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We introduce a framework that generalizes algebraic specifications by equipping algebras

with descriptions of evaluation strategies . The resulting abstract mathematical description

allows one to model the implementation of algebras on various platforms in a way that is

independent of the function-oriented specifications.

We study algebras with associated data dependencies. The latter provide separate means for

modelling computational aspects apart from the functional specifications captured by an

algebra. The formalization of evaluation strategies (1) introduces increased portability

among different hardware platforms, and (2) allows a potential increase in execution

efficiency, since a chosen evaluation strategy may be tailored to a particular platform. We

present the development process where algebraic specifications are equipped with data

dependencies, the latter are refined, and, finally, mapped to actual hardware architectures.

1. Introduction

The creed of algebraic specification is abstraction: one models programs as algebras, thus

abstracting from the operational details and focusing on the abstract functionality of

the system. A single such specification may be implemented on different platforms. The

implementation design, as well as the particular platform on which it is realized, need not

be the primary issues. It is one of the central tenets of algebraic specification that the

designer may initially model his system at a high level of abstraction without involving

himself in low level implementation details, only introducing implementation concerns as

appropriate, much later in the development process. At some point during the development

process the choice of the set of constructors, the computation strategy, the target language,

and, perhaps, the hardware platform begin to play a more important role. In particular,

† The authors gratefully acknowledge the financial support received from the Norwegian Research Council

(NFR).
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because of its intentional abstraction from the operational aspects, the standard algebraic

approach to specification has difficulties when faced with the possibilities of parallel

implementations. It is at this point that our proposed method comes into play successfully.

We propose a framework of computation algebras addressing the issue of how to incor-

porate computation-related aspects within the framework of classical algebraic semantics.

Computation algebras allow the developer to transform abstract requirements (expressed

in an algebraic specification) into designs by adding implementation-specific informa-

tion concerning the order and dependency between various subcomputations. Though

occasionally tempting, we would like to avoid rebuilding the theory from scratch – we

want to take advantage of the existing theoretical and tool-oriented results of algebraic

specifications. Our aim is only to extend the classical framework with constructs that in

an algebraic way address the choice of computational strategies.

This is achieved by associating additional structures, data dependency graphs, with

standard algebras. The data depency graphs carry information about evaluation strategies

for the operations of the algebras. We have to warn the reader that our ‘data dependencies’

are not exactly the same as those generally refered to in the literature, especially in the

literature on imperative programs, such as, Miranker and Winkler (1983), Ferrante et

al. (1987) and Kennedy and McKinley (1990). We proceed from the algebraic, that

is, functional descriptions and dependencies relate functional terms and not program

statements. In particular, a variable is only a (sub)term denoting a specific value – it is

not an actual program variable of a program capable of storing various values at different

points of computation.

We mainly address the semantic issues of this approach, without entering into a discus-

sion of possible specification formalisms . Thus we will assume that data dependencies are

given along with algebras, and study their interaction. Since data dependencies are stan-

dard algebraic objects, we expect that they can easily be described in a standard algebraic

fashion. (We intentionally refrain from including an analysis of control dependencies –

unlike data dependencies, they seem to be inherent features of actual programs rather

than of abstract data types.) In some cases data dependencies may be recovered directly

from an algebraic specification and Section 3 describes a way this can be done.

By allowing computational structures into the semantics of a specification, we provide

the means not only for the development of programs, but for the development of ef-

ficient programs. We will show that data dependencies provide such a means, enabling

one to assess the time/space resources required and to pursue optimization strategies

such as syntactic and semantic memoisation. Above all, the computational structures

carry the information necessary to achieve parallel implementations: the identification of

dependencies among various parts of a computation enables us to determine its possible

parallel distributions. In addition to algebras and data dependencies, we will introduce a

representation of (parallel) machine architectures and show how mappings from depen-

dencies to architectures may be utilized to yield parallel implementations. The framework

enables us then to port the implementations of computation algebras along the morphisms

between various hardware architectures. It should be emphasized, however, that we are

not concerned with a general theory of concurrency. In this context, we view concurrency

merely as a means of increasing the efficiency of the implementation.
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Section 2 introduces the basic notions of computation algebras and their implemen-

tations, and illustrates them on a simple example. It also gives a general view of the

envisaged development process using computation algebras. Section 3 addresses the issue

of constructing dependencies for a function defined by a set of recurrence equations over a

given algebra. It illustrates the ideas of the programming language Sapphire developed at

the University of Bergen for which computation algebras provide the semantic framework.

Section 4 refines the picture of development sketched in Section 2 – its results suggest a

more specific metodology for development using computation algebras. Section 5 shows

how non-determinism can be included into the proposed framework. Section 6 summarizes

the results and indicates some directions for future work.

The paper focuses on the description of the concepts; its technical content is limited to

definitions and a few results. It gives an improved version of the results from Walicki et

al. (1996). The more technical aspects assume some elementary knowledge of the category

theory (for example, Mac Lane (1971), Rydeheard and Burstall (1988) and Barr and

Wells (1990)), with particular emphasis on fibrations.

2. The framework of computation algebras

This section introduces the framework of computation algebras. We define first some basic

notions in Section 2.1, then data dependencies in Section 2.2, computation algebras in

Section 2.3, and their implementation in Section 2.4. Section 2.5 summarizes these pieces

presenting the view of the development process using computation algebras.

2.1. Signatures, algebras and graphs

We use the standard notion of a signature Σ as a pair 〈S,F〉 of sort and operation

symbols. In Section 4.1 we will use the category Sig with signatures as objects and

injective signature morphisms.

For a signature Σ, Alg(Σ) will denote a category of Σ-algebras. It is ‘a category’ because

we do not make any assumptions as to what the algebras are, except that they are

objects where one can interpret the Σ-terms. One may think of standard Σ-algebras with

Σ-homomorphisms defined in the usual way. But one may as well think of the category

of multiagebras with various multihomomorphisms, power algebras, unified algebras, etc.

We will define various notions relatively to an arbitrary full subcategory A ⊆ Alg(Σ)†.
The primary objects of our interest will be simple directed acyclic graphs that

— have at most one edge between any pair of nodes, and

— have no isolated nodes (each node has at least one incident edge).

We call them simple DAGs. We will, however, need a more general notion of a mapping

of such graphs than a simple graph homomorphism. Mapping an edge of the source

graph to a path in the target graph corresponds to splitting the computation into several

† We hope that our use of a different font for categories means that our use of the symbol ⊆ for subcategory

as well as subset will not create any confusion.
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steps. On the other hand, mapping an edge to a set of edges (or paths) corresponds to

distributing the computation.

To define this concept of a morphism, we introduce three categories: DAG, of DAGs;

DAG◦, of path closures; and DAG⊕, of distributed paths (or just sets of paths). The

latter two categories are used merely for the purpose of defining more general morphisms

between DAG-objects. An object in DAG◦ also contains, in addition to the underlying

graph G, all the paths over G – we will want to map an edge of one graph onto a path

in a target graph†. An object in DAG⊕ contains, in addition, ‘parallel composition’ of

paths which, too, will be possible images of edges. The construction described in the rest

of this subsection starts with the category DAG: the free functor F◦ adds freely to each

object all the paths and then, the free functor F+ adds all the sets of paths. The resulting

composition F⊕ = F◦; F+ has left adjoint and our morphisms are Kleisli morphisms

obtained from this adjunction.

Definition 2.1. DAG is the category of directed acyclic graphs where:

1 Objects are DAGs – algebras over signature Γ = 〈I, E; s, t : E → I〉, where

— I is a set of nodes and E a set of edges;

— s/t return the source/target node of an edge;

— E viewed as a relation (⊆ I × I) is acyclic;

— there are no isolated nodes: for each node v, there is an edge e with s(e) = v or

t(e) = v.

2 Morphisms are Γ-homomorphisms.

We will often write i� j to indicate the existence of an edge e from i to j (that is, with

s(e) = i and t(e) = j). A Γ-algebra is a DAG (an object of DAG) if the transitive closure

�+ of this relation is irreflexive.

A DAG may have several edges between a pair of nodes. Of particular importance to

us will be simple DAGs – the ones with at most one edge between a pair of nodes.

Definition 2.2. A simple DAG is a DAG satisfying: s(e1) = s(e2) ∧ t(e1) = t(e2)⇒ e1 = e2.

Definition 2.3. DAG◦ is the category of path closures of DAGs where:

1 Objects are algebras over signature Γ◦ = Γ ∪ { ◦ : E × E → E} whose Γ-reducts

belong to DAG – for any P ∈ Obj(DAG◦) : P |Γ ∈ Obj(DAG). ◦ is a partial operation

of path formation defined for any edges e1, e2 with t(e1) = s(e2), and satisfying

— e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3

— s(e1 ◦ e2) = s(e1) and t(e1 ◦ e2) = t(e2).

2 Morphisms are Γ◦-homomorphisms.

Thus, a DAG◦-morphism f : G → H maps an edge x � y from G onto en edge from

f(x) to f(y) in H – this latter edge, however, may correspond to a path obtained by

composition of several edges in H . The following fact is easy to verify.

† The symbol ‘◦’ is used for (sequential) composition in diagrammatic order – not for functional composition.
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Proposition 2.4. Let

— F◦ : DAG → DAG◦ be the free functor sending a G ∈ Obj(DAG) onto its path closure

G◦ by adding freely all possible compositions of edges from G; for a DAG-morphisms

h, we let F◦(h) = h†.
— U◦ : DAG◦ → DAG be the forgetful functor sending a graph G◦ onto its Γ-reduct G◦|Γ;

for a DAG◦-morphisms h : U◦(h) = h.

There is an adjunction F◦ a U◦ with the unit being the inclusion of the source graph into

its path closure.

The objects in the next category will allow two nodes to be connected not only by paths

but also by all finite, non-empty sets of paths.

Definition 2.5. DAG⊕ is the category of distributed path closures of DAGs where:

1 Objects are algebras over signature Γ⊕ = Γ◦ ∪ { ⊕ : E × E → E} whose Γ◦-reducts

belong to DAG◦ – for any P ∈ Obj(DAG⊕) : P |Γ◦ ∈ Obj(DAG◦). Where ⊕ is a partial

operation of parallel composition defined for any edges e1, e2 with s(e1) = s(e2) and

t(e1) = t(e2), which is associative, commutative and idempotent:

— e1 ⊕ (e2 ⊕ e3) = (e1 ⊕ e2)⊕ e3

— e1 ⊕ e2 = e2 ⊕ e1

— e⊕ e = e,

and composition distributes over ⊕:

— e1 ◦ (e2 ⊕ e3) = (e1 ◦ e2)⊕ (e1 ◦ e3)

— (e1 ⊕ e2) ◦ e3 = (e1 ◦ e3)⊕ (e2 ◦ e3);

and, since ⊕ is defined only for edges with the same source and target,

— s(e1 ⊕ e2) = s(e1) = s(e2) and t(e1 ⊕ e2) = t(e1) = t(e2).

2 Morphisms are Γ⊕-homomorphisms

The first three axioms allow formation of sets of edges (which here may be paths from

the ‘underlying’ DAG); the next two ensure that composition of sets of paths corresponds

to forming sets of composite paths. Canonically, an edge x � y is a non-empty set of

edges (paths in the ‘underlying’ DAG) from x to y. Hence, a morphism f : G→ H maps

an edge x� y from G onto a non-empty set of paths between f(x) and f(y) in H . Again,

we have an easy fact in the following proposition.

Proposition 2.6. Let:

— F+ : DAG◦ → DAG⊕ be the free functor sending a G◦ ∈ Obj(DAG◦) onto G⊕ ∈
Obj(DAG⊕) by adding freely all possible parallel (⊕) compositions of edges from G◦
subject to the restrictions and axioms from the above Definition;

— U+ : DAG⊕ → DAG◦ be the forgetful functor sending a graph G⊕ onto its Γ◦-reduct

G⊕|Γ◦;

† Strictly speaking, F◦(h) is h extended to paths: F◦(h)(e1 ◦ e2) = h(e1) ◦ h(e2).
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Fig. 1. A Gr-morphism from D to W .

— Both functors map morphisms onto identical morphisms in their respective target

categories.

There is an adjunction F+ a U+ with the unit being the inclusion of the source graph into

its closure under parallel composition.

Now define two functors

F⊕ = F◦; F+ : DAG→ DAG⊕ and U⊕ = U+; U◦ : DAG⊕ → DAG. (1)

The two adjunctions from Propositions 2.4 and 2.6 give an adjunction F⊕ a U⊕. The

morphisms we are looking for can be now defined as Kleisli morphisms between objects

of DAG induced by this last adjunction. The resulting category is given by: the objects

are simple DAGs, a morphism f : G → H is a DAG-morphism f : G → U⊕(F⊕(H)).

Morphisms are composed pointwise: for f : A → B and g : B → C , f maps an edge

e = x
A
� y onto a set of paths f(e) = {p1, p2...pn} from f(x) to f(y) in B. Then, g maps

each path pi onto a set of paths g(pi) = {ri1, ri2...rik} from g(f(x)) to g(f(y)) in C , obtained

by mapping each edge of pi onto a set of paths and composing these paths along the pi.

The composition is then g(f(e)) =
⋃
pi∈f(e) g(pi). Formally, we have the following definition.

Definition 2.7. The category Gr is the full subcategory – with simple DAGs as objects –

of the Kleisli category induced by the adjunction F⊕ a U⊕†.

Since we will be working with the category Gr, in the following, we will use the notation

G⊕ – where G ∈ Obj(Gr) – as an abbreviation for U⊕(F⊕(G)).

Example 2.8. Three examples of Gr-morphisms are given in Figures 1 and 2. The former

maps edges onto paths while the latter maps an edge onto distributed paths.

A Gr-morphism h : A→ B expresses the fact that B can simulate A – edges of A are not

necessarily represented in B as edges, but possibly as paths, or even sets of paths. B may

also contain additional edges not in the image of h.

Remark. DAG-embedding of A into B is a special case of a Gr-morphism A → B. One

might expect that a surjective (on the nodes) DAG-morphism B → A would yield a simpler

† This concise formulation expresses what we have described above. For the construction of Kleisli category,

see, for example, Mac Lane (1971).
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G H g : G −→ H h : G −→ H

Fig. 2. Two Gr-morphisms from G to H .

notion. However, it would require our graphs to be reflexive (this is not a big problem)

and, more importantly, would exclude many cases where B is a richer structure than A.

For instance, there is no surjective DAG-morphism from

B =

•

��
{{vvv
•

##HHH
•

onto A = • // • // • . But we would like to say that B does reflect the edges of A (and

introduces some more) – and so there is a Gr-morphism A→ B.

From now on, we will treat ‘graph’ as a synonym for ‘DAG’ since DAGs are the only

graphs we are going to deal with. Also, our graphs are primarily connected simple DAGs,

in which case we will often identify a graph G and its edge relation EG, written also
G
�. Then, we say that G is well-founded when the relation

G
� is, and denote by G+ the

transitive closure
G
�

+

. Notice that, in general, G◦ 6= G+ 6= G⊕. The following example

(suggested by an anonymous referee) illustrates the difference between the three:

•
G = •

==|||| •
aaBBBB

•
aaBBBB

==||||

• • •

G◦ = •
>>|||| •

`B̀BBB
G⊕ = •

>>|||| •
`B̀BBB

G+= •
>>|||| •

`B̀BBB

F◦(G) •
__>>>>>

??�����

OOOO

F+(F◦(G)) •
__>>>>>

??�����

OOOO OO

•
__>>>>>

??�����

OO

Occasionally, we may use the following terms:

— A graph is sequential if �+ is a total ordering of the nodes.

— A partitioning of a graph is a partitioning of the set of nodes I =
⋃k=n
k=1 Ik with

1 < n < ω such that each Ik is sequential.

— An st-graph (‘space-time’) is a simple DAG with nodes indexed by pairs 〈s, t〉 ∈ S × IN,

such that:
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1 ∀s, t : 〈s, t〉� 〈s, t+ 1〉 ;

2 ∀s, s′, t, t′ : 〈s, t〉� 〈s′, t′〉 ⇒ t′ = t+ 1 ;

3 ∃k ∈ IN+ : ∀s, s′, t : 〈s, t〉� 〈s′, t+ 1〉 ⇔ 〈s, t+ k〉� 〈s′, t+ k + 1〉.
The st-graphs are singled out because they will be used as the space-time representation

of hardware architectures (Miranker and Winkler 1983). The s component identifies a

processor and the t component a time-point during a computation. Edges represent pos-

sible communications. The first condition says that each processor performs a sequential

computation with the possibility of maintaining its local data from one step of the com-

putation to the next one. The second condition requires all elementary communications

to happen in a single time-step. The last condition says that the communication topology

is fixed throughout the whole computation, that is, the graph is actually a repetition of

the pattern of the k-steps communications (for some fixed k > 0).

We note the following characterization.

Proposition 2.9. Let k : A→ B ∈Mor(Gr). k is mono ⇔ k is injective on the edges.

Proof. Let T be an arbitrary object and f, g : T → A be two arbitrary morphisms.

(⇒) If k is mono, then for any f, g : T → A, f; k = g; k ⇒ f = g. In particular, for any

edge e ∈ ET : k(f(e)) = k(g(e)) ⇒ f(e) = g(e). Taking T as a one-edge graph and

considering all f, g : T → A, implies that k must be injective on the edges.

(⇐) Suppose k is injective on the edges and f; k = g; k. For each edge e ∈ ET we then

have k(f(e)) = k(g(e)) ⇒ f(e) = g(e). To verify that f = g, we have to check that

also for each node i in T , f(i) = g(i). Assume that for some node f(i) 6= g(i). Since

T is a DAG (according to Definition 2.1 it has no isolated nodes), there is an edge

e incident to i and then we would have f(e) 6= g(e). Because of the injectivity on the

edges, we then get k(f(e)) 6= k(g(e)), contrary to the assumption f; k = g; k.

2.2. Data dependencies

As remarked in the introduction, our data dependencies are intended to capture the

information concerning what resources are going to be used in performing new steps of

computation. Resources in this context refer exclusively to the values of some functions

and the computations that compute such values. Thus our data dependencies relate

functional terms and not program statements. For instance, computation of the value of

the term f(s(x), 2) may depend on the value of s(x), which, in turn, may depend on x.

However, x is just a term – a mathematical variable that, in any instance, has some specific

value. It never depends on itself, as it might do if it was a program variable occurring in

a statement x := x+ 1.

For a signature Σ, a Σ data dependency is a graph (simple DAG) with nodes labelled

by ground Σ-terms TΣ. The only requirement we put on the morphisms between such

graphs is that they respect the sorting of labels.

Definition 2.10. (Data dependencies) DD(Σ) is the category of Σ data dependencies where:

1 Objects are Σ data dependencies – pairs 〈G, lab〉 where G ∈ Obj(Gr) is a simple DAG

and lab : IG →TΣ is a function labelling nodes of this graph with ground Σ-terms.
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2 A DD(Σ)-morphism m : C = 〈C, labC〉 → D = 〈D, labD〉 is a Gr-morphism between the

underlying graphs m : C → D, such that ∀i ∈ IC : Sort(labD(m(i))) = Sort(labC(i))†.

In the following, D will denote an arbitrary subcategory of DD(Σ). The functor

Gr : DD(Σ)→ Gr (2)

is the obvious forgetful functor, which, for a given Σ data dependency D = 〈D, lab〉,
returns its underlying graph D. We call such a graph the shape of D.

The relation i� j (in the shape Gr(D) of D = 〈D, lab〉) indicates that the computation

at node j depends on the computation at node i. If lab(i) = s and lab(j) = t, this means

that the result of the evaluation of t at j depends on the result of the evaluation of s at i.

Example 2.11. To give a flavour of our aims, consider a specification of the Fibonacci

function:

Fib is S : Nat

F : . . . the usual functions for Nat

F : Nat → Nat

A : F(0) = 1

F(1) = 1

F(n+ 2) = F(n) + F(n+ 1)

Ignoring the details for the moment (we will discuss them later), we may easily recognize

the dependency given by the tree of recursive calls R in Figure 3. Certainly, Definition 2.10

allows us to map this tree, for instance, onto a linear order (respecting the ordering in

the tree and avoiding loops). In the following subsection we will couple dependencies

with algebras and thus specify the means of avoiding uninteresting morphisms that are

admitted, in principle, by Definition 2.10. In Figure 3 we have indicated two dependency

morphisms: d′ corresponding to syntactic memoisation (identifying the nodes with iden-

tical labels), and d′′ corresponding to semantic memoisation (identifying F(0) with F(1))

given the above specification‡.
Here, we may consider the dependency D as a refinement (improvement) of R. Notice

that D is sequential under the ordering F(n) < F(m) for n < m. Nevertheless, the

partitioning of D indicated by the vertical arrows implies serious savings of storage

space, even if the computations along both lines are heavily synchronized and far from

independent.

Remark. As a matter of fact, there is also a dependency morphism g : D → R that

embeds D into the leftmost branch of R⊕. This illustrates the fact that refinement of data

dependencies is not necessarily an ‘improvement’ in the narrow sense of memoisation – it

rather reflects the relation of one dependency being able to perform the computations of

which another one is capable.

† For a signature Σ = 〈S,F〉, the function Sort :TΣ,X →S returns the sort of the argument term.
‡ In Section 4.2.1, we suggest a more specific notion of a dependency morphism compatible with a given class

of algebras of which d′′ is an example.
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Fig. 3. The recursive tree dependency R, together with the ‘actual’ dependencies for

computation of Fibonacci, D′ and D, and the dependency morphism d = d′; d′′.

2.3. Computation algebras

A Σ-computation algebra is a Σ algebra with an associated Σ-dependency. The latter

provides a clue for how various operations of the algebra are to be computed. In general,

for A ⊆ Alg(Σ), D ⊆ DD(Σ), an (A,D)-computation algebra is an A-algebra with an

associated D-dependency.

Definition 2.12 (Computation algebra). An (A,D)-computation algebra C is a triple

〈A,B, ev〉 where

1 A ∈ Obj(A)

2 B ∈ Obj(D)

3 ev : IGr(B) → A is an evaluation function such that labB(i) = t⇒ ev(i) = tA.

The ev function is uniquely determined by the algebra A and the labelling of B, so

we will usually write a computation algebra as a pair 〈A,B〉. When (A,D) does not

matter or is clear from the context, we will simply write computation algebra (instead of

(A,D)-computation algebra).

Dependencies may (and will) be interpreted as the requirements on the communications

between different space-time points on an actual architecture. Consequently, we will refer

to the dependency part B of a computation algebra 〈A,B〉 as its communication part.

Definition 2.13 (Computation homomorphisms). An (A,D)-computation homomorphism m :

〈A,A, evA〉 → 〈B,B, evB〉 is a pair 〈h, g〉 such that (cf. Figure 4):

1 h : A→ B ∈Mor(A) ;

2 g : B→ A ∈Mor(D), and

3 h(evA(g(i))) = evB(i), for all i ∈ IGr(B)†.

As with computation algebras, when (A,D) does not matter, or is clear from the context,

we will speak about computation homomorphisms .

The primary intuition behind this definition of homomorphism is that it is to be

used to model a refinement process – in the above definition, we would say that 〈A,A〉

† The diagram in Figure 4 commutes, but not in a category (at least none we have defined explicitly), and so

we write the composition of functions explicitly as a(b(i)).
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A'& %$ ! "#evA // A

��

h�

〈A,A, evA〉

��

m

B

OO

g'& %$ ! "#evB // B 〈B,B, evB〉
Fig. 4. A homomorphism between two computation algebras.

refines 〈B,B〉. Refinement concerns both the algebra and dependency part. The usual

algebra homomorphism h : A→ B corresponds to the classical notion of data refinement

– A may have multiple representations for a single value from B. The (contravariant)

homomorphism g : B → A represents the possible improvement of the dependency B by

the dependency A (cf. Figure 3) – A may introduce paths, even sets of paths, in the place

of single edges in B.

In Example 2.11, the standard algebra of natural numbers N with function F , may

give rise to three different computation algebras 〈N,R〉, 〈N,D′〉 and 〈N,D〉. The

respective morphisms obtained from Figure 3, for example, 〈idN, d〉 : 〈N,D〉 → 〈N,R〉,
will represent gradual refinements of 〈N,R〉. On the other hand, a dependency morphism

that sends, for instance, a node labelled with F(2) to a node labelled with F(4) will not

yield a computation homomorphism unless algebraN satisfies some additional (and here,

unintended) equations.

Thus, refinement corresponds to a standard (data) refinement on the algebra part, while

dependencies may be refined by ‘stretching’ (to paths), ‘distributing’ (to sets of paths) or

augmenting with new dependencies. The following two examples illustrate these aspects

of refinement.

Example 2.14. We let ~C and ~D be as in Figure 5, with ~h(a) = a, ~h(b) = d, and ~h(f) = f.

The commutativity requirement, h̄(evC(~h(i))) = evD(i), restricts the legal combinations

of ~h and h̄. In particular, the labels in ~C may differ from those in ~D like with ~h(b) = d

(taking, for simplicity, the names of the nodes in the figure to be their labels), only if d

evaluates in C̄ to a value evC(d) = x representing evD(b), that is, such that h̄(x) = evD(b).

Also, refinement ‘does not care’ about what is computed in C at the nodes that are

not in the image of ~h(~Gr(D)). There may be new nodes and dependencies, also on nodes

labelled by terms not occurring in the labelling of ~D (like c� f in ~C). In particular, if we

admit a computation algebra with an empty dependency part (that is, empty carriers in the

category D), a standard algebra Ā may be considered a computation algebra with empty

communication part, A = 〈Ā,Ø〉. Then any algebra B with non-empty communication

part will be a refinement of A provided there is a homomorphism h̄ : B̄ → Ā.

Example 2.15. As an example of a possible ‘distribution’, consider an algebra D with

the sorts S, S1, S2, and the dependency t � f(t) for two terms of sort S (Figure 6).

Furthermore, let the sort S be the Cartesian product of the two other sorts S = S1 × S2,

with the obvious projections πi : S → Si and pairing function 〈 , 〉 : S1 × S2 → S . Let

D̄ satisfy the ordinary equalities for these functions and, in addition, let D̄ |= t = 〈t1, t2〉,
and D̄ |= f(t) = 〈f1(t1), f2(t2)〉. This allows us to design the refinement of the dependency
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~C: f

•

;;
;; www

c

OOOO
•

bb
bb

DD
//evC
C̄

��

h̄

C

��

h

a

;;
;; www

d

bb
bb

FF

OO
~h

~D: f //evD
D̄ D

a

;;
;; vvv

b

bb
bb

FF

Fig. 5. Refinement of a computation algebra by adding new dependencies.

D̄ //idD̄
D̄

〈f1(t1),f2(t2)〉

ev

OO

f(t)

ev

OO

f1(t1)

77
77 oooo

f2(t2)

gg
gg

OOOO

oo ~h

t1

OO

OO
t2

OO

OO

t

hh
hhπ1

PPPPPPP
66

66 π2

nnnnnnn
t

OO

OO

Fig. 6. Refinement of a computation algebra by distributing dependencies.

structure illustrated in Figure 6 (cf. Figure 2), which, together with the identity on D̄,

yields a computation homomorphism 〈idD̄,~h〉. The morphism ~h refines the dependency

t� f(t) in ~D to both paths (through t1 and t2).

Computation algebras and their homomorphisms form a category.

Definition 2.16. (Category of computation algebras) CAlg(A,D) is the category with objects

being (A,D)-algebras and morphisms being (A,D)-homomorphisms (and obvious pointwise

composition). We will write CAlg(Σ) instead of When referring to the entire category

CAlg(Alg(Σ),DD(Σ)), we will write CAlg(Σ) instead.

We define two obvious functors:

−→
( ) : CAlg(A,D)op → D (3)

projects computation algebras onto their communication part, that is, ~〈A,A〉 = A and
~〈h, g〉 = g with the notation from Definition 2.13†. Similarly,

( ) : CAlg(A,D)→ A (4)

projects computation algebras onto their algebra part ( ¯〈A,A〉 = A and ¯〈h, g〉 = h).

† Of course, each (A,D) has its own functor
−→
( )(A,D), but we may as well view each such functor as a restriction

of
−→
( )CAlg(Σ) to the respective source subcategory.
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We will now use these functors to simplify the notation for the components of such an

algebra: a computation algebra A will denote the triple 〈Ā,~A, evA〉, and a computation

homomorphism h a pair 〈h̄,~h〉.

2.4. Machines and distribution

We introduce the model of machine architectures and their mappings (simulations) in

Section 2.4.1, and then define mappings of a computation algebra to a given architecture

called ‘distributions’ in Section 2.4.2.

2.4.1. Machine architectures In order to relate the dependencies to hardware architectures,

we will consider the latter as space-time unfoldings of the actual inter-processor com-

munication structure (Miranker and Winkler 1983). Thus, an architecture is simply an

st-graph, where each node represents a unique time-point at a given processor and edges

represent the possible single-step communications. This perspective may be extended to

cover dynamically changing architectures as well (it would merely require graphs rather

than the st-graphs), but here we restrict our attention to the static case.

A morphism between two architectures expresses the possibility of using one architec-

ture, Z , to simulate another, W , that is, that each communication of which W is capable

can be simulated by a set of chains of communications in Z . This is captured by the

existence of a mapping of W into the (possibly distributed) path closure of Z , that is, a

Gr-morphism W → Z . Consequently, we have the following definition.

Definition 2.17. (Machine architectures) The category of machine architectures is Gr.

Thus, in a way similar to the dependency morphisms, an architecture morphism W → Z

tells us that, and how, Z can simulate communications of W .

We might have given a more restrictive definition of machine architectures. For instance,

the unfoldings of actual processor-architectures will be st-graphs that are simply repeating

patterns of one-step communications. Also, simulation morphisms might be restricted to

Gr-monomorphisms. Nevertheless, we choose this more generous definition because it will

result in a more uniform treatment – it will allow us to consider also shapes of data

dependencies as objects, and distributions as morphisms of the same category Gr.

Example 2.18. An n-dimensional vector W has n processors connected so that each

processor, except for W1 and Wn, has two-way communication channels to its left and

right neighbour: W1 � W2 � · · · � Wn. A space-time unfolding for a 2-dimensional

vector is illustrated in Figure 7 (a). The vertical arrows (Wi, k)� (Wi, k + 1) are added to

represent the fact that each processor can carry its local data from one computation step

to the next.

A ring Z with 3 processors where, in each step, processor Z1 can communicate to

Z2, Z2 to Z3, and Z3 to Z1 is given in Figure 7 (b). This architecture may simulate the

2-dimensional vector W by the morphism m indicated in Figure 7 (c).
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OOjjTTTTTTTTTTT •
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W1
//
W2oo Z1

// Z2
// Z3BC@A

(b)

OO m:W→Z

(a) (c)

Fig. 7. Space-time representations of (a) 2-dimensional vector W , (b) 3-processor ring Z ,

and (c) a simulation m of W by Z .

2.4.2. Distribution Assume that we would like to implement a computation algebra on

some specific machine architecture. Distribution is what, in our abstract setting, represents

an implementation. It certainly does not capture all aspects of an actual implementation,

and for this reason we have chosen to call it ‘distribution’. This term reflects the intuition

of distributing the dependencies of an algebra onto the communication structure of a

given architecture.

The composition of functors (2) and (3)
−→
( ); Gr : CAlg(A,D)op → D → Gr applied to

an algebra returns the underlying graph of its communication part. We will write this

composition as ~Gr, that is, ~Gr(X) = Gr(~X), for an object or morphism X in CAlg(Σ).

Distribution of an algebra 〈C̄, ~C〉 on a given architecture W amounts to a simulation of

the (shape of the) dependency structure given by Gr(~C) on the communication structureW .

Definition 2.19. (Distribution) A distribution mC→W of a computation algebra C on an

architecture W is a Gr-morphism m : ~Gr(C)→W .

Example 2.20. The dependency D (with the shape Gr(D) from Figure 3) is mapped onto

a 2-processor vector W as shown in Example 2.8, Figure 1. Figure 8 is just a repetition

of this earlier example: (a) is the data dependency D with the shape Gr(D), (b) is a

2-processor vector W , and (c) is a distribution f of D on W .

Combining such distribution morphisms with the simulation morphisms between various

architectures, leads to the possibility of porting the distributions.

Example 2.21. The mapping f from Figure 8 (c) is a distribution of a computation algebra

D = 〈N,D〉 (with N a ΣFib-algebra satisfying Fib) on the vector W . Then, the mapping

m (Figure 7 (c)) gives a ported distribution of D on the ring Z . The results are shown in

Figure 9.

A morphism between two distributions is defined as follows.

Definition 2.22. (Morphisms of distributions) A morphism between two (A,D) distributions,

m : fA→W → gB→Z , is a pair 〈h, h′〉, where:
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W1
//
W2oo

(b)

f:Gr(D)→WD

(a) (c)

Fig. 8. (a) Data dependency D, (b) space-time representation of a 2-dimensional vector W ,

and (c) a distribution f of D on W .
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F(1)
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◦ F(1)

``BBBBBBB
◦ ◦ F(1)

f;m:Gr(D)→Z

(c)

D f:Gr(D)→W

(a) (b)

Fig. 9. (a) Data dependency D, (b) the distribution f of D on a 2-dimensional vector W ,

and (c) distribution f ported to the ring Z .

1 h : A→ B ∈Mor(CAlg(A,D)) ;

2 h′ : Z →W ∈Mor(Gr); and

3 ~Gr(h); f = g; h′.

The situation is depicted in Figure 10. The third condition is the requirement of the

commutativity of the rightmost square in Gr†.

Definition 2.23. We let Dist(A,D) be the category

1 Objects – distributions of (A,D) computation algebras (Definition 2.19),

2 Morphisms given in Definition 2.22 and pointwise composition‡.

† We let the distribution morphisms go in the opposite direction to the respective Gr-morphisms between the

distributions. This choice is to keep with the convention that morphisms between structures reflect some form

of ‘refinement’ of the target by the source.
‡ This works because the commutativity of the square in Figure 10 – that is, for each edge e in ~Gr(B), the (sets

of) paths obtained in W by h′(g(e)) and by f(~Gr(h)(e)) are identical – implies commutativity for each (set of)

paths in ~Gr(B). Hence composition with another such commuting square, given by ~Gr(n) : ~Gr(C) → ~Gr(B),

n′ : Y → Z , and k : Gr(~C)→ Y , will yield a commuting square (~Gr(n); ~Gr(h)); f = k; (n′; h′).
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Ā
'& %$ ! "#

��

h̄

~AevAoo Gr(~A) //f

~Gr
=⇒

W

	

fA→W

��

〈h,h′〉

B̄
'& %$ ! "#~BevBoo

OO

~h

Gr(~B)

OO

Gr(~h)

//
g Z

OO

h′

gB→Z

Fig. 10. A morphism 〈h, h′〉 of distributions.

The forgetful functor

Arch : Dist(A,D)→ Grop (5)

is the obvious projection of distributions onto their architecture part: in other words

Arch(fA→W ) = W and Arch(〈h, h′〉) = h′. (Again, we may view each ArchDist(A,D) as a

restriction of ArchDist(CAlg(Σ)) to Dist(CAlg(A,D)).)

2.5. The development process

The framework we have introduced is motivated by the view of the development of

(possibly parallel) implementations by means of computation algebras. We envision the

process starting with the usual refinement of algebraic specifications that proceeds through

a series of subclasses of Alg(Σ) and results in one class of isomorphic algebras (an algebra

Ā in Figure 11 is a chosen representative from this resulting class). At this point, when

the specification has become sufficiently concrete, one introduces the dependencies, that

is, constructs a computation algebra 〈B̄, ~B〉. Dependencies can then be refined along with

a further refinement of the algebra itself or, perhaps, with the algebra fixed.

Remark 2.24. Since there is no surjectivity requirement on ev, the communication part
~A need not contain the full information about all operations of the algebra Ā. (In the

extreme case, the shape of ~A might be the empty graph.) There are several reasons for

the lack of such a requirement. First, it allows us to consider a standard algebra Ā as a

computation algebra with empty communication part. More importantly, it allows us to

model the development process in which more and more operations of the algebra are

gradually equipped with more detailed computational information. Furthermore, we may

imagine a specification of computation algebras as a kind of algebraic specification with

hidden functions: only the visible operations are of interest to the implementation, and

the resulting computation algebra need only provide the dependency structure for these

operations. Finally, we can use this setting in situations where (parts of) an algebra are

implemented on some machine (for example, all built-in types constitute a given algebra),

and one needs to compute some additional, newly defined functions – the communication

part will then be needed only for these new functions.

When all the required operations of the algebra have been associated with the satis-

factory dependencies, 〈C̄, ~C〉, one may choose an architecture on which to distribute the

dependencies ~C , fC→W . Once this is done, there remains only the question of portability,

that is, of moving the distribution to other architectures.
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Dist(A,D) CAlg(A,D) A

Aop D̄ oo C̄oo oo B̄oo oo Āoo

D ~D

OO
evD

��
g

oo ~C
oo

OO
evC

��
f

oo ~B
oo

OO
evB

Gr Z oo Woo

Fig. 11. The development process.

One may imagine that a transition from one level (category) to the next means that the

structure resulting from the development at the previous level is complete and remains

fixed for the rest of the process. Thus, having reached the algebra B̄, we begin to introduce

and refine dependencies while B̄ remains unchanged (and so, C̄ is actually B̄). Similarly,

having designed 〈C̄, ~C〉 and distributing it on W , we may move to another architecture

Z but 〈C̄, ~C〉 will be kept fixed (that is, 〈D̄, ~D〉 = 〈C̄, ~C〉). Although this is probably the

most natural scenario, Figure 11 illustrates the process in its full generality, where all the

aspects may change at all levels.

Although the technical results below are rather straightforward and hardly surprising,

they provide a sound justification for the above methodology as well as a clue as to

how it may be applied. They yield a pleasing conceptual structure in which algebras

can be thought of as indexed by various dependencies, and computation algebras by

machine architectures. More importantly, they give us the possibility of modularizing the

implementation process and reusing its results.

The simulation mappings between architectures (the Gr-morphisms) may be defined

and stored independently of the actual programs implemented on them. Suppose that we

have distributed a computation algebra D on an architecture W , dD→W (Definition 2.19).

In order to distribute D on another architecture Z , we need to define an appropriate

distribution cD→Z . However, if we have a Gr-morphism h : W → Z , it will tell us how Z

can simulate any computation on W . Thus it will allow us to port the distribution dD→W
by just using this general simulation h.

Such a reuse of (stored) simulation morphisms between architectures for porting dis-

tributions will be formalized by showing that the functor Arch from (5) yields a fibration.

Intuitively, this means that we can view the category Dist(A,D) as classes of computation

algebras indexed by machine architectures – the fiber over a given architecture W repre-

sents all computation algebras that can be distributed on W . Then, given an architecture

morphism h : W → Z and an algebra D distributed on Z (in Z ’s fiber), there is a canon-

ical way of defining a cleavage: an algebra C and its distribution cC→Z on Z together with

a distribution morphism cl(h, D) : cC→Z → dD→W that is ‘compatible’ with the simulation

h. As a matter of fact, the triviality of the proof (that Arch is a fibration) coincides with

the desired fact that D = C . Thus, cleavage gives explicitly the distribution resulting from

porting a distribution of D from W to Z ‘along’ a given simulation h.

The concept of fibration seems a very natural model for porting distributions and we
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will encounter it again later on. We now recall the notion of fibration, Definition 2.25,

(for more on fibrations, see Bénabou (1985), Jacobs (1991) and Hermida (1993), and show

that Arch is a fibration in Proposition 2.26.

Definition 2.25. (Fibration) Given two categories A and X and a functor F : A→ X:

A

��
f

!!

g

CCCCCCCC

A

��
F

B //h
C

X Y //u
X

1 A morphism h : B → C in A is cartesian if for any morphism g : A → C with

F(g) = F(h), there exists a unique f : A→ B such that f; h = g.

2 A functor F is a fibration if for every C ∈ Obj(A) and u : Y → F(C) ∈ Mor(X), there

exists a cartesian morphism h : B → C , and the composite of two cartesian morphisms

is cartesian.

3 F is a cofibration if Fop : Aop → Xop is a fibration; it is a bifibration if it is both fibration

and a cofibration.

4 An A ∈ Obj(A) is over Y if F(A) = Y ; a morphism g ∈ Mor(A) is over u if F(g) = u.

For an object Y ∈ Obj(X), the fiber over Y , F−1(Y ), is the subcategory of A with objects

all those over Y and morphisms all those over idY .

5 A particular choice of a cartesian lifting for every appropriate morphism u ∈ Mor(X)

is called a cleavage for F . Given a cleavage cl, a morphism u : Y → X ∈ Mor(X) and

an object C ∈ Obj(A) over X, we use cl(u, C) to denote the cartesian lifting of u whose

codomain is C .

We will also define split fibrations:

6 Given a fibration F with a cleavage cl, any u : Y → X in X determines a reindexing

functor u∗ : F−1(X)→ F−1(Y ) as follows:

— for an object C in F−1(X), u∗(C) is the domain of cl(u, C)

— for a morphism f : D → C in F−1(X), u∗(f) is the unique morphism in F−1(Y )

making u∗(f); cl(u, C) = cl(u, D); f.

7 For every Y ∈ Obj(X) there is a natural isomorphism idF−1(Y ) � (idY )∗, determined

by the universal property of cl(idY , A) for each A ∈ Obj(A). For all u : Y → X and

w : X →W there is a natural isomorphism w∗; u∗ � (u; w)∗, determined by cl(u; w,A).

If these isomorphisms are identities, the fibration is split.

Proposition 2.26. For any (A,D), Arch : Dist(A,D)→ Grop is a (split) fibration.

Proof. The diagram to the left illustrates the fibration situation and the one to the

right gives details for the present context (dashed arrows indicate the directions in the op

categories):
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//
idD

For a Grop-morphism h′op : Z W and distribution d = dD→W , the cleavage is defined as

cl(h′op, dD→W )
def
= h : cD→Z → dD→W where

{
h = 〈idD, h′〉
cD→Z = d; h′. (6)

It is trivially a morphism in Mor(Dist(A,D)) since id ~Gr(D); c = d; h′.
Let g : bB→Z → dD→W be 〈〈ḡ,~g〉, h′〉 – a distribution over h′op. The unique f : b→ c with

Arch(f) = idZ making f; h = g is then 〈〈ḡ,~g〉, idZ 〉. We have f ∈ Mor(Dist(A,D)) because

~g; b = d; h′ = c; idZ , where the first equality holds since g ∈Mor(Dist(A,D)).

Composition of cleavages is a cleavage: for h′ : W → Z , g′ : Z → V and dD→W ∈
Arch−1(W ) we have

cl(h′op, dD→W ) = 〈idD, h′〉, cl(g′op, (d; h′)D→Z) = 〈idD, g′〉,
so

cl(g′op, (d; h′)D→Z); cl(h′op, dD→W ) = 〈idD, h′; g′〉 = cl(g′op; h′op, dD→W ).

Hence Arch is a fibration.

It is split: we have (idW )∗(dD→W ) = dD→W , so the natural transformation

id
Arch

−1
(W )
� (idW )∗

is identity. Composition of cleavages gives a cleavage, so we get

(h′op)∗; (g′op)∗ = (g′op; h′op)∗.

Example 2.27. The collection of our examples so far illustrates this idea of development.

In Example 2.11 we designed a dependency R that was then refined to D by the morphism

d : R→ D – assuming standard algebra for natural numbers N. The dependency D was

then distributed on a vector W by fD→W (Figure 8) and ported to Z (Figure 9) using the

simulation m : W → Z from Figure 7. Provided that the simulation m and distribution f

were available from a library, all the work we had to do was to design the mapping d.
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OO
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Fig. 12. The summary of the example.

3. Constructing dependencies for recursive functions

So far we have considered relationships between various aspects – functional specification

(algebra), dependencies (communication part) and distribution – given independently from

each other. In this section we show how – under certain conditions – dependencies can

be derived from specifications using grammars. Although the described construction may

indicate the possibilities of reconsidering implementation techniques for functional lan-

guages, it should be emphasized that we are here concerned only with a particular example

of utilizing a computation algebra framework for desigining efficient implementations of

algebraic specifications.

We recall that a context free grammar G is given by a 4-tuple (T ,N,−→, S) where T is a

set of terminal symbols, N is a set of non-terminal symbols such that N∩T =6, the set of

production rules is −→ ⊆ N× (T ∪N)∗, and S ∈ N is the start symbol. From the grammar

G we get the derives relation =⇒⊆ (N ∪ T )∗ × (N ∪ T )∗ by vXw =⇒ vuw for strings

v, w ∈ (N ∪ T )∗ and productions X −→ u. The grammar defines the language, the set of

strings, L(G) = {w ∈ T ∗|S =⇒∗ w} where =⇒∗ is the reflexive, transitive closure of =⇒.

In terms of Figure 11, we are at the transition point from A to CAlg(A,D): we have

obtained a specific algebra A and introduce a new recursive function to be computed over

A. For this new function, we construct the dependency relatively to the algebra A. The

difference from the general setting described in Section 2.5 is that we want to compute a

new function over a given algebra and not construct a dependency for the whole algebra

(cf. Remark 2.24). This is quite a common scenario in practice and we will give a few

examples.

Let Σ be a signature, S1...Sn, S be some sorts from Σ, and R : S1 × ... × Sn → S a new

function symbol not in Σ. A generalized Σ-term recurrence for R is given by a set of

equations of the form

R(τ0(X)) = Φτ0(X)( X,R(τ1(X)), R(τ2(X)), . . . , R(τz(X)) ) (7)

where X is a (sequence of) variable(s), for each 0 6 k 6 z : τk(X) is a sequence of terms

t1,k(X)...tn,k(X) of appropriate sorts, that is, ti,k(X) ∈ TΣ(X)Si , and Φτ0(X)(X, y1...yn) ∈
TΣ(X, y1...yn)S with all yi of sort S . R is typically given by a set of such equations, that is,

different equations for different (sequences of) term(s) τ0(X). (This form of generalized re-

currence was studied in Haveraaen (1990), Haveraaen (1993), Čyras and Haveraaen (1995)

and Haveraaen and Søreide (1998) as a definition schema for ‘constructive recursive func-

tions’.)
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Given a recurrence (7) and a Σ-algebra A, we take as the set of nodes for the shape of

the dependency, the domain of R in A, that is, the cartesian product V = SA1 × ...× SAn .

We now construct a collection of context free grammars GΣ,V , which will define the

data dependency. As the non-terminal symbols of the grammar, we take the set N =

{Nv : v ∈ V } of distinct symbols indexed by the nodes (Nu = Nv ⇒ u = v). Treating the

non-terminals Nv as place-holders of type S , we may now define substitution rules from

(7). For each variable assignment α : X → A, let αi ∈ V denote the interpretation of τi(X)

under α, that is, αi = τi
A(α(X)) = 〈tA1,i(α(X)), ..., tAn,i(α(X))〉. For every expression form τ0

(from the set of equations (7)) and every assignment α : X → A, we get the production

Nα0
−→GΣ,V

ΦA
α0

(α(X), Nα1
, Nα2

, . . . , Nαz ) (8)

Thus, for each node v, we obtain a node-specific grammar GΣ,v = 〈F, N,−→GΣ,V
, Nv〉,

that is, where terminals are the function symbols F from Σ, non-terminals are the N’s,

productions are given by (8), and the start symbol is Nv .

We define the shape of the dependency
GΣ,V

� by introducing an edge for all pairs u, v ∈ V ,

according to the rule

u
GΣ,V

� v ⇔ Nv −→GΣ,V
rNut, for some r, t with rNut ∈ TΣ(N). (9)

This gives us a graph structure on V , and we can define a ‘compatible’ labelling function

by requiring that

∀v ∈ V : labGΣ,V
(v) ∈ L(GΣ,v) (10)

where L(GΣ,v) is the language generated by the grammar GΣ,v of node v.

The result may not be a data dependency: the graph 〈V , GΣ,V

� 〉 obtained from (9) may

be cyclic, or the labelling (10) may not be unique problems often due to the recurrence

(7) not being well-defined to begin with. The following conditions on GΣ,V ensure that the

result will be a data dependency – a (simple) DAG with unique labelling.

Proposition 3.1. If a collection of node-specific grammars GΣ,V is such that:

1 for every non-terminal Nv there is exactly one rule Nv −→GΣ,V
t, and

2 the resulting graph ΓGΣ,V
= 〈V , GΣ,V

� 〉 is well founded,

then GΣ,V determines a unique Σ data dependency.

Proof. Point (2) implies that ΓGΣ,V
is acyclic. For every v ∈ V , the language L(GΣ,v) is a

one-element set since by Point (1) we have exactly one Nv −→GΣ,V
t for each v, and, since

ΓGΣ,V
is well founded, each path from t will uniquely lead to a terminal node. Thus the

unique data dependency is

DGΣ,V
= 〈V , GΣ,V

� , labGΣ,V
〉

where labGΣ,V
(v) = q, where q is the unique string in L(GΣ,v).

In each particular case of a given recurrence (7) and an algebra A, the well-definedness

of the resulting dependency has to be checked, for instance, by verifying the conditions

of the above proposition.
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Another obvious fact following from the assumptions of Proposition 3.1 is that if u
GΣ,V

� v

then labGΣ,V
(u) is a subterm of labGΣ,V

(v).

Remark. The described construction obviously subsumes primitive recursion for which we

have Σ = 〈Nat,F〉, the only model N being that of the naturals such that F are the

basic primitive recursive operations on naturals. Given recursive equation schema for an

R with n+ 1 variables

R(0, y1, . . . , yn) = g(y1, . . . , yn)

R(s(i), y1, . . . , yn) = h(i, y1, . . . , yn, R(i, y1, . . . , yn)),

where g and h are primitive recursive operations, we get the set of nodes V = INn+1,

nodes of the form y = 〈y0, y1, . . . , yn〉, and the productions for any fixed values of y1...yn :

N〈0,y1 ,...,yn〉 −→ g(y1, . . . , yn)

N〈i+1,y1 ,...,yn〉 −→ h(i, y1, . . . , yn, N〈i,y1 ,...,yn〉)

This approach to the recursive programming of functions is a derivative of the semantic

(that is, µ-recursive) approach to computability. Most functional languages, on the other

hand, are compiled using (parallel) graph reduction techniques (Peyton and Simon 1987)

or, more generally, a syntax-oriented computability model based on term substitution, for

example, λ-calculus. Unlike these substitution based approaches, the construction described

here leads often immediately to an efficient dependency structure that is amenable to

a direct translation to efficient code on (parallel) machine hardware. The next two

subsections illustrate this claim using two examples.

3.1. A simple example – the Fibonacci function

Take again the Fibonacci function from Example 2.11, which we want to compute in a

standard algebra N of natural numbers. That is, we have the signature Σ = 〈{Nat}, {s :

Nat → Nat,⊕ : Nat × Nat → Nat, z : Nat}〉, and N is given by NatN = IN, the set of

natural numbers, sN = the successor function, ⊕N = addition, and zN = 0.

The recursive specification of the Fibonacci function F : Nat→ Nat is

F(z) = s(z)

F(s(z)) = s(z) (11)

F(i⊕ ss(z)) = F(i)⊕ F(i⊕ s(z)).
We choose IN as the set of nodes V (corresponding to the arity of F), that is, V = IN.

With Nk , for k ∈ IN, as non-terminal symbols, we now obtain the production rules for the

set of node-specific grammars (using zN = 0, s(z)N = 1 and ss(z)N = 2 for the indices):

N0 −→ s(z)

N1 −→ s(z) (12)

Ni+2 −→ (Ni ⊕Ni+1).
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44iiiiiiii
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OO

1
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OO

N0

OO

1

OO

ΓFib with non-terminals ΓFib with labels

Fig. 13. The graph derived from the Fibonacci recurrence (11): on the left with the

non-terminals, on the right with the language derived for each node (abbreviating s(z) by 1).

Each non-terminal has only one production and so each node will be labelled by a unique

ground term generated by the corresponding grammar. The resulting graph and labelling

(with parentheses added for readability) are shown in Figure 13.

Notice that although labelling uses fully unfolded terms, the graph itself is not the usual

tree of recursive calls as, for example, R in Figure 3, but a much more efficient graph ΓFib .

3.2. An example of parallelization – the fast Fourier transform

To illustrate the application to actual parallelization of programs, we review the technique

of the fast Fourier transform, FFT, due to Cooley and Tukey (1965). We first present

the background problem and its solution given by a recurrence. The dependency for this

recurrence obtained by our technique turns out to have the well-known shape of the

butterfly graph. We then show a standard distribution of the butterfly on a hypercube

architecture.

3.2.1. The numerical problem In many areas, computing of n-order polynomials p(x) =∑n
k=0 pkx

k , 0 6 n, for certain argument values x = x1, . . . , xk is important. These areas

include, for instance, signal processing, where evaluation of the polynomials for the

complex roots of unity plays a central role.

An n’th complex root of unity is a complex number ω such that ωn = 1. For every

n > 1 there are n distinct complex roots, spread at n regular intervals along the unit circle

in complex space, numbered counterclockwise starting at the number 1, which is root

number 0. The j’th such root is denoted ωj
n, and satisfies

ω0
n = 1 ωj+1

n = ωj
nω

1
n ωj

n = ωj mod n
n

Useful facts about these roots are that (ωj
2n)

2 = ω
2j
2n = ωj

n and ω
j+n
2n = −ωj

2n. The roots

may be computed by ωj
n = e(2πi/n)∗j = cos(2πj/n) + sin(2πj/n)i, where i = ω1

4 is the

imaginary unit, that is, i2 = −1.

Cooley and Tukey (Cooley and Tukey 1965) discovered a very efficient algorithm, the

FFT, for computing an n-order polynomial for all n’th complex roots of unity. Let us

consider this method for the case where n = 2M , that is, the one-dimensional binary

version. Then the polynomial p(x) can be split into ‘even’ pe and ‘odd’ po parts such that
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Fig. 14. The butterfly pattern of the recurrence F .

p(x) = pe(x
2) +x∗po(x2), where pe(x) =

∑2n−1

k=0 p2k ∗xk and po(x) =
∑2n−1

k=0 p2k+1 ∗xk . Taking

into account the properties of the roots of unity, we get

p(ωj
2m ) = pe(ω

j

2m−1 ) + ω
j
2mpo(ω

j

2m−1 )

pe(ω
j

2m−1 ) = pe,e(ω
j

2m−2 ) + ω
j

2m−1pe,o(ω
j

2m−2 )

po(ω
j

2m−1 ) = po,e(ω
j

2m−2 ) + ω
j

2m−1po,o(ω
j

2m−2 ).

This can be formulated as a recurrence equation

F(j, 0) = pj (13)

F(j, m+ 1) = F(s0(j, m+ 1), m) + ω
j

2m+1F(s1(j, m+ 1), m)

where s0(j, m) = j − (j mod 2m) + (j mod 2m−1) sets the m’th bit of j to 0 and s1(j, m) =

j − (j mod 2m) + 2m + (j mod 2m−1) sets the m’th bit of j to 1. Bits are the 0’s and 1’s

in the binary representation of a number, and are counted with the least significant bit

as number 1. The value of the polynomial at the j-th complex root of unity then equals

p(ωj

2M
) = F(j,M).

3.2.2. Constructing a dependency Applying our strategy, we start with the equations (13)

defining the recurrence. We work with the algebra of natural and complex numbers, and

as the set of nodes V we take the cartesian product {〈j, m〉 ∈ IN × IN | 0 6 j < 2M, 0 6
m 6 M} – since F has two natural number arguments that are within these limits. The

grammar resulting from the equations (13) is then (using ⊕ as the complex addition

operation and ⊗ as the complex multiplication):

N〈j,0〉 −→ pj

N〈j,m+1〉 −→ N〈s0(j,m+1),m〉 ⊕ (ωj

2m+1 ⊗N〈s1(j,m+1),m〉) (14)

with the coefficients pj of the polynomial treated as input since the roots of unity ωj

2m+1

are fixed once M is known. The resulting shape of the data dependency for M = 3 is

given in Figure 14. Again, observe how this method leads directly to an ‘efficient’ graph

instead of generating the full tree of recursive calls.

Columns correspond to the j and rows to the m arguments with the leftmost column

and bottom row numbered 0. The bottom row will be labelled with p0, p1, p2, ... according

to the first kind of productions from (14). The labels in the upper rows will be generated
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Fig. 15. Connections for hypercubes of dimension 3 (solid), and 4 (solid and dotted).

using the second kind of productions from (14). We do not write it explicitly (lengthy

labelling can be easily recovered from the grammar) but only observe that the label at

node 〈j, m〉 will represent the value of F(j, m). For instance, the node at row 2, column

1 (marked with the circle instead of bullet on the drawing) will represent the value of

F(1, 2).

3.2.3. Distribution on a hypercube The shape from Figure 14 is known as a butterfly graph.

Increasing M by one, that is, taking n = 2M+1, amounts to putting two butterflies of height

M side-by-side, adding a new set of nodes on top (row M+ 1), and connecting uppermost

nodes (in the M’th row) of the one butterfly to its own and to the respective nodes of the

other in row M + 1.

Now, Figure 15 shows the topology of hypercubes of dimension M = 3 and 4. Each

of the 2M processors has M bidirectional communication channels. A hypercube of

dimension M + 1 is obtained from two hypercubes of dimension M by connecting each

node of one hypercube to the corresponding node of the other.

The hypercube parallel program will then, on hypercube node j at time-step m + 1,

compute F(j, m + 1) using input data supplied by nodes s0(j, m + 1) and s1(j, m + 1) at

time-step m. One of the data supplying nodes will be the same as the node j, the other

will be its neighbour along dimension m.

Figure 16 shows a distribution of the butterfly dependency of height 3 from Figure 14

on the st-graph of the hypercube of dimension 3 from Figure 15. (Solid arrows indicate
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Fig. 16. Distribution of the butterfly on a hypercube.
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the embedded edges of the butterfly; dotted lines the remaining edges of the hypercube.)

Using the regularity in building a butterfly and a hypercube of higher dimensions, an

analogous distribution is obtained for a butterfly of arbitrary height M into a hypercube

of dimension M.

4. More about the development process

This section adds a few results concerning the development process using computation

algebras. First, in Section 4.1, we show the counterpart of the standard result allowing one

to view computation algebras over different signatures as objects of one category. Thus

we obtain the means of refining the picture of the development process from Figure 11 by

also admitting transitions between computation algebras over different signatures. Section

4.2 then identifies two subcategories of CAlg(Σ) with more specific morphisms that make

the coupling of the algebra- and the communication-part tighter than in the general case

of computation homomorphisms from Definition 2.13. The latter of these subcategories

was used in the design of the actual specification formalism Sapphire. Section 4.3 states

two further properties of the category of computation algebras that are of relevance for

the methodology of development.

4.1. Computation algebras over different signatures

So far we have only considered computation algebras over one given signature. Thus, the

development process illustrated in Figure 11 is not quite realistic since it is fairly certain

that such a process will involve a change of signatures. We will now extend the standard

way of flattening the categories of algebras indexed by signatures to the computation

algebras and their distributions.

Let Sig be the category of signatures with injective signature morphisms†. We write a

dependency D as a triple 〈ID, D�, labD〉.
Definition 4.1. (σ-reduct) Let σ : Σ′ → Σ ∈ Mor(Sig) and D ∈ DD(Σ). The σ-reduct of

D, D|σ ∈ DD(Σ′), is defined in two steps (we assume the ordinary extension of σ to

σ :TΣ →TΣ′):

1 Let X be D with restricted re-labelling : IX = ID ,
X
� =

D
� and labX(i) = σ−(labD(i)),

where σ− :TΣ →TΣ′ is given by σ−(t) =

{
t′ such that σ(t′) = t if it exists

⊥ otherwise.

2 D|σ is then given by

— ID|σ = {i ∈ ID : σ−(labX(i)) 6= ⊥},
— labD|σ (i) = labX(i), and

† We restrict ourselves to the injective signature morphisms for one main reason: defining a reduct functor

over data dependencies for non-injective morphisms implies several choices that seem slightly arbitrary. We

therefore prefer to postpone such a decision until we have more experience and reasons to choose one

alternative over the others.
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— i
D|σ
� j ⇔

{
i
D
� j or

∃ path i
X
� k1 · · · kz X

� j and 1 6 n 6 z ⇒ labX(kn) = ⊥
In the first step, we remove all the labels from D that are not in the image of σ, and

re-label the remaining ones to their σ pre-image. In the second we convert paths with

unlabelled (⊥-labelled) intermediary nodes into edges between the labelled end-points.

For A ∈ Alg(Σ) and σ : Σ′ → Σ ∈ Mor(Sig), we let A|σ denote the usual reduct. We

then have the following extension of the standard result.

Proposition 4.2. σ : Σ′ → Σ ∈Mor(Sig) induces the functor |σ : CAlg(Σ)→ CAlg(Σ′).

Proof. For an A ∈ CAlg(Σ), define A|σ = 〈Ā|σ,~A|σ〉. For a morphism h : A → B ∈
Mor(CAlg(Σ)), h|σ = 〈h̄|σ,~h|σ〉 where h̄|σ is the image of h̄ under the usual reduct functor

for algebras, while ~h|σ is the restriction of ~h to ~B|σ under changed labelling: each node i

of ~B|σ is sent to the node~h(i)|σ =~h(i), and edge e of ~B|σ onto the edge (path/set of paths)
~h(e)|σ in ~A|σ . This is a well-defined DD(Σ′)-morphism: commutativity ~h; evA; h̄ = evB
implies the corresponding commutativity in the reduct, since the latter operations are

restrictions of their pre-images.

Thus | : Sigop → CAT sending Σ to CAlg(Σ) and σ to |σ is an indexed category. By

the standard application of the Grothendieck construction we may define the flattened

category CAlg with (1) objects 〈Σ, A〉 where A ∈ Obj(CAlg(Σ)), (2) morphisms of the form

〈σ, f〉 : 〈Σ′, A〉 → 〈Σ, B〉, where σ ∈ Mor(Sig) and f : A → B|σ ∈ Mor(CAlg(Σ′)), and (3)

composition 〈σ, f〉; 〈ρ, g〉 = 〈σ; ρ, f; g|ρ〉.
Quite an analogous construction yields an indexed category || : Sigop → CAT that

sends Σ to Dist(Σ). For σ : Σ′ → Σ, the induced functor ||σ : Dist(Σ′) → Dist(Σ), sends

a distribution fA→W ∈ Dist(Σ) onto (f||σ)A|σ→W ∈ Dist(Σ′), where f||σ is the restriction of

f to ~A|σ . The result of the flattening is the category Dist. We do not dwell on this

general category, because we consider the categories Dist(Σ) for particular Σ more central

– porting distributions does not typically involve changes of signature.

4.2. More specific dependency morphisms

The class CAlg(Σ) provides the general framework for possible specializations. Arbitrary

dependency morphisms in DD(Σ) make the connection between the algebra- and the

communication-part of the objects in CAlg(Σ) rather loose and indefinite. We mention

two possible restrictions.

4.2.1. Computation algebras with compatible D-morphisms Let A be a fixed class of Σ-

algebras. It is natural to think of it as a model class of some (equational) specification.

One may postulate that such a choice of A should restrict the relevant dependency

morphisms. In particular, if A 6|= s = t, the D-morphisms should not be allowed to map

nodes labelled by s to ones labelled by t (nor vice versa), since such mappings are not

compatible with the algebras in A. Thus, compatibility of a DD(Σ) morphism h : C→ D

with respect to an algebra A means that h does not effect a re-labelling that is inconsistent

with valuation in A. More precisely, we have the following definition.
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Definition 4.3. Let h : C→ D ∈Mor(DD(Σ)) and A ∈ A ⊆ Alg(Σ).

1 h is A-compatible iff ∀i ∈ IC : (labD(h(i)))A = (labC(i))A ;

2 h is A-compatible iff it is A-compatible for all A ∈ Obj(A) ;

3 DD(A) is a wide subcategory of DD(Σ) with A-compatible morphisms.

Alternatively, h : C→ D is A-compatible iff for each A ∈ Obj(A), 〈idA, h〉 is a computation

homomorphism 〈A,D〉 → 〈A,C〉. We then have the following obvious proposition.

Proposition 4.4. Suppose that A has an initial object TA, and let h : C→ D ∈Mor(DD(Σ)).

Then: h is A-compatible ⇔ h is TA-compatible.

Proof. (⇒) is obvious. For (⇐) assume h is TA-compatible. This means that the lower

triangle of the following diagram commutes, so h; evD
TA

= evC
TA

, where evY
X assigns the

values from an algebra X to the nodes of a dependency Y according to their labels (that

is, evY
X(i) = (labY(i))X).

A

TA

OO

a

C

EE

evC
A

���������������

<<

evC
TA

yyyyyyyyy //
h

D

YY

evD
A

333333333333333

bb

evD
TA

FFFFFFFF

Since TA is initial, for each A ∈ A and dependency Y, evY
A = evY

TA
; a where a is the unique

homomorphism TA → A. But then h; evD
TA

= evC
TA
⇒ h; evD

TA
; a = evC

TA
; a⇒ h; evD

A = evC
A .

As a special case, the morphisms compatible with A = Alg(Σ) are the ones that do not

change the labelling at all, since they have to be compatible with the initial word algebra

TΣ.

For computation algebras with compatible dependency morphism, we also have the

following fact about the restriction of the functor ~( ) from (3):

Proposition 4.5. ~( ) : CAlg(A,DD(A))op → DD(A) is a split fibration.

Proof. We use the notation from the diagram to the right, which illustrates the fibration

situation in the present context (the dashed arrows indicate the directions in op categories):

B
'& %$ ! "#

���
�
�

##F
F

F
F

F B̄

))SSSSSSSSSS

""F
F

F
F

F

CAlg(A,DD(A))op

��
~( )

C
'& %$ ! "# //

cl(d,D)
____

OO

f

D
'& %$ ! "#oo

cc
g

FFFFFFFFFF

D̄
//____

bb

f̄

FFFFFFFFFF
D̄oo

idD̄

ii
ḡ

SSSSSSSSSSSSSSSSSSS

DD(A) C //
d

D C

'& %$
 ! "#evB

YY

evC

OO

//
d

D

'& %$
 ! "#evD

OO

For a DD(A)-morphism d : C→ D and D = 〈D̄,D, evD〉, the cleavage is defined as

cl(d, D)
def
= 〈idD̄, d〉 : C D, where C = 〈D̄,C, evC〉 (15)
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with evC given by the last point of Definition 2.12. Since d is A-compatible, d; evD; idD̄ =

evC , and so the cleavage is a morphism in CAlg(A,DD(A))op.

If g : D → B is over d ( ~gop = d), the unique f : C → B over idC making cl(d, D); f = g

is 〈ḡ, idC〉 (that is, 〈idD̄, d〉; 〈ḡ, idC〉 = 〈ḡ, d〉).
Obviously, the cleavages compose: for c : B → C and d : C → D, we have

cl(d, D) = 〈idD̄, d〉 and cl(c, 〈D̄,C〉) = 〈idD̄, c〉. So cl(c, 〈D̄,C〉); cl(d, D) = 〈idD̄, c〉; 〈idD̄, d〉 =

〈idD̄, c; d〉 = cl(c; d, D). Hence ~( ) is a fibration.

It is split: (idD)∗(〈D̄,D〉) = 〈D̄,D〉, so the natural transformation id( ~(D)
−1
) � (idD)∗ is

identity ( ~(D)
−1

denotes the fiber over D). Also, since cleavages compose : (d)∗; (c)∗ =

(c; d)∗.

For the compatible dependency morphisms, we also have the following additional fact.

Proposition 4.6. ~( ) : CAlg(A,DD(A))op → DD(A) is a cofibration.

Proof. The proof and definition of cocleavage are essentially the same as in Proposition

4.5. We have the following picture:

B
'& %$ ! "#

��
f

##

g

FFFFFFFFFF B̄

))

ḡ

SSSSSSSSSSSSSSSSSSS

""
f̄=ḡ

FFFF

FFFF

CAlg(A,DD(A))

��
~( )

op

C
'& %$ ! "# //

ccl(dop,D)
D

'& %$ ! "# D̄ //
idD̄

D̄

DD(A)op C
dop //____ D C

'& %$
 ! "#

evB

YY

evC

OO

D

'& %$
 ! "#evD

OO

oo d

For a DD(A)op-morphism dop : C D and D = 〈D̄,D, evD〉, the cocleavage is defined as

ccl(dop, D)
def
= 〈idD̄, d〉 : C → D where C = 〈D̄,C, evC〉, (16)

with evC induced by labC according to Definition 2.12.3. Trivial repetition of the arguments

from the proof of Proposition 4.5 yields the conclusion.

This, together with Proposition 4.5, means that ~( ) is a bifibration and gives the following

corollary.

Corollary 4.7. Reindexing functors induced by (~( ), cl) have left adjoints.

Finally, we may refer back to Section 4.1 and observe that, for an injective signature

morphism σ : Σ′ → Σ, if d : C → D ∈ Mor(DD(Σ)) is A-compatible for an A ∈
Obj(Alg(Σ)), then d|σ is A|σ-compatible. Hence, the image under |σ of a CAlg(A,DD(A))

is a category CAlg(A|σ,D) where Obj(A|σ) = {A|σ : A ∈ Obj(A)} and morphisms in D are

A|σ-compatible. (In general, D may only be a subcategory of DD(A|σ).)

4.2.2. Graph-morphisms We believe that refinement of data dependencies – at least as ex-

pressed by the compatible dependency morphisms in Definition 4.3 – may be a practical

notion for the development of implementations and, perhaps, more abstract algorithms.
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Nevertheless, one could argue that it is not needed in such generality since data depen-

dencies are quite concrete objects introduced towards the very end of the development

process. In particular, passing from one computation algebra to another should not imply

the introduction of new dependencies, but only (and at most) purely syntactic memoisa-

tion. It is only the distribution morphisms that adjust the dependency graph to match it

to the communication structure of a given architecture.

Accepting this view, one could work with a class of computation algebras (A,D) where

A ⊆ Alg(Σ) and the dependencies in D are restricted so that the target of the forgetful

functor Gr projecting dependencies onto their graph-part (cf. (2) after Definition 2.10),

is no longer the category Gr but its wide subcategory Gr◦: morphisms in Gr◦ may map

edges on paths but not on ‘parallel compositions’ of paths. (Gr◦ can be defined as Gr in

Definition 2.7 but with the adjunction F◦ a U◦ from Proposition 2.4 instead of F⊕ a U⊕.)

Thus, objects in D are simple DAGs and morphisms are the A-compatible dependency

morphisms h such that Gr(h) is a Gr◦-morphism.

In fact, restricting our attention to merely syntactic memoisation, we further restrict the

morphisms in D to those that do not perform any relabelling but can, at most, identify

some nodes from the source graph with identical labels. Thus, the morphisms are in

fact Alg(Σ)-compatible. Let us denote this class of computation algebras by (A,D◦(Σ)).

Since D◦(Σ)-morphisms do not perform any relabelling whatsoever, in this class, any pair

h ∈Mor(D◦(Σ)) and g ∈Mor(A) will give rise to an (A,D◦(Σ))-computation morphism.

Since Mor(D◦(Σ)) ⊂Mor(DD(A)), we can trivially repeat the constructions from Propo-

sitions 4.5 and 4.6 to see that ~( ) : (A,D◦(Σ))op → D◦(Σ) is a bifibration.

The class (A,D◦(Σ)), although theoretically perhaps not the most fascinating one,

deserves to be mentioned because it has been used in practical applications and underlies

the design of the specification formalism Sapphire (Čyras and Haveraaen 1995; Haveraaen

and Søreide 1998) (see Section 3).

4.3. Two more facts about CAlg(A,D)

The following two facts show further properties of CAlg(A,D) that can be relevant in the

development process. The one in Section 4.3.1 allows us to treat refinement along the

algebra- and communication-part relatively independently from each other. This indicates

the possibility that once developed, chains of refinements of, say, dependency structures,

could be reused in new contexts by coupling them with new actual algebras. The second,

in Section 4.3.2, gives (some) conditions for the existence of initial computation algebras

relative to the exisitence of initial objects in A and D.

4.3.1. CAlg(A,D) as a double category A morphism between computation algebras con-

sists of a pair of one standard algebra-morphism and one dependency-morphism (with

additional compatibility criterion, Definition 2.13). Yet, the coupling of the two is loose

enough to allow us to separate them in a development process. More precisely, any

morphism in CAlg(A,D) can be seen as applying an algebra morphism and then a depen-

dency morphism (or vice versa). In a sense, CAlg(A,D) ‘consists of’ two categories: the

‘horizontal’ one being A and the ‘vertical’ one D.
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Expressing this relative independence categorically, we can show that computation

algebras form a double category with horizontal and vertical arrows, respectively, of the

form 〈h̄, id〉 and 〈id,~h〉 (and cells being the commuting squares
A //

h

��v
B

�� u
C //g

D

, where h, g are

horizontal and u, v vertical arrows).

We will not spell out the details of this construction, which is rather straightforward

(for double categories, the reader may consult Ehresmann (1963) and Mac Lane (1971)).

We only show the simple proposition illustrating that any morphism in CAlg(A,D) can

be seen as consisting of two, relatively independent steps: one mapping the algebra-part

and another mapping the communication-part. The nice implication of this is that we

can work relatively independently with the algebra- and the communication-part of the

objects in CAlg(A,D).

Proposition 4.8. Each morphism h : C → D in CAlg(A,D) can be factored so that

1 h = 〈h̄, id~C〉; 〈idD̄,~h〉,
2 h = 〈idC̄ ,~h〉; 〈h̄, id~D〉.

Proof. The following diagram details the first case:

~C
'& %$
 ! "#evC

��

~D
'& %$
 ! "#

oo ~h

evD

��

�� ~h��������������

C̄

��

h̄

33333333333333
h̄ // D̄

~C
'& %$
 ! "#ev

��

YY

id~C

33333333333333

D̄

EE

idD̄

��������������

The intermediary computation algebra is as shown in the figure with ev = evC; h̄.

This makes 〈h̄, id~C〉 a computation homomorphism 〈C̄, ~C, evC〉 → 〈D̄, ~C, ev〉. Also, since

h is a computation homomorphism, we have for all i ∈ I
~D : h̄(evC(~h(i))) = evD(i),

that is, ev(~h(i)) = evD(i), which means that 〈idD̄,~h〉 is a computation homomorphism

〈D̄, ~C, ev〉 → 〈D̄, ~D, evD〉. The second case is entirely analogous with the intermediary

algebra being 〈C̄, ~D,~h; evC〉.

4.3.2. Initial objects Define functor
←−
( ) : CAlg(A,D) → Dop analogously to ~( ) in (3), that

is,
←−
A = ~A and

←−−−〈f, g〉 = g (the communication part g of a morphism 〈h, g〉 in CAlg(A,D)

is contravariant to the whole morphism). We then have the following general fact.

Proposition 4.9. If A has an initial object TA, then the functor F : Dop → CAlg(A,D)

defined by F(C) = 〈TA,C〉 and F(g) = 〈idTA
, g〉 is left adjoint to

←−
( ), F a ←−( ), with identity

as unit.
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Ā //h̄
B̄ oo ḡ

C̄

f(s) f(s)tf(t) f(t)

s

OO
OO

oo ~h
stt

OO
OO

//~g
t

OO
OO

s

EE

EE






t

YY
YY

4444

s

AA

AA
����

t

]]

]]

;;;;

s

EE
EE

����
t

YY
YY

4444

Fig. 17.

Thus, if Dop has an initial object, so does CAlg(A,D). However, in general, this will not

be the case since interesting subcategories of DD(Σ) do not have terminal objects (Dop do

not have initial objects). In particular, Ø is initial in Gr and in DD(Σ), but there are no

terminal objects there. (If ZA is terminal in A, then 〈ZA,Ø〉 is terminal in CAlg(A,DD(Σ)).)

We do not focus on the notion of initiality and the relevance of the empty communi-

cation part is probably limited to the fact that it allows us to treat standard algebras as

computation algebras with an empty dependency.

Nevertheless, the proposition gives us useful information in a slightly more restricted

context. Typically, the initial object in a model class A of a specification is obtained as (or

from) a term model. Then, given a particular (non-empty) dependency, the proposition

provides an ‘initial’ evaluation strategy over such a term model.

5. Non-determinism

Since parallelism and distributed programs often are a source of non-determinism, we

suggest here how this phenomenon can be incorporated into the present framework.

There are at least two ways to do it. The first, given in Section 5.1, utilizes the notion

of multialgebras, which are designed for incorporating non-determinism into algebraic

specification as an abstraction mechanism (Hußmann 1993; Walicki and Meldal 1994;

Walicki and Meldal 1997). The second, given in Section 5.2, is biased towards the

operational view, according to which non-determinism is something that arises only

during the actual computations.

5.1. The multialgebraic view

Revisiting the definition of computation algebras (Definition 2.12) and the subsequent

constructions, one can observe that we have not made any significant assumptions about

the underlying category of Σ-algebras. The only essential requirement was that ev-function

assigns values from an algebra to each node of the dependency in a way respecting the

labelling of the node. In fact, instead of the usual Σ-algebras, we can work with a different

category for Alg(Σ).

For modelling non-determinism, a natural choice is (some) category of multialgebras

with multihomomorphisms (Walicki and Bia lasik 1997). A multialgebra is an algebra
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where operations applied to single arguments may return sets of elements, which corre-

spond to the possible results of a nondeterministic operation. Composition of operations

is defined pointwise. A (ground) term is interpreted in a multialgebra as the set (of its

possible results). The notion of a homomorphism h : A→ B may be generalized in various

ways (Walicki and Bia lasik (1997) surveys the possibilities), but the most common method

replaces the usual homomorphism condition by the requirement h(f(x)A) ⊆ fB(h(x)), for

each function symbol f ∈ Σ. There is also a choice of the primitive operations for writing

specifications. The most common approaches use a primitive predicate, s≺ t (interpreted

in an algebra A as set inclusion sA ⊆ tA, that is, as t being at least as nondeterministic as

s), and/or the nondeterministic binary choice t : S × S → S , for some/every sort S .

We do not discuss the specification languages here, and in the examples to follow we will

use the above, most common, definition of multihomomorphism.

The change of the category of algebras is the only modification needed. The computation

homomorphism h (with h̄ being a multihomomorphism) allows us, for instance, to refine

an algebra B to a more deterministic algebra A as illustrated in Figure 17. All operations

except t are deterministic.~h may relabel st t to s because both terms have the same sort

and, furthermore, because Ā is more deterministic than B̄: for i ∈ IB with lab(i) = s t t,
we have that h̄(evA(~h(i))) = h̄(sA) = sB ⊆ sB ∪ tB = (s t t)B = evB(i), that is, h̄ is a

multihomomorphism.

5.2. The operational view

One source of non-determinism is purely operational – the differences in relative speed

of various processors on various machines being unpredictable. A paradigmatic example

of this is a processor P waiting for an input from one of several other processors. P

processes the data that arrives first – without discriminating against any of the sources –

and discards any later arrivals. The dependency

stt
s

====
t

aa aa

from Figure 17 can be read as expressing just that: the value at the topmost node

depends on the values at the other two nodes – it will simply be the one arriving first.

Multialgebras provide an abstract model for this kind of phenomenon. We will now sketch

a more detailed, low-level way of including them in the computation algebra framework.

The computation related information for a computation algebra A = 〈Ā,~A〉 is repre-

sented by its communication part. Thus we may retain the standard notion of algebra Ā

and try to model non-determinism in ~A. We simply allow for labelling the nodes of ~A by

sets of terms, rather than unique terms. The set labelling a node represents the possible val-

ues computed at the node. The source of the evaluation function evA is then a set of pairs

〈i, t〉 where i is some node and t one of the terms labelling i :
⋃
i∈I ~Gr(A){〈i, t〉 : t ∈ labA(i)}.

The nodes act as oracles – in an actual computation each of them will produce a unique

value. But this value is not known in advance, so the labelling merely indicates the range

of possibilities.
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A B C

f(s) {f(s),f(t)} f(t)
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s
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BB

���
t

\\
\\

888

s
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==

{{{
t

aa
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CC

���
t
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[[

888

Fig. 18.

Definition 5.1. nDD(Σ) is the category where (Γ is as in Definition 2.1):

1 Objects are Σ n-data dependencies – pairs G = 〈G, lab〉 where G ∈ Obj(Gr) is a simple

DAG and lab : IG → P+(TΣ) is a function labelling each node of this graph with a non-

empty set of ground Σ-terms of the same sort, that is, ∀i ∀s, t ∈ lab(i) : Sort(s) = Sort(t) .

2 An nDD(Σ)-morphism h : B→ A is a pair 〈~h, hlab〉 where

— ~h is a (sort compatible) Gr-morphism ~h : Gr(B)→ Gr(A),

— hlab is a family {hi : labA(~h(i))→ labB(i)}i∈IB .

Sort compatibility means that the morphisms have to respect the sorting of labels: if

labels of i are of sort S , then the labels of ~h(i) must be as well. The hlab mapping (which

we can treat as a partial function IA ×TΣ →TΣ with the domain given by all the pairs

〈~h(i), t〉 for all i ∈ IB with t ∈ labA(~h(i)) picks the subset of labels of labB(i) that is the

pre-image of the label set labA(~h(i)). For instance, in Figure 18, B is a dependency for

nondeterministic choice between s and t, which is then propagated as the argument to the

function f. (The relabelling is merely a restriction and hlab is the obvious inclusion.)

The node i in B with the label {s, t} may compute s or t. Similarly, the topmost node j

may compute f(s) or f(t). The dependency i� j says that when i computes one of s or

t, j will compute one of f(s) or f(t). A possible deterministic refinement of B that always

chooses s and computes only f(s) is given in A with the morphism h.

Observe, however, that the definitions of an n-dependency and an nDD(Σ)-morphism

do not take into account the possible semantic information about how the computation at

j depends on the result delivered by i. In principle, it admits situations like C, where we

obtain s� f(t). The morphism only captures the preservation of dependencies (in terms of

the underlying graphs) and the non-increasing non-determinism. That the computation of

f(t) at j may result only if the node below produces t is the kind of semantic information

– how the computation at j depends on the input from i – that might (should) be

incorporated into the specification of dependencies. In short, if the dependency s� f(t)

in C is not of the intended kind, it should be prohibited by the specification (this topic is

to be explored more fully in a future paper).

Definition 5.2. Given A ⊆ Alg(Σ) and D ⊆ nDD(Σ); an (A,D) n-computation algebra C is

〈C̄, ~C, evC〉 where

1 ~C ∈ Obj(D) ;

2 C̄ ∈ Obj(A) ;

3 evC : ~C ×TΣ → C̄ is a (partial) function such that ∀t ∈ lab~C(i) : evC(i, t) = tC̄ .

As for computation algebras, ev is uniquely determined by C̄ and the labelling of ~C .
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~C ×TΣ

'& %$ ! "#evC //

��

hlab

C̄

��

h̄

C

��

h

~D ×TΣ

OO

~h'& %$ ! "#evD // D̄ D

Fig. 19. An n-computation homomorphism.

Definition 5.3. An (A,D) n-computation homomorphism h : C → D is 〈h̄, 〈~h, hlab〉〉 where

1 h̄ : C̄ → D̄ ∈Mor(A) ;

2 〈~h, hlab〉 : ~D → ~C ∈Mor(D), and

3 for each i ∈ I ~Gr(D) and t ∈ labC(~h(i)), we have h̄(evC(~h(i), t)) = evD(i, hlab(~h(i), t)).

The last condition (illustrated in Figure 19) is a generalization of the commutativity con-

dition for the computation homomorphisms from the Definition 2.13. In the deterministic

case, the two coincide, since then hlab is uniquely determined by ~h.

The category nCAlg(A,D) has (A,D) n-computation algebras as objects and (A,D) n-

computation homomorphisms as morphisms. Distributions of nCAlg(A,D) are defined as

before (Definition 2.19), and so are the projection functors ~( ) and Arch. Proposition 2.26

generalizes trivially to the nondeterministic context by an entirely analogous proof using

the construction (6). Modifying the first point of Definition 4.3 to the requirement

∀i ∈ IGr(C), t ∈ labD(~h(i)) : tA = (hlab(~h(i), t))
A, we may define the class nCAlg(A, nDD(A)) of

n-algebras with compatible dependency morphisms. Lemma 4.5 then generalizes equally

easily to this class by a construction analogous to (16). We therefore do not give it

explicitly here but only emphasize that the earlier results remain valid when we put n-’s

at all relevant places.

6. Conclusions and further work

We have introduced a general notion of computation algebras that extends the standard

algebraic semantics with additional structures, data dependencies, carrying information

concerning the evaluation strategy. The dependency morphisms can be used to design

more efficient implementations, in particular, by syntactic memoisation. The combination

of dependencies with actual algebras and the notion of computation homomorphisms

allows us to perform semantic memoisation as well.

The explicit information about the computation structure opens up the possibility

of constructing parallel implementations from algebraic specifications. Dependency and

distribution morphisms express, respectively, two aspects of parallelization: (a) the logical

dependency decomposition, and (b) partitioning and routing on a physical medium. We

have shown how indexing computation algebras with machine architectures yields a

fibration. Its explicitly defined cleavage provides a way of porting distributions between

various (parallel) architectures.

The general framework admits the definition of various subclasses of computation

algebras. One such class – the algebras, CAlg(A,DD(A)), with compatible dependency

morphisms – has been singled out and studied in more detail.
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Extending algebra(s) with the computation and control information resembles the

otherwise widely studied attempts of adding such an information to term rewriting

systems (Clavel et al. 1996; Borovansky et al. 1998a; Borovansky et al. 1998b; Clavel et

al. 1999; Visser 1999). In this respect, the main difference is that we are not considering

executable specifications (like term rewriting systems) and their efficiency or capabilities

for modelling computations, but efficiency of an actual implementation of a (low level,

detailed) specification. In particular, dependencies can be adjusted to actual (parallel)

machine architectures, which are included as a part of the overall picture in our model of

development process.

In Section 3 we suggested a method allowing one to construct data dependency from

a given specification of a recursive function to be computed in a given algebra. A special

case of this method, combined with a subcategory (A,D◦(Σ)) of computation algebras (cf.

Section 4.2.2) and embedded in the programming language Sapphire, has been worked

out in more detail and used in practical applications for parallelization of programs

(Haveraaen 1993; Čyras and Haveraaen 1995; Haveraaen and Søreide 1998; Haveraaen

2001). This construction of efficient data dependencies for recursive functions leads to

the consideration of efficient implementations of functional programming languages, in

particular, to basing such implementations on the semantic (µ-recursive), rather then

syntactic (substitution oriented) computational model. This, however, is an open question

for future research that falls outside the scope of the present paper.

Open issues

Computation algebras offer a mathematical framework for modelling efficient implemen-

tation of algebras. Application of this framework to actual architectures and (parallel)

programming languages is the main topic deserving further study. We mention here three

issues of more detailed character.

1 Space-time representation does not capture all aspects of parallel architectures For

instance, the simulation m of a 2-dimensional vector on a 3-processor ring from

Figure 7 (c) assumes that multiple data can be sent along the channels. (The third

node in the rightmost column in Figure 7 (c) receives two pieces of data that both

have to be passed to the node above it.) In general, this may be precluded on machines

where sending multiple data requires several computation steps. Thus actual simulation

morphisms have to respect such additional restrictions.

Similar issues concern the kind of allowed communications. Figure 20 (b) shows

identical space-time representations of two different architectures: B – with broadcast,

and S with stepwise communication (that is, a processor can communicate only along

one channel at a time). The distribution (c) of D on B is not meaningful on S , which

can be achieved in two steps as illustrated in (d).

Distribution morphisms can distinguish between these situations but since this infor-

mation is not part of the st-representation, this is something that has to be done when

designing actual morphisms. One should verify that space-time graphs, together with

the simulation and distribution morphisms, offer sufficient representational power.

2 Portability vs. Efficiency Another issue concerns the efficiency of the ported imple-
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Fig. 20. a) Data dependency D, b) space-time representation of a broadcast, B, and a

stepwise, S , architecture, c) distribution of D on B, and d) on S .

mentations (distributions). For instance, the implementation achieved in Figure 9 (c)

as the result of porting an implementation from a vector to a ring, is certainly not the

most efficient one. There is, for instance, the unnecessary step from (Z3, 1) – holding

F(1) – to (Z3, 2). This delay occured because we have used a generic simulation m of

W by Z (from Figure 7 (c), that is, one that allows us to port any implementation from

W to Z . Even if such a simulation is generically optimal (that is, uses minimum time

on the target architecture for all possible simulations from the source architecture), for

a particular case it may be possible to find a more efficient mapping. However, though

efficiency of computation is always a concern, general portability and re-usability of

software is at least equally important. What we have proposed is a sound methodol-

ogy that guarantees correctness preservation of an implementation that is ported from

one platform to another. We expect that the possible loss in computational efficiency

will, hopefully, be richly compensated for by increased engineering efficiency . And,

having successfully ported an implementation, there is nothing precluding some final

optimization in order to achieve a more efficient product.

3 Code generation The most important issue concerns generation of actual code. It is

not at all obvious that the communication dependencies and the data dependencies

should have the same or similar interpretation in terms of evaluation strategies. We

may imagine that the hardware dependency i� j reflects the fact that j has to wait

for a piece of data from i – once it is produced and received, j begins its computation.

But we may also imagine a different scenario in which j ignores the input from i and

simply evaluates whatever it is supposed to as soon as it has sufficient information

to do so (that is, a non-strict interpretation of the dependency that is determined

at run-time). A unifying view is to think of the nodes (in a dependency) as ‘active

agents’ who make their local decisions as to how to treat the incoming information.

Then the presence of an edge identifies a potential dependency. As a particularly

interesting case, if we admit non-determinism in computations, it may turn out that

the dependencies are introduced exactly in order to allow non-strict evaluations where

the relative speed of processing and communication determines which dependencies

are realized. The resulting implementation may turn out to be more time-efficient,

allowing simultaneous computation of possible inputs.

Although not sufficiently detailed, our notion of distribution (Definition 2.19) does
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capture several aspects of parallelization. First, different ‘columns’ in the st-graph (the

sets of nodes {〈s, t〉 : t ∈ IN} for different s) of a given architecture will represent

different processors and so a distribution mapping amounts to partitioning of the code

onto these processors. Furthermore, the links between different components (‘columns’)

of the partition correspond to possible communications between processors. Mapping

a particular edge of a data dependency onto a path in a space-time graph then amounts

to a particular choice of routing. (This is why we want to work with the path, and not

transitive closures of graphs.) Finally, distribution morphisms represent (part of) the

generation of the actual code, which consists of two parts: the communication part and

the computation part. The shapes of dependencies serve as the source only of the first

part, which is related to the communication structure, while their labelling indicates

distribution of the actual code. i � j could correspond to the following commands

being executed at i and j, respectively: ‘i : compute X; send to j;’, and ‘j : wait for

i; compute Y;’, where X,Y are the pieces of code resulting from the labelling of i

and j. (The directions of sending/receiving will often be identified not by the (name

of) another processor but by the local (name of a) channel. This is another specific

distinction, depending on the actual machine and programming language, which we

have not addressed at all.)

Our model comprises only the abstract notion, not such a concrete view of im-

plementation. Code generation for a special class of computation algebras specified

equationally with the explicit specification of the dependency structures was studied

in connection with the Sapphire methodology for development of parallel programs,

(Haveraaen 1993; Haveraaen and Søreide 1998).

Other questions for further research

— Although we have not discussed any specification formalism, it should be obvious

that all the aspects of our setting are amenable to a description using algebraic

techniques. In particular, data dependencies, architectures, and morphisms between

them are standard algebraic objects. Future research should integrate the description

of data dependencies into an actual specification framework.

— An interesting alternative would be to investigate the possibilities of extracting data

dependencies from a given algebraic specification. Section 3 opens a way in this direc-

tion. Open questions concern, in particular, the syntactic conditions on the recursive

definitions such as (7) that would ensure well-definedness of the resulting function in

specific algebras. General construction of graphs and labellings from specifications is

a broader issue worth closer investigation.

— A variety of dependency and, especially, simulation morphisms between existing archi-

tectures could be defined and stored for future use in concrete applications. It would

be desirable to develop such a library and the tools for its use.

— We have indicated how the operational and multialgebraic notions of non-determinism

may be included into the framework. However, the role of non-determinism will be

explored further.

— We would like to make a closer study of the notion of dependency refinement and its
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possible use for the development of algorithms. It is possible that the techniques of

graph transformation might be relevant for this purpose.
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