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Science City of Muñoz 3119, Nueva Ecija, Philippines, 2Jiangxi Academy of Agricultural

Science, No. 602 Nanlian Road, Nanchang, Jiangxi, P. R. China and 3Department of

Agronomy, Iowa State University, Ames, IA 50011, USA

Received 21 May 2014; Accepted 13 August 2014 – First published online 12 September 2014

Abstract
A drought stress panel composed of diverse accessions selected from upland, aerobic, rainfed

lowland and irrigated lowland environments, was assembled to serve as germplasm for aerobic

adaptation breeding. Aerobic rice requires significant levels of tolerance to drought stress due

to intermittent water deficit and high soil impedance caused by aerobic conditions. Genomic

information may be utilized to investigate the nature of the panel to guide varietal improve-

ment. Using 153 simple sequence repeat and 384 single nucleotide polymorphism markers,

the aim of the study was to compare the allelic properties of the two marker types, infer popu-

lation structure of the panel, and estimate kinship among the accessions. There was a general

agreement between the results derived from the two marker types. Marker alleles were found

to occur at low frequencies, as the panel was composed mostly of improved accessions with

some landraces. The panel clustered into japonica (JA), aus (AU), upland-adapted indica (UL)

and lowland-adapted indica (LL) subpopulations. The AU and JA subpopulations were more

divergent from the rest of the subpopulations than were the LL and UL subpopulations.

Average marker-based kinship for related accessions was less than 0.20, indicating a low

degree of genetic relatedness in the panel. Within the LL and UL subpopulations, the low

levels of kinship imply that there is still much genetic gain to be expected from utilizing the

accessions in breeding. Thus, an understanding of the genetic variation in the panel suggests

focusing on improving the mean in the short term, and tapping into the exotic alleles from

the AU and JA subpopulations when genetic gain declines.
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Introduction

The success of a plant breeding programme depends

on the availability of germplasm and the genetic variation

that can be exploited from it. The use of modern cultivars

in breeding for complex traits becomes limited due to

their relatively narrow genetic base (Abdurakhmonov

and Abdukarimov, 2008). In Asian rice (Oryza sativa L.),

breeders can assemble a diverse breeding pool composed

of landraces, improved lines and modern varieties that are

spread across the main variety groups (indica, temperate

japonica, tropical japonica, aus and aromatic; Garris

et al., 2005, Zhao et al., 2011) to capture a wide range of

adaptation and overcome the problem of low genetic base.

Rice is cultivated in a wide range of environments,

such as irrigated lowland, rainfed lowland, upland,* Corresponding author. E-mail: da.tabanao@philrice.gov.ph
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flood-prone (Dixit et al., 2012) and aerobic (Zhao et al.,

2010) rice areas. Irrigated lowland rice is grown in

puddled soil throughout the cropping season; rainfed

lowland rice relies entirely on rainfall or drainage from

higher land areas; and, upland rice is grown in unbundled

fields where soil drainage and land surface minimize

the accumulation of water (Bernier et al., 2008). Aerobic

rice was more recently developed due to emerging

global water scarcity threatening the sustainability of

irrigated lowland rice production. Rice for aerobic culture

requires high-yielding fertilizer-responsive genotypes

incorporated with drought-tolerance traits to adapt to

high soil impedance due to aerobic soil conditions (Lafitte

and Bennett, 2002; Zhao et al., 2010). Diverse breeding

materials from these ecosystems were assembled to

comprise the drought stress panel (DSP) utilized in this

study to serve as germplasm for aerobic adaptation

breeding.

The use of molecular markers in agricultural research has

encouraged breeding institutions to adopt this technology

as an integral part of their breeding programmes (Collard

et al., 2005).With theavailabilityof abundantmarkers, geno-

mic information allows a complementary strategy to using

pedigree information for elucidating the nature of a breed-

ing pool. In a diverse germplasm, data from genome-wide

markers are useful in diversity analysis, population structure

analysis and association studies (Agrama et al., 2007; Huang

et al., 2010; Zhao et al., 2011).

Two of the most promising marker systems, namely

simple sequence repeats (SSRs) and single nucleotide

polymorphisms (SNPs), have been widely used for geno-

typing in crops. SNPs have been known to occur in high

density across the genome. They are amenable to high-

throughput methods and have a simple mutation model.

However, SNPs are biallelic and offer low information

content (Frascaroli et al., 2013). SSRs, on the other hand,

have high allelic diversity and, in turn, have higher poly-

morphism rates than SNPs. The concurrent use of these

two marker systems having different polymorphism mech-

anisms will provide results that are complementary to each

other (Courtois et al., 2012).

The objectives of the study were to (1) compare the

allelic properties of SNP and SSR markers with respect

to the DSP, (2) infer population structure of the breeding

panel, and (3) estimate kinship among the accessions

comprising the panel.

Materials and methods

Rice breeding panel and marker genotyping

The collection of 187 rice accessions used in this study

(referred to as DSP) included 141 breeding lines and

Philippine-released varieties, 27 local and foreign

landraces, and 19 diversity checks. The breeding lines

were entries from upland, aerobic, rainfed lowland and

irrigated lowland nurseries of the International Network

for Genetic Evaluation of Rice (INGER) of the Inter-

national Rice Research Institute (IRRI). These materials

were assembled to serve as breeding germplasm for

genetic improvement of rice for adaptation to drought

stress in aerobic culture.

Genomic DNA was extracted by the CTAB (cetyltri-

methylammonium bromide) method (Murray and

Thompson, 1980) from leaf tissue collected from single

plants. For SNP genotyping, 20ml containing at least

25 ng of DNA were prepared and submitted to the

Genotyping Services Laboratory of IRRI in Laguna,

Philippines. The RiceOPA3.1 (also known as indica/

japonica) SNP set, a multiplex of 384 markers, was used

(Thomson et al., 2012). After excluding SNP markers with

no polymorphism and more than 20% missing data, there

remained 373 markers, with an average interval of

1.03 Mb between them.

For the SSR assay, polymerase chain reaction (PCR) was

performed in a GeneAmp PCR System 9700 (Applied

Biosystems, Foster City, CA, USA) thermocycler. The

following temperature profile was used: initial denatura-

tion at 958C for 9 min, followed by 35 cycles of denaturation

at 958C for 1 min, annealing at 52, 55 or 588C for 2 min, and

extension at 728C for 2 min, and a final extension at 728C

for 7 min. Each PCR mix (7.5ml) contained the following:

1.0ml template DNA; 1.5ml of 5 £ Green GoTaqw Flexi

Reaction Buffer (Promega Co., Madison, WI, USA); 0.25ml

of 25 mM MgCl2; 0.4ml of 5 mM dNTPs; 0.4ml each of 10mM

forward and reverse primers; 0.2ml (5 U/ml) of Taq recom-

binant DNA polymerase (Vivantis, Inc., Oceanside, CA,

USA); 3.35ml water. PCR products were fractionated in

4% (w/v) non-denaturing polyacrylamide gel and visual-

ized by ethidium bromide staining. Bands were scored as

codominant alleles. A total of 153 SSR markers were

used for genotyping, with an average interval of about

2.5 Mb between markers.

Data analysis

Allele number, allele frequency and polymorphism

information content (PIC), which is the proportion of

the sum of squared allele frequencies at a marker locus

(Anderson et al., 1993), were calculated using Power-

Marker 3.25 (Liu and Muse, 2005). At each SNP and SSR

marker locus, whether there were two or more alleles,

those that occurred less frequently than the most frequent

allele were referred to as minor alleles.

The Bayesian model-based program STRUCTURE 2.3

(Falush et al., 2003) was used to estimate the number
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of subpopulations (k) given an admixture model with

correlated allele frequencies. Simulations were run for

100,000 burn-in steps and 100,000 main run steps over

ten independent iterations. The Delta k statistic of

Evanno et al. (2005) was calculated using STRUCTURE

HARVESTER (Earl and vonHoldt, 2012). PowerMarker

3.25 (Liu and Muse, 2005) was used to calculate Nei’s

(1973) genetic distance and construct neighbour-joining

trees (Saitou and Nei, 1987), which were visualized in

MEGA5.2 (Tamura et al., 2011).

Arlequin 3.5 (Excoffier et al., 2005) was used to perform

the analysis of molecular variance (AMOVA) and calculate

pairwise genetic distance between subpopulations

(Schneider and Excoffier, 1999) denoted as fixation index

(FST). Statistical significance was tested by 1000 permu-

tations. Rice accessions with an ancestry probability of

less than 0.60 (according to model-based population

structure analysis) were not included. The accessions

that rearranged between subpopulations based on SNP

data and those based on SSR data were also not included.

Marker-based genetic relatedness was calculated based

on the Loiselle et al. (1995) formula for kinship ( f ) using

SPAGeDi 1.3 (Hardy and Vekemans, 2002), given allele

frequencies specific to the population. Negative estimates

between any pair of genotypes, implying that the two

were unrelated and with different ancestries (Thornton

et al., 2012), were set to 0. Estimates greater than 1

were set to 1. The minimum kinship coefficient to

mean relatedness between any pair of accessions was

set to 0.05, i.e. accessions with a kinship coefficient

lower than 0.05 were considered unrelated.

Results

Allelic properties of SNP and SSR markers

For the RiceOPA3.1 SNP set, markers that detected only

one allele were not included for data analysis, hence the

average number of alleles was 2. For the 153 polymorphic

SSRs, the number of alleles ranged from 2 to 7 with a mean

of 3.47. Most of the markers (i.e. 127 out of 153, or 83%)

amplified two to four alleles.

Most of the SNP and SSR alleles tended to occur at

low rather than intermediate frequencies, although SSRs

were slightly better enriched with intermediate allele

frequencies. These low allele frequency levels resulted

in frequency distributions that were skewed to the right

(Fig. 1). The average minor allele frequency for SNPs

was 0.125, compared with 0.148 for SSRs, which was

only slightly higher.

In terms of PIC, the frequency distributions for both

SNP and SSR markers were less skewed than that of

allele frequency. PIC approximately centred around the

mean of 0.17 for SNP markers and around the mean of

0.43 for SSR markers.

Population structure

Mean values of L(k) (i.e. natural logarithm of the posterior

probability of k given the data) for k ¼ 1–10, where k was

the given number of subpopulations, showed that the

increase in L(k) slowed sharply above k ¼ 2, which was

also reflected in the very high peak at k ¼ 2 in the Delta k

plots. This subdivision corresponds to the very distinct

separation between indica and japonica (JA) accessions

(Fig. 2). At k ¼ 3, the aus (AU) accessions (representing

aus-type rice) differentiated from the rest of the indica

accessions for SNPs, whereas a group of upland rice

(UL) accessions differentiated from the rest of the indica

accessions for SSRs. At k ¼ 4, the UL accessions differen-

tiated from the remaining indica accessions (which were

mostly irrigated lowland and rainfed lowland accessions)

for SNPs, whereas the AU group diverged from the

remaining indica accessions for SSRs. At k ¼ 5, the remain-

ing indica accessions diverged into two groups for

both markers, but there was no apparent pattern to this

subdivision, as both groups comprised a mixture of

mostly rainfed lowland and irrigated lowland accessions.

For this reason, the number of biologically plausible sub-

populations was set to 4. Because the rainfed lowland

and irrigated lowland rice accessions could not be clearly

differentiated from each other, the lowland-adapted

indica (LL) was a disproportionately large subpopulation,

comprising at least 53% of the DSP.

Ancestry probability was less than 0.60 for 32

accessions (16 based on SNPs and 21 based on SSRs),

which were categorized as having admixed ancestry.

Most of these accessions were an admixture of LL and

UL ancestries. These were breeding lines developed for

upland environments, which were often crosses between

tropical japonica genotypes (to impart upland adap-

tation) and irrigated lowland-adapted lines (to impart

high yield potential).

Only one accession was assigned to two different sub-

populations depending on the marker type. TCA80-4, a

breeding line from Africa, had the following ancestry

probabilities: 0.66 LL:0.34 UL based on SNP marker data

and 0.39 LL:0.60 UL based on SSR marker data.

Apparently, this genotype was a combination of two

different genetic backgrounds, but obtained an ancestry

probability of at least 0.60 from either marker type such

that it was not classified as having an admixed ancestry.

The agreement in subpopulation assignment between

SSR and SNP markers was remarkably high. Of the 32

accessions with admixed coancestry between the SNP

and SSR markers, five were classified as such by both
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marker types. From the remaining 155 accessions with

an ancestry probability of at least 0.60, only one was

rearranged between the two marker types.

Cluster analysis

Except for the difference in resolution in the indica main

cluster, the branching patterns between the SNP- and

SSR-based neighbour-joining trees were in general agree-

ment with each other (Fig. 3). In both SNP- and SSR-

based trees, the indica group (UL and LL) clustered in one

direction, whereas the JA (red) accessions were in the

opposite direction. It can also be seen in both trees that

the UL accessions (orange) separated from the rest of the

indica (blue). The AU accessions formed a separate cluster

in both trees. In the SNP-based tree, the AU cluster was in

the same direction with the indica group, while in the

SSR-based tree, it was midway between the indica and

JA main branches. Both trees also depicted that there was

no apparent structure within the large LL subpopulation.

In general, the major clusters of the neighbour-joining

trees (Fig. 3) agreed with the subpopulations based on

model-based groups. Some of the LL accessions were

interspersed in some of the predominantly UL branches,

and vice versa. Admixed ancestry rice accessions were

mostly interspersed with the UL accessions, and some

may be found along the juncture between the indica

and JA subdivision, and among the LL accessions.

Genetic differentiation among subpopulations

The eight accessions that were rearranged between the

subpopulations based on SNP and SSR data were not

included in the population differentiation analysis.
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The 32 accessions with admixed ancestry (16 based on

SNP data and 21 based on SSR data) were also not

included. In total, there were 33 accessions that were

either rearranged or had admixed ancestry, leaving 154

accessions across four subpopulations (AU, LL, UL and

JA) that were analysed for population differentiation.

The results of the AMOVA of the SNP data showed

that most of the molecular diversity in the panel was

due to variation among subpopulations (75.9%), and

only about one-quarter was due to the variation within

the subpopulations (Table 1). The overall FST among

the model-based groups was 0.7588, implying a relatively

high level of differentiation. Except for the LL and

UL subpopulations, which had a relatively low FST

(0.2773), the subpopulations were highly differentiated

from each other, with pairwise FST ranging from 0.7097

to 0.8580 (Table 2).

The overall FST based on SSR data was much lower

(FST ¼ 0.2920), and the results of AMOVA showed a

reversed trend: molecular diversity due to the variation

among the subpopulations (29.2%) was lower than the

within-subpopulation variation (70.8%). In other words,

according to the information obtained by the SSR assay,

the main indica and JA groups were individually more

diverse than the SNP assay would suggest.

The levels of genetic differentiation among the model-

based subpopulations were lower for SSRs than for SNPs.

Pairwise FST ranged from 0.1206 to 0.4429. The lowest FST

was observed between the LL and UL subpopulations,

as what was observed in the SNP-based FST. The lowest

level of differentiation being observed between the LL

and UL subpopulations (for both SNP and SSR markers)

was apparently because most of the accessions belong-

ing to these subpopulations were interrelated, as they

were breeding lines developed from inter-crosses

between the irrigated lowland, rainfed lowland and

upland-adapted genotypes.

Kinship

Marker-based kinship ( f ) estimates in the DSP were

mostly less than 0.05, and pairs of accessions with such

kinship coefficient were considered unrelated. For

related accessions, the mean kinship was 0.160 based

on SNP data, and 0.187 based on SSR data. In other

words, kinship estimates for the most part were very

close to 0 (Fig. 4, top), implying that the degree of

genetic relatedness in the DSP was generally low.

The relatedness between rice accessions was apparent

within the subpopulations, especially in the AU and JA

subpopulations where mean kinship was high (0.598

based on SNP data and 0.469 based on SSR data). This

high level of kinship was also depicted by the deep red

boxes on the heat map corresponding to the AU and

JA subpopulations (Fig. 4, bottom). However, these two

subpopulations represented only a small proportion

(17%) of the whole panel.
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Fig. 2. Ancestry probability of 187 rice accessions inferred by STRUCTURE using (a) 373 SNP and (b) 153 SSR markers at
k ¼ 2 and k ¼ 4 subpopulations.
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There was some degree of inter-relatedness between

the members of the LL and UL subpopulations, and

between those of the AU and JA subpopulations, as indi-

cated by the faint red boxes between the subpopulations

in Fig. 4. The genetic relatedness between the members

of the LL and UL subpopulations corroborated the rela-

tively lower degree of genetic differentiation between

these two subpopulations, as shown in Table 2.

Fig. 3. Neighbour-joining trees of 187 rice accessions based on Nei’s (1973) genetic distance using SNP (top) and SSR marker
(bottom) data. The colour of each accession corresponds to subpopulation assignment by STRUCTURE (AU, green; LL, blue;
UL, orange; JA, red; admixed ancestry, grey).
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Pearson’s correlation between pairwise kinship based

on SNP and SSR markers was moderately high (r ¼ 0.78,

P , 0.001), implying a general agreement between, and

the suitability of the Loiselle et al. (1995) formula to, the

two marker types. Yu et al. (2009) preferred this formula

because it does not assume Hardy–Weinberg equilibrium,

a prerequisite that cannot be assumed in the DSP as well.

In Fig. 4, a similar pattern could be observed in the

heat maps of kinship based on SNP and SSR markers.

Studies from other crops also showed general agreement

between SNP- and SSR-based genetic diversity esti-

mates (Van Inghelandt et al., 2010; Yang et al., 2011;

Würschum et al., 2013).

Discussion

Genetic diversity and population structure

The use of two independent marker systems, namely

SSRs and SNPs, successfully characterized the genetic

diversity and population structure of the DSP. The allele

frequencies in the panel were found to be low in both

marker types. In maize, allele frequencies of SNPs were

reported to be distributed evenly from 0 to 0.5 in improved

lines and cultivars (Hamblin et al., 2007; Yang et al., 2011).

The same observation was reported for the self-pollinated

crop wheat (Würschum et al., 2013). In the present study,

the population contained some genotypes that were

either landraces or improved non-indica accessions,

which may carry alleles throughout the genome that

were not in common with the rest of the accessions. The

outcome would be an excess of low-frequency alleles

even for biallelic SNP markers. Consequently, PIC values

were generally lower than what have been previously

reported because of the composition of the panel, being

mostly improved lines and cultivars with some landraces.

For SSR markers, PIC would tend to be not lower than

0.50 when the sample of genotypes is composed mostly

of landraces (Garris et al., 2005; Ram et al., 2007; Pervaiz

et al., 2009). PIC takes into account not only the number

of alleles, but also their frequencies. If many alleles are

present only in low frequencies, as was the case in the

DSP, the PIC is not expected to be high.

In general, the major clusters of neighbour-joining

trees agreed with the subpopulations based on model-

based grouping. The breeding panel was structured

into JA, AU, UL and LL. When global diversity is con-

sidered, the number of known subpopulations is 5,

representing the five main variety groups of Asian rice:

indica; tropical japonica; temperate japonica; AU;

aromatic (Garris et al., 2005; Zhao et al., 2011). In

contrast, the DSP did not represent global diversity,

hence the observed clustering did not correspond to

the five known variety groups.

The results of AMOVA showed a reversed trend

between the SNP and SSR markers. SNP data showed

that most of the molecular diversity in the panel was due

to the variation among the subpopulations, while SSR

data showed that the within-subpopulation variation was

higher than the among-subpopulation variation. One

explanation is the way the RiceOPA3.1 SNP set was

designed, which was to differentiate indica from JA

genotypes, such that the emphasis was variation

between, and not within, the two groups. Another

reason is the difference in the basis of polymorphism

between the two marker types. Single-base changes

occur much more slowly through time, reflecting deeper

variation between genotypes. In contrast, SSRs, which

are due to polymerase slippage, have a higher mutation

rate (Hamblin et al., 2007) and therefore reflect more

recent variation in DNA.

Kinship estimates were generally low. Genetic related-

ness estimates between accessions were higher within,

than across, the subpopulations. There was some

degree of inter-relatedness between the members of the

Table 2. Pairwise FST based on SNP (below diagonal) and
SSR markers (above diagonal) among the four subpopula-
tionsa

AU LL UL JA

AU 0.2833 0.3636 0.3744
LL 0.7097 0.1206 0.3967
UL 0.7348 0.2773 0.4429
JA 0.7820 0.8580 0.8186

a All estimates were significant (P , 0.001) based on 1000
permutations.

Table 1. Analysis of molecular variance of SNP and SSR marker data

SNP SSR

Source of variation
Variance

components
Percentage
of variation

Variance
components

Percentage
of variation

Among subpopulations 43.41 75.88 11.22 29.20
Within subpopulations 13.80 24.12 27.20 70.80
Total 57.21 38.42
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LL and UL subpopulations, which corroborated the rela-

tively lower degree of genetic differentiation between

these two subpopulations. The lack of inter-relatedness

among the accessions from different subpopulations

(such as between the LL and JA groups) was also

observed. These observations highlighted the difference

between kinship and population structure. Familial

relatedness is significant only in recent generations,

whereas population structure is due to ancestry differ-

ences that have developed through long evolutionary

time (Yu et al., 2005). Genetic relatedness within the LL

and UL subpopulations was observed to be low, implying

that these breeding lines were genetically diverse, and

that there is much opportunity for genetic improvement.

The development of advanced cycle inbreds by crossing

elite by elite lines in pedigree breeding is one of the

reasons for genetic gain to decline over time. As for

the LL and UL accessions in this breeding panel, loss of

variation is not a problem as yet. Thus, the immediate

breeding strategy is to focus on improving the mean by

crossing the improved indica lines within the LL or

UL subpopulations, and to tap into the exotic alleles

of the AU and JA subpopulations later, when genetic

gain declines.
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Fig. 4. Kinship ( f) based on the Loiselle et al. (1995) formula. Top: frequency distributions of kinship estimates among related
(i.e. f $ 0.05) accessions based on the SNP (left) and SSR (right) markers. Bottom: kinship matrices based on the SNP (left)
and SSR (right) markers. Accessions are arranged according to model-based subpopulation assignment.

D. A. Tabanao et al.202

https://doi.org/10.1017/S1479262114000884 Published online by Cambridge University Press

https://doi.org/10.1017/S1479262114000884


SSR markers, being often able to detect more than

two alleles, provide more information than do SNP

markers. Hamblin et al. (2007) compared 847 SNP with

89 SSR markers in terms of assigning maize inbreds

to subpopulations, and concluded that the small

number of SSR markers exhibited higher discriminatory

power over the biallelic SNP markers. Van Inghelandt

et al. (2010) concluded that there should be seven to

ten times more SNP markers to achieve the precision

of SSR markers in the analysis of genetic diversity

and population structure in maize. In the present

study, the RiceOPA3.1 SNP set seemed to have provided

the same degree of efficiency as the 153 SSRs in

assigning traditional and improved accessions into diff-

erent subpopulations and in determining their genetic

relatedness. The two marker types complemented each

other in assessing the variation between and within

subpopulations (i.e. genetic differentiation between

subpopulations).

Upland rice in improved genetic background

The results from the use of both SNP and SSR markers

pointed to the formation of the UL subpopulation,

which was distinct from, but which seemed to be an

intermediate group between, the LL and JA subpopu-

lations. Traditional rice varieties that are adapted to

upland culture are mostly tropical japonica (Garris et al.,

2005; Atlin et al., 2006); however, UL accessions in this

study were found to be closer to the indica group than

to the JA group. In fact, in the Bayesian model-based

clustering, UL accessions belonged to the indica

group, not to the JA group, when the number of sub-

populations was set to 2. Whereas UL accessions have

the adaptation to upland environments as JA accessions

generally do, their yielding ability and plant stature are

more similar to those of improved accessions belonging

to LL. In other words, UL accessions are upland-adapted

genotypes in a modern genetic background as a result

of varietal improvement.

Zhao et al. (2010) reported a new production system that

grows rice in non-puddled aerobic soils (i.e. upland

environment), but which utilizes a different set of varieties

called aerobic rice. Such genotypes are a product of

breeding that utilizes traditional upland varieties, to

confer drought tolerance, and modern irrigated lowland-

adapted rice varieties, which are high yielding and

input-responsive. This has been the strategy employed

by breeding programmes to improve the productivity of

uplands. Bernier et al. (2007) and Venuprasad et al.

(2012) also reported aerobic breeding efforts that

concentrated on identifying quantitative trait loci from

upland-adapted entries in semi-dwarf, high-yielding

indica backgrounds. In this study, the 32 accessions that

were considered admixed (i.e. ancestry probability

,0.60) became as such because they were also mostly an

admixture of LL and UL ancestries. Indeed, based on cluster

analysis, they tended to intersperse with UL accessions,

as shown in Fig. 3. The separation of UL accessions

pointed to the formation of a new group and the admixed

accessions could represent breeding materials that

were transitioning to UL. Previous studies (Garris et al.,

2005; Lu et al., 2005; Giarocco et al., 2007) attributed

genetic structure in different panels of rice accessions

to domestication events. In this study, genetic structure,

particularly for UL accessions, was found to be a result of

modern breeding. Courtois et al. (2012) and Shinada et al.

(2014) similarly found that plant breeding programmes

have led to the formation of new genotypes with a

unique morphology and ecosystem-specific adaptation.

The analysis of genome-wide genotype data affords the

profound understanding of genetic variation to guide

the conceptualization and realization of breeding strategies

for adaptation to less favourable environments, such as

drought-prone and aerobic rice areas.
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