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A B S T R A C T

A comparison is made between some epistemological issues arising in
computer networks and standard features of social epistemology. A definition
of knowledge for computational devices is provided and the topics of
nonconceptual content and testimony are discussed.

In this paper I shall address some basic issues in the epistemology of networked
computers. More particularly, I shall highlight some differences between standard
social epistemology and the epistemology that is appropriate for computational
networks, and discuss how such networks can serve as a source of testimony. In
addition, I shall explore the role content plays in the interface between networks
and humans, whether the content be conceptual, non-conceptual, or null. These
topics might strike you as rather odd and specialized, so I need to explain why they
are interesting and important for philosophy. Social epistemology, like individual
epistemology, is infused with anthropocentric concepts – beliefs, propositional
attitudes, intentional states, and many others. This orientation is outdated, if only
because we must include scientific instruments and computers amongst the many
sources and processors of knowledge. These things are sources not just of scientific
knowledge, but of broader classes of knowledge. When a search engine is used
to locate information on the Internet, the output of the automated algorithm
underlying the engine can be the basis for the claim ‘I know the top dozen in this
list are among the most relevant sites for the search terms used’. In traditional
epistemology, sources of knowledge need not possess knowledge themselves,
although they may in the case of testimony, but we do speak of computers
storing and processing knowledge as well as information, language that is not just
metaphorical. Printed books contain knowledge and so do their on-line versions.
An important special case of network epistemology is a purely automated

scientific network in which data is gathered by instruments and processed by
computers without any intervention by humans. Some areas of science have
already reached the automated stage – robotic astronomy, parts of experimental
high energy physics, much of genomic analysis – and this trend is increasing. One
reason to think through this scenario is that it is useful for a philosopher of
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science to consider the scientific enterprise from the perspective of an automaton.
This can reveal the often subtle anthropocentric influences that are present even
in apparently objective scientific activities. Sometimes these influences are not
at all subtle, just unremarked. For example, despite its historical importance,
empiricism as traditionally conceived is of no relevance to an automated science,
not just because the devices involved do not possess anthropomorphic cognitive
states but because the limits of the human perceptual apparatus are inappropriate
constraints to put upon a scanning tunneling microscope or a computer assisted
tomography imaging device. In a related way, the constraints of a priori human
mathematical abilities do not matter to a computer checking a sub-case of the
Kepler conjecture. It is revealing that whereas those who appeal to the traditional a
priori in mathematics are usually willing to use arguments that appeal to in principle
concepts of computability or deductive closure, empiricists have not been willing
to be similarly generous.2

We should therefore be cautious in transferring results from traditional
individualistic and social epistemology to automated science. Furthermore, the
philosophical issues involved in computational science are very different from
those that have been discussed in the philosophical literature on artificial
intelligence. Contemporary scientific computers do not have conscious states and
they are not constructed to mimic human modes of thought. They should not
therefore be expected to have propositional attitudes. Scientific instruments do
not have beliefs, nor do the computers that process data or perform theory based
or agent based simulations. Of course, we could simply consider the traditional
propositional attitudes as placeholders for whatever types of state the artifacts enter
in the relevant epistemological contexts. So, within automated Bayesian inference,
we could identify probability distributions with coherent degrees of belief, but then
there is no point in using the belief talk; we may as well simply talk of probabilities.
This is all to the good because the languages of belief, desire, hope, and so on are
infused with subjective, anthropomorphic connotations that are best avoided.3

A P R O P O S A L

We can, while rejecting this anthropomorphism, retain a connection with
traditional epistemology. I propose that as a substitute for the traditional, pre-
Gettier analysis of knowledge, we take this as our starting point:

A computational device has knowledge of a system just in case the device possesses a
true, evidentially supported model of the system.

The principal interest for computational purposes will be the modeling
component of this definition, but it is worth addressing the evidential support
and truth elements. Evidential support here is relatively unconstrained. It can be
inductive support captured through an automated process of statistical testing, it
could rely on formal inductive inference, it might employ Bayesian confirmation,
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or it may rest on corroboration in the Popperian sense, which in these contexts
can include model selection by genetic algorithms. Other approaches are no
doubt possible. Which of these we choose is of no particular importance within
the context of this paper, although in particular situations there will be reasons
for adopting one rather than others. The truth component will perhaps be
problematical for some, not because they reject truth as a necessary condition for
knowledge, but because they find the very idea of a model being true to be puzzling
or inappropriate. We can address these concerns by noting that in particular cases,
the model will provide an accurate representation of some parts of the system
without providing a complete description of the system. More needs to be said
when approximations and idealizations are used to construct the model, but we
can deal with those using the position of selective realism that is presented in
Humphreys (2004, section 3.8).
Using the definition above, we can make sense of claims of the form ‘a knows

that system S is in state s’, where a is any computational device that is using the
model.4 This immediately raises issues about whether a is a single machine or
a network. To arrive at an answer we need to identify some special features of
networks. In what follows, I shall avoid using the term ‘social epistemology’ and
refer instead to ‘network epistemology’. Whatever a sociology of machines might
be like, it will not share many features of human communities. Here are some
salient differences between network epistemology and social epistemology:
1. One reason for moving to social epistemology is the fact that humans are

essentially bounded cognitive agents, having limited cognitive abilities that cannot
be significantly expanded. Because of this, no single knower is or could be the
locus of all scientific knowledge and there are thus epistemic benefits from using
socially distributed knowledge. This is in sharp contrast to machines, which can
have direct access to networked knowledge and within which the computational
capacities of the nodes can be expanded. This immediately raises the issue of how
we can individuate knowledge bearers within a network.
2. If we consider individual computers in the network as epistemic agents, then

those agents have what human agents do not, direct thought transfer. The entire
contents of a computational agent’s knowledge base can be sent unchanged to
another node in the network. Although it is true that this transfer is accomplished,
with conventional computers, through linguistic representations and so one might
argue that this is not essentially different from the use of written texts to transfer
knowledge from one person to another, the situation is different in the two cases.
With computers, exactly the same model and exactly the same knowledge can
be used by more than one machine. There is no subjectivity of the kind that
is common with human beliefs, where two humans rarely, if ever, have exactly
the same set of beliefs. We can isolate components of models through modular
programming so that holism is significantly reduced and we also know explicitly
what the background beliefs are. The larger theories that serve as the construction
base of the models, both scientific and mathematical, act as the explicitly stated
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machine equivalent of culturally shared background knowledge, employed by all
participants in the computing network. There is no relativity of interpretation, no
differential modes of abstraction, no semantic holism, and so on. Because of this
direct transfer ability, it is possible to consider the entire network as a single knower
with its knowledge dispositionally distributed across the computational nodes of
the network.
Yet the issue is not straightforward. Consider a network in which one node

has sufficient computing power and memory to perform all of the tasks that are
currently distributed around the network. In this case, although the knowledge is
distributed, it is not essentially distributed. Because any given computer can be part
of an arbitrarily large network and conversely, all the theoretical knowledge in a
given field could be collected in one machine, the a in ‘a knows that S is in state s’
can in many cases be either a single machine or a network of computers, with the
requirement that a has the computational resources to process the model of S.5 I
note that there is no need to consider the knowledge in these networks as being
distributed in the way knowledge is in a neural net, where issues of subconceptual
representation and distributed storage become central. The networks considered
here have traditional non-connectionist architectures.
3. Models are often modular, in the sense that two models, even inconsistent

models, can be run simultaneously on a computer without interactions by using
parallel processors. Deductive closure conditions can be imposed within the
separate models in the parallel machine with no negative consequences. (The
inconsistent models do not jointly constitute the basis for knowledge, of course,
since they cannot both be true.) Rationality conditions require that the entire belief
set of a human be consistent because humans are considered to be unitary cognitive
agents and modularization, in the form of split personality disorders, for example,
is considered a sign of irrationality. But we do not feel the need to impose similar
criteria on computers. The kind of belief holism that leads to extreme forms of
subjectivity and conventionality about even individual propositional attitudes can
be avoided because of this modular feature.
4. With an interpreted model, there is no issue about the level of

conceptualization or representation that the computer is using, because it has
access to no other. A cellular automaton operating with representations of the
states of individual cells has no concept of a Turing machine, even though a
Turing machine is present in some cellular automata with the appropriate initial
conditions.6

H Y B R I D N E T W O R K S A N D C O N T E N T

I’ll begin by making a distinction between what I call a hybrid scenario and
a fully automated scenario. In discussing these scenarios, I shall generalize the scope
of networks to include traditional analog scientific instruments, such as radio
telescopes, in addition to computers and computationally assisted instruments. The
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traditional instruments will be in causal contact with their targets, but their inputs or
outputs may be transformed into a digital form that is accessible for computational
processing. A hybrid scenario is then any situation within which some but not
all scientific information is acquired by non-human agents and knowledge must
be exchanged between human and non-human agents. We have been in the
hybrid scenario since the late sixteenth century when scientific instruments first
provided us with information about the world that we could not access without
them. A key feature of the hybrid scenario is the interface problem: how knowledge
can be effectively exchanged between human and non-human epistemic agents.
Although this exchange is bi-directional, the most interesting aspect is how humans
use and understand knowledge based on models that are used by instruments
and computers. It is the more difficult issue because one can engineer artifacts
specifically to deal with representations produced by humans, but there is only one
human cognitive architecture to accommodate the reverse flow, that produced by
the highly contingent and particular history of human evolution.
A fully automated scenario is any situation in which scientific knowledge is

acquired or processed without any input from humans. The automated scenario
is a little exotic for most people and for obvious reasons it is not easy to say
in detail what it will be like. It ought not to seem so mysterious, because for
those who consider human cognitive capacities to be the result of computational
processes, there should be no difference in principle between networks of humans
and networks of computers, or between either of those and hybrid networks with
nodes including both types. But since the evidence for humans as computational
devices is less convincing than it once seemed to be, I shall restrict myself to the
hybrid scenario.
There are two philosophical areas that are relevant to hybrid scenarios. The

first involves the distinction between conceptual and nonconceptual content and
I shall argue that epistemological networks can deal with nonconceptual content.
Concepts are taken here to be representations of properties, which may be atomic
or compound. This position conforms to the view that concepts are sub-sentential
features, although concepts are not limited to the sentential domain, because
graphical and other kinds of representations have conceptual content. We can then
adopt two distinct attitudes towards the interface problem. The first is to attempt,
as humans, to understand the distinctively different kinds of concepts that are used
by automata to interact with the world and with one another. These concepts
will frequently be different from the ones that seem to humans to be natural
representational devices, the reason being that what lends itself to computational
efficiency is often different from what allows for representational ease. This is a
standard problem in agent based models, where the basic rules of interaction are
usually very simple, but the output from the model includes sophisticated patterns
for which we humans may currently have no suitable predicates.
The second attitude is to allow that many parts of automated science will use

nonconceptual content and that we must come to grips with what that entails.
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Nonconceptual content is usually associated with knowledge directly gained from
perception, before it is organized by cognition or language. Taking Russell’s
knowledge by acquaintance and Kant’s perceptual intuitions as examples of
knowledge having nonconceptual content, knowledge by acquaintance can give us
access to primitive reference and it suggests that instruments with direct causal
connections to their source are capable of providing a primitive reference relation.
Russell’s comment ‘I know the colour perfectly and completely when I see it and
no further knowledge of it is even theoretically possible’ (1912, 47) also applies
to an instrument that is constructed to identify and isolate a single property,
such as a given wavelength of light. Strawson (1959, 18) claimed that we can
identify an object demonstratively if we ‘can pick it out by sight or hearing or
otherwise sensibly discriminate’ that object. This point also generalizes to whatever
properties and individuals a scientific instrument detects. For example, a biometric
identification device demonstratively identifies me just in case it can distinguish me
(by iris scanning technology, for example) from everyone else. This does not entail
that we are committed to linguistic approaches when we deal with digital rather
than analog devices because digitizing an analog image does not by itself introduce
conceptual content. What I mean here is that digitization can simply preserve
the spatial relations between elements of the image while using a discrete spatial
representation rather than a continuous representation. Issues that arise when this
digital image is coded into a binary language are different.
As I argued in Humphreys (2004, sections 2.7 and 5.2), instruments, including

the human sensory organs, are property abstractors. For humans, the normal
visual apparatus picks out at a distance the colour green from the temperature,
kinetic energy, mass, and other properties of a jumping frog. We can thus happily
commit ourselves to the position that abstraction is involved in perception, both
for humans and for instruments. If a property has been isolated by an instrument,
there is no need for a conceptual representation of that property in order to
determine it; you get it for free. Because instruments can perform similar feats
of property abstraction, the issue of conceptual versus nonconceptual content
is not inescapably a psychological matter. In fact, concepts may turn out to be
one of those features that persist only because of our anthropocentric biases
and because of the need for a human/machine interface. For any but the most
elementary computational models, however, humans can grasp only a small part of
this structure, whereas in virtue of its superior inferential abilities, the machine has
access to by far the largest part of that content.
For a computer, bits play the same role as immediate perceptions, sense

data, or intuitions in humans. Computers do not need to have concepts in
order to process machine language and for such machines, it is plausible that
everything at the machine language or processing level is non-conceptual. The
higher level programming languages are there only for the benefit of humans and
the computational apparatus does not have access to those higher level concepts
unless it is provided with a decompiler.7
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T E S T I M O N Y

In the hybrid scenario, there are parallels between testimonial evidence from
other people and our reliance on outputs from computational devices. In both
cases we do not have direct access to the source of the evidence but must
rely on the authority of an intermediary, in this case scientific instruments or
computational devices. Both suffer from what I have elsewhere called epistemic
opacity, the human inability to know in detail the processes that lead from the input
of the device to the output. Even if we take into account the fact that humans are
the result of natural selection whereas computers are the result of design, the details
of the computational processes in both cases are largely hidden. And even if we
take a naturalistic perspective on human cognition, we must still pay attention to
the fact that human brains and most scientific computational devices have different
architectures, languages, and degrees of accessibility.
So we can make a few standard classifications. Non-reductionists about

testimony are willing to take testimonial evidence as a fundamental category of
evidence, as long as there are no defeating conditions present, just as we take
the evidence of our senses as epistemically basic, absent reason to do otherwise.
In contrast, reductionists about testimony require positive reasons to accept
testimony. In the hybrid scenario, it seems appropriate to take a reductionist
attitude towards computational evidence because the reliability of the instrument
must be taken into account. In Humphreys (2004) I argued that we need to
know how an instrument works because we must ensure that no errors have been
introduced. This is why the non-reductionist position is unacceptable: we need to
know how the instrument works so that we have some positive reason to accept
the evidence or we must have inductive evidence of the reliability of the instrument
and ensure that no defeaters are present. But mere inductive reliability cannot
be sufficient because instruments tend to work well within a specific domain of
application and to become unreliable outside that domain. It is the knowledge
of how the instrument processes the input/output stream that allows us to react
appropriately when changes occur in the conditions under which the instrument
operates.
A second distinction is between global reduction and local reduction. Global

non-reduction is the view that all sources of testimony should be taken as
trustworthy whereas local non-reduction is oriented towards a particular instance
of testimony. Neither of these is appropriate for us. Instead we need to take a
broad-based local reduction as the appropriate position for instruments because the
reductionist position requires instrument-specific knowledge to determine whether
a given source is reliable. The particulars of a given computer simulation are almost
always relevant to this determination, despite the fact that the details of a particular
simulation are rarely published. Yet once we have calibrated an instrument or
simulation, any application of that device, within its limits of effectiveness, should
be trustworthy. In Humphreys (2004) I used the riskiness of inferences from data
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to conclusion to motivate the epistemic priority of many instruments over humans.
Sosa (2006) also uses the safety of an instrument’s output as a gauge of the worth
of its testimony.
To make a connection with what we discussed above, if the computational side

of the interface has only nonconceptual content, it cannot count as testimony
but it can count as evidence. This is because it is the content of the testimony
that is transmitted and only propositional content, that is, conceptual content, can
be testified to. Nevertheless, if testimony counts as a species of evidence, then
both conceptual and non-conceptual content can play a role in our definition of
knowledge given earlier.

R E F E R E N C E S

Humphreys, Paul. 2004. Extending Ourselves: Computational Science, Empiricism, and Scientific

Method. New York: Oxford University Press.
Russell, Bertrand. 1912. The Problems of Philosophy. London: Williams and Norgate.
Sosa, Ernest. 2006. “Knowledge: Instrumental and Testimonial.” In J. Lackey and
E. Sosa (eds.), The Epistemology of Testimony, pp. 116–23. Oxford: The Clarendon Press.

Strawson, Peter. 1959. Individuals. London: Methuen.
van Fraassen, Bas. 1980. The Scientific Image. Oxford: Oxford University Press.

NOTES

1 The paper read at the 2008 Leuven conference on computer simulations and social
epistemology presented an agent based model for sub-maximizing agents. The paper
published here was written specifically for this journal and addresses different, more
philosophical, issues.

2 One prominent example is van Fraassen, who explicitly rejects going beyond the limits
of current human perceptual abilities to ground scientific knowledge (van Fraassen
1980, 17). Empiricist philosophers of mathematics also frequently appeal to the
limitations of human abilities.

3 This point does not support reductionist or eliminativist positions in the philosophy of
(human) mind. The most plausible position to take about human mental states is that
they are emergent.

4 I exclude here knowledge how and other kinds of knowledge that are dependent on
particular embodiments. Viewed as a sufficient condition, the account can be applied to
humans in addition to (artificial) computers.

5 I am assuming temporarily that we have a criterion for what counts as a single machine.
There will be theoretical limits on the ability of a single machine to perform network-
grade tasks, but we can set those aside here.

6 Finally, a significant segment of social epistemology seems to be motivated by political
considerations from which I want to dissociate myself. Computers and accelerator
detectors have no gender, race, capitalist yearnings, nothing.
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7 There is a meta-conceptual element to this in that it is humans who are conceiving the
processes in terms of discrete bits and so on, but that is unavoidable. Also, there are
issues about the role played by bytes, information packets, and so on in transmissions
between nodes in the network, but these can be set aside here.
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