical inertia
and the compression of the horizontal length scale toward �c. However, it is also evident
from the overshoot above the eventual steady state that, as soon as it is restored, the
Rayleigh–Taylor instability injects a significant amount of energy into the system ‘trying’
to destabilize the wave. In this case as well the amplitude of the steady-state wave is
independent of the time at which the vertical gravity component is restored and the same
comment on the location of the initial conditions in the domains of attractions of the
two asymptotic solutions is applicable. An animation of the wave growth when gravity
is restored at

√
g/h0 t = 10 and

√
g/h0 t = 15 is shown in movie 2 of the supplementary

material associated with this paper.
In both previous cases the initial condition was a sinusoid with a wavelength equal to

that of the computational domain. We now show results obtained with different initial
shapes. For the first example we use

h(x, t = 0)

h0
= 1 + A

τ
tan−1 τ sin 2πx/L

1 − τ cos 2πx/L
, (7.1)

with 0 ≤ τ ≤ 1 a dimensionless parameter. The shape of this curve which, depending
on τ , interpolates between a single sine (τ = 0) and a sawtooth function (τ = 1)
(McCaughan 2017), is shown in figure 19 for τ = 0.5 and A = −0.3 (forward leaning,
solid line) and A = 0.3 (backward leaning, dashed line). Figure 20, for Re⊥ = 50,
Bo⊥ = 0.6 and V/h2

0 = 40, shows that a significant difference between the two cases
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Figure 19. The initial condition (7.1) for a ‘forward-leaning sine’ (A = −0.3, solid line) and a
backward-leaning sine (A = 0.3, dashed line) with τ = 0.5; note the downward-oriented vertical axis.

develops already for A = ±0.1, with the forward-leaning wave becoming stable and the
backward-leaning one unstable. A close inspection shows that the oscillations affecting
the forward-leaning case with A = −0.1 are not due to the Fourier modes that make
up the initial condition, but to small capillary disturbances absorbed at the front of the
wave as for the oscillations of figure 8. Thus, a Fourier decomposition is of little value
in determining the dripping/non-dripping outcome of the wave development. The same
difference between forward- and backward-leaning initial shapes persists all the way to
A = ±0.4 while, for A = ±0.5, both initial shapes become unstable. A likely explanation
of the different outcomes is that, in the forward-leaning case, the initial shape is already
close to that of a Kapitza wave and such that surface tension starts out strong (cf. a
similar argument in Babchin et al. 1983), while its effect has to gradually develop in the
backward-leaning case leaving enough time for the liquid to accumulate into the wave crest
and ultimately drip.

As a fourth example we use the superposition of two sines

h(x, t = 0)

h0
= 1 + A

(
sin

2πx
L

+ 0.1 sin
4πx

L

)
. (7.2)

The maximum and minimum amplitudes of this shape differ by less than 2 % from ±A and,
therefore, these simulations can legitimately be compared with the results found omitting
the second term (dashed lines). Both initial conditions produce stable Kapitza waves for
A = 0.1 and unstable waves for A = 0.3 and 0.5. However, for A = 0.2, the one-term initial
condition produces a stable wave while the two-term one produces an unstable solution.
These results illustrate the sharpness and convoluted shape of the domains of attraction
of the two asymptotic solutions, demonstrating the difficulties that must be overcome
to understand their topologies and, even more, to develop a precise determination of
their boundaries. It is also interesting to note that the solid lines give no straightforward
evidence of the presence of two Fourier components in the initial condition. The nonlinear
interaction is evidently quite strong already from the beginning.
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Figure 20. Evolution of hw/h0, the normalized maximum height of the wave, for the initial conditions (7.1)
with τ = 0.5. The solid lines are for a forward tilt and the dashed lines for a backward tilt. In descending order,
the lines are for A = ±0.5 (blue), ±0.3 (green) and ±0.1 (purple).

8. Summary and conclusions

In this paper we have considered the dripping of a liquid film flowing along the underside
of a titled plate. The Rayleigh–Taylor instability tends to cause dripping by reducing the
length scale of the wave crest so much that the weight of the liquid that concentrates into it
cannot be sustained by surface tension. Conversely, the Kapitza wave owes its stabilizing
effect to its ability to prevent the accumulation of liquid in the crest by thickening the
wave tail and stretching its length scale. We have found that, when the wave is allowed
to evolve in quasi-equilibrium conditions, the balance of gravity and surface tension is
broken in much the same way as when a drop forms on the underside of a horizontal plate
when the liquid is just sufficient for this to happen (Pitts 1973). Key to the establishment
of this correspondence has been our recasting of Pitts’ stability condition in terms of
the curvature of the wave crest, which does not rely on the contact angles and liquid
volumes used in his original formulation. In this way, the crest curvature has been turned
into a sensitive indicator of the liquid volume in the crest and of the proximity of the
crest to the dripping instability. As dynamic effects become important, the value of the
crest curvature as an indicator of the weight of the liquid accumulated in it weakens, but
remains fairly good provided conditions are not too far from the quasi-equilibrium dripping
threshold. Increasing distance from the threshold, as in the case of a horizontal or nearly
horizontal plate or a large-amplitude initial condition, produces progressively larger drops
with decreasing maximum curvature.

The dependence of the outcome of the simulations on initial conditions, which has
been noted, but not studied in depth, before (Yiantsios & Higgins 1989; Rohlfs et al.
2017; Kofman et al. 2018), is a very striking feature of the process investigated in this
work. The analysis of the horizontal plate case reveals an important factor that suggests
an explanation for this effect, namely the need for the rapid flow of liquid into the wave
crest. If the initial condition places enough liquid relatively far from the supporting plate,
this liquid can rapidly flow into the crest because it is relatively unhindered by the viscous
shear caused by the no-slip condition at the plate. In this case, then, a drop is more likely to
form. By ‘stretching’ the wave, the flow pushes the liquid closer to the plate thus subjecting
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it to viscous shear and preventing it from flowing into the crest to form a drop. For this
stabilizing process to take place, though, enough time must be allowed for the Kapitza
wave to develop which, depending on conditions, may be too long to stop the dripping
instability. In support of this explanation we have shown that, if the Kapitza instability is
allowed sufficient time to establish itself before the Rayleigh–Taylor instability is turned
on, dripping is prevented. As the flow Reynolds number is increased, the tail behind the
crest of the wave becomes longer and thicker and, therefore, by conservation of mass, the
wave amplitude decreases, both effects countering the development of a large curvature.
Indeed, we have found that smaller Reynolds numbers are less stable than larger ones.

With the domain lengths on which we have focused (up to 80 times as long as the
mean film thickness) and with the initial conditions that we have considered, we have not
found a tendency for the appearance of a second wave and, therefore, we have not had
to deal with wave–wave interactions. There are several reasons why these interactions are
important for film flow above a plate (see e.g. Chang & Demekhin 2002; Pradas, Tseluiko
& Kalliadasis 2011; Pradas, Kalliadasis & Tseluiko 2012). An additional one for a film
on the underside of a plate is that, as shown experimentally by Fermigier et al. (1992),
dripping can result from the coalescence of two waves which, individually, would be
stable. Another important class of problems related to the one we have investigated is
film flow on the underside of curved, rather than planar, surfaces which is important, for
instance, for vapor condensation on tubes in heat exchangers and other applications (see
e.g. Limat et al. 1992; Takagi & Huppert 2010; Balestra, Nguyen & Gallaire 2018). It may
be expected that our focus on the crest curvature as an indicator of the formation of short
length scales conducive to dripping as well as the quasi-equilibrium approximation would
be relevant for such applications as well.

In conclusion it is appropriate to consider which of our findings would likely carry
over to the three-dimensional situation. The quasi-equilibrium result of § 4 is only based
on the fact that the balance of surface tension and gravity that governs dripping from a
horizontal plate is also relevant in the case of waves on a flowing film provided the limit
angle is approached very slowly. It would seem that this conclusion should apply to the
three-dimensional problem as well. The marked effect of initial conditions is a qualitative
feature that should be strong enough to carry over to the three-dimensional case. The
mechanism leading to oscillations such as those shown in figures 8, 9 and 14 should
affect also a three-dimensional process. No such oscillations have yet been observed in
experiments, but this could be due to small Reynolds numbers, large viscosity, small
surface tension or a combination of these factors. For example, in the experiments of Brun
et al. (2015) Re ≤ 0.1, in those of Rietz et al. (2017), Re ≤ 1.6; in those of Charogiannis
et al. (2018) Re ≤ 193, but the smallest Kapitza number was 13.1; in those of Ledda
et al. (2020) the Kapitza number was approximately 0.087. The role of the substrate and
wave tail in ‘stretching’ the wave crest, limiting the curvature and thereby stabilizing the
wave appears to be a robust qualitative feature which may also be expected to affect the
three-dimensional flow.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1032.
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Figure 21. Wave evolution from the two-term initial condition (7.2) with (solid lines) and without (dashed
lines) the second Fourier component; A = 0.1 (purple), A = 0.2 (green), A = 0.3 (blue) and A = 0.5 (orange).

Appendix A. Drop under a horizontal plate

Explicitly, the surface-tension–gravity balance (4.1) is

�2
cz′′

(1 + z′2)3/2 = �2
cκ0 − z, (A1)

with primes denoting differentiation with respect to the variable x and κ0 the tip curvature.
The x coordinate runs parallel to the plate and the z coordinate is vertical directed toward
the plate with the origin at the drop tip. For the problem of a pendant drop under a
horizontal plate the solution is required to satisfy the condition z′ = 0 at x = 0 and a
prescribed contact angle on the plate, which is zero in the situation of present interest.
The problem can be solved exactly (see e.g. Pitts 1973; Tanasijczuk, Perazzo & Gratton
2010; Lerisson et al. 2020). Here, we focus on some aspects of direct relevance to the
considerations of § 4.

At the inflection point (index ip) z′′ = 0 and, therefore,

zip = κ0�
2
c . (A2)

The transformation z̃ = 2zip − z, x̃ = 2xip − x leaves the equation unchanged transforming
the condition z′ = 0 at the tip (x = 0, z = 0) into the condition dz̃/dx̃ = 0 at (x̃ = 2xip,
z̃ = 2zip) and the condition z′ = 0 at (x = 2xip, z = 2zip) into the condition dz̃/dx̃ = 0
at (x̃ = 0, z̃ = 0). It also follows that z′′(0) = −d2z̃/dx̃2|x̃=0 so that the curvatures at
the tip and at the base are opposite and (4.2) directly follows from (4.1). The previous
argument also shows that the total height of the pendant drop is 2zip and that its shape is
symmetric about (xip, zip). It is therefore evident that the volume of the pendant drop (per
unit spanwise length) is given by

V = (2zip) × (2xip). (A3)

In order to determine xip we need to integrate (A1) from z = 0 to z = zip. For this
purpose we make a change of the independent variable from x to z setting z′ = p(z).
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Dripping instability on liquid films

With this step, which is legitimate as long as the relation z(x) is one-to-one, the equation
can be integrated once from z = 0, where p = 0, to find

− 2�2
c√

1 + p2
+ 2�2

c = 2�2
cκ0z − z2. (A4)

With the definitions

Z = 1 − z
zip

, X = x
zip

, H = 2�2
c

z2
ip

= 2
�2

cκ
2
0
, (A5a–c)

(A4) becomes

dZ
dX

= −
√

(1 − Z2)(Z2 + 2H − 1)

Z2 + H − 1
. (A6)

Separating variables and integrating from (X = 0, Z = 1) to (X = Xip, Z = 0) we can
write

Xip = 1
k

∫ 1

0

√
1 − k2(1 − Z2)

1 − Z2 dZ − 1
2k

∫ 1

0

dZ√
(1 − Z2)[1 − k2(1 − Z2)]

, (A7)

in which k = 1/
√

2H. The integrals can be reduced to complete elliptic integrals of the
second and first kinds, respectively, so that the result of the integration is

Xip = E(k)
k

− K(k)
2k

. (A8)

The volume (A3) is then given by

V
�2

c
= 8�cκ0

(
E(k) − 1

2
K(k)

)
= 16k

(
E(k) − 1

2
K(k)

)
. (A9)

The liquid volume for the special shape with vertical tangents at the inflection points can
be found by noting that, at that point, p = 0 in (A4) so that κ0 = √

2/�c and the modulus
of the elliptic integral becomes k = 1/

√
2. For this special value E − K/2 = (π/K)/4

and K(1/
√

2) = (4
√

π)−1[Γ (1/4)]2 with Γ the Gamma function. Thus we find

V‖
�2

c
= 16π3/2

√
2Γ 2(1/4)

� 4.793. (A10)

It is also interesting to note that, in this case, the volume VM of the part of the drop under
the points with vertical tangent can be simply found from the balance ρgVM = 2σ from
which VM = 2�2

c . In this case zip = √
2�c and the height of the horizontal plate above the

tip of the drop is 2
√

2�c.

Appendix B. The scaling of Kofman et al. (2018)

In Kofman et al. (2018) the authors propose scaling relations for the four forces (per unit
spanwise length) assumed to determine the dripping at onset, namely surface tension Fσ ,
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Critical angle Re⊥ sin β Ka⊥ Fσ Fg Fv Fm
∑

Fi

171◦ 7.82 70.6 28 −70 4 41 3
165◦ 12.9 70.6 33 −58 7 133 116
168◦ 20.8 112 49 −100 9 254 211
164◦ 13.8 70.6 34 −57 8 154 139
161◦ 16.3 47.1 27 −46 9 260 251
158◦ 18.7 35.3 24 −39 11 398 393

Table 1. The estimates (B1) to (B4) of the forces and their sum applied to the cases of figure 4, from left to
right, at threshold.

gravity Fg , viscosity Fv and inertia Fm. In our notation, these relations are

Fσ

ρg1/3ν4/3 ∼
(

3Re⊥
Bo⊥

)2/3

(sin β)1/3, (B1)

Fg

ρg1/3ν4/3 ∼
(

9Re2
⊥

Bo⊥

)1/3
cos β

(sin β)1/3 , (B2)

Fv

ρg1/3ν4/3 ∼ (3Re⊥)2/3 sin β, (B3)

Fm

ρg1/3ν4/3 ∼ (3Re⊥)5/3 Bo1/3
⊥ (sin β)7/3. (B4)

Dripping is avoided as long as these forces are in approximate balance. It is interesting
to apply these estimates to the cases of figure 4 at threshold. The results are shown in
table 1. It would appear that the momentum term Fm is systematically over-estimated
except, perhaps, in the first case. This is peculiar as the threshold angles calculated by
the method of figure 4 correspond to quasi-equilibrium conditions in which momentum
effects would be expected to be small.
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