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Flow past a cylinder in the presence of side walls is investigated numerically for various
combinations of Reynolds numbers (50 � Re � 100) and aspect ratio (5 � AR � 90).
Various attributes such as cellular shedding, dislocations, oblique angle of vortices and
their structure near the end wall are studied. The complexity of the transitions in the wake,
with Re, increases with increase in AR. The flow is associated with a single cell wake
for AR = 20, at all the Re considered. For AR = 90 the flow transitions from a one-cell
to two-cell wake at Re ∼ 50, to a four-cell structure at Re ∼ 55 to a three-cell wake at
Re ∼ 58, and then to a two-cell wake at Re ∼ 61. The vortices near the end wall diffuse
for Re � 58 whereas linkages form between adjacent vortices of opposite polarity at larger
Re. The frequency of dislocations increases with increase in Re. Two types of dislocations
have been identified: the fork type at relatively low Re and connected fork type at larger
Re. Linkages between vortices in connected fork-type dislocations may lead to ring-like
structures. The end conditions and nonlinear mechanisms play a significant role in the
evolution of cellular shedding. A single cell across the span is the dominant mode of
shedding in the linear regime. Compared with the linear analysis, nonlinearities result
in smaller oblique angles, higher shedding frequency and larger streamwise speed of the
convection of vortices.

Key words: vortex streets, wakes, vortex shedding

1. Introduction

Flow past bluff bodies is associated with rich flow physics and enjoys great significance
in engineering applications. It has received the attention of several researchers leading
to several experimental and numerical studies over the years. The review article by
Williamson (1996) provides a comprehensive insight into the wake dynamics of flow past a
cylinder. The flow stays attached to the cylinder for low Reynolds number (Re). It separates

† Email address for correspondence: smittal@iitk.ac.in

© The Author(s), 2021. Published by Cambridge University Press 915 A74-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

mailto:smittal@iitk.ac.in
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2021.82&domain=pdf
https://doi.org/10.1017/jfm.2021.82


S. Mittal, J.S.S. Pandi and M. Hore

at the base point of the cylinder at Re ≈ 6.3 (Sen, Mittal & Biswas 2009). The separation
point moves upstream, towards the shoulder, with increasing Re. Wake instability sets in
via a Hopf bifurcation at Re ≈ 47 (Kumar & Mittal 2006; Chopra & Mittal 2019), and
leads to von Kármán vortex shedding. Three-dimensional instabilities appear in the wake
beyond Re ∼ 180 (Karniadakis & Triantafyllou 1992; Behara & Mittal 2010a).

For a nominally two-dimensional cylinder, the shed vortices can either be parallel
or oblique to its axis. It has been observed in laboratory experiments that the shed
vortices are usually inclined to the cylinder axis (Berger & Wille 1972; Slaouti & Gerrard
1981; Williamson 1989) owing to the end conditions. The angle of the vortices can
be manipulated by suitably varying the end conditions of the cylinder (Ramberg 1983;
Eisenlohr & Eckelmann 1989; Williamson 1989; Hammache & Gharib 1991).

The unsteady wake is associated with a cellular structure along the span. The vortex
shedding frequency is uniform within a cell and changes from one cell to the other. As
a result, vortex dislocations form at the junction of two cells. An important parameter,
that affects the cellular structure of the wake, is the aspect ratio (AR) of the cylinder. It is
defined as the ratio of its span length (L) to its diameter (D), i.e. AR = L/D. Gaster (1971)
observed jumps in the vortex shedding frequency from hot-wire measurements along the
span of a long cylinder (AR ≈ 290), indicating presence of a number of cells. Gerich &
Eckelmann (1982) reported two vortex shedding frequencies along the span of cylinders
with AR in the range of 70–280 and Re lying between 50 and 150. For cylinders with span
of 20–30D, however, the vortex shedding frequency was observed to be constant along the
span, indicating that there is only one cell. Williamson (1989) carried out experiments with
cylinders of various AR. The vortex shedding frequency was measured along the span. It
was found that three cells exist along the span for Re < 64, whereas there is a two-cell
wake structure for Re > 64. In all cases, the vortex shedding was found to be oblique. It
was also reported that although the two-cell structure is periodic, the three-cell structure
is quasi-periodic. Similar to the observations of Gerich & Eckelmann (1982), a single cell
was found for cylinders of AR < 28 at Re = 101. König, Eisenlohr & Eckelmann (1990)
studied cylinders with AR varying between 56 and 560. They observed that different
numbers of spanwise cells could exist in the wake depending on the AR, Re and the
end conditions. In line with the observations of Williamson (1989) it was found that for
cylinders bounded by end plates, two or three cells can form along the span depending on
the Re. Up to four different cells could be identified when the cylinder terminated at the
wall of the wind tunnel.

Gerrard (1978) observed ‘knots’ between vortices of adjacent cells. Earlier, Tritton
(1959) had also observed similar phenomenon in the flow visualization experiments in
a water tunnel. The knots were found to appear only when the number of vortices in the
adjacent cells did not match. Eisenlohr & Eckelmann (1989) and König et al. (1990) also
identified similar structures in the wake and referred to them as vortex splitting. Vortex
splittings were observed when there was a mismatch of vortex axes between adjacent cells.
Williamson (1989) referred to these structures as vortex dislocations. They appear at the
boundaries of adjacent cells and during those periods when the vortices in these cells
move out of phase with each other. The frequency of their appearance is related to the
beat frequency in the time history of the signal near the cell junction. Tian et al. (2017)
conducted a numerical study to investigate the vortex dislocations in the flow past a stepped
cylinder with the ratio of larger to smaller diameter being 2. The Re, based on the diameter
of larger cylinder, is 150. Slip condition on velocity was used at the end walls. Three types
of spanwise vortices, namely S, N and L cells, were identified using the vortex shedding
frequency estimated from the velocity sampled at various spanwise location. Two types
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of vortex loops, arising from the dislocation process, were identified: fake loop between
N- and L-cell vortices and false loop between two N-cell vortices. Although both have
ring-like structure, they have different connection topology.

The shedding frequency and oblique angle (θ ) of the vortices are related to the end
conditions (Eisenlohr & Eckelmann 1989; Hammache & Gharib 1989; Williamson 1989).
The angle between the axis of the vortices in the wake and that of the cylinder is termed
as the oblique angle. It is zero for parallel shedding. König et al. (1990) reported that
the vortex shedding frequency decreases from the mid-span to the cylinder ends. It is
10–15 % less at the ends compared with the rest of the span (Gerich & Eckelmann 1982).
Williamson (1988) proposed a cosine relation between the shedding frequency and the
oblique angle of shed vortices. Such a relation suggests that the angle of shed vortices is
highest in the end cell and decreases towards the mid-span. This is indeed confirmed from
the flow visualization by König, Eisenlohr & Eckelmann (1992). Behara & Mittal (2010b)
noted that, for certain combination of Re and AR, both the vortex shedding frequency and
the oblique angle of the shed vortices vary with time. It was shown that the length of the
side wall upstream to the cylinder and Re modify the boundary layer thickness at the side
wall and affect the angle of vortices. They also showed that the unsteady frequency and
angle of vortices continue to follow the cosine rule proposed by Williamson (1988).

Following the observation of variation of shedding along the span, it was demonstrated
(e.g. Eisenlohr & Eckelmann 1989; Williamson 1989; Albarède & Monkewitz 1992;
Leweke et al. 1997) that manipulation of end conditions can be used to control and
investigate the variations of angle, phase, frequency and amplitude of oscillations along
the span. Williamson (1989) noted that the effect of end conditions is not just local. Rather,
it affects the flow over the entire span of the cylinder by imposing an angle to the vortices
shed across its span. The oblique shedding becomes unstable once the angle of the shed
vortices exceeds a certain critical value and the flow over the span desynchronizes with the
end conditions. As a consequence, the vortices break into cells. Transverse stability theory
has been used to explain the phenomena of oblique shedding and spanwise cells in the
wake (Albarède & Monkewitz 1992; Leweke et al. 1997). Albarède & Monkewitz (1992)
demonstrated that increased Reynolds number at the wall, beyond the free stream, causes
the vortices to align parallel to the axis of the cylinder. Albarède & Monkewitz (1992)
also suggested that parallel shedding can be achieved in a gaseous medium by cooling
the side wall. Eisenlohr & Eckelmann (1989) proposed another control technique wherein
cylinders of slightly larger diameter, then the main cylinder, are mounted on either side
of the end plates. Parallel shedding commences when the diameter of the end cylinder is
1.8–2.2 times that of the main cylinder. Stability analysis conducted on wakes of rings
with low curvature confirm appearance of cellular structures beyond a certain critical
angle of the shed vortices (Leweke, Provansal & Boyer 1993; Leweke & Provansal 1995).
Leweke et al. (1997) conducted stability analysis of flow past cylinders of finite length.
They suggested that cells are a consequence of successive spatial destabilization of oblique
shedding patterns initiated at the ends by Eckhaus instability.

Studies carried out in the past, and briefly described previously, show that the flow
past a cylinder is very significantly affected by its aspect ratio, end conditions and
Reynolds number. The objective of the present work is to study the effect of the AR
and Re on the flow. The end conditions are held to be same for all the cases studied.
In particular, the cellular structure of the wake and associated vortex dislocations and the
interaction of the oblique vortices with the boundary layer on the end wall is studied.
Direct numerical simulations are carried out for 5 � AR � 90 and 50 � Re � 95.
A stabilized finite element formulation based on streamline-upwind/Petrov–Galerkin
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(SUPG) and pressure-stabilizing/Petrov–Galerkin (PSPG) stabilizing techniques (Tezduyar
et al. 1992) is utilized to solve the Navier–Stokes equations for an incompressible flow.
It has been shown earlier (e.g. Behara & Mittal 2010b) that the oblique shedding angle
depends on the boundary layer thickness (δ) of the incoming flow at the cylinder ends. To
this extent, the length of the side wall upstream of the cylinder, for each simulation in the
present study, is prescribed so that δ is the same for all cases. A broad classification of
the flows in various regimes in the AR–Re plane is proposed based on the number of cells,
nature and angle of oblique vortices, nature of dislocations and end cell structure.

To explore the reason for the appearance of different number of cells for various
combinations of AR and Re, global linear stability analysis of the flow equations (Theofilis
2011) is carried out. Linear stability analysis has been successfully applied in the past to
understand instabilities in several flows. For example, it has been used to determine the
unstable modes of flow as well as the critical Re for the onset of the instability of the wake
of a circular cylinder (Jackson 1987; Barkley & Henderson 1996; Ding & Kawahara 1998;
Mittal & Kumar 2003; Kumar et al. 2009). In the present work, global linear stability
analysis of the steady flow is conducted for two sets of disturbances. In the first case, the
disturbance is assumed to be periodic along the span. Such an analysis is often referred
to as a biglobal linear stability analysis (Theofilis 2011; Mittal, Sidharth & Verma 2014;
Mittal & Dwivedi 2017). This is followed up with the analysis for a general disturbance
field: the triglobal linear stability analysis (Theofilis 2011). The time evolution of the flow
initiated from the steady flow superimposed with the unstable eigenmodes, from the linear
stability analysis, is carried out to further understand the role of nonlinear effects in the
formation of cells along the span of the cylinder.

2. The governing equations and their finite element formulation

2.1. The incompressible flow equations
Let Ω ⊂ R

nsd and (0, T) be the spatial and temporal domains, respectively, where nsd is
the number of space dimensions and let Γ denote the boundary of Ω . The spatial and
temporal coordinates are denoted by x and t. The equations that govern the incompressible
flow of fluid are

ρ

(
∂u
∂t

+ u · ∇u
)

− ∇ · σ = 0 on Ω × (0, T) , (2.1)

∇ · u = 0 on Ω × (0, T) . (2.2)

Here ρ, u and σ are the density, velocity and stress tensor, respectively. For a Newtonian
fluid, the stress tensor is

σ = −pI + T , T = 2με (u) , ε (u) = 1
2 [(∇u) + (∇u)T], (2.3a–c)

where p, I and μ are the pressure, identity tensor and dynamic viscosity, respectively. The
associated boundary conditions used for solving (2.1) and (2.2) are described in § 3.2. The
initial condition for the simulation of each case of AR and Re is the corresponding steady
flow. It is computed by simply dropping the unsteady term from (2.1). We denote the steady
flow by (U, P), where U is the velocity and P is the pressure field.

A stabilized finite element formulation is utilized to solve the governing flow equations
in the primitive variable form. The details of the formulation can be found in our earlier
work (Mittal 2000, 2001; Behara & Mittal 2009). The terms that provide numerical
stabilization to the computations are based on the SUPG and PSPG stabilizing techniques
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(Tezduyar et al. 1992). The finite element discretization results in nonlinear equations
which are solved using the generalized minimal residual (GMRES) technique (Saad &
Schultz 1986) in conjunction with diagonal preconditioners.

2.2. The linear stability flow equations
The unsteady flow, (u, p), is expressed as a combination of the steady flow (U, P) and
disturbance (u′, p′): u = U + u′ and p = P + p′. Here u′ and p′ are the disturbance fields
of the velocity and pressure, respectively. For small disturbance, the linearized equations
for the time evolution of the disturbance fields are

ρ

(
∂u′

∂t
+ u′ · ∇U + U · ∇u′

)
− ∇ · σ ′ = 0 on Ω × (0, T) , (2.4)

∇ · u′ = 0 on Ω × (0, T) . (2.5)

Here σ ′ is the stress tensor for the disturbance field (u′, p′). More details on these equations
can be found in the article by Mittal et al. (2014). Two sets of disturbances are considered.
In the first case, the disturbance is assumed to be periodic along the span. Let λz denote the
spanwise wavelength of the disturbance. The corresponding wavenumber is β (=2π/λz).
No assumption is made on the spatial distribution of the disturbance in the xy plane.
However, it is assumed to be associated with a global temporal frequency as well as a
rate of growth/decay that is spatially invariant. Such a disturbance is represented as

u′ (x, y, z, t) = û (x, y) eiβz eλt, p′ (x, y, z, t) = p̂ (x, y) eiβz eλt. (2.6a,b)

The analysis with a disturbance of this form is often referred to as a biglobal linear stability
analysis (Theofilis 2011; Mittal et al. 2014; Mittal & Dwivedi 2017). It is repeated for
several values of β to determine the mode with the largest growth rate.

Linear stability analysis is also carried out for a more general disturbance that does not
assume periodicity along the span. However, the global nature of the time frequency and
rate of growth/decay, that are spatially invariant, is retained. This constitutes the second
form of the disturbance being considered and can be represented as

u′ (x, y, z, t) = û (x, y, z) eλt, p′ (x, y, z, t) = p̂ (x, y, z) eλt. (2.7a,b)

The analysis for this general disturbance field is referred to as the triglobal linear stability
analysis (Theofilis 2011). It is more expensive than the biglobal analysis. In both analyses,
λ is the eigenvalue of the fluid system and governs the stability of the base flow, (U, P).
In general, λ is complex and can be represented as λ = λr + iλi where λr and λi are the
real and imaginary parts, respectively. Here λi represents the oscillation frequency of the
corresponding mode of perturbation whereas λr represents the growth rate; a positive λr
leads to instability.

The finite element formulation to carry out a biglobal linear stability analysis can be
found in our earlier work (Mittal & Kumar 2003; Mittal et al. 2014; Mittal & Dwivedi
2017). Mittal & Kumar (2003) presented the formulation as well as the analysis in
two dimensions. These formulations have been used in our earlier studies to investigate
the circular Couette flow (Mittal et al. 2014) and flow past stationary and rotating
circular cylinders (Mittal & Kumar 2003; Kumar & Mittal 2006; Kumar et al. 2009;
Mittal et al. 2014). The extension to three dimensions, for the triglobal linear stability
analysis, is a straightforward generalization.
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The finite element formulation for the global linear stability analysis leads to a
generalized eigenvalue problem of the form AX − λBX = 0, where A and B are
non-symmetric matrices. Various algorithms have been developed in the past to solve such
eigenvalue problems with large sparse non-symmetric matrices (Wilkinson 1965; Stewart
1976; Meyer 1987). The matrix B, in the present case, is singular owing to the nature of the
continuity equation that is used to determine pressure. This is circumvented by solving for
the inverse problem, i.e. eigenvalues for BX − (1/λ)AX = 0 are computed. To check the
stability of the steady-state solution, we locate the rightmost eigenvalue (eigenvalue with
largest real part) using the subspace iteration method (Stewart 1975).

3. Problem description

3.1. Computational domain
A schematic of the problem set-up and the computational domain is shown in figure 1. A
cylinder, of diameter D, is placed in a rectangular computational domain whose upstream
and downstream boundaries are located at a distance of Lu and Ld, respectively, from the
centre of the cylinder. The height of the domain is H. The cylinder occupies the entire
span, Lz, of the domain. To reduce the requirement of computational resources we take
advantage of the geometric symmetry and simulate only one half of the span. The solution
from half the span is reflected along the mid-span to generate the flow for the entire span
and computations, for a few cases, are continued with the full span. It is found that in most
cases the symmetry of the flow about the mid-span is retained. The flow loses symmetry
for some of the cases corresponding to two and four cells in half the span. Details of
these computations are presented later in the paper. We recall that the aspect ratio of the
cylinder is defined as AR = L/D. The span of the computational domain, Lz, is L/2. The
face PTWS is the plane of symmetry, whereas the face QUVR is the ‘end wall’. A section of
this plane is utilized to model the effect of ‘end plates’. The ‘side wall’ that simulates this
effect is highlighted in figure 1 via shading. The free-stream velocity is along the x-axis,
whereas the axis of the cylinder is along the z-axis. The origin of the coordinate system
coincides with the centre of the cylinder at the face QUVR. The effect of the location of
upstream and downstream boundaries and the height of the domain has been studied in
detail in an earlier work by Prasanth & Mittal (2008) for two-dimensional computations
past a freely vibrating cylinder. It was reported that a computational domain with Lu =
15D, Ld = 25.5D and H = 40D is large enough to eliminate any significant effect of the
size. The present computations have been carried out with an even larger domain with
Lu = 27.5D, Ld = 50D and H = 100D. The blockage ratio (D/H) is 1 % for the present
study.

3.2. Boundary conditions
The boundary conditions are shown in figure 1. Uniform flow is prescribed on the upstream
face PQRS whereas the stress vector is set to zero at the outflow face TUVW. The symmetry
condition is prescribed on all other walls of the computational domain, i.e. the velocity
component normal to the wall, and the stress vector components in the plane of the wall
are set to zero. No-slip boundary condition is specified on the cylinder surface and the side
wall on QUVR for x � −Lp. These conditions are similar to those used by Behara & Mittal
(2010b). For the linear stability analysis, the boundary conditions are the homogeneous
version of those used for direct numerical simulations.
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Ld

Lz

Lp

T

PTWS:

PTUQ: u2 = 0, σ12 = 0, σ32 = 0

PQRS:

SWVR: u2 = 0, σ12 = 0, σ32 = 0

Side wall:
u = 0

u 
= 

0
u3 = 0

u3 = 0

u1 = U∞

u3 = 0
u2 = 0

σ13 = 0
σ23 = 0

σ13 = 0
σ23 = 0

P

H

S

U

x

y

z

D
Q

W

TUVW:
σ11 = 0
σ21 = 0
σ31 = 0

VR

Lu

Figure 1. Flow past a cylinder with side wall: schematic of the computational domain and the associated
boundary conditions. The sketch is not to scale.

3.3. The parameters
The three main parameters that affect the flow being studied are Re, AR and δ. The
Reynolds number is defined as Re = U∞D/ν, where U∞ is the free stream speed, D
the diameter of the cylinder and ν the kinematic viscosity of the fluid. Computations
are carried out for 50 � Re � 95. The range of aspect ratio of the cylinder considered
in the present study is 5 � AR � 90. The flow is also affected by the thickness of the
boundary layer (δ) on the side wall as it approaches the cylinder. In turn, δ depends on
Re and the extent of the side wall upstream of the cylinder (Lp, as shown in figure 1). All
the computations in the present work are carried out by suitably adjusting Lp so that δ is
2D at x = 0. With δ being held constant, the flow depends on only two parameters: AR
and Re. For brevity, we introduce the notation (AR, Re) to refer to the set of independent
parameters that govern the flow in this study.

3.4. Finite element mesh
First, a two-dimensional mesh is generated around the circular cylinder. It is sufficiently
refined near the surface of the cylinder to resolve the boundary layer, its spatial evolution
and its separation. The mesh and its close-up view near the cylinder is shown in figure 2.
It has 140 elements along the circumferential direction and the height of the first element
on the surface of the cylinder surface is 0.003D. The three-dimensional mesh is obtained
by stacking several slices of the two-dimensional mesh along the span. The distribution of
the grid points along the span is not uniform. The spanwise resolution near the side wall
is finer to resolve the boundary layer that forms on it. The thickness of the element on the
surface of the side wall is 0.05D. The three-dimensional mesh for a cylinder of AR = 60
is obtained by stacking nz = 100 slices of the two-dimensional mesh along the span. For
other AR, nz is suitably chosen to maintain the same spatial resolution.

Four meshes are utilized to investigate the adequacy of spatial resolution. The study is
carried for the case of (AR, Re) = (60, 60). In the xy plane, each two-dimensional section
of the mesh M1 consists of 5242 nodes and 5077 quadrilateral elements. The numbers are
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(b)(a)

Figure 2. Flow past a cylinder with side wall: (a) two-dimensional section of the finite element mesh M3,
listed in table 1, in the xy plane; (b) enlarged view of the mesh near the cylinder.

Mesh Nodes Elements C̄D CD,rms CL,rms

M1 267 342 253 850 1.3615 0.0081 0.0171
M2 1 111 968 1 076 800 1.3696 0.0085 0.0244
M3 2 171 500 2 116 400 1.3726 0.0076 0.0255
M4 3 734 060 3 654 720 1.3726 0.0076 0.0255

Table 1. Flow past a cylinder with side wall: details of the various finite element meshes. Also listed are the
time-average and r.m.s. value of the force coefficients for the fully developed unsteady flow corresponding to
(AR, Re) = (60, 60).

13 728 and 13 460 for mesh M2, 21 500 and 21 164 for mesh M3 and 30 860 and 30 456 for
mesh M4, respectively. The spatial extent of the computational domain of all four meshes
is identical. The number of elements along the span for the meshes M1–M4 are 50, 80,
100 and 120, respectively. The time-averaged and r.m.s. values of the aerodynamic force
coefficients for the four meshes are presented in table 1. Results from all meshes are in
good agreement with respect to the mean and r.m.s. values of drag coefficients. The only
significant deviation is in the r.m.s. value of lift coefficient obtained from mesh M1. Mesh
M3 has excellent agreement with all the parameters of mesh M4. This demonstrates the
adequacy of the spatial resolution of mesh M3, and is utilized for all computations in
this work. A time step of 
t = 0.1 is used for all the computations except for the time
evolution of unstable modes obtained from linear stability analysis, which utilize an even
smaller time step of 
t = 0.01.

4. Results

4.1. Cellular structure of the wake
Cellular shedding is a distinct feature of the wake of a wall-bounded cylinder and has been
observed in the past in experimental and numerical studies (Williamson 1989; König et al.
1990; Behara & Mittal 2010b). The vortex shedding frequency across the span, in a cell, is
uniform. Figure 3 shows a map of the number of cells observed in the present computations
on the (AR, Re) plane. The flow is steady for low AR for all the Re considered. The critical
Re for the onset of vortex shedding decreases with increase in AR. For example, the flow
is steady even at Re = 95 for AR = 5. In comparison, the flow is unsteady at Re = 50 for
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50 55 60 65 70 75

Steady

1 cell

2 cells

3 cells

90

80

70

60

50

40
AR

30

20

10

0

4 cells

80 85 90 95
Re

Figure 3. Flow past a cylinder with side wall: cellular structures in the wake for cylinders of 5 � AR � 90
and 50 � Re � 95. The boundaries of the regions attributed to the respective flow structures are not exact, but
indicative in nature and are based on the cases for which computations have been carried out and marked by
hollow symbols. More details for the flow are given in figure 4 for the parameters indicated by solid symbols.
The hatched region indicates the range of parameters where the flow loses symmetry about the mid-span of the
cylinder. The range of Re along the x-axis is 49–96.

AR = 20. In general, each Re is associated with two values of critical AR: ARcr1 and ARcr2 .
The flow is steady for AR < ARcr1 . It is unsteady for AR � ARcr1 and associated with a
single cell for AR � ARcr2 . For AR > ARcr2 , the flow may be associated with either two or
three or four cells, depending on the AR and Re. We recall the results reported from earlier
experimental studies with large AR cylinders, where three cell shedding is observed for
Re < 64 and two cells for larger Re (Williamson 1989). The present study reveals the rich
flow structure for low AR cylinders. Cells can be identified from the spanwise variation of
either the vortex structures or vortex shedding frequency.

Several methods have been proposed in the past to identify the vortex cores and their
region of influence (Zhang et al. 2018). The Q-criterion proposed by Hunt, Wray & Moin
(1988) and λ2-criterion by Jeong & Hussain (1995) are most widely used. Liu et al. (2016)
proposed the Ω method for vortex identification. A brief description of the Q, λ2 and
Ω criteria and comparison of the flow structures obtained using them is presented in
Appendix A. It is found that, for the present class of flows, all the three criteria result in
virtually identical flow structures. The Q-criterion is used to identify the vortex structures
in this work.

A typical case of each of the flow regimes with respect to the number of cells across
the span is shown in figure 4. The flow with one cell (figure 4a) is the simplest case.
It has also been observed in experiments, for example, by Albarède & Provansal (1995).
For flows with multiple cells, vortex dislocations appear periodically at the boundaries of
adjacent cells. The cell closest to the side wall is named as the end cell. The subsequent
cells, as one moves away from the wall and towards the centre-span, are named as the
second, third and fourth cell, respectively. It is interesting to note that the cell near the
mid-span is largest for the two-cell case whereas that is not true for the cases with three
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Fourth cell
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Figure 4. Flow past a cylinder with side wall: spanwise variation of Strouhal number corresponding to the
dominant frequency of vortex shedding and xz-view of instantaneous Q (=0.0002) iso-surface coloured with
spanwise vorticity component at different time instants for (a) (AR, Re) = (60, 50), (b) (AR, Re) = (60, 75),
(c) (AR, Re) = (60, 60) and (d) (AR, Re) = (80, 54). The various cells and the vortex dislocations are marked.
The broken lines show the indicative cell boundaries based on the vortex dislocations. All subsequent Q
iso-surfaces are coloured following the same convention as in this figure.

and four cells. The vortex dislocation appearing at the junction of the end cell and the
second cell is referred to as D1. That between the second cell and third cell is named D2.
Similarly, the dislocation at the junction of the third and fourth cell is referred to as D3.
The dislocation D2 that divides the second and third cell, for the case of four cells, is not
shown in figure 4(d). It is presented in later in the paper for the simulation with full span
at three time instants to show all the dislocations. The oblique angle at which the vortices
are inclined to the cylinder axis is found to be the largest in the end cell in accordance with
the observations of König et al. (1992). It decreases as one moves towards the second,
third and fourth cell, respectively. Also shown in figure 4 is the spanwise variation of the
non-dimensional vortex shedding frequency corresponding to the dominant frequency in
the time histories of the cross-flow component of velocity.
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Figure 5. Flow past a cylinder with side wall: cross-flow component of velocity (v), and their corresponding
power spectra at spanwise separated probe locations for (a) (AR, Re) = (60, 50), (b) (AR, Re) = (60, 75), (c)
(AR, Re) = (60, 60) and (d) (AR, Re) = (80, 54). The probes are located at (x/D = 5, y/D = 0.25), and z/D
as mentioned in the figure. The amplitude of the power spectra has been normalized by the maximum value of
each case.
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Figure 5 presents the frequency spectra of time histories of cross-flow velocity
component at spanwise separated locations for the cases shown in figure 4. The probe
P1 is located at z/D = 5 and successive probes P2, P3 and P4 (where applicable) are
10D apart along the span. They are all located in the near wake (x/D = 5, y/D = 0.25).
For the single-cell case, all probes record the end cell frequency of Ste = 0.125. For the
two-cell case, the probe P1 reports the end cell frequency and probes P2 and P3 report the
second cell frequency. The peaks correspond to values Ste = 0.1306 and St2 = 0.1459. For
the three-cell case, the probes P1, P2 and P3 record the shedding frequencies at the end
cell, second cell and third cell, with the peak values being Ste = 0.1227, St2 = 0.1331 and
St3 = 0.1361. For the four-cell case, the probes P1, P2, P3 and P4 report the shedding
frequencies at the end cell, second cell, third cell and fourth cell, respectively. The
Strouhal numbers corresponding to the peaks in each cell are Ste = 0.1250, St2 = 0.1260,
St3 = 0.1269 and St4 = 0.1279. The shedding frequency is found to increase from the end
cell towards the fourth cell. It was shown by Williamson (1989), and later Behara & Mittal
(2010b), that the low-frequency modulation in the time histories in figure 5(b–d) are due
to the appearance of vortex dislocations in the wake. This is discussed in more detail later
in the paper.

4.2. Flow characterization
A number of interesting features are observed in the wake. The various attributes of
the flow that are considered in this study are the number of cells along the span (Nn),
the oblique angle that the vortices make with the axis of the cylinder (θ ), the structure of
the vortices near the side wall (E) and the nature of vortex dislocations between the various
cells (D). We note that the number of cells along the full span is 2n − 1. Based on these
attributes, we broadly classify the flow in certain regimes in the AR–Re plane. Table 2 lists
the various states that these attributes exhibit. For example, the flow in regime N4θvEdDf
consists of four cells along half the span, the oblique angle of the vortices varies along the
span and with time, the vortices diffuse close to the side wall and the vortex dislocation
is of the fork type. Similarly, N2θcElDfc signifies that the wake is associated with two
cells along half the span, the oblique angle of the vortices remains constant along the
span and with time, the vortices of opposite signs with respect to spanwise vorticity are
linked close to the side wall and the vortex dislocation is of the connected fork type.
The classification based on these features is presented in figure 6. The boundaries of
the various regimes are indicative extents in which similar attributes can be observed in
the wake. The number of cells along half the span (Nn) that can occur in the flow are
shown in figure 4 and described in § 4.1. For several cases in the AR–Re plane, the flow
computed with symmetry condition along the half-span of the cylinder was reflected about
the centre-line and computations continued with the full domain without imposition of
symmetry. In most cases, the flow retained its symmetry. The hatched region in figures 3
and 6 indicate the regime for which the flow loses symmetry. However, it retains all the
attributes of the flow constrained to be symmetric about mid-span. Details of these cases
are presented later in the paper. The other attributes that describe the regimes in the AR–Re
plane are discussed in the following.

4.2.1. End vortex structures
The topology of the vortices near the side wall depends on (AR, Re). Two type of
end vortex structures have been identified: the diffused type and linked type. They
are represented by Ed/l, where the subscripts ‘d’ and ‘l’ indicate diffused and linked
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Cellular vortex shedding from a cylinder at low Re

Attribute Possible states

Nn Number of cells along half the
span. The number of cells
across the full span are 2n − 1.

1 � n � 4

θ The angle that the vortices make
with the axis of the cylinder

θc: θ is constant along span and with time
θv : θ changes along span and with time

E The structure of the vortices in the
end cell close to the viscous
end wall

Ed: The vortices diffuse near the wall. Generally observed for
Re � 58

El: Linkages form between adjacent pair of rotating and
counter-rotating vortices

D The nature of dislocation between
vortices at the junction of cells

Df : Fork-type vortex dislocations form when two adjacent
vortices of same polarity from a cell with lower vortex
shedding frequency, join a vortex of the same polarity in
the adjoining cell

Dfc: The fork-like structure, in conjunction with an additional
linkage among vortices with opposite polarity lead to a
ring-type vortex structure

Df−fc: Dislocations appear of the type Df at some time
instants and of the type Dfc at others

Table 2. Flow past a cylinder with side wall: the nomenclature adopted to define the attributes of the flow.

type, respectively. Their existence for different combinations of (AR, Re) are presented in
figure 6. Figure 7 illustrates the two types of end vortex structures via the iso-Q surfaces.
Also shown in the figure are a few vortex lines that pass through the core of the vortices
at the plane of symmetry. Figure 7(a) shows the diffused end vortex structure wherein
the spanwise vortices appear to diffuse near the side wall. Interestingly, the vortex lines
from the spanwise vortices connect to those within the boundary layer that forms on the
side wall. Diffused-type end vortex structures are generally found for Re � 58. Linkages
form between adjacent pair of rotating and counter-rotating vortices near the side wall for
larger Re. Figure 7(b) shows a case of linked-type end vortex structure. Unlike in the case
of diffused end vortex structure, the vortex lines emerging from the vortices of opposite
polarity connect to form a closed loop. A similar model of braided vortices at the ends was
suggested by Eisenlohr & Eckelmann (1989). Figure 7(a) was reconstructed for even lower
values of Q to specifically check if the diffused end vortex structures might show linkages
with neighbouring vortices. It is found that the end vortices retain their structure.

4.2.2. Vortex dislocations
Vortex dislocations appear at the boundaries between adjacent cells. Based on their
topology, they may be broadly classified in two categories: fork type and connected
fork type. A mixed type has also been observed in some cases. As listed in table 2,
the dislocations are represented as Df /f −fc/fc, where the subscripts ‘f ’, ‘f − fc’ and ‘fc’
represent fork-type, mixed-type and connected fork-type. Fork-type dislocations occur
when two adjacent vortices of the same polarity from a cell with lower vortex shedding
frequency join a vortex of the same polarity in the adjoining cell. Figure 8(a) shows a
schematic. A similar model was proposed by Williamson (1989). The fork-like connections
made by the anti-clockwise and clockwise rotating vortices of two adjacent cells, for
the (AR, Re) = (60, 60) case, are highlighted in figures 9(a) and 9(b), respectively.
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Figure 6. Flow past a cylinder with side wall: classification of the flow in the AR–Re plane on the basis of the
attributes defined in table 2. The boundaries of the various regions are not exact, but indicative in nature and
are based on the cases for which computations have been carried out and marked by hollow symbols. The cases
for which a full-span simulation is initiated from the solution from half-span, by reflecting it about mid-span,
are highlighted using solid symbols. The lower and upper limit along the x-axis is 49 and 96, respectively.

z

x

y
z

(a) (b)y

x

Figure 7. Flow past a cylinder with side wall: Q (=0.002) iso-surfaces coloured with spanwise component of
vorticity (ωz = ±0.01) for the instantaneous flow depicting (a) diffused end vortex structures for (AR, Re) =
(60, 50) at t = 1350 and (b) linked end vortex structures for (AR, Re) = (60, 75) at t = 1725. Also shown are
a few vortex lines for each case that pass through the core of the vortices at the plane of symmetry and the
enlarged view of the images next to the side wall. The side wall (z = 0) is shown for reference.

Both images are for the flow at the same time instant, but viewed from different y locations
to bring out the details of the flow structure. In some cases it is observed that along with
fork-like structures, two vortices with opposite polarity form an additional linkage at the
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(b)(a)

z z

x x

Figure 8. Flow past a cylinder with side wall: schematic of the (a) fork-type (Df ) and (b) connected fork-type
(Dfc) dislocations with ring-like structure highlighted in broken lines. The clockwise and anti-clockwise
vortices are shown in blue and red colour, respectively. The filled circles indicate the connections between
the vortices of opposite polarity.

(a) (b)

x = 37D x = 37D

z 
= 

0

z 
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z 
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30
D

z 
= 

30
D

t = 1479.65 t = 1479.65

x = 0x = 0

Figure 9. Flow past a cylinder with side wall: xz-view of instantaneous Q (=0.001) iso-surfaces coloured
with spanwise component of vorticity (ωz = ±0.01) for (AR, Re) = (60, 60) depicting the fork-like connection
for (a) anti-clockwise rotating vortices and (b) clockwise rotating vortices at t = 1479.65. In (a) the flow is
visualized from a negative y side, whereas it is seen from a positive y side in (b).

cell boundary. This leads to the formation of a ring-like vortex structure. We refer to
these as connected fork-type vortex dislocations (Dfc). The schematic of the connected
fork-type dislocation is presented in figure 8(b). Connected fork-type vortex dislocations
are observed only in those cases that exhibit linked-type end vortex structures. To the
best of the authors’ knowledge, such a model of vortex dislocation has not been reported
earlier. Figure 10 shows the connection of the vortices at cell boundary and highlights
the ring-like structure observed. Connected fork-type vortex dislocations are generally
observed for Re � 75. On the other hand, the mixed-type dislocations are observed for
Re < 75, but large enough that the end vortices are still of the linked type, and not diffused.
Such dislocations are fork-type in the near wake and transform to connected fork type as
they convect downstream. An example is shown in figure 11.

4.2.3. Oblique angle of vortices
Let θ denote the oblique angle of the vortices in a cell, with the axis of the
cylinder (table 2). Consistent with the findings of Behara & Mittal (2010b), the present
computations show that θ is constant in certain cases, whereas it varies along the span
and with time for others. As listed in table 2, these two situations are represented by θc/v ,
where the subscripts ‘c’ and ‘v’ indicate constant and varying oblique angle, respectively.
In general, the second cell has the largest spanwise extent. Therefore, the classification
with respect to θ is made on the basis of the second cell in case of multiple cells in the flow.
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t = 823.7

Connection of vortices with opposite
polarity at the cell boundary

(b)(a)

Figure 10. Flow past a cylinder with side wall: xz-view of instantaneous Q (=0.001) iso-surface coloured
with spanwise component of vorticity (ωz = ±0.01) for (AR, Re) = (70, 90) depicting the connected fork-type
dislocation at t = 823.7. The enlarged view of the connection of vortices with opposite polarity at the cell
boundary is shown alongside. The ring-like structure formed owing to the connection of vortices is highlighted.

(a) (b)

x = 0

t = 1021.7 t = 1039.2

x = 0 x = 37Dx = 37D
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0
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0

z 
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30
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z 
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30
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Figure 11. Flow past a cylinder with side wall: xz-view of instantaneous Q (=0.0005) iso-surfaces coloured
with spanwise component of vorticity (ωz = ±0.01) for (AR, Re) = (60, 70) at (a) t = 1021.7 and (b) t =
1039.2 depicting mixed-type vortex dislocation. The transformation from fork-like structure to ring-like
structure is highlighted as the dislocation convects downstream.

In the case of single cell, the classification is based on θ in the end cell. Figures 4(c) and
4(d) show the flow for three- and four-cell cases at different time instants. The variation
of the angle of shedding in the second cell is evident in both cases. This variation is
further confirmed by the frequency spectra shown in figures 5(c) and 5(d). In addition to
a dominant frequency, there are other frequencies as well that indicate that the shedding
frequency is time varying. Williamson (1988) proposed that the shedding frequency and
oblique angle are related by the cosine rule. Behara & Mittal (2010b) demonstrated that
this relationship also holds when the oblique angle of the vortices varies along span and
with time. Consistent with their observation, the present work shows that the shedding
frequency varies with time when θ is not constant.

For the two-cell case, figure 4(b) reveals that the oblique angle in the second cell is
constant with time and along span. For the single-cell case as well, shown in figure 4(a),
the oblique angle of the end cell is invariant. Frequency spectra presented in figures 5(a)
and 5(b) for both cases show a sharp peak which is consistent with the observation from the
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Figure 12. Flow past a cylinder with side wall. (a) Spatio-temporal variation of Strouhal number
corresponding to the frequency of each cycle of cross-flow velocity component for (AR, Re) = (60, 60).
The cross-flow velocity component data are obtained from spanwise separated probes placed 2.5D apart at
(x/D = 5, y/D = 0.25). (b) The Q (=0.001) iso-surfaces, coloured with spanwise component of vorticity
(ωz = ±0.1), at various time instants. The cell boundaries as well as vortex dislocations are marked on the
images.

flow in figures 4(a) and 4(b) that the vortex shedding frequency and the oblique shedding
angle are constant in these cases. Figure 6 shows the behaviour of θ on the AR–Re plane.
It can be concluded that a single cell is always associated with constant θ . Three cells
and higher exhibit varying θ . The two-cell cases are most interesting. θ varies along span
and with time for Re < 60. However, for larger Re (Re > 60), θ is constant for cylinders
with span larger than a certain threshold (AR � 50) and varies for shorter span length
(AR < 50).

4.3. Time variation of shedding frequency and periodicity of vortex dislocations
To investigate the spatio-temporal variation of the vortex shedding frequency, we consider
the time histories of the cross-flow component of velocity at various spanwise locations.
The locations at which the velocity is sampled correspond to (x/D = 5, y/D = 0.25) and
are 2.5D apart along the span. The time period of each cycle, from the time histories, is
utilized to estimate the instantaneous vortex shedding frequency. This non-dimensional
frequency is referred to as S̃tv . The spanwise and time variation of S̃tv is shown in
figures 12(a) and 13(a) for (AR, Re) = (60, 60) and (60, 75), respectively. The former
corresponds to the three-cell case whereas the latter is associated with two spanwise cells.
The frequency spectra for the two cases are shown in figures 5(b) and 5(c), respectively.
It can be observed from figure 12(a), for the three-cell case, that S̃tv shows significant
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Figure 13. Flow past a cylinder with side wall. (a) Spatio-temporal variation of Strouhal number
corresponding to the frequency of each cycle of cross-flow velocity component for (AR, Re) = (60, 75).
The cross-flow velocity component data are obtained from spanwise separated probes placed 2.5D apart at
(x/D = 5, y/D = 0.25). (b) The Q (=0.001) iso-surfaces, coloured with spanwise component of vorticity
(ωz = ±0.1), at various time instants. The cell boundaries as well as vortex dislocations are marked on the
images.

temporal as well as spanwise variation in each cell. On the other hand figure 13(a), for the
two-cell case, shows that S̃tv exhibits little variation within each cell.

Behara & Mittal (2010b) observed that appearance of vortex dislocations coincides
with local minima in S̃tv followed by its sharp rise. Williamson (1989) reported that
the frequency of appearance of vortex dislocations corresponds to the beat frequency in
the time signal near the junction of the cells. The present results are consistent with the
observations of Behara & Mittal (2010b) and Williamson (1989). For the three-cell case
in figure 12, the instantaneous frequency is found to attain a local minimum followed by a
sharp rise at t ∼ 1600, 1700 and 1800. A similar phenomenon occurs at t ∼ 1540 and 1870,
at a different spanwise location. Flow visualization at these time instants indeed display
vortex dislocations D1 and D2 in the wake as seen in figure 12(b). The dislocation D1 is
found to appear every 100 time units, whereas D2 appears around every 330 time units.
The dislocation appearance frequency for D1 and D2, from these numbers, is estimated to
be 0.0100 and 0.0030, respectively. The beat frequencies for D1 and D2, estimated from the
time histories, are 0.0097 and 0.0031. The similarity between the beat frequency and that of
the appearance of vortex dislocations is consistent with the findings of Williamson (1989).
Similarly, for the two-cell case presented in figure 13, the dislocation D1 is found to appear
at t ∼ 1250, 1315 and 1380 marked as D1

1, D2
1 and D3

1, respectively. The dislocation D1
appears every 65 time units with an appearance frequency of 0.0154. The corresponding
beat frequency is 0.0147. The low-frequency modulation in time histories of cross-flow
velocity component observed in figure 5(b–d) can be attributed to vortex dislocations
appearing in the wake. For the single-cell case shown in figure 4(a), the time histories
in figure 5(a) do not show any modulation in line with the observation of Behara & Mittal
(2010b). Figure 13(a) shows a periodic oblique spanwise variation between the appearance
of dislocations. This activity in the near wake is perhaps responsible for the generation of
vorticity near the wall as seen in figure 13(b).

Figure 14 presents the variation of the frequency of appearance of vortex dislocations
D1 and D2 with Re for certain two- and three-cell cases. Both D1 and D2, appear more
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Figure 14. Flow past a cylinder with side wall: variation of the frequency of appearance of vortex
dislocations (a) D1 and (b) D2 with Re.

frequently with increase in Re. However, the rate of increase in the frequency decreases
with increase in Re. This is consistent with the finding of Behara & Mittal (2010b). In
the case of three cells, the dislocation D1 appears more frequently as compared with D2.
Combining this with the observations made from the four-cell case (not shown here), it
is noted that the dislocation appearance frequency is maximum close to the side wall and
decreases towards the centre of the cylinder.

4.4. Global linear stability analysis
Figure 3 shows the variation of cellular structure of the flow in the AR–Re plane. To explore
the cause of the formation of cells, and the associated rich flow structure, a global linear
stability analysis was conducted. First, a biglobal linear stability analysis was carried out
for the Re = 100, steady and two-dimensional flow to assess the spanwise structure of
the flow in the absence of end walls. The most unstable eigenmode corresponding to
perturbations with certain spanwise periodicity were computed. They are found to be the
oblique modes of vortex shedding. None of the modes displayed any cellular structure,
thereby implying the vital role of end conditions. The modes from the linear stability
analysis were used as initial condition for direct time integration of the flow equations,
with slip condition on the velocity at the lateral boundaries, to study the evolution of the
flow including that in the nonlinear regime. The computations bring out the significance
of the nonlinear terms in predicting the correct convection speed of the vortices, their
frequency of shedding and their oblique angle to the axis of the cylinder.

Next, triglobal linear stability analysis was carried out for the AR = 60 steady flow with
a side wall, for various Re. For all the cases, the most unstable mode is associated with
single cell and the vortices are almost parallel to the axis of the cylinder. The higher modes
exhibit cellular structure. However, as is assumed in a global linear stability analysis,
the vortex shedding frequency is uniform along the span. The details of this analysis are
presented in Appendix B. We surmise that the nonlinear terms play a significant role in
the evolution of the various attributes of the flow.

4.5. Evolution of the flow
A direct numerical simulation is initiated with the steady flow for the case of (AR, Re) =
(60, 70) to explore the time evolution of the flow. No explicit disturbance is imposed
on the flow. Nevertheless, the numerical and round-off errors in the computations
act as perturbations to the steady flow. These perturbations are expected to excite
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Figure 15. Flow past a cylinder with side wall: time histories of the force coefficients obtained from direct
numerical simulation initiated with the steady flow for (AR, Re) = (60, 70). Corresponding enlarged views
during the initial time are shown in the bottom row.

several modes. However, the eigenmode with the largest growth rate is expected to
dominate the others. The time histories of drag and lift coefficients from the simulation
are shown in figure 15. The enlarged views during the initial time are also shown. As
the disturbances are very small at initial time, their growth is governed by the linearized
equations. As the disturbance becomes larger, nonlinear effects gain prominence. The
divergence of the mean drag coefficient from the value for the steady flow is an indication
of the departure of the flow from linearity. The nonlinearity also causes the amplitude of
the lift coefficient to depart from an exponential growth and approach a saturated value. It
is seen from the figure that nonlinear effects become significant beyond t ∼ 250.

Figure 16 shows the instantaneous flow at various time instants. The vortices are nearly
parallel to the axis of the cylinder at t = 200 and 250, and form a single cell. This is
consistent with the linear stability analysis which predicts that the single-cell parallel
shedding constitutes the most unstable eigenmode. The disturbance field, with respect to
the steady flow, can be compared with the eigenmodes from the linear stability analysis.
The flow is very similar to mode 1 shown in Appendix B (figure 24c). With the nonlinear
effects assuming significance beyond t = 250, the vortices begin to tilt near the side wall,
whereas they continue to be parallel to the axis of the cylinder towards mid span. This
can be observed from figure 16 for the flow at t = 280. The observation is consistent with
that by Williamson (1989) that the oblique front starts at the ends and propagates inwards.
This is further confirmed by the flow at t = 310. The evolution of the cellular structure in
the flow can be seen in figure 16. Linkages develop between the ends of the adjacent pair
of rotating and counter-rotating vortices at t = 310. In contrast, the vortices diffuse near
the end wall as seen from the frames corresponding to earlier time. Williamson (1989)
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Figure 16. Flow past a cylinder with side wall: xz-view of Q (=0.0005) iso-surfaces coloured with spanwise
component of vorticity (ωz = ±0.01) at different time instants for (AR, Re) = (60, 70). Also marked in (g,h)
is the fork-type dislocation and ring-like structure.

proposed that the oblique vortex shedding becomes unstable and leads to formation of
cells when the oblique angle of the shed vortices reaches a certain critical value. Indeed,
the flow at t = 340 shows increased oblique angle of the vortices towards the mid-span
and appearance of two spanwise cells separated by a fork-type vortex dislocation in the
wake. The flow continues to evolve and reaches a saturated state at t ∼ 700 as indicated
by the time histories of the force coefficients (figure 15). The fully developed unsteady
flow is associated with vortex dislocations of the mixed type. As seen from figure 16, the
dislocation is of the fork type at t = 840. It transforms to the ring type as it convects
downstream as seen in the frame corresponding to t = 860. In addition, the oblique
angle of the vortices, for the fully developed unsteady flow, is constant along the span
and invariant with time. This is seen in the pictures at t = 840, 860 and 900. The fully
developed flow exhibits all the attributes as per the description in figure 6.

A direct numerical simulation initiated with the mode 1, from the triglobal linear
stability analysis, superposed with the steady base flow, was also carried out for this case.
The evolution of the flow (not shown here) is very similar to that of the case described
previously, except that it occurs at an accelerated pace. The flow reaches a saturated state
much sooner. These simulations bring out the very significant role of the nonlinearities
on the evolution of the flow. Even though the single cell with close to parallel vortices
is the most unstable mode in the linear regime, the nonlinear effects that kick in after
the disturbances become sufficiently large following an exponential-in-time linear growth,
lead to a two-cell structure with oblique vortices.

915 A74-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.82


S. Mittal, J.S.S. Pandi and M. Hore

4 6 7 8 9 10

0.02

–0.06

0

λr

0.0050

–0.0050

–0.0025

0.0025

0

0.050

–0.050

–0.025

0.025

0

AR
250 500

CL

5

–0.04

–0.02

7.67

CL

750 1000

t

250 500 750 1000t

AR = 5

x = 37Dx = 0

x = 37Dx = 0

AR = 9
(a) (b)

(c)

Figure 17. Flow past a cylinder with side wall at Re = 90. (a) Variation of growth rate of the dominant mode
with AR. The spanwise vorticity field in the x–z plane for the real part of the eigenmode corresponding to
the eigenvalue with largest real part is shown in the inset for two values of AR. (b,c) Time histories of lift
coefficient for the direct numerical simulations initiated with unsteady two-dimensional flow for (b) AR = 7
and (c) AR = 9.
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Figure 18. Flow past a cylinder with side wall at Re = 90: spanwise vorticity field in the x–z plane at various
time instants for (a–d) (AR, Re) = (7, 90) and (e–h) (AR, Re) = (9, 90).

4.6. Re = 90 flow for low AR
Figure 3 shows that the end conditions stabilize the flow even at relatively large Re. We
consider the Re = 90 flow for various AR. Triglobal linear stability analysis of the steady
flow is carried out to assess its stability. The residual of the eigenmodes obtained for
various AR at Re = 90 is approximately 1 × 10−9. The variation of the growth rate of the
most dominant mode with AR is shown in figure 17(a). The critical AR beyond which the
steady flow loses stability is AR = 7.67. These findings are consistent with the results from
direct numerical simulations and marked in figure 3. Specifically, the flow for AR = 7 is
found to be steady whereas the AR = 9 case becomes unsteady. Also shown in figure 17(a)
is the spanwise component of the vorticity field for the real part of the most unstable
eigenmode for AR = 5 and 9. To explore the effect of end wall on the time evolution of
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Figure 19. Full span simulation of flow past a cylinder with side wall: Q (=0.0002) iso-surface coloured
with spanwise component of vorticity (ωz = ±0.01) for (a) (AR, Re) = (90, 54), (b) (AR, Re) = (80, 54) and
(c) (AR, Re) = (80, 55). The dislocations as well as the boundaries of the cells are marked in broken white and
black lines, respectively. The broken green line is along the mid-span of the cylinder.

the flow, we carry out direct numerical simulations for AR = 7 and 9 initiated with the
fully developed two-dimensional unsteady flow. The time histories of the lift coefficient
are shown in figure 17(b) and the spanwise vorticity at the x–z plane passing through
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the axis of the cylinder is shown at various time instants for the two flow in figure 18.
Although the flow for AR = 7 achieves a steady state, the AR = 9 case leads to limit
cycle oscillations with oblique vortex shedding in a single cell across the span of the
cylinder.

4.7. Simulation of full span, initiated from half-span
To assess the validity of the assumption of symmetry of the flow about mid-span of
the cylinder, we carried out a few simulations for the full span. The flow solution from
the simulations for half the span is reflected about mid-span and used as initial condition.
The test cases chosen for the full-span simulations include combinations of (AR, Re) that
yield two, three and four cells across half the span of cylinder. These cases are highlighted
in figure 6 via solid symbols. Of all the cases, only those that lie in the hatched region
shown in figure 6 develop asymmetry about the mid-span; the others retain their symmetry.
Three of the several cases, that were tested, are shown in figure 19. Figure 19(a) shows the
vortex structure for (AR, Re) = (90, 54), the case with two cells in half the span, at three
time instants. The variation of the dominant frequency in the power spectra of the time
histories at various span locations in the wake is also shown in the figure. It is observed that
despite the asymmetry about mid-span, the flow retains the two-cell structure along
half-span and the associated dislocations. The flow also retains all other attributes, listed
in table 2, of the flow that are seen in the simulations with imposed symmetry along
mid-span. Shown in figures 19(b) and 19(c) are the results for (AR, Re) = (80, 54) and
(80, 55), respectively. Both these cases correspond to the four-cell structure in half-span.
While the flow retains symmetry about mid-span for the former, the latter develops
asymmetry. In all cases, the cell structure as well as other attributes of the flow are
retained.

5. Conclusions

The cellular nature of vortex shedding for flow past a cylinder with side wall has been
investigated numerically utilizing a stabilized finite element method. The no-slip condition
imposed on the side wall promotes the boundary layer formation. The length of the side
wall is kept such that the boundary layer thickness, as the flow approaches the cylinder, is
constant for all computations carried out. In this scenario it is expected that the state of
the flow is determined by (AR, Re). The computations have been carried out for cylinders
of varied AR ranging from 5 to 90 and flows at Re varying between 50 and 95. Symmetry
conditions imposed at mid-span enable simulation of only one half the span length. To
assess the validity of this assumption, computations for a few cases are carried out for the
full span with no imposed condition of symmetry at mid-span. For these simulations,
the solution from half the span is reflected along the mid-span to generate the flow
for the entire span. It is found that in most cases the symmetry of the flow about the
mid-span is retained. The flow loses symmetry for some of the cases corresponding to
two and four cells in half the span. However, even in these cases the flow retains the
attributes predicted by half-span simulations such as the number of cells, structure of
dislocations and end vortices near the side wall. It would be interesting to explore, in
future work, the full-span simulations for more cases and with different initial conditions.
The computations bring out the various changes that the wake undergoes depending on
the combination of (AR, Re).

Experiments by Williamson (1989) for cylinders with AR between 90 and 240 reveal
that the wake has a three-cell structure for Re < 64, while only two cells exist along
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the span for Re > 64. A Strouhal discontinuity observed at Re = 64 was also attributed
to this change in oblique shedding mode. Compared to the experiments by Williamson
(1989), the computations in the present work are for lower AR (between 5 and 90). It is
interesting to compare the observations from the two studies for AR = 90 which has been
attempted in both the studies. The results from the present are broadly in agreement with
the experimental observations, but also reveal more richness in the flow. Consistent with
the study by Williamson (1989), the present computations, for AR = 90, show a transition
from the three- to two-cell oblique shedding, albeit at a slightly lower Re (∼61). The slight
change in the critical Re for the transition can be attributed to the difference in the end
conditions for the two set-ups. The experiments by Williamson (1989) used end plates
of diameter between 10D and 30D, whereas the present computations utilize a no-slip
condition on the end wall. These would lead to different thickness of the boundary layer
on the end wall/end plates as it approaches the cylinder. It was shown by Behara & Mittal
(2010b) that the boundary layer thickness at the end wall affects the oblique angle of
vortices. Therefore, it is quite possible that the critical Re for the transition is affected as
well.

The present computations reveal additional attributes of the flow. Some of these are
highlighted in figures 3 and 6. For example, for the cylinder with AR = 90, the flow
transitions from a one-cell to two-cell wake at Re ∼ 50 and than to a four-cell structure
at Re ∼ 55. It reverts back to three cells along the span and subsequently to a two-cell
wake with further increase in Re. The structure of the dislocation, in the two-cell wake,
undergoes a transition at Re ∼ 70 (see figure 6). It is conceivable that for larger AR
(AR > 90) the wake may be associated with even larger number of cells in certain range
of Re. This could be of interest for a future study. Interestingly, the complexity of the
transitions decreases with decrease in AR. For example, the flow is associated with a
single-cell wake for AR = 20, whereas it is steady for AR = 5 for all the Re considered.
Barring the end vortex structure, that undergoes a transition from diffused to linked vortex
structure at Re ∼ 60, the wake structure for AR = 20 is similar at all Re. The critical Re
for the onset of vortex shedding is found to decrease with increasing AR.

The structure of wake is significantly affected by AR and Re. One way of understanding
this from figures 3 and 6 is to observe the effect of varying AR while holding Re constant.
At each Re we identify two critical AR. The flow is steady for AR < ARcr1 , whereas
shedding with a single cell along the span is observed for ARcr1 < AR < ARcr2 . Two or
more cells are observed for AR > ARcr2 . In addition to the number of cells along span, the
other attributes of the flow that vary with AR and Re are the vortex dislocations between
cells, oblique angle of the vortices and their structure close to the end wall. A broad
classification of the flow in the AR–Re plane, based on these attributes, is summarized
in figure 6. The oblique angle of vortices, in single-cell shedding, is constant along span.
For two cells or more, it is found that, in general, the oblique angle of vortices varies
along the span for Re � 60 irrespective of AR. However, for larger Re the angle along the
span is constant for AR > 50, approximately. The vortices diffuse out near the end wall for
Re � 58. They form linkages with neighboring vortices of opposite polarity for larger Re.
The type of dislocations across cells is found to correlate well with the structure of end
vortices. Fork-type vortex dislocations and diffused end vortices are seen in the wake at
low Re. Connected fork-type dislocations occur at relatively large Re.

The number of dislocations is one less than the number of cells along the span. They
appear at the beat frequency, which is related to the difference in the frequency of shedding
across the dislocation. In general, for three cells or more, these dislocations are not in
phase. A spatio-temporal analysis of the frequency of the cross-flow component of velocity
in the near wake shows that the appearance of dislocation coincides with a local minimum
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in the shedding frequency followed by a sharp rise. The dislocations close to side wall
appear more frequently than those towards the mid-span. In addition, the frequency of
dislocations increases with an increase in Re.

Global linear stability analysis was conducted to explore the reason for the formation of
cells. Linear stability analysis for cylinders with infinite span reveals oblique shedding with
constant angle along the span. The parallel shedding is found to be that with largest growth
rate. The growth rate decreases with increase in oblique angle. No cell-like structures are
observed in any of the linearly unstable modes. Further, it is found that the modes from the
linear analysis do not follow the cosine rule relating the oblique angle of the vortices and
their shedding frequency (Williamson 1988). The convection speed of the vortices is also
grossly underpredicted by the linear analysis. Direct numerical simulations, with periodic
boundary conditions at end walls, initiated with the linear modes bring out the significance
of the nonlinearity on the flow. The flow structures evolve to satisfy the cosine rule as well
as the correct speed of convection of vortices that is independent of the shedding angle
(Williamson 1988). However, the flow is still devoid of cells, confirming the role of an end
wall in cellular shedding.

Linear stability analysis of the steady flow past cylinder with an end wall was conducted
for a variety of Re. In all cases, the mode with vortices parallel to the cylinder was found
to be most unstable. The modes associated with cells have lower growth rate. These cells
are, however, different than those seen in experiments and in direct numerical simulations.
We recall, the disturbance in the global linear stability analysis assumes the same temporal
frequency throughout the entire spatial domain. Therefore, the vortex shedding frequency
across the cells is also same in each of the eigenmodes from global linear stability analysis.
What, then, is the role of these eigenmodes in the cellular shedding? A direct numerical
simulation initiated with the steady flow was carried out. As predicted by linear stability
analysis, the unsteadiness in the flow develops via the parallel mode of shedding with no
cells along the span. However, as the disturbance field evolves and the nonlinear terms gain
significance an oblique front develops at the end wall and moves inward towards the mid
span with time. This is followed by formation of cells along the span that are separated by
vortex dislocations. These simulations bring out the significance of the nonlinear effects,
especially in the presence of an end wall. For the flow with periodic boundary conditions
along the span, the linear and nonlinear flows are qualitatively similar. However, in the
presence of an end wall the two flows are qualitatively different in terms of cellular
structure, vortex dislocations and end vortex structure.

This study brings out the complexity in the wake of a circular cylinder owing to the
end conditions. It is expected that more complex geometries, including changes along the
span, may further add to the complexities in the flow. It will be interesting to extend this
work in future to higher Re and to other geometries of practical interest.
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Figure 20. Flow past a cylinder with side wall: instantaneous flow structure visualized using Q = 0.0005 (a,d),
λ2 = −0.0005 (b,e) and Ω = 0.5 (c, f ) for (AR, Re) =(a–c) (60, 50) and (d–f ) (60, 75). The iso-surfaces are
coloured with spanwise component of vorticity (ωz = ±0.01). The side wall is shown for reference.

Appendix A. Vortex identification

We briefly review and compare three methods for identifying vortex cores: the
Q, λ2 and Ω criterion proposed by Hunt et al. (1988), Jeong & Hussain (1995)
and Liu et al. (2016), respectively. The velocity gradient tensor is decomposed as
∇u = ω + S, where ω = [∇u − (∇u)T]/2 and S = [∇u + (∇u)T]/2 are, respectively,
skew-symmetric and symmetric. We further define two scalars: Q = [ωijωij − SijSij]/2
and Ω = ωijωij/(SijSij + ωijωij). According to the Q criterion, an eddy is identified by a
positive value of Q. Let λ1, λ2 and λ3 be the eigenvalues of the symmetric matrix ω2 + S2

such that λ1 is the largest and λ3 the smallest eigenvalue. In the λ2 method, negative values
of λ2 are utilized to identify the minimum pressure in a plane normal to the axis of the
vortex. As per the Ω method, a value of Ω � 0.5, that represents the ratio of vorticity to
the rate of deformation, is used to identify vortices in the flow.

The vortex structures identified by the three criteria for the flow corresponding to
different combinations of (AR, Re) are presented in figure 20. The top row in the figure is
for the case of (AR, Re) = (60, 70) associated with single cell and diffused end vortices.
All three vortex identification criteria yield same flow structures. Similar is the observation
for (AR, Re) = (60, 75) shown in second row of the figure with two cells along half
the span and linked end vortices. The (AR, Re) = (60, 70) flow is associated with a
mixed-type dislocation, i.e. a fork-type dislocation convects downstream and forms a
ring-like structure at a later time instant. Figure 21 shows the flow visualized with the
three criteria at a time instant where the ring-like structure exists in the flow. Again, the
vortex structures identified by the three methods are in excellent agreement.
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z =
0

z=
3
0
D

x = 0 x = 37Dx = 0 x = 37Dx = 0 x = 37D

(a) (b) (c)

Figure 21. Visualization of the (AR, Re) = (60, 70) flow past a cylinder with side wall with different criterion
for identification of vortices: iso-surfaces of (a) Q = 0.0005, (b) λ2 = −0.0005 and (c) Ω = 0.5 coloured with
spanwise component of vorticity (ωz = ±0.01). The ring-like structure formed after the convection of fork-type
dislocation is highlighted in each image.

β λr Stβ θLSA θSt θLSA/θSt Uc/U∞

0.0 0.1213 0.1155 0.0◦ 0.00◦ — 0.522
0.2 0.1130 0.1150 12.9◦ 5.74◦ 2.25 0.521
0.4 0.0888 0.1132 24.9◦ 11.46◦ 2.17 0.509
0.6 0.0514 0.1104 35.7◦ 17.14◦ 2.08 0.490
0.8 0.0037 0.1065 44.3◦ 22.81◦ 1.94 0.335

Table 3. Global linear stability analysis of two-dimensional steady flow past a cylinder with three-dimensional
spanwise periodic perturbations at Re = 100: characteristic details of the eigenmodes with largest growth rate
for different values of β. Here λr and Stβ are the growth rate and shedding frequency, θLSA is the measured
angle of inclination of the vortices, θSt is obtained from the cosine rule, θSt = cos−1 Stβ/Stβ=0, and Uc is the
convection speed of vortices that is obtained from the direct numerical simulation, in the linear regime, and
initiated with the corresponding eigenmode.

Appendix B. Linear stability analysis of steady flow

B.1. Biglobal linear stability analysis of two-dimensional steady flow
First, linear stability analysis is carried out for the two-dimensional steady flow past
a cylinder of infinite span for perturbations that are periodic along the span with
wavenumber β (see (2.6)). For each β, we seek the rightmost eigenvalue, λ = λr + iλi. A
positive λr indicates an unstable mode. λi is related to the time-frequency of the instability.
Table 3 lists the characteristic details of the eigenmodes with largest growth rates obtained
from the biglobal linear stability analysis at Re = 100 for different β. The residual, per
degree of freedom, is smaller than 1 × 10−8 for each case. The spanwise vorticity for
the eigenmodes corresponding to the rightmost eigenvalue for certain β are shown in
figure 22(a). Here β = 0 corresponds to parallel shedding, whereas non-zero β results
in oblique shedding. Also marked on the figure is the oblique angle (θLSA) of the vortices
and the spacing (d) between the adjacent vortices of similar polarity. Table 3 indicates
that β = 0, i.e. parallel shedding, has the highest growth rate and that λr decreases with
increase in β. These computations confirm that the parallel and oblique shedding are
intrinsic to the flow past a cylinder and that, boundary conditions permitting, the parallel
mode is the preferred mode of vortex shedding. The Strouhal number for each β (=Stβ ),
calculated from λi, is also listed in the table along with θLSA. We note that θLSA increases
and Stβ decreases with increase in β.
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t=

0
t=

1
5
0

β = 0

d/D = 7.72

d/D = 5.30

β = 0.2

d/D = 7.13

θ=12.9°

d/D = 5.30

θ = 9.8°

β = 0.4

d/D = 6.58

θ = 24.9°
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θ = 19.8°

0.01–0.01

ωz

x = 0 x = 50D x = 0 x = 50D x = 0 x = 50D

(a)

(b)

Figure 22. Direct numerical simulation initiated with the eigenmodes corresponding to β = 0.0, 0.2 and 0.4
superposed on the steady base flow at Re = 100: spanwise component of vorticity of the perturbation field at
(a) t = 0 and (b) t = 150.

Williamson (1988) proposed that the frequencies for the parallel and oblique vortex
shedding are related via a cosine rule: cos θ = Stθ /St||. Here, θ is the angle of the
oblique vortices whereas Stθ and St|| are the Strouhal numbers for the oblique and parallel
shedding, respectively. Listed in table 3 is the θSt estimated from the Stβ obtained from
linear stability analysis. The expression used is θSt = cos−1 Stβ/Stβ=0. It is noted that the
θSt so estimated does not match θLSA, which is the geometric oblique angle of the vortices
as shown by the eigenmode (figure 22a). In fact, for low β, θLSA is more than twice the
value of θSt. This suggests that the cosine rule, as proposed by Williamson (1988) from
experiments with end control plates, is not valid in the linear regime.

It is also clear from table 3 and figure 22(a) that the linear stability analysis of the
two-dimensional flow does not explain the cellular shedding observed in the flow past a
cylinder. It appears that the presence of an end wall is vital to the cellular structure. In
addition, the analysis shows that the eigenmodes from the linear stability analysis do not
respect the cosine rule. It is well known that the nonlinear effects play a major role in
the realization of the fully developed unsteady flow. To explore the effect of nonlinearity
on the oblique shedding and cellular structures, direct numerical simulation of the flow is
carried out wherein the initial condition of the flow is the steady flow superposed with the
eigenmode from the linear stability analysis. Periodic flow conditions are applied at the
side walls. The span-length of the cylinder is chosen to accommodate an integer number
of span-wise wavelengths (λz = 2π/β) of the instability. The direct numerical simulation
is expected to yield the time evolution of the disturbance in the form of the most unstable
eigenmode for each β. Computations are carried out until the flow achieves a limit cycle.
Figure 22(b) shows the instantaneous perturbation field for the fully developed unsteady
flow for β = 0, 0.2 and 0.4. The vortices for β = 0 continue to remain parallel to the axis
of the cylinder, whereas the vortices for the other β remain inclined, albeit at a reduced
angle. The angle of the vortices is marked in the figure. The spacing between the vortices
also undergoes a reduction, as compared with that in the initial condition. In fact, as
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Figure 23. Direct numerical simulations initiated with the eigenmodes corresponding to β = 0.0, 0.2 and
0.4 superposed on the steady base flow at Re = 100: time evolution of (a) the normalized convection speed,
Uc/U∞, (b) normalized shedding frequency, St, and (c) angle of oblique vortices, θ . The (x/D, y/D) for the
location where Uc, St and θ are estimated is (5, 1.4), (10, 1.4) and (20, 0), respectively. The spanwise location
for all the estimates is z = Lz/2.

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Re λr St λr St λr St λr St λr St

55 0.0023 0.1195 −0.0075 0.1182 — — — — — —
(1.83 × 10−8) (1.5 × 10−8) — — —

60 0.0093 0.1196 0.0048 0.1194 −0.0008 0.1180 — — — —
(1.6 × 10−8) (1.4 × 10−8) (1.3 × 10−8) — —

70 0.0207 0.1191 0.0156 0.1187 0.0089 0.1170 0.0071 0.1149 −0.0037 0.1150
(1.3 × 10−8) (1.1 × 10−8) (1.1 × 10−8) (0.9 × 10−8) (1.3 × 10−8)

Table 4. Global linear stability analysis of a finite cylinder of AR = 60 with side wall: details of the
eigenmodes with largest growth rates for different values of Re. Here λr and St are the growth rate and shedding
frequency of the mode, respectively. The residual for each mode is presented in parentheses.

hypothesized by Williamson (1989) and confirmed by his experimental measurements,
the spacing between the vortices, for the fully developed unsteady flow, is independent of
the oblique angle. This is not the case for the eigenmodes of the linear stability analysis.

Another interesting parameter that is related to the frequency of vortex shedding and
the spacing between the vortices is the convection speed of the vortices. Williamson
(1989) found that the vortices convect at about 90% the free-stream speed. The streamwise
convection speed (Uc) of the vortices is estimated from direct numerical simulation.
Table 3 lists the speeds estimated during the initial stages of the direct numerical
simulation, initiated from the eigenmodes of linear stability analysis. At this stage,
the disturbance is small, compared with the steady flow, and the nonlinear effects are
insignificant. This Uc, therefore, is attributed to the convection speed of the vortices of
the eigenmodes. Clearly, they vary with β (and, therefore, with θLSA) and are much lower
than the speed reported by Williamson (1989). Figure 23 shows the time evolution of
the convection speed of vortices, St and oblique angle of the vortices for the simulations
corresponding to β = 0, 0.2 and 0.4. The effect of nonlinearity on the flow is very
significant. The convection speed of the vortices saturates to 0.88U∞, approximately,
which is in very good agreement with the experimental observation of Williamson (1989).
In figure 23(b) for β = 0, the St remains constant for t > 50 with a value of 0.16 and
is in good agreement with the simulation of two-dimensional flow past circular cylinder
(Sheard, Thompson & Hourigan 2003). Here St and θ , for the fully developed unsteady

915 A74-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

82
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.82


Cellular vortex shedding from a cylinder at low Re
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Figure 24. Global linear stability analysis of a finite cylinder with side wall: spanwise component of
vorticity of the eigenmodes with largest growth rate and listed in table 4 for (a) (AR, Re) = (60, 55), (b)
(AR, Re) = (60, 60) and (c) (AR, Re) = (60, 70).

flow, are also found to satisfy the cosine rule. This establishes the significance of nonlinear
effects in the flow. It is also concluded that a side wall or end plate is necessary for
formation of spanwise cells in the wake.

B.2. Triglobal linear stability analysis for finite cylinders with side wall
With reference to figure 3, computations are carried out for the cylinder with a span
corresponding to AR = 60 for three values of Re: 55, 60 and 70. The unsteady flows for
Re = 55 and 60 are associated with three cells, whereas two cells are observed for the
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Re = 70 flow (see figure 3). First, for each Re, the steady flow is computed for the problem
set-up shown in figure 1, by dropping the unsteady terms from the flow equations. For the
disturbance of the type described in (2.7), we track the first few eigenvalues that have the
largest real part. They are listed in table 4 for the three Re considered. For each Re, all
the unstable modes as well as one stable mode are listed. All these modes are found to be
complex. Therefore, they appear as conjugate pairs. The modes are numbered in the order
of decreasing growth rate. Mode 1 is associated with the largest real part and is, therefore,
the one with largest growth rate. The spanwise vorticity of the real part of the eigenmodes
for the three Re is shown in figure 24.

Mode 1, for all Re, has a single-cell structure and the vortices are almost parallel to the
axis of the cylinder. Mode 2 exhibits a two-cell structure which becomes more apparent
with increase in Re. The vortices are still parallel to the axis of the cylinder except at the
boundary of the two cells. Mode 3 has been tracked only for Re = 60 and 70. It shows a
three-cell structure for Re = 60 with the vortices aligned parallel to the axis of the cylinder.
Interestingly, the cellular structure is not due to the difference in the vortex shedding
frequency across the cells, rather it is due to stagger of vortices of different polarity across
the span. Mode 3 for the Re = 70 flow shows a two cell structure. It is different from the
two-cell structure of mode 2 in the sense that vortex cores in cell 1 are oblique in mode 3.
Modes 4 and 5 for the Re = 70 flow show three and five cells along the span, respectively.

At this point, we make a few observations regarding the global linear stability analysis.
In the disturbance field, described by (2.6) and (2.7), the time frequency as well as growth
rate are global in nature, that is, they do not vary spatially. In particular, this implies that
the ‘vortex shedding’ frequency for the resulting eigenmodes is constant along the span.
Cellular shedding, on the other hand, as seen from figure 4, is associated with a change
in vortex shedding frequency across the cell boundary. Therefore, eigenmodes from the
global linear stability analysis cannot be expected to replicate this behaviour of cellular
shedding associated with a ‘nonlinear’ flow.
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