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To evaluate the aptness of a navigation system in a particular application, the designer needs to
assess its performance over typical trajectories travelled by the vehicle itself. Moreover, he or
she may be required to judge which components of the kinematics state may be better estimated
(and which will not). The main contributions of this work are two novel and complementary per-
formance measures that, in concert, allow for the assessment of a navigation system within the
actual context of its application over specific trajectories. For a given on board instrumental con-
figuration, the “excitability metric” permits the isolation of the contribution of the information
conveyed by the vehicle’s motion itself, while, the “sensability metric” measures the resultant
overall quality of the kinematics state estimation. The same tools could help the designer plan-
ning appropriate vehicles manoeuvres in order to obtain a required precision for each estimated
component. While emphasis is given on the mathematical justification of those metrics, their
use is also illustrated with real flight data recorded from a sounding rocket.
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1. INTRODUCTION. The objective of an embarked navigation system is to estimate,
as precisely as possible, the components of a vehicle’s kinematic state (attitude, position
and velocity vectors) given all the available measurements on board. For several decades,
real time estimation of a vehicle’s kinematic state has been implemented through embedded
navigation systems based on numerical filters fusing real time data coming from a variety
of instruments included a core strap-down inertial measurement unit.

With respect to previously pure inertial navigation systems, multi-sensor integrated nav-
igation systems allow for significant improvements in robustness, reliability, redundancy,
costs and, of course, performance since the aggregation of independent measurements
correlated with the state tends to reduce the covariance of its estimate. However, adding
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instrumentation is never for free in terms of increasing uncertainties such as measurement
noises, modelling errors and, of course, costs and computational requirements.

While evaluating the performance of an integrated navigation system, one may find that
certain state components do not converge or that their covariances remain large. When
errors in data acquisition, on the time-labelling or in the embedded software may be ruled
out, it is natural to search the causes on the quality of the sensors, but also on the worth of
the available information itself.

Sensor measurements are typically modelled by memory-less transduction functions
parameterised by a set of parameters and additive disturbances, usually uncorrelated noise.
Nominal values of sensors’ parameters may be known in advance from the instrument data
sheet provided by the manufacturer or else obtained through previous calibration proce-
dures. Once the sensor’s model structure is fixed, uncertainties are presumed concentrated
on those parameters, which, multi-sensor fusion filters consider as part of an Augmented
State Vector (ASV). However, sensor models are necessarily approximated; in particular,
low performance sensors seldom obey a consistent mathematical model with stable param-
eters. Fusion filters deal with parameter instabilities by assuming they are perturbed by
Brownian motions. The parametric components of the ASV are thus assumed permanently
disturbed - the more so when low cost instruments are employed.

For a given instrument configuration, the measurements and the ASV become corre-
lated through the kinematics differential equations of the vehicle’s motion and the sensor
models. To estimate the ASV, fusion filters (for example, Extended (EKF), Linear (LKF)
and Unscented (UKF) Kalman Filters) make use of that correlation to produce a state
estimate with its covariance matrix. The trace of the covariance matrix is often seen as
a measure of the overall state estimate inaccuracy. However, for a high dimension ASV the
correlation among its components hampers discerning which navigation variables may be
better estimated (or better “sensed”) with the available instrumentation. Ham and Brown
(1983) pointed out the relevance that the eigen-structure of the covariance matrix has in
addressing this issue. Further developing this idea, we here start from the singular value
decomposition of the error covariance matrix to define a “practically sensable” subspace
and its orthogonal complement, the “practically non-sensable” one. Based on this decom-
position, a new instantaneous measure of the “sensability” of any linear combination of
the ASV components is proposed as its orthogonal projection over the practically sensable
subspace.

Deterministic “observability” (Willems and Mitter, 1971) designates the property and/or
the conditions under which the state at a particular time may be determined from future
measurable inputs and outputs. The non-linear nature of the kinematics equations makes
observability in navigation systems strongly dependent on the vehicle’s trajectory. Hence,
besides measurement errors, sensors’ parameter instabilities and uncertain initial condi-
tions, the quality of the estimates depends on the actual vehicle’s manoeuvres over different
trajectory stretches. This motivated numerous analysis performed using ideal trajectories
(lemniscates, circles, uniform acceleration, etc) so as to allow for a closed form analyti-
cal treatment of the problem (Bageshwar et al. (2009), Rhee et al. (2004) and Hoo et al.
(2005) consider Inertial Navigation System (INS)/Global Positioning System (GPS) navi-
gation systems). However, real vehicles’ trajectories may rarely be analytically described
or even predetermined. Shen et al. (2018) proposed a method (based on a Kalman scalar
estimator algorithm pioneered by Salychev (1998)) for quantifying the observability of
each state component over a given trajectory. Unfortunately, their approach requires the
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local Gramian observability matrix (denoted Oτ in the text) to be well conditioned over the
considered trajectory.

A new “excitability measure” is proposed here to quantify the information, relative to
the initial state, conveyed by the innovations during any given trajectory stretch. This is
done based on a synthetic trajectory (Giribet et al., 2007) determined from actual flight
data. Linearized models of state deviations and innovations are determined by referring to
this synthetic trajectory. Once more, a principal component analysis, this time of the deter-
ministic innovation signals, over any time interval, allows us to decompose the initial ASV
state space (of any given trajectory stretch) into a Practically Observable Subspace (POS)
and its orthogonal complement: the “practically un-observable subspace”. The new mea-
sure of the excitability for any vector (physical state components included) of the initial
state space is defined as the norm of its orthogonal projection onto the POS. Notice that,
contrary to other approaches, the excitability measure empirically qualifies any given vehi-
cle’s trajectory stretch; that is, it is not the result of an ad hoc analysis of a pre-assumed
manoeuvre (as for instance in Tang et al., 2009).

The paper is organised as follows: Section 2 presents the mathematical formulation and
main notation used in the paper; practical sensability and practical observability subspaces
for the ASV are introduced, respectively, in Sections 3 and 4 whereby the sensability and
excitability metrics are established.

In Section 5, these concepts are used to assess the performance navigation results with
actual flight data from CONAE’s (National Commission of Space Activities: Argentina’s
Space Agency) first experimental navigation payload on a suborbital rocket. Finally,
Section 6 concludes the paper.

2. MATHEMATICAL FORMULATION. A causal non-linear filter reconstructs the
present state given past measurements. An integrated navigation algorithm is a particular
case of nonlinear filtering based on kinematics equations which, when using the Earth-
Centred-Earth-Fixed (ECEF) frame as the reference frame, adopts the following form (see
for example, España (2017)):

Ṗe = Ve

V̇e = Ce
bfb + γ e(Pe)− 2(Ωe × Ve); Ce

b = exp(S(θbe))

θ̇be = ωe
eb +

1
2
θbe × ωe

eb +
(

1− θbe sin θbe

2(1− cos θbe)

)
�

θbe ×
( �

θbe × ωe
eb

)
ωe

eb = ωe
ib − ωe

ie = Ce
bω

b
ib −Ωe

(1)

where: Pe, Ve are the vehicle’s position and velocity in the ECEF frame; θbe and Ce
b are,

respectively, the vector angle and the rotation matrix relating the ECEF frame and the
body frame; the specific force fb and the angular rate ωb

ib, both projected onto the body’s

frame, are gathered in the inertial magnitude vector μ �
[
fb′ωb

ib
′]′, ((′) stands for trans-

pose), γ e(Pe) is the local gravity as a function of the vehicle’s position, both in Earth
Cartesian coordinates and Ωe is the Earth angular rate. By using the Inertial Measurement
Unit (IMU) inverse model and assuming additive disturbances ξμ (España, 2017), μ may
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be expressed as a function of its measured value �
μ as:

μ = M( �
μ; pi) = ξμ; (2)

The inertial as well as the exteroceptive instruments’ models are characterised by a vector
of unknown parameters p � [pi

′ pe
′]′ with assumed known expected values. The kinemat-

ics state vector x � [Pe′ Ve′ θbe
′]′ and the instrument parameters vector p are compounded

in the ASV defined as χ � [x′ p′]′ ∈ R
n. When p is modelled as a Brownian motion

(Farrell, 2008), χ may be modelled by the following stochastic equation, affine in the
perturbations ξ(t):

χ̇ =
[

ẋ
ṗ

]
=

F (χ;t)︷ ︸︸ ︷[
fkin(χ; �

μ(t))
0

]
+

B(x)︷ ︸︸ ︷[
Bkin(x) 0

0 I

] ξ(t)︷ ︸︸ ︷[
ξμ

ξp

]
;

�yk = hk(χ(tk)) + ηk

(3)

where hk(·) models the active exteroceptive instruments producing the measurement vector
�yk at time tk; ηk is a discrete time white disturbance with known diagonal covariance matrix
Rk; the noise ξp models the sensor’s parameters instabilities; ξμ and ξp are continuous
white noises with assumed known Power Spectral Densities (PSD), respectively: Sμ, Sp .

For t0 as the starting time of an arbitrary trajectory stretch, the initial state χ(t0) in
Equation (3) is a random vector with the first two moments χ̂0 = E {χ(t0)}, P0 = cov(χ(t0))
provided by the navigation algorithm being assessed. When t0 is the initial naviga-
tion time, χ̂0, P0 reflect the vehicle’s alignment procedure and P0 is normally assumed
diagonal.

Given a reference solution of the nonlinear model Equation (3), denoted as χr(t),
we introduce the state deviations δχ(t) � χ(t)− χr(t) and the innovations δyk � �yk −
hk(χr(tk)), which, for smooth enough fkim, hk and small enough perturbations and initial
state errors, may be modelled by the following time varying linear equations:

{
δχ̇ = A(χr,

�
μ)δχ + B(xr)ξ; δχ(t0) ∼ (δχ̂0, P0

)
δyk = Hk

(
χr(tk)

)
δχ(tk) + ηk

(4)

where A(·) and Hk(·) are the partial derivatives matrices with respect to χ, respectively, of
F(χ; t) and hk(χ) in model Equation (3) evaluated along the reference trajectory.

When restricted to the kinematic state, from Equations (1), the deviation equations are
given by (see, for example, España (2017), Equation 6.22).

δẋ =

⎡
⎣ 0 I3 0

γ e
P

∣∣
Pe −2S(Ωe

e) −Ĉ
e
bS(

�

f e)
0 0 −S( �

ωe
ib)

⎤
⎦
⎡
⎢⎢⎣

δPe
– – –
δVe
– – –
δθbe

⎤
⎥⎥⎦ +

⎡
⎣0 0

0 Ĉ
e
b

I 0

⎤
⎦ δμ

= Akin(t)δx + Bkin(t)δμ; δx(t0) ∼ (δx̂0, Px0)

δμ = Bpi (
�
μ)δpi + ξμ

(5)
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where: S : R
3 → R

3×3 is the vector product matrix operator; γ e
P the Jacobian of the normal

gravity with respect to Pe; δPe, δVe, δθbe, are the components of the kinematics state devia-
tions vector and δμ the IMU’s deviation measurement vector, with Bpi (

�
μ) the Jacobian of

M (in Equation (2)) with respect to pi.
The solution to the linear time varying differential Equation (4) in the interval [tk tk+1]

between two consecutive exteroceptive measurement acquisition times, is given by (Farrell,
2008):

δχ(tk+1) = �(tk+1, tk)δχ(tk) + εk; εk �
∫ tk+1

tk
�(tk+1, τ )B(τ )ξ(τ )d τ

�̇(t, t0) = A(t)�(t, t0); �(t0, t0) = I

(6)

where �(·, ·) ∈ R
n×n is the state transition matrix of the time varying linear system

Equation (4) and εk is a centred uncorrelated random sequence such that:

E
[
εj ε

T
k

]
= Qkδjk; E

[
εj η

T
k

]
= 0; ∀j , k (7)

The positive definite covariance matrix Qk is obtained by introducing the power spectral
density (Starks and Woods, 1994) S = diag

(
Sμ, Sp

)
in the integral expression of εk given

in Equation (6) (see España (2017) for details) and δjk stands for the Kronecker delta.
Denoting the non-singular matrix Fk = �(tk+1, tk) and δχk = δχ(tk), with Equation (6), the
discrete time models for the ASV and the innovation are rewritten as:{

δχk+1 = Fkδχk + εk; δχ0 ∼
(
δχ̂0, P0

)
δyk = Hkδχk + ηk

(8)

The EKF refers the state deviations to the a priori estimate χ̂
−
k+1 calculated at the end

of the k-th interval by numerical integration of model Equation (3) after substitution of
all random variables by their expected values, that is: ξ→ 0; χ(tk)→ χ̂k -the last one
being the previous a posteriori estimate obtained at the beginning of the k-th interval. This
procedure, first introduced by Jazwinski (1970), is known as the Certainty Equivalence
Principle. Once the next measurement becomes available, the a posteriori estimate χ̂k+1 is
obtained, updating the prediction χ̂

−
k+1 by adding the innovation: �yk+1 − hk(χ̂−k+1) multiplied

by the Kalman gain calculated as (Anderson and Moore, 1979):

Kk = P−k HT
k

(
HkP−k HT

k + Rk
)−1 = PkHT

k R−1
k (9)

where P−k = E(χk − χ̂
−
k )(χk − χ̂

−
k )T and Pk = E

(
χk − χ̂k

) (
χk − χ̂k

)T are, respectively,
the a priori and the a posteriori covariances of the state error modelled by Equation (8).
We introduce the a priori and a posteriori information matrices: I−k � (P−k )−1, Ik � P−1

k .
As shown in Anderson and Moore (1979) or Jazwinski (1970), both matrices may be
determined with the next recursive equations starting from I−1

0 = P0 > 0.

a) P−k+1 = FkPkFT
k + Qk; ← covariance propagation

b) Ik+1 = I −k+1 + HT
k+1R−1

k+1Hk+1; ← information update
(10)

From Equations (10), the current state accuracy at any time tk is the consequence of
two opposed effects. The first one, called “disturbability” by Bryson (1978), concerns
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the growth of the state uncertainty due to the disturbance covariance noise matrix Qk
(Equation (10a)). The second one, called “estimability” by Baram and Kailath (1988)
regards the growth of the information matrix produced by the new measurement acquired
at time tk+1 (Equation (10b). Both effects depend on the Jacobians A(·), H(·) and B(·) eval-
uated over the reference trajectory. As such, the accuracy of the ASV estimate depends
on: (a) the performance of the onboard instruments (through the inertial sensor’s PSD S
and external measurement noise Rk), (b) the initial state errors covariance P0 and (c) the
vehicle’s trajectory itself (Giribet et al., 2018).

Since the components of δχk, δyk and those of the corresponding driving noises
are expressed in different physical units, their magnitudes are not directly comparable.
Thus, for D0 � diag(P0) and R0 assumed diagonal, we proceed to normalise (“de-
dimensionalise”) model Equation (8) through the following change of variables (Krener
and Kayo, 2009):

δχk → D−1/2
0 δχk; δyk → R−1/2

0 δyk (11)

With variable change Equation (11), matrices in Equation (8) are transformed as: Fk →
D1/2

0 FkD1/2
0 ; Hk → R−1/2

0 HkD1/2
0 . Thus, the new normalised state deviations’ covariance

transforms as: Pk → D−1/2
0 PkD−1/2

0 ; ∀k, while the output additive error noise covariance
as: Rk → R−1/2

0 RkR−1/2
0 ; ∀k. Moreover, with Qk → D−1/2

0 QkD−1/2
0 , a simple substitution

shows that the new normalised matrix Pk still satisfies the recursive Equations (10). We call
E �

{
ei : i = 1, 2, . . . , n

}
the canonical base in which the physical but dimensionless state

is represented after transformation Equation (11).
Ik, a real symmetric positive definite matrix for any k, may be decomposed into a diag-

onal form, such as Ik = Vk�kVT
k where, �k = diag(λ1

k , λ2
k , . . . , λn

k) is built with the ordered
set of Ik’s eigen-values:

{
λ1

k ≥ λ2
k ≥ · · · ≥ λn

k > 0
}

and Vk =
[
v1

k | v2
k | . . . | vn

k

] ∈ R
nxn is

the matrix with, as columns, the set of Ik’s unit orthogonal right eigen-vectors. In what
follows, it is assumed that there exists 0 < p < p̄ <∞ such that for all tk p < λ′k < p̄ ,
i = 1, . . . , n. This ensures that there is no numerical divergence on recursion Equations (10)
and also that there are no purely deterministic directions in the state space (see next section).

3. RELATIVE SENSABILITY: SUBSPACES AND METRICS. Assuming the vi
k

expressed in the canonical base E in which the normalised augmented physical state model
Equation (8) is represented, we introduce the transformation δχk → δzk in R

n defined as:

δzk = VT
k δχk; (12)

The component δzi
k of δzk is the projection of the state deviation vector δχk (“physical”

normalised coordinates) over the i-th Ik’s eigen-vector. At each instant tk the covariance
matrix of the transformed vector is:

Cov (δzk) = VT
k E
{
δχkδχk

T}Vk

= VT
k PkVk =

(
VT

kIkVk
)−1 = �−1

k

(13)
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From Equations (12) and (13) the transformed state deviation components are orthogonal
random variables satisfying:

i) E
{
δzi

kδzi
k

}
= 0 ∀i �=j

ii) E
{
(δzi

k)2} = 1/λi
k

iii) E
{‖δzk‖2} = E

{∥∥δχk

∥∥2
}

=
∑

i
1/λi

k = tr(Pk)

(14)

Each standard deviation
√

1/λi
k being the state uncertainty along the eigen-direction vi

k,√
tr(Pk) is a measure of the instantaneous “total state uncertainty”. Symmetrically,

√
tr(Ik)

is seen as a measure of the “total state accuracy”. Given the ordering of the λ′k’s, the state
space direction best estimated (least variance) is the first principal component (pc) v1

k of
the information matrix Ik with Cov

(
δz1

k

)
= 1/λ1

k ; the next best estimated is v2
k and so on

until vn
k .

We now consider the sets of sequentially embedded subspaces V i
k � span

{
v1

k , v2
k , . . . , vi

k

}(V i+1
k ⊃ V i

k

)
and introduce the following ratios monotonously increasing with i towards

rn = 1.

ri
k =

√√√√ i∑
j =1

λ
j
k

/ n∑
j =1

λ
j
k : i = 1, 2, . . . , n (15)

If, for a given i ≤ n, rt ≈ 1, it means that the subspace V ′k contains the pcs that concentrates
the major part of the total accuracy of the estimator. Given this, we introduce:

Definition 1: For a threshold 0 < ν < 1 empirically chosen close to 1, we denote nr the
first index i in Equation (15) such that rnr

k ≥ ν and call Ss
k ≡ Vnr

k the practically sens-
able (ps) subspace and SNS

k ≡ (SS
k )⊥ the practically non-sensable (pns) subspace to its

orthogonal complement.

By definition, the random components of δzi over SS
k are the ps ones. Since R

n = SS
k ⊕

SNS
k , on any tk, each element ei of the canonical (physical) base may be decomposed into

its orthogonal projections πs(ei)k and πns(ei)k, respectively, over SS
k and SNS

k as:

ei =
∑
vj ∈Ss

k

〈
ei, vj

〉
vj +

∑
vl∈Sns

k

〈ei, vl〉 vl � πs (ei)k + πns (ei)k (16)

Definition 2: si
k � ‖πs(ei)k‖ is the practical sensability instantaneous measure of the

ASV’s i-th component.

Some practical considerations on the choice of the threshold ν are in order. It is assumed
that at least one component of the ASV is ps (otherwise the instrumentation should be
reviewed) so, whenever the λi

k’s are similar (λi
ki ≈ λ̄k,∀i) one expects that all the ASV

components be ps (that is: Ss
k = Vn

k ). Now, since in this case ri
k ≈
√

i/n, it needs to be
ν ∈ (1− 1/n, 1), or else, one may have rn−1

k > ν meaning that the last component is pns,
which is contrary to the assumption. Thus, for a small enough ε empirically chosen, we
propose the dimensionally dependent choice of ν =

√
1− 1/n + ε < 1.
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Notice that decomposition Equation (16) is generically time variant, which means that
some eigen-directions may go in and out of the subspace SS

k . As such, its associated measure
may change with time depending on previous data. This motivates quantifying the available
information embedded in a given vehicle’s trajectory segment, which is the subject of the
next section. Our point of view differs here once more with respect to that of Tang et
al. (2009) in the sense that we search to study, segment by segment, the actual vehicle’s
trajectory.

4. OBSERVABILITY AND THE EXCITABILITY METRIC. Contrary to the sensabil-
ity metric which is evaluated at each time tk, we now seek to assess the actual information
conveyed by the innovations along a given time interval. The measure we look for is not
intended to depend on the instrumentation performance but to meet the practical need of
quantifying the impact of vehicles’ manoeuvres on the estimability of the ASV, for a given
instrument configuration.

The analysis is performed by first synthesising a deterministic trajectory with corre-
sponding measurements signals (inertial and exteroceptive). The method, proposed by
Giribet et al. (2007), produces the smooth B-spline exactly satisfying the kinematics Equa-
tions (1) that best fits the flight data in the a mean square sense. The measurements
are calculated with Equation (2) assuming perfect instruments, that is: ξμ = 0, ξp = 0 ∀t,
ηk = 0∀tk and also εk = 0 in Equation (6). The synthetic trajectories and measurements are
then used as references to construct the linearized state deviations and innovation models
in Equations (4), (5) and (8).

4.1. Observability analysis. Given the above assumptions, the innovations on the set
of time instants τ = {t0, t1, . . . , tN } modelled by Equation (8) may be expressed as a linear
function of the initial state deviation as:

Yτ (δx0) =

⎡
⎢⎢⎣

y(t0)
y(t1)
· · ·

y(tN−1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

H0
H1F0
· · ·

HN−1FN−2 · · ·F1F0

⎤
⎥⎥⎦ δχ0 � Oτ δχ0 (17)

The matrix Oτ ∈ R
(pN )xn was called the extended observability matrix by Moore (1981). If

a null linear combination were to exist among the n columns of Oτ a whole non-zero sub-
space of the initial deviations state-space would be mapped into the null innovation signal.
Accordingly, the largest subspace of R

n contained in the kernel of Oτ is the unobservable
subspace of the system Equation (8) within the interval τ . When the unobservable sub-
space is reduced to the origin, the system Equation (8) is said to be completely observable.
Observability is thus a binary condition stating whether or not the innovations carry total
information about the initial state deviations. Unfortunately, this does not give us a hint of
which state components may be better determined and, more importantly, in what amount.

4.2. Principal components of the innovation signal. We now introduce the Observ-
ability Gramian for the interval τ : Mτ � OT

τ Oτ ∈ R
n×n. Being a symmetric non-negative

definite matrix, there exists a set Bτ =
{
ui

τ ∈ R
n : i = 1, 2, . . . , n

}
of unitary, mutually

orthogonal eigenvectors associated with the ordered set
{
σ 1

τ ≥ σ 2
τ ≥ . . . ≥ σ n

τ

}
of non-

negative eigen-values (all positives only if system Equation (8) is completely observable,
that is: Mτ is non-singular). With the elements of Bτ expressed in coordinates of the
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canonical base, the orthogonal matrix Uτ =
[
u1

τ | u2
τ | . . . | un

τ

] ∈ R
ncn leads to the simi-

larity transformation Mτ = UT
τ �τ Uτ for �τ � diag

{
σ 1

τ , σ 2
τ , . . . , σ n

t

}
. Using the fact that∑

i ui
τ uiT

τ = In, we write:

Oτ = Oτ

(∑
i

ui
τ uiT

τ

)
=
∑

i

oi
τ uiT

τ (18)

The set of responses to the initial state deviations ui
τ : oi

τ � Oτ ui
τ = Yτ (ui

τ ), i = 1, . . . , n,
are called the innovation signal principal components (ispc) in τ . As can be shown, they
are mutually orthogonal (that is: oiT

τ oj
τ = σ

j
τ δij ) and such that ‖oi

τ‖2 = σ i
τ . Moreover, for any

initial state δχ0 =
∑

i αiui
τ represented in Bτ coordinates, the innovation signal is expressed

by the same linear combination of the ispcs, that is: Yτ (δχ0) =
∑

i αioi
τ . On the other hand,

for a given innovation signal over an interval τ , the components on Bτ of the initial state
may be recovered through: αi = (YT

τ oi
τ )/σ i

τ provided that σ i
τ �= 0. This just restates the fact

that an unobservable subspace exists in τ whenever σ n
τ = 0.

By using the orthogonality of the 0i
τ s, one shows that the total energy of the output

signal over τ , given by: Eτ (δχ0) � ‖Yτ (δχ0)‖2 =
∑

i α
2
i ‖oi

τ‖2, which may also be decom-
posed into a linear combination of the individual ispc’s energies: Eτ (u′τ ) = ‖o′τ‖2 = σ i

τ ,
with, as coefficients, the squares of the initial state components in Bτ . Clearly, the combined
energy of all the ispcs within τ is tr(Mτ ).

4.3. An excitability metric. We now consider the mapping sending any point of the
(unit) n-hypersphere Sn into R

n : eτ (v) = Eτ (v)v with ‖v‖ = 1. Its image eτ (Sn) describes
an n-hyper-ellipsoid En with axes σ τ

i ui
τ ; i = 1, . . . , n. The radius vector to each point on

En measures the sensitivity of the innovation’s energy to an initial state deviation in that
particular direction. The maximum sensitivity is σ 1

τ attained in the direction of u1
τ .

In practice, for a given vehicle’s trajectory and time interval τ , one may expect that
the innovation’s energy will be almost insensitive to some directions in Sn. This motivates
establishing a criterion to decide which directions contribute to the innovations and which
do not.

Considering that tr(Mτ )/n is the average energy induced by the ui
τ s, we introduce the

relative excitability index of the direction v on Sn:

Sτ (v) � n
tr(Mτ )

∑
i
α2

i σ
i
τ ; ‖v‖2 =

∑
i
α2

i = 1 (19)

Now, if for a sufficiently small number η, empirically chosen, there exists an index ne ∈
{1, . . . , n} such that:

Sτ (une
τ ) ≤ η; 0 < n� 1; for some ne (20)

then, that means that the contribution of the components une
τ , . . . , un

τ to the total energy
tr(Mτ ) may be neglected. This establishes a partition in the orthogonal set {ui

τ }, which in
turn determines the orthogonal complementary subspaces:

SO
τ ≡ span{ui

τ ; i < ne}
SNO

τ = SO⊥
τ ≡ span{ui

τ ; i ≥ ne}
(21)

Definition 3: SO
τ is called the practically observable subspace and the practically non-

observable one.
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Since R
n = SO

τ ⊕ SNO
τ , as in Equation (16), each element ei of the canonical base E is

decomposed into its orthogonal projections πO
τ (ei) and πNO

τ (ei) respectively over SO
τ and

SNO
τ :

ei =
∑

uj
τ∈SO

τ

〈
ei, uj

τ

〉
uj

τ +
∑

uj
τ∈SNO

τ

〈
ei, uj

τ

〉
uj

τ � πO
τ (ei) + πNO

τ (ei) (22)

Definition 4: ei
τ � ‖πO

τ (ei)‖ is the practical excitabilty metric of the ASV’s i-th component
over the interval τ .

Notice that (contrary to Shen et al. (2018)) no a priori claim on the conditioning number
of the local observability matrix Oτ has been invoked. From the definition it naturally
follows that, whenever rang(Oτ ) < n, there exist a linear subspace of the ASV state space
with zero practical excitabilty metric.

5. SUBORBITAL ROCKET EXPERIMENTAL DATA ANALYSIS. The above con-
cepts were applied to a CONAE navigation and control experimental payload on board a
Brazilian VS30 sounding rocket having a tactical IMU (Systron Donner Motion-Pack 3
accelerometers and three gyros) sampled at 100 Hz and a GPS receiver delivering ECEF
position at 1 Hz.

5.1. The trajectory description. An analytic trajectory defined for any time t was syn-
thesised (by means of the approach proposed by Giribet et al. (2007) mentioned above) to
fit the actual flight data. Figure 1 shows the X components, aligned with the rocket axis, of
the synthetic specific force and angular rate, and evidences the different flight stages.

The vehicle stood on the launching pad until t = 18 s. During propulsion (18 s < t <

46 s) it attained a maximum acceleration of 110 m/s2 while being spun aerodynamically. At
t = 46 s, the thrust was turned off, changing the sign of the axial acceleration due to residual
air friction. An almost free flight stage (nearly null specific force) started at t = 60 s above
40 km above sea level. At t = 73 s a de-spin mechanism was activated reducing the axial
angular rate by a half. The atmospheric reinsertion phase, not shown in the figure, started a
few seconds later.

5.2. The ASV deviation equations. The ASV χ ∈ R
21 in Equation (3) includes the

kinematic state x ∈ R
9 (referred to ECEF) and the IMU’s parameters vector pi ∈ R

12 (six
biases plus six scale factors). Also ξ ∈ R

21 while ηk ∈ R
3 is the GPS position error mea-

surement. The ASV deviation vector in Equation (4) is defined as (sub-indices a and b
stand, respectively, for accelerometer and gyro):

δχ �
[
δPeT δVeT δθT

be δpT
i

]T ∈ R
21;

δpi =
[
δbT

g δbT
a δsT

g δsT
a

]T
∈ R

12
(23)

The specific time varying matrices in Equations (4) and (5), given below, are used as stated
in Section 2 to obtain the stochastic discrete time Equation (8) used in the EKF fusion filter.

A(t) =

[
Akim Bkin Bpi

012×21

]
; B(t) = Bpi

; Hk =
[

I3×3 03x18
]

(24)
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Figure 1. Axial specific force and angular velocity.

Figure 2. Excitability metric on intervals τ1, τ2 and τ3.

5.3. Analysis of the excitability metric. We distinguish between three main trajectory
segments. τ1 = [0s, 19s]: Prior to blast-off with ECEF acceleration constant equal to local
gravity at the launch pad; τ2 = [19s, 60s]: powered flight induces changes in linear acceler-
ation and angular rate due to aero dynamical spinning; τ1 = [60s, 86s]: propulsion is cut off
leading to a free fall motion flight. Figure 3 shows the excitability measurements obtained
through each of these segments for each of the 21 components of the ASV for the threshold
assumed value in Equation (20).

The above results allow us to draw the following conclusions:

• The position and velocity vectors (e1 to e6) are mostly contained in the SO subspace
and are thus observable on the three stretches. This is a natural consequence of the
GPS measurements.

• The attitude vector (e7 to e9) is fundamentally contained in SO during τ1 and τ2
but it almost does not excite the innovations during τ3. As seen in España (2017)
(Section 6.6.3), gravity and Earth rotation rate enable the vehicle’s attitude to excite
the innovations even when at rest over the Earth’s surface. For the given instrumen-
tation configuration (GPS + IMU) gravity and propulsion becomes thus necessary
(but not sufficient as we will see next) for attitude estimation.
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Figure 3. (a) Sensability metrics of position and velocity on the ECEF x-axis; (b) 2-σ bounds estimation errors
over the x-axis.

• The scale factor of the x-gyro in body coordinates e16 becomes “excitable” during
τ2 due to the combined presence of a high acceleration and angular rate projected
over that axis.

• A growth on the excitability of the x-accelerometer scale factor (e19) from τ1 to τ2
is once more due to the presence of propulsion. However, this fact does not seem to
be enough to avoid its predominant component over SNO.

• The rest of the IMU parameters have very low excitability metrics over the three
segments and should thus be considered as practically unobservable for the given
vehicle’s trajectory. Nevertheless, one notices that biases of the excitability metric
tends to be predominant over τ1 while those of the scale factors are over τ2.

• Finally, it can be verified that free fall is a quite unfavourable condition for in-flight
IMU parameters re-calibration.

5.4. Analysis of the sensability metric. As seen before, the GPS position direct mea-
sure ensures almost perfectly excitable position and velocity vectors all along the trajectory.
This induces a high sensability metric of the position from the very beginning and a
growing tendency in the sensability of the velocity. For the assumed value u = 0·985 in
Definition 1, Figure 3(a) shows this fact for the ECEF x-components, while Figure 3(b)
demonstrates how, being a measure of the available information rate, the sensabilty antici-
pates changes of the estimates’ 2σ error band. Actually, the former is a sort of “derivative”
of the latter. As such, a deep valley in the velocity sensability before t = 5 sec. induces a
growth of the estimation error band, while, close to t = 12 s, the metric increase induces
an error reduction. Finally, after t = 55 s the metric stabilises at its highest value (�1) in
correspondence to the lowest estimation error band of the velocity.

An exciting trajectory does not necessarily imply high sensability, but it is a required
condition besides high performance instruments. Figure 2 shows that the attitude (θbe) is
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Figure 4. (a) Sensability metric of the attitude vector θbe; (b) Corresponding 2-σ estimation errors bounds.

Figure 5. (a) Sensability metric of x-component of the gyro’s bias and (b) its corresponding estimation error’s
2-σ bounds.

highly exciting on trajectory segments τ1, τ2, however, as seen in Figure 4(a), the sensabil-
ity of qx and qy only grow after blast-off (t = 19 s). While the vehicle is at rest the attitude
excitability is the consequence of two vectors potentially measured by the IMU: the Earth
angular rate and gravity. However, the random walk noise and bias instability levels (see
España (2017)) of the tactical IMU’s gyro used prevent measuring the first one and thus
to take full advantage of a high excitability. Notice that, under these conditions, the IMU
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works as a mere inclinometer and thus, as shown in Figure 4(a), the θbe components shall
be more sensable the larger their projections are over the local tangent plane.

On the other hand, the propulsion ignition induces a boost of inertial measurements
(acceleration and angular rate) within the sensitivity range of the IMU inducing a fast
and sustained growth the sensability of θbe during τ2, accompanied by a reduction of its
error bandwith (Figure 4(b)). At last, during free fall (τ2 : t ≥ 40 s), a steady descent of the
attitude sensability corresponds to a smooth increase of its error bandwidth (Figure 4(b)).

For similar reasons the IMU parameters (accelerometer and gyro biases and scale fac-
tors) turn out to be weakly sensable too. Only the y-component bias appears to be sensable
but only during an interval so short in τ2, that the filter is unable to gather enough informa-
tion so as to improve its a priori error bound (see Figure 5(a) and 5(b)). The above result
suggests that for the given trajectory and instrumentation it may be futile to try to improve
the a priori instrument calibration during flight.

6. CONCLUSIONS. Integrated navigation systems search to estimate a vehicle’s kine-
matics state by fusing different and independent on board measurements. As expected,
the precision of the state estimates depends on measurement errors, sensors’ parameters
instabilities, uncertain initial conditions but, also, on the actual vehicle’s trajectory.

The work proposes two novel complementary performance metrics aimed at guiding
the designer in the process to evaluate the fitness of the navigation system to a family of
trajectories of a given vehicle with a given on board instrument configuration. Whenever
possible, the same tools would help him or her planning appropriate vehicle manoeuvres.
To evaluate the aptness of a navigation system in a particular application, the designer often
needs to asses which state components will be best estimated (and which will not) over a
given trajectory and for a given specific sensor configuration.

Precision depends on how uncertainties “excite” the actual measurements’ innovation
signals. This paper formalises the concept of “excitability” together with its metric over any
particular trajectory segment. In addition, an instantaneous metric quantifying the com-
bined effects of the excitability and the involved uncertainties is also introduced called
“sensabilty”. As shown, an exciting trajectory does not necessarily imply high sensabil-
ity of any of the state components but, it is although a required condition besides a good
performing instrumentation.

The definition of practically sensable and practically observable subspaces of the state
space and their corresponding orthogonal complements allows us to restrict the above mea-
sures to any specific component of the state vector. In this sense this approach may be seen
as an alternative the one based on the mutual information concept proposed by Mohler and
Hwang (1988).

Since real vehicles’ trajectories may rarely be analytically described or even prede-
termined, contrary to other approaches also founded on the observability concept but
using ideal analytical trajectories (circles, lemniscates, uniform acceleration, etc), we here
propose an empirical method based on actual flight data.

All concepts have been illustrated with real flight data gathered on board a suborbital
rocket. Its trajectory turned out to be not exciting enough to justify the recalibration of the
sensors’ parameters in flight. For this application, it is thus concluded that to complexify the
sensor models used in data fusion algorithm will be of no assistance in terms of improving
performance.
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For the sake of simplicity, the proposed excitability metric was only linked to observ-
ability and thus related with data acquired in the future of a given initial state. A similar
analysis may be the pursuit using the concept of re-constructability based on past data
with respect to the present state. Further research is suggested on excitability metrics based
simultaneously on both concepts. Many applications using post-processed navigation (such
as remote sensing systems) with non-causal filters (smoother) will greatly benefit from such
an extension.

The authors are currently working in demonstrating the effectiveness of the above
proposed concepts in applications with more complex trajectories and diversified instru-
mentation.
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