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DEFINABLE HENSELIAN VALUATIONS

FRANZISKA JAHNKE AND JOCHEN KOENIGSMANN

Abstract. In this note we investigate the question when a henselian valued field carries a nontrivial
∅-definable henselian valuation (in the language of rings). This is clearly not possible when the field is
either separably or real closed, and, by the work of Prestel and Ziegler, there are further examples of
henselian valued fields which do not admit a ∅-definable nontrivial henselian valuation. We give conditions
on the residue field which ensure the existence of a parameter-free definition. In particular, we show that a
henselian valued field admits a nontrivial henselian ∅-definable valuation when the residue field is separably
closed or sufficiently nonhenselian, or when the absolute Galois group of the (residue) field is nonuniversal.

§1. Introduction. In a henselian valued field (K, v), many arithmetic or algebraic
questions can be reduced, via the henselian valuation v, to simpler questions about
the value group vK and the residue field Kv. By the celebrated Ax-Kochen/Ershov
Principle, in fact, if the residue characteristic is 0, ‘everything’ can be so reduced:
the 1st-order theory of (K, v) (as valued field) is fully determined by the 1st-order
theory of vK (as ordered abelian group) and ofKv (as pure field). In that sense the
valuation (with its two accompanying structures vK and Kv) ‘knows’ everything
about K , especially the full 1st-order theory of K as pure field, or, as one may call
it, the arithmetic of K .
Conversely, in all natural examples, and, as we will see, in most others as well,

a henselian valuation v is so intrinsic toK that it is itself encoded in the arithmetic of
K , or, to make this notion precise, that its valuation ringOv is 1st-order definable in
K . Well known examples are the classical fields Qp and C((t)) with their valuation
rings

Zp =
{
x ∈ Qp | ∃y 1 + px2 = y2

}
(for p �= 2),

C[[t]] =
{
x ∈ C((t)) | ∃y 1 + tx2 = y2}.

Note that the second example uses the parameter t. This is not necessary though:
one can also find a parameter-free definition ofC[[t]] inC((t)); however, as observed
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in [4], it can no longer be an existential definition: otherwise the definition would
go up the tower of isomorphic fields

C((t)) ⊆ C((t1/2!)) ⊆ C((t1/3!)) ⊆ · · · .
thus leading to a 1st-order definition of a nontrivial valuation subring of the
algebraically closed field C((t1/∞)) =

⋃
n C((t

1/n!)), contradicting quantifier
elimination (every definable subset is finite or cofinite).
That C[[t]] is ∅-definable in C((t)) follows from the more general fact that
every henselian valuation with nondivisible archimedean value group is ∅-definable
([14]). This has recently been generalized to nondivisible regular value groups (those
elementarily equivalent to archimedean ordered groups, see [9]). Note that there
are also several recent preprints which discuss ∅-definability of a range of henselian
valuations using only formulae of ‘simple’ quantifier type (i.e., definitions involv-
ing ∀-,∃-,∀∃, or ∃∀-formulae). To learn more about these exciting developments,
we refer the reader to [4], [2], [7], and [17].
In this paper we will develop two new, fairly general criteria, one on the residue
field and one on the absolute Galois group GK of K to guarantee ∅-definability of
(in the first case a given, in the second case, at least some) henselian valuation onK .
It is well-known that separably and real closed fields admit no definable henselian
valuations. Furthermore, by the work of Prestel and Ziegler ([18], Section 7) there
are henselian valued fields which are neither separably nor real closed and which
do not admit any ∅-definable henselian valuation. It is thus a natural question to
ask which conditions on a henselian valued field (K, v) ensure that v is ∅-definable
or thatK admits at least some ∅-definable henselian valuation. In the present work,
we focus on parameter-free definitions as a definition of a henselian valuation
with parameters need not ensure the existence of a definable henselian valuation
in elementarily equivalent fields. Note that there are also examples of henselian
valuations which are not even definable with parameters (see [5], Theorem 4.4).
The only known examples of henselian fields which admit no parameter-definable
henselian valuations at all are separably and real closed fields.
The paper is organized as follows. In the next section, we discuss the main tools
which we require. We recall the definition of p-henselian valuations and the canon-
ical (p)-henselian valuation. Building on work of the second author (see [12]),
the authors have shown that the canonical p-henselian valuation vpK is typically
definable (Theorem 3.1 in [10]). We show that it is furthermore henselian iff it is
coarser than the canonical henselian valuation.
The third section contains the main results of this paper. We begin by giving
conditions on the residue field to make a henselian valuation definable. The first
criterion says that the henselian valuation v onK is ∅-definable if, for some prime p,
Kv allows a separable extension LwithL �= L(p) that does not allow a p-henselian
valuation (Theorem 3.6, cf. Section 2 for the definition of L(p) and p-henselian).
We deduce from this that any henselian valuation with finitely generated, hilbertian,
PAC or simple but not separably closed residue field is ∅-definable. We use a similar
method to show that a henselian valued field (K, v) where Kv is separably or real
closed, but K isn’t, admits some ∅-definable henselian valuation.
The next part discusses a second, Galois-theoretic criterion for the existence of a

∅-definable henselian valuation on a (nonseparably- and nonreal-closed) henselian
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valued fieldK (Theorem 3.15). It says that ifK is henselian andGK is nonuniversal,
that is, that not every finite group is a subquotient of GK , then K admits some
∅-definable nontrivial henselian valuation. In most cases, we will in fact define the
canonical henselian valuation onK . This generalizes old results byNeukirch,Geyer,
and Pop on henselian fields with prosolvable GK . One class of examples is given by
henselian NIP fields of positive characteristic.
These two criteria, one on the residue field of a given henselian valuation v on

K and one on GK in the presence of some henselian valuation on K , are fairly
independent. One easily finds examples of the first kind where GK is universal and
examples where it isn’t. Similarly, there are henselian fields K with nonuniversal
GK where every henselian valuation on K satisfies the criterion on the residue field
and such where none of them does. What is common between the two criteria,
however, is the method of proof which in either case depends on a careful analysis
when, on a field K , the canonical p-henselian valuation vpK is already henselian.
Although many fields have universal absolute Galois groups, the best known ones
are hilbertian fields and PAC fields with nonabelian free absolute Galois group.
Hence some of the main examples of henselian valued fields for which the second
criterion fails are covered by the first one.

§2. Henselian and p-henselian valuations.
2.1. The canonical henselian valuation. We call a field K henselian if it admits

some nontrivial henselian valuation. For any field K , there is a canonical henselian
valuation on K . In this section, we recall the definition and discuss some of its
properties. We use the following notation: For a valued field (K, v), we denote the
valuation ring by Ov , the residue field by Kv, the value group by vK , and the
maximal ideal bymv . For an element a ∈ Ov , we write a to refer to its image inKv.
Theorem 2.1 (á la F.K. Schmidt). If a field admits two independent nontrivial

henselian valuations, then it is separably closed.

Proof. [6], Theorem 4.4.1. �
One can deduce from this that the henselian valuations on a field form a tree:

Divide the class of henselian valuations on K into two subclasses, namely

H1(K) = { v henselian on K | Kv �= Kvsep }
and

H2(K) = { v henselian on K | Kv = Kvsep } .
A corollary of the above theorem is that any valuation v2 ∈ H2(K) is finer than any
v1 ∈ H1(K), i.e., Ov2 � Ov1 , and that any two valuations inH1(K) are comparable.
Furthermore, ifH2(K) is nonempty, then there exists a unique coarsest vK ∈ H2(K);
otherwise there exists a unique finest vK ∈ H1(K). In either case, vK is called the
canonical henselian valuation. Note that if K is not separably closed and admits
a nontrivial henselian valuation, then vK is also nontrivial.
As we will usually define henselian valuations on finite Galois extensions later

on, we often use the fact that coarsenings of vK remain henselian when restricted
to subfields of finite index:

https://doi.org/10.1017/jsl.2014.64 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.64


88 FRANZISKA JAHNKE AND JOCHEN KOENIGSMANN

Theorem 2.2 ([6], Theorem 4.4.4). Let (L,w) be a valued field, and assume that
L is not separably closed and that w is a (not necessarily proper) coarsening of vL. If
K ⊂ L is a subfield such that L/K is finite, then v = w|K is a coarsening of vK .
2.2. p-henselianity. Throughout this section, let K be a field and p a prime.

Definition. We define K(p) to be the compositum of all Galois extensions of
K of p-power degree. A valuation v onK is called p-henselian if v extends uniquely
to K(p). We call K p-henselian if K admits a nontrivial p-henselian valuation.

Clearly, this definition only imposes a condition on v if K admits Galois
extensions of p-power degree.

Proposition 2.3 ([12], Propositions 1.2 and 1.3). For a valued field (K, v), the
following are equivalent:
1. v is p-henselian,
2. v extends uniquely to every Galois extension of K of p-power degree,
3. v extends uniquely to every Galois extension of K of degree p,
4. for every polynomial f ∈ Ov which splits in K(p) and every a ∈ Ov with
f̄(a) = 0 and f̄′(a) �= 0, there exists α ∈ Ov with f(α) = 0 and α = a.

As for fields carrying a henselian valuation, there is again a canonical p-henselian
valuation, due to the following analogue of Theorem 2.1:

Theorem 2.4 ([3], Corollary 1.5). If K carries two independent nontrivial
p-henselian valuations, thenK = K(p).
We again divide the class of p-henselian valuations on K into two subclasses,

Hp1 (K) = { v p-henselian on K | Kv �= Kv(p) }
and

Hp2 (K) = { v p-henselian on K | Kv = Kv(p) } .
As before, one can deduce that any valuation v2 ∈ Hp2 (K) is finer than any
v1 ∈ Hp1 (K), i.e.Ov2 � Ov1 , and that any two valuations inHp1 (K) are comparable.
Furthermore, if Hp2 (K) is nonempty, then there exists a unique coarsest valuation
vpK inH

p
2 (K); otherwise there exists a unique finest valuation v

p
K ∈ Hp1 (K). In either

case, vpK is called the canonical p-henselian valuation. Again, ifK is p-henselian and
K �= K(p) holds, then vpK is also nontrivial.
Note that unlike henselianity, being p-henselian does not go up arbitrary alge-
braic extensions, as a superfield might have far more extensions of p-power degree.
Nevertheless, similar to Theorem 2.2, sometimes p-henselianity goes down:

Proposition 2.5. LetK be a field,K �= K(p). Assume thatL is a normal algebraic
extension of K , where L is p-henselian and L �= L(p). If
1. K ⊆ L � K(p) or
2. L/K is finite
then K is p-henselian.
Proof.

1. See [13], Proposition 2.10.
2. Assume K is not p-henselian, and let v be a valuation on K . By the first part
of the proposition, v has infinitely many extensions to K(p): If there were
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only n extensions of v to K(p), then there would be some L′ ⊃ K finite,
L′ � K(p), such that v had n extensions to L′. The normal hull of L′ and
thus K would be p-henselian.

Now assume L = K(a1, . . . , am) finite and normal, thenK(p)(a1, . . . , am) ⊆ L(p).
If w is a valuation on L, then v = w|K has infinitely many prolongations to K(p).
As v has only finitely many prolongations to L, and all these are conjugate,w must
have infinitely many prolongations to K(p)(a1, . . . , am) and hence to L(p). �
For any valued field, p-extensions of the residue field lift to p-extensions of the

field.

Proposition 2.6 ([6], Theorem 4.2.6). Let (K, v) be a valued field and p a prime.
If Kv �= Kv(p), then K �= K(p).
2.3. Defining p-henselian valuations. In this section, we recall a Corollary of the

Main Theorem in [10] which is used in all of our proofs in later sections.
When it comes to henselian valued fields, real closed fields always play a special

role. By o-minimality, no real closed field admits a definable henselian valuation,
and there are real closed fields which admit no henselian valuations (likeR) whereas
others do (likeR((tQ))). These difficulties are reflected by 2-henselian valuations on
Euclidean fields. A fieldK is called Euclidean if [K(2) : K ] = 2. Any Euclidean field
is uniquely ordered, the positive elements being exactly the squares. If a Euclidean
field has no odd-degree extensions, then it is real closed. In particular, there is an
Lring -sentence � such that any fieldK withK �= K(2)models � iff it is nonEuclidean.
Note that Euclidean fields are the only fields for which K(p) can be a finite proper
extension of K .

Theorem 2.7 (Corollary 3.3 in [10]). Let p be a prime and consider the class of
fields

K = {K | K p-henselian, with �p ∈ K in case char(K) �= p}
There is a parameter-free Lring-formula φp(x) such that
1. if p �= 2 or Kv2 is not Euclidean, then φp(x) defines the valuation ring of the
canonical p-henselian valuation vpK , and

2. if p = 2 and Kv2 is Euclidean, then φp(x) defines the valuation ring of the
coarsest 2-henselian valuation v2∗K such thatKv

2∗
K is Euclidean.

The existence of such a uniform definition of the canonical p-henselian makes
sure that the different cases split into elementary classes:

Corollary 2.8. The classes of fields

K1 =
{
K

∣∣ K p-henselian, with �p ∈ K in case char(K) �= p and vpK ∈ Hp1 (K)
}

and

K2 =
{
K

∣∣ K p-henselian, with �p ∈ K in case char(K) �= p and vpK ∈ Hp2 (K)
}

are elementary classes in Lring .
Proof. The class

{K | K p-henselian, with �p ∈ K in case char(K) �= p }
is an elementary class in Lring by Corollary 2.2 in [12]. The sentence dividing the
class into the two elementary subclasses is the statement whether the residue field
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of the valuation defined by φp(x) as in Theorem 2.7 admits a Galois extension of
degree p. Note that if p = 2 andKv2 is Euclidean, both v2K and v

2∗
K are elements of

Hp1 (K). �
Remark. When one is only interested in defining henselian valuations, one can
usually avoid to consider the special case of a Euclidean residue field: If (K, v) is
a henselian valued field, K not real closed and Kv Euclidean, then—similarly to
Proposition 2.6—K is also real, so i /∈ K . Now K(i) is a ∅-interpretable extension
ofK , and the unique prolongationw of v toK(i) has a nonEuclidean residue field,
namely Kv(i). Thus, in order to get a parameter-free definition of v, it suffices to
define w without parameters on K(i).
However, the same argument does not work for p-henselian valuations, as there
is no strong enough analogue of Theorem 2.2. Thus, for completeness’ sake, we give
Theorem 2.7 in its full generality.

2.4. p-henselian valuations as henselian valuations. LetK be a henselian field and
p a prime such that K �= K(p) holds. As any henselian valuation is in particular
p-henselian, we have either vpK ⊇ vK or vpK � vK . In the first case, v

p
K is henselian.

As we will make use of this fact several times later, we note here that this is in fact
an equivalence:

Observation 2.9. Let K be a henselian field with K �= K(p) for some prime p.
Then vpK is henselian iff v

p
K coarsens vK .

Proof. Any coarsening of a henselian valuation—like vK—is henselian.
Conversely, assume that vpK is henselian and a proper refinement of vK . Then,
by the definition of vK , we get v

p
K ∈ H2(K) and hence vK ∈ H2(K). In this case,

vpK has a proper coarsening with p-closed residue field, contradicting the definition
of vpK . �

§3. Main results.
3.1. Conditions on the residue field. We first want to show that we can use the
canonical p-henselian valuation to define any henselian valuation which has not
p-henselian residue field.

Proposition 3.1. Let (K, v) be a nontrivially henselian valued field and p a prime.
Assume that the residue field Kv is not p-henselian and that Kv �= Kv(p). If p = 2,
assume further thatKv is not Euclidean. Then v is ∅-definable.
Proof. Let p and (K, v) be as above. If char(K) �= p, we assume �p ∈ K for now.
Note that K �= K(p) (Proposition 2.6). Thus, K is p-henselian. We claim that
vpK = v. As v is henselian, it is in particular p-henselian and hence comparable to
vpK . Since Kv is not p-henselian, v

p
K is a coarsening of v, as otherwise v

p
K would

induce a p-henselian valuation on Kv ([6], Corollary 4.2.7). Assume vpK is a proper
coarsening of v. Then we get v ∈ Hp2 (K) and hence Kv = Kv(p), contradicting
our assumption on Kv. This proves the claim.
For p = 2, we get from our assumption that Kv2K = Kv is not Euclidean. Thus,
vpK is henselian and ∅-definable by Theorem 2.7.
In case char(K) �= p and K does not contain a primitive pth root of unity,
we consider K ′ = K(�p). As this is a ∅-definable extension of K , it suffices to define
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the—by henselianity unique—prolongation v′ of v to K ′. Since K ′v′ is a finite
normal extension ofKv of degree at most p− 1, it still satisfiesK ′v′ �= K ′v′(p) and
is furthermore not p-henselian by Proposition 2.5. Now v′ is ∅-definable as above,
and thus so is v. �
Morally speaking, the proposition says that if we have a henselian valued field

(K, v) such that the residue field is ‘far away’ from being henselian, then v is
∅-definable. Hence we will now consider well-known classes of examples of non-
henselian fields and prove that any henselian valuation with such a residue field is
∅-definable.

Example. Let k be a finite field. Then Gk ∼= Ẑ, in particular k �= k(p) holds
for all primes p. Note that k is not Euclidean since char(k) > 0. As k admits no
nontrivial valuations, k is also not p-henselian. Now by Proposition 3.1, if (K, v)
is a nontrivially henselian valued field with Kv = k, then v is ∅-definable.

Probably the best known example of a nonhenselian field are the rationals. One
way of showing that the rationals admit no nontrivial henselian valuation is via
Hilbert’s Irreducibility Theorem: No hilbertian field is henselian (see Lemma 15.5.4
in [8]). We will now show by a similar proof that furthermore any henselian valued
field with hilbertian residue field satisfies the assumption of the above proposition.
First, we recall the definition of hilbertianity.

Definition. Let K be a field and let T and X be variables. Then K is called
hilbertian if for every polynomial f ∈ K [T,X ] which is separable, irreducible, and
monic when considered as a polynomial in K(T )[X ] there is some a ∈ K such that
f(a,X ) is irreducible in K [X ].

Note thatHilbert’s Irreducibility Theorem states that Q is hilbertian.
Examples of hilbertian fields include all infinite finitely generated fields, in par-

ticular number fields and function fields over finite fields.

Lemma 3.2. IfK is a hilbertian field thenK �= K(p) for any prime p. Furthermore,
K is neither Euclidean nor p-henselian.

Proof. If K is hilbertian, then K is not Euclidean and K �= K(p) holds for any
prime p by Corollary 16.3.6 in [8]. Let us first treat the case char(K) �= p. We
may then assume that K contains a primitive pth root of unity as K(�p) is again
hilbertian, and if K(�p) was p-henselian then so would be K by Proposition 2.5.
Let v be a nontrivial valuation on K . Choose m ∈ mv\{0} and consider the

irreducible polynomial f(T,X ) = Xp + mT − 1 in K(T )[X ]. If K is hilbertian,
there exists an a ∈ K× such that f(a,X ) is irreducible in K [X ]. Furthermore,
by exercise 13.4 in [8], a may be chosen in Ov . But now f(a,X ) splits in K(p), and
has a simple zero in Kv. Hence by Proposition 2.3, v cannot be p-henselian.
In case char(K) = p, the same argument as above applies to the polynomial

f(T,X ) = Xp + X +mT − 2. �
Combining Theorem 2.7 with Lemma 3.2, we also get:

Corollary 3.3. Let (K, v) be a henselian valued field such that Kv is hilbertian.
Then v is ∅-definable.
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Example. For any number field K and any ordered abelian group Γ, the power
series valuation on K((Γ)) is ∅-definable.
Another well-known class of fields which are not henselian are nonseparably
closed PAC fields. As in general—unlike hilbertian fields—PAC fields do not need
to admit any Galois extensions of prime degree, we give a suitable generalization
of Proposition 3.1. Any nonseparably closed PAC field has a finite Galois extension
which is still PAC and which admits in turn Galois extensions of prime degree. This
motivates the following

Definition. Let K be a field. We call K virtually not p-henselian if p | #GK
and there is some finite Galois extension L of K with L �= L(p) such that L is not
p-henselian.

Note that ifK �= K(p), thenK is virtually not p-henselian iff it is not p-henselian
by Proposition 2.5. We will now show a PAC field K is virtually not p-henselian
for any prime p with p | #GK . First, we show that a PAC field K withK �= K(p) is
not p-henselian using the same method as one uses to show that such a field is not
henselian (see [8], Corollary 11.5.5).

Lemma 3.4 (Kaplansky–Krasner forp-henselian valuations). Assume that (K, v)
is a p-henselian valued field and take f ∈ K [X ] separable, deg(f) > 1, such that
f splits in K(p). Suppose for each � ∈ vK there exists some x ∈ K such that
v(f(x)) > �. Then f has a zero in K .

Proof. Without loss of generality we may assume that f is monic and that
deg(f) = n > 0. Write

f(X ) =
n∏
i=1

(X − xi)

for xi ∈ K(p). Take � > n · max{v(xi − xj) | 1 ≤ i < j ≤ n} and choose x ∈ K
such that

v(f(x)) =
n∑
i=1

v(x − xi) > �.

Hence for some j with 1 ≤ j ≤ n we get v(x − xj) > �/n. If xj /∈ K , then there is
some � ∈ Gal(K(p)/K) such that �(xj) �= xj . Thus, we get

v(x − �(xj)) = v(�(x − xj)) = v(x − xj) > �
n
,

where the last equality holds as v is p-henselian. Therefore

v(xj − �(xj)) ≥ min{v(xj − x), v(x − �(xj))} > �
n

which contradicts the choice of �.Hencewe conclude xj ∈ K , sof has a zero inK .�
Lemma 3.5. Let K be a field and p a prime. If K is PAC and p-henselian, then we
have K = K(p).

Proof. Assume that K is PAC and p-henselian. We show that K = K(p) holds.
Take f ∈ K [X ] a separable, irreducible polynomial with deg(f) > 1 splitting in
K(p). It suffices to show that for all c ∈ K× there exists an x ∈ K such that
v(f(x)) ≥ v(c), as then f has a zero in K .
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Consider the curveg(X,Y ) = f(X )f(Y )−c2.Consider g(X,Y ) as a polynomial
over Ksep[Y ]. Eisenstein’s criterion ([8], Lemma 2.3.10(b)) applies over this ring
to any linear factor of f(Y ), thus g(X,Y ) is absolutely irreducible. As K is PAC,
there exist x, y ∈ K such that f(x)f(y) = c2. Thus, either v(f(x)) ≥ v(c) or
v(f(y)) ≥ v(c) holds. �
As being PAC passes up to algebraic extensions, any PAC field K is in particular

not virtually p-henselian for all primes p | #GK . Furthermore, as real closed fields
are not PAC, no PAC field is Euclidean.
We now give a stronger version of Proposition 3.1. The main difference is that the

we drop the assumption on the residue field to admit a Galois extension of p-power
degree for some prime p.

Theorem 3.6. Let (K, v) be a nontrivially henselian valued field with p | #GKv ,
and if p = 2 assume that Kv is not Euclidean. If Kv is virtually not p-henselian then
v is ∅-definable on K .
Proof. If Kv is virtually not p-henselian and Kv �= Kv(p), then v is ∅-definable

by Proposition 3.1.
In caseKv = Kv(p), by assumption there is a p-henselian finite Galois extension

L of Kv with L �= L(p). As Kv is not Euclidean, L is also not Euclidean. By
Proposition 2.5, we may assume that L contains a primitive pth root of unity in
case char(Kv) �= p. Let [L : Kv] = n.
Consider any finite Galois extension M of K , with w the unique prolongation

of v to M such that Mw = L holds. As before, w is ∅-definable on M (since
w = vpM as in the proof of Proposition 3.1) and hence, by interpretingM inK using
parameters, so is its restriction v to K .
Thus, it remains to show that a definition can be found without parameters. The

interpretation of Galois extensions of a fixed degree of K can be done uniformly
with respect to the parameters (namely the coefficients of a minimal polynomial
generating the extension). By Theorem 2.7, the definition of the p-henselian valu-
ations on these can also be done uniformly. To make sure that the residue field of
the canonical p-henselian valuation of a finite Galois extension of K corresponds
to a field L as described above, we need to restrict to extensions M of K with
vMp ∈ Hp1 (M ). By Corollary 2.8, this is a ∅-definable condition. Hence we get the
desired definition by

⋂(
OvpM ∩K

∣∣∣K ⊆M Galois, [M : K ] = n, M �=M (p), M not p-henselian,

�p ∈M if char(M ) �= p, vpM ∈ Hp1 (M )
)
. �

As an immediate consequence, we have the following

Corollary 3.7. Let p be a prime and let K be a field such that p | #GK and
that K is virtually not p-henselian. If p = 2, assume that K is not Euclidean.
Then the power series valuation is ∅-definable on K((Γ)), for any ordered abelian
group Γ.

Combining Theorem 3.6 with Lemma 3.5, we get:

Corollary 3.8. Let (K, v) be a henselian valued field such that Kv is PAC and
not separably closed. Then v is ∅-definable.
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Another application of Theorem 3.6 are henselian valued fields with simple
residue fields. We call a field simple if Th(K) is simple in the sense of Shelah
(see [19] for some background on simplicity). In a simple theory, no orderings with
infinite chains are interpretable. Thus, no simple field admits a definable valuation.
Hence, by Theorem 2.7, simple fields cannot be p-henselian for any prime p. As
all Galois extensions of a simple field are interpretable in K and thus again simple,
any nonseparably closed simple field K is not virtually p-henselian for any p with
p | #GK . Thus, we get the following
Corollary 3.9. Let (K, v) be a henselian valued field such that Kv is simple and
not separably closed. Then v is ∅-definable.
Real closed and separably closed residue fields. In all our definitions of henselian
valuationswe showed so far that a given henselian valuation v on a fieldK coincided
with both the canonical henselian valuation vK and the canonical p-henselian
valuation vpK for some prime p. However, it can happen that some v

p
K is henselian,

but a proper coarsening of a given henselian valuation v. In this case vpK is again
henselian and ∅-definable. An example for this are henselian valued fields with
separably closed residue field:

Theorem 3.10. Let K be a field which is not separably closed. Assume that K is
henselian with respect to a valuation with separably closed residue field. ThenK admits
a nontrivial ∅-definable henselian valuation.
Proof. We show first that GK is pro-soluble. If K is henselian with respect to
a valuation with separably closed residue field, then vK has also separably closed
residue field. Let w be the prolongation of vK to Ksep. Recall that there is an exact
sequence

Iw −→ GK −→ GKvK ,
where Iw denotes the inertia group of w over K (see [6], Theorem 5.2.7). Hence, as
Iw is pro-soluble (see [6], Lemma 5.3.2), so is GK .
Thus, there is some prime p with K �= K(p). But now vpK is indeed a (not nec-
essarily proper) coarsening of vK : Otherwise, the definition of v

p
K would imply

KvK �= KvK(p). If K contains a primitive pth root of unity or char(K) = p, then
vpK is ∅-definable and henselian. Else, we consider the ∅-definable extension K(�p).
Then the canonical henselian valuation on K(�p) still has separably closed residue
field, therefore vp

K(�p)
|K gives a ∅-definable henselian valuation on K . �

Corollary 3.11. Let K be a field and assume that K is not real closed. If K is
henselian with respect to a valuation with real closed residue field, then K admits a
nontrivial ∅-definable henselian valuation.
Proof. If (K, v) is henselian and Kv is real closed, consider the unique prolon-
gation w of v to L = K(i). The residue field Lw is separably closed, so L admits a
∅-definable henselian valuation by Theorem 3.10. As v is the restriction of w to K ,
v is also ∅-definable on K . �

3.2. Henselian fields with non-universal absolute Galois groups. In this section,
we will give a Galois-theoretic condition to ensure the existence of a nontrivial
∅-definable henselian valuation on a henselian field.
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The following group-theoretic definition is taken from [16].

Definition. Let G be a profinite group. We say that G is universal if every finite
group occurs as a continuous subquotient of G .

Note that for a field K , GK is nonuniversal iff there is some n ∈ N such that
the symmetric group Sn does not occur as a Galois group over any finite Galois
extension of K (and then no Sm with m ≥ n will occur). The connection between
nonuniversal absolute Galois groups and henselianity is given by the following
statement:

Theorem 3.12 ([15], Theorem 3.1). LetK be a field and let L andM be algebraic
extensions ofK which both carry nontrivial henselian valuations. Assume further that
GL is nontrivial pro-p and GM nontrivial pro-q for primes p < q. Let v and w be
(not necessarily proper) coarsenings of the canonical henselian valuations onL andM
respectively, and, if p = 2 and Lv is real closed, assume v to be the coarsest henselian
valuation on L with real closed residue field. Then either GK is universal or v|K and
w|K are comparable and the coarser valuation is henselian on K .
Example. All of the following profinite groups are nonuniversal:

1. pro-abelian groups,
2. pro-nilpotent groups,
3. pro-soluble groups,
4. any group G such that p � #G for some prime p.

Nonabelian free profinite groups are of course universal, and so are absolute Galois
groups of hilbertian fields.

Nowwe can use Theorem 3.12 to deduce henselianity from p- and q-henselianity:

Proposition 3.13. Suppose GK is nonuniversal, and K(p) �= K �= K(q) for two
primes p < q. In case p = 2, assume further that K is not Euclidean. If K is p- and
q-henselian, then K is henselian.

Proof. Consider the henselization L′ (respectivelyM ′) of K with respect to the
canonical p-henselian valuation vpK (the canonical q-henselian valuation v

q
K) onK .

Then defineL to be the fixed field of ap-Sylow subgroupofGL′ , andM accordingly.

Claim: L is not separably closed.

Proof of Claim:We need to show that L′ is not p-closed. But if α ∈ K(p) has
degree pn over K , then—as vpK is p-henselian—α is moved by some element of
D(K(p)/K). As decomposition groups behave well in towers, we get α /∈ L.
In case p = 2, the same argument shows that L is also not real closed. Since

L is p-henselian and GL is pro-p, L is also henselian, and likewise is M . Now we
consider the canonical henselian valuations vL on L and the canonical henselian
valuation vM onM . If p = 2 and LvL is real closed, we replace vL by the coarsest
henselian valuation on L with real closed residue field. As L is not real closed, this
is again a nontrivial henselian valuation.
By Theorem 3.12, the restrictions vL|K and vM |K are comparable and the coarser

one is henselian. As L andM are algebraic extensions ofK , none of the restrictions
is trivial. Hence K is henselian. �
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Proposition 3.14. Let GK be nonuniversal. Assume that there are two primes
p < q with p, q | #GK and such that K(p) �= K �= K(q) holds. If K is henselian,
then K is henselian with respect to a nontrivial ∅-definable valuation.
Proof. As long as we define a coarsening of vK without parameters, we may
assume that �p, �q ∈ K if char(K) �= p or q respectively: The only special case is
when p = 2 and K is Euclidean and GK(i) is pro-q. Then K(i) already contains
�q and thus v

q

K(i) = vK(i) is a nontrivial ∅-definable henselian valuation on K(i).
In this case, its restriction to K is nontrivial ∅-definable henselian valuation on K .
So now assume �p, �q ∈ K . In particular, in case p = 2,K is not formally real and
so Kv2K cannot be Euclidean. All these extensions still have nonuniversal absolute
Galois groups.
AsK is henselian, it is in particularp- and q-henselian.We consider the canonical
p-henselian (q-henselian) valuation vpK (v

q
K respectively) on K . If v

p
K or v

q
K is

henselian, then we have found a ∅-definable henselian valuation.
But this must always be the case: Assume that neither vpK nor v

q
K is henselian.

Then vK is a proper coarsening of v
p
K , and thus KvK is p-henselian and satisfies

KvK �= KvK(p). Similarly,KvK is q-henselian andKvK �= KvK(q) holds. Therefore,
by Proposition 3.13, KvK is henselian. This contradicts the definition of vK . �
We can now prove our main result on henselian fields with nonuniversal absolute
Galois group.

Theorem 3.15. Let K be henselian, and assume that GK is nonuniversal. If K is
neither separably nor real closed, then K admits a ∅-definable henselian valuation. If
KvK is neither separably nor real closed, then vK is ∅-definable.
Proof. By assumption, K is neither separably nor real closed. If K is henselian
and KvK is separably closed (respectively real closed), then K admits a ∅-definable
henselian valuation by Theorem 3.10 (respectively Corollary 3.11). Thus, we may
assume from now on thatKvK is neither separably nor real closed.
In this case, vK is the finest henselian valuation on K and thus KvK is not
henselian. Furthermore, there is some prime p with p | #GKvK . Assume first that
GKvK is pro-p, then it follows thatKvK �= KvK(p) and thusK �= K(p) (Proposition
2.6). In particular, vK must be a coarsening of v

p
K . But if vK was a proper coarsening

of vpK , then KvK would be p-henselian and hence—as GKvK is pro-p—henselian or
real closed. Since we have assumed that KvK is neither real closed nor henselian,
we get vK = v

p
K . As in previous proofs (see for example the proof of 3.14), we may

assume �p ∈ K if char(K) �= p, so vK is ∅-definable.
Nowconsider the case that there are (at least) twoprimesp < qwithp, q | #GKvK .
Thus, alsop, q | #GK holds. IfKvK(p) �= KvK �= KvK(q), then—using Proposition
2.6 once more—we have K(p) �= K �= K(q). By the proof of Proposition 3.14, one
of vpK and v

q
K is henselian. Say v

p
K is henselian, then we get vK ⊂ vpK by Observation

2.9. But vK is also a coarsening of v
p
K , as KvK �= KvK(p). Thus, we conclude

vK = v
p
K , and hence vK is again ∅-definable.

Finally, if there are two primes p, q | GKvK , but KvK = KvK(p) or KvK =
KvK(q), we want to consider finite Galois extensions L of KvK with L(p) �= L �=
L(q). LetM be a finite Galois extension ofK , and letw be the unique prolongation
of vK toM . Note thatGM is again nonuniversal and, asMw is still neither separably
nor real closed, w = vM holds. IfMw(p) �= Mw �= Mw(q), then w is ∅-definable
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on M by vpM or v
q
M as above. Say w = v

p
M . As w is in particular q-henselian and

Mw �=Mw(q), we get w ⊃ vqM . Thus, in any case the finest common coarsening of
vpM and v

q
M is equal to the coarser one of the two and furthermore ∅-definable and

henselian.
Now we fix an integer n such that there is a Galois extensionM ofK (containing

�p and �q if necessary) such thatMw(p) �=Mw �=Mw(q). Just like in the proof of
3.6, we get a parameter-free definition of v by

⋂(
(OvpM · OvqM ) ∩ K

∣∣K ⊆M Galois, [M : K] = n, M (p) �=M �=M (q),
�p ∈M if char(M ) �=p, �q ∈M if char(M ) �= q, vpM ∈Hp1 (M ), vqM ∈Hq1 (M )

)
. �

Remark. In fact, it suffices to assume for the proof of the above theorem thatK is
t-henselian rather than henselian. This is a generalization of henselianity introduced
in [18]. Like henselianity, t-henselianity goes up to finite extensions and implies
p-henselianity for any prime p. These are the only properties of henselianity needed
in the proof. In particular, we get that any field with a nonuniversal absolute Galois
group which is elementarily equivalent to a henselian field is in fact henselian itself
(since a ∅-definable henselian valuation gives rise to a nontrivial henselian valuation
on any fieldwith the same elementary theory).Thus, for anyfieldwith a nonuniversal
absolute Galois group, henselianity is an elementary property in Lring .

Our Galois-theoretic condition is moreover also a condition on the residue field.

Observation 3.16. Let (K, v) be a henselian valued field. ThenGK is nonuniversal
iff GKv is nonuniversal.

Proof. Recall the exact sequence

Iv −→ GK −→ GKv.
If GK is nonuniversal, then some finite group does not appear as a Galois group
over any finite extension of K , and hence the same holds for Kv.
On the other hand, if GKv is nonuniversal, there is some n0 ∈ N such that neither
Sn nor An (for n ≥ n0) occur as a subquotients of GKv . As Iv is soluble, Sn (for
n ≥ max{5, n0}) is not a subquotient of GK , either. �
In particular, we can use the observation to define a range of power series

valuations.

Corollary 3.17. Let K be a field with GK nonuniversal. Let Γ be a nontrivial
ordered abelian group, and assume that Γ is nondivisible in case thatK is separably or
real closed. Then there is a ∅-definable nontrivial henselian valuation onK((Γ)). If K
is not henselian and neither separably nor real closed, then the power series valuation
is definable.

Proof. The first statement is immediate from the previous Observation and
Theorem 3.15. The second also follows from Theorem 3.15: If K is not henselian,
then the power series valuation is exactly the canonical henselian valuation. �
One example of fields with nonuniversal absolute Galois group are NIP fields of

positive characteristic. We call a field NIP if Th(K) is NIP in the sense of Shelah
(see [1] for some background on NIP theories). In [11] (Corollary 4.5), the authors
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show that if K is an infinite NIP field of characteristic p > 0, then p � #GK . Thus,
we get the following

Corollary 3.18. Let (K, v) be a nontrivially henselian valued field, K not
separably closed. If

• K is NIP and char(K) > 0, or
• Kv is NIP and char(Kv) > 0,
then K admits a nontrivial ∅-definable henselian valuation.
Proof. The first statement follows from Theorem 3.15. The second statement is
now a consequence of Observation 3.16. �
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