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Long-term marginal stability of a new family of isolated oceanic vortices is analysed.
Sign reversal of the radial gradient of the potential vorticity anomaly, as implied
by the isolation requirement, leads to vortex unsteadiness but does not break the
coherence of the vortex, which remains marginally stable even for high absolute
Rossby numbers Ro ' 0.8. The marginally stable vortices are characterized by a
zero amount of potential vorticity anomaly on every isopycnal. The marginally stable
final state is an unsteady vortex whose inner one-signed potential vorticity anomaly
experiences revolution, rotation, precession and nutation.
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1. Introduction

Baroclinic three-dimensional vortices are stable coherent structures in vertically
stratified and horizontally rotating geophysical flows (e.g. Carton 2010). Persistence
of these rotating structures has motivated the mathematical development of vortex
models. Two convenient properties are often required in these vortex models, namely
isolation from the background flow and stability to small perturbations. Vortex
isolation implies that the amount of potential vorticity anomaly (henceforth PVA) in
the vortex volume must sum up to zero, so that the radial PVA density distribution
must change sign at some distance from the vortex centre in axisymmetric flows.
The PVA density gradient must change sign as well. However, sign changing PVA
density gradients lead to flow instability, and hence the paradox, noticed by Benilov
(2003), arises, that geophysical vortex models, if isolated, must be unstable, a result
apparently contradicting the long persistence of these vortices (e.g. Richardson, Bower
& Zenk 2000). The purpose of this paper is to show that some isolated baroclinic
vortices can develop flow instability and yet remain coherent for long time periods
even for high Rossby numbers Ro ≡ |ζ |max/f ' 0.8, where ζ is the relative vertical
vorticity and f is the planetary vorticity.
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A. Viúdez

First, we introduce a new family of isolated vortices (§ 2) under the requirement
of zero amount of PVA on every isopycnal. Mesoscale or submesoscale vortices
are never found exactly isolated in the real ocean due to the ubiquitous existence
of inertia–gravity waves, baroclinic tides, background horizontally and vertically
sheared currents, surface wind stress, or even the close presence of other eddies or
density fronts. Frequently, however, as suggested by the long persistence of these
vortices, these external processes have only a perturbative second-order effect on the
vortex dynamics, which justifies the investigation on theoretical models of baroclinic
continuously stratified isolated vortices that remain stable to small perturbations.
Furthermore, experimental data suggest that some long-life mesoscale subsurface
eddies in the ocean display an outer PVA region of sign opposite to that of the
vortex core (Paillet et al. 2002), which further supports the zero PVA amount vortex
model.

The theoretical development and numerical algorithm used to analyse the vortex
evolution and stability properties (§ 3) are based on a fully three-dimensional
non-hydrostatic approach and on the explicit conservation of PVA on isopycnals.
This PVA conservative method is therefore very well suited for this particular
vortex application. The time evolution of a particular member of this vortex family
(§ 4), with a high Rossby number Ro ' 0.8, and therefore out of the range of
application of the quasigeostrophic (QG) approximation, and initially subjected to
small perturbations, displays temporary growth of flow instabilities at the critical
levels and subsequent inner-core vortex axisymmetrization. For high Rossby numbers,
non-QG terms substantially affect the vortex stability properties (Tsang & Dritschel
2014). The final vortex state is, however, that of marginal stability, with an elliptic-like
inner-core vortex experiencing precession and nutation, and forcing a second-mode
vertical velocity field. Our purpose here is only to describe a representative case of
an isolated marginally stable vortex with a high Rossby number, and no attempt is
made to generate a stability classification, similar to that made in Yim, Billant &
Ménesguen (2016), in the parametric space of this vortex family. Finally, concluding
remarks are given in § 5.

2. Initial conditions: the vortex family $p,q

The vortex initial conditions define the stability properties of the vortex. We
introduce the isolated vortex family $p,q as a set of initial conditions having some
members leading to marginally stable vortices. To avoid an excess of notation, the
parameters (p, q), whose meaning is explained below, are omitted, with a few
exceptions, in the dependent variables symbols. Since the initial base conditions are
axisymmetric and the vortices are defined in the isopycnal space, we work with
isopycnal coordinates (r, z) of radial distance r and isopycnal z. The two-dimensional
base PVA distribution $̃b(r, z) satisfies the boundary conditions

$̃b(0, z)= $̃0(z), $̃b(r0(z), z)= 0, (2.1a,b)

where $̃0(z) in (2.1a) defines the PVA profile along the vortex vertical axis and (2.1b)
is required for PVA continuity at the vortex outer limit r0(z). The radial dependence
of $̃b is specified by its degree of smoothness along the radial direction at the
vortex origin r= 0 (parameter p) and at the vortex outer limit r0(z) (parameter q) on
isopycnals,

∂ i$̃b

∂ri
(0, z)= 0, i= 1, . . . , p, and

∂ j$̃b

∂rj
(r0(z), z)= 0, j= 1, . . . , q. (2.2a,b)
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FIGURE 1. Four representative functions of (a) the base horizontal PVA $̃B(p, q; ~) and
(b) its derivative $̃ ′B(p, q; ~) for (p, q) = (2, 2) (dashed, not labelled), (2, 4), (4, 2)
and (4, 4).

Besides the above conditions we impose zero amount of PVA on every isopycnic
layer, ∫ r0(z)

0
$̃b(r, z)r dr= 0. (2.3)

Thus, the isopycnal gradient of the PVA assumes both signs along the vortex radius
and satisfies the Charney–Stern necessary condition for the growth of disturbances
(Charney & Stern 1962).

The PVA solution $̃b(r, z) for monopolar one-core potential vorticity (PV) vortices
with a single outer PV shield can be decomposed, in the isopycnal space, into
horizontal and vertical components

$̃b(r, z)= $̃0(z)$̃B(r/r0(z)). (2.4)

In this equation, $̃B defines the horizontal spatial PVA distribution in terms of the
radial distance r normalized by the radius vortex r0(z) on each isopycnal z, and is
given (appendix A) by

$̃B(~) ≡ 1+
(p+ q+ 4)(p+ 1)

2(q+ 1)
I(p+ 2, q+ 1; ~)

−
(p+ q+ 2)(p+ 3)

2(q+ 1)
I(p+ 1, q+ 1; ~), (2.5)

where I(p, q; ~) is the normalized incomplete Beta function. Some examples of
$̃B(p, q; ~) and its derivative $̃ ′B(p, q; ~) are shown in figure 1. It should be noted
that we may generalize p, q ∈ R so that these symbols in (2.2) must be understood
as their corresponding integer part. The function $̃0(z) in (2.4) defines the PVA
amplitude along the vortex vertical axis, or the vertical structure of the vortex. The
simplest PVA surface geometry is spheroidal, so that both the normalized vortex
horizontal radius r0(z)/r0 and the normalized vertical axis PVA $̃0(z)/$0 are given
by the same function

r0(z)

r0
=
$̃0(z)

$0
=

√
1−

z2

z2
0
, (2.6)

where constant r0 ≡ r0(0) is the vortex radius at the middle isopycnal z = 0, $0 ≡

$̃0(0) is the PVA at the vortex centre (r, z) = (0, 0) and z0 is the deepest vortex
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A. Viúdez

isopycnal (located at a depth z0 in the reference configuration, as explained in the next
section). The vertical to horizontal vortex aspect ratio z0/r0, the PVA at the vortex
centre $0 and the horizontal structure parameters (p, q) complete the parameter set
of the vortex family $p,q.

3. Numerical algorithm

The three-dimensional baroclinic geophysical (rotating and stably stratified)
volume-preserving non-hydrostatic vortex flow, under the Boussinesq and f -plane
approximations, is simulated using a triply periodic numerical model (Dritschel &
Viúdez 2003) initialized using the PV initialization approach (Viúdez & Dritschel
2003). The PV is represented by contours lying on isopycnals. We use a 2563 grid,
with 256 isopycnals, in a domain of vertical extent Lz = 2π (which defines the
unit of length) and horizontal extents Lx = Ly = cLz, where c0 ≡ 10 is the ratio of
the mean Brunt–Väisälä to the constant Coriolis frequency c0 ≡ N/f . We take the
buoyancy period (1 bp≡ 2π/N) as the unit of time by setting N ≡ 2π. One inertial
period (1 ip≡ 2π/f ) equals 10 bp. The time step δt= 0.01 and the initialization time
ti = 5 ip. The initialization time is the minimum time required for the fluid to reach
its initial prescribed PVA state with minimal generation of inertia–gravity waves.

The vertical displacement D of isopycnals with respect to the reference density
configuration is D(x, t)≡ z− d(x, t), where d(x, t)≡ (ρ(x, t)− ρ0)/%z= z is the depth,
or vertical location, that an isopycnal located at x at time t has in the reference density
configuration defined by ρ0+ %zz, where ρ is the mass density and ρ0 > 0 and %z < 0
are background density and background density stratification constants that do not
need to be specified in this approach. It should be noted that D is triply periodic but
d is not. Static instability occurs when Dz≡ ∂D/∂z> 1. The Rossby number R≡ ζ/f
and the Froude number F ≡ ωh/N , where ωh and ζ are the horizontal and vertical
components of the relative vorticity ω respectively and N is the total Brunt–Väisälä
frequency. The PVA $ ≡Π − 1, where Π ≡ (ω/f + k) · ∇d is the dimensionless total
potential vorticity. The PVA $ is represented by contours in every isopycnal. The
state variables are the components of the vector potential ϕ = (ϕ, ψ, φ) that provide
the velocity u ∝ ∇ × ϕ and the vertical displacement of isopycnals D ∝ ∇ · ϕ. This
approach, briefly described in appendix B and in detail in Dritschel & Viúdez (2003),
has been applied to the study of a variety of ageostrophic flows in the atmosphere
and oceans (e.g. Viúdez 2007).

4. Evolution of the isolated marginally stable vortex

In this section, we describe the time evolution of an oblate vortex $2,2, which is
a smooth vortex compared with higher-order vortices having larger PVA gradients
(figure 1). The main purpose of this section is to show that an initially perturbed
$2,2 vortex experiences several unsteady processes, similar to those experienced by
similar vortices, but it nevertheless remains marginally stable for long time periods.
The specific $2,2 vortex chosen is a large-amplitude anticyclone with PVA amplitude
$0=−0.8, which implies a high maximum absolute Rossby number of Ro≈ 0.8 and
oblate geometry (r0/c0, z0) = (2, −0.9) in the QG space of coordinates (r/c0, z). It
should be noticed that, although the PVA distribution in the isopycnal space is oblate
(figure 2a), the inner PVA core ($̃B < 0) is approximately spherical, and indeed the
azimuthal velocity distribution vB(r, z) is prolate in the QG physical space (figure 2b).
We notice that this particular parameter set {p, q,$0, |z0c0/r0|} = {2, 2,−0.8, 0.9/2} is
an extremal case of a marginally stable vortex with a high Rossby number. Numerical
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FIGURE 2. (a) The base 2D PVA $̃B(r, z) for vortex $2,2. Contour lines $̃B < 0
(continuous), $̃B = 0 (thick) and $̃B > 0 (dashed); contour interval ∆ = 0.1. (b) The
base azimuthal velocity component vB(r, z). Contour lines vB < 0 (continuous) and vB =

0 (dashed); contour interval ∆ = 0.1; vB(r, z) ∈ [−0.97, 0.032]. The thick dashed line
indicates the critical level rcr(z) where vB(rcr(z), z)/rcr(z)= ϑ̇0. The spatial extent shown
is only a part of the whole domain of the numerical simulation whose spatial intervals
are 1X/c0 =1Y/c0 =1Z = [−π,π].

experiments on vortices with larger z0 (more prolate) or more negative $0 (higher
Rossby number) turned out to be unstable, while vortices with shorter z0 (more
oblate) or less negative $0 (lower Rossby number) continued to be marginally stable.
Increasing the parameters (p, q) with the other parameters remaining unchanged
caused larger horizontal PVA gradients and resulted in unstable vortices. For example,
both $3,3 and $4,4 vortices were unstable and, after breaking their positive and
negative PVA cores, evolved, $4,4 more rapidly than $3,3, into two departing dipoles
in a way similar to the two-dimensional zero circulation Rankine vortices in Morel
& Carton (1994).

A small PVA jump δ$ ' 1.24 × 10−2 is used to correctly discretize the PVA in
the outer vortex. This small PVA jump implies a large number of PVA contours in
every isopycnal. For example, the number of contours nc between PVA extrema $0
and $min in the middle layer z= 0 (figure 3) is nc= 80. The PVA minimum location
(A 5) is ~e= 5/8= 0.625 and its value $min=$(~e, 0)'−0.24. Although numerical
truncation inherent to any discrete computer algorithm causes a lack of precision and
accuracy large enough to trigger the vortex unsteadiness at long times (e.g. Reinaud
2017), we added a small perturbation consisting of a small horizontal displacement
of the PVA contours by an amplitude δr= 0.1 and vertical wavenumbers 2 and 3, in
order to speed up the unsteady motion leading to the marginally stable vortex.

The time evolution of the vortex (figure 3, supplementary movie 1 available at
https://doi.org/10.1017/jfm.2017.440) shows that, as expected, instability develops at
the radius of maximum PVA, the critical level (Benilov 2003; Nguyen et al. 2012),
and the inner core acquires a mode 2 perturbation. However, both the inner negative
and outer positive PVA regions remain largely stable for long time periods. In this
case, the vortex was stable through the complete simulation period of 365 ip, reaching
Rossby numbers R ∈ [−0.77, 0.23] and maximum Froude number Fmax = 0.24.

Prior to the PVA wave breaking at the critical level, the inner vortex experiences
layering (Nguyen et al. 2012; Hua et al. 2013; Meunier et al. 2015) above and below
the middle depth (figure 4). Layering, or stacking of the PVA, as recently found by
Nguyen et al. (2012), has a helical structure. Here, we observe, very clearly due to
the large number of PVA contours on every isopycnal, the time evolution of the spiral
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A. Viúdez

FIGURE 3. The distribution of the PVA jumps on the middle isopycnal z = 0 at times
t= 0, 60 and 140 ip for vortex $2,2.

stacking consisting of a spiral with growing radial wavenumber. The spiral pattern is
noticed as early as t= 10 ip with a radial wavenumber of approximately 2, and grows
approximately as t/(5 ip). It should be noted that layering occurs in most parts of the
inner vortex and not only close to the critical level radius. These are probably vortex
Rossby waves (Tung 1983; Montgomery & Kallenbach 1997; McWilliams, Graves &
Montgomery 2003), taking place in the presence of PVA gradients and having an
increasing radial wavenumber. The vortex Rossby waves develop and grow in the inner
core but only break at the critical, or stagnation, radius, where the phase speed (given
below) of the PVA mode 2 perturbation equals the angular velocity of the background
azimuthal vortex motion. The averaged kinetic energy in the outer shell of positive
PVA ($ > 0.1) increases at the expense of the potential energy of both this outer
shell and the inner negative PVA vortex core.

Other vortex configurations, depending on the four parameters {p, q, $0, z0c0/r0} of
this vortex family, lead to vortices that become unstable and transform into a tripole,
a pair of dipoles, etc., in ways similar to other vortices and dynamics described in
previous studies (Carnevale & Kloosterziel 1994; Morel & Carton 1994; Reinaud
2017). These instability processes will not be analysed here.

In order to describe the unsteady PVA disturbances, we define the PVA centre of
the inner vortex, at every depth z, by its normalized first moment r̂$ (z, t),

r̂$ (z, t)≡

∫
Sh(z,t)

(xi+ y j)$(x, y, z, t) dx dy∫
Sh(z,t)

$(x, y, z, t) dx dy
, (4.1)

where Sh(z, t) is the spatial horizontal surface where $(x, y, z, t) < 0 and its absolute
value |$(x, y, z, t)| is larger than a threshold value $T ≡ 0.1(|max($)|+ |min($)|)/2;
that is, Sh(z, t)={(x, y) |$(x, y, z, t)6−$T}. The horizontal phase functions θ̂ (z, t)≡
arctan(r̂$ (z, t) · j, r̂$ (z, t) · i) are not plotted since these are visually indistinguishable
from a single straight line. The phase functions are vertically averaged to provide
the averaged phase 〈θ̂〉(t) and hence the averaged phase speed θ̇ (t)≡ d〈θ̂〉/dt, which,
using a linear model fit to 〈θ̂〉(t), gives an average phase speed θ̇0 ' −0.3045 ip−1,
equivalent to a period T0 ' 20.63 ip.

An alternative way to measure the phase speed of the PVA disturbance is through
the vertical velocity field w(x, y, z, t), which is an appropriate quantity to measure the
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ip ip

ip ip

FIGURE 4. The distribution of the PVA jumps on the lower isopycnal z ' −0.4
(isopycnal numerical index iz = 102) at times t = 10, 20, 30 and 40 ip for vortex $2,2.
Vortex revolution is observed here as a slight mismatch between the vortex and domain
geometrical centres.

vortex perturbation because the w of the vortex base state is zero, and w only develops
due to the vortex deviation from its base state. The vertical velocity pattern (figure 5,
movie 2) is basically dipolar and rotates with the vortex phase speed. Defining the
positive and negative w centres r±wh(z, t), the mean location or vortex centre rwh(z, t)
and the vector from negative to positive centres r̂wh(z, t) as

r±wh(z, t)≡

∫
S±h (z,t)

(xi+ y j)w(x, y, z, t) dx dy∫
S±h (z,t)

w(x, y, z, t) dx dy
, (4.2)

rwh(z, t)≡
r+wh(z, t)+ r−wh(z, t)

2
, r̂wh(z, t)≡ r+wh(z, t)− r−wh(z, t), (4.3a,b)
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FIGURE 5. The vertical velocity w(x, y, z, t) at time t= 140 ip on (a) the horizontal plane
z = 0 and (b) the vertical section y = 0. Here, w ∈ [−2.1, 2.1] × 10−3 and the contour
interval ∆= 0.2× 10−3.

it is also possible to trace the motion of the disturbance vortex. Above S±h (z, t)
is the spatial horizontal surface where the vertical velocity magnitude has a
minimum threshold value wT ≡ 0.1(|max(w)| + |min(w)|)/2; that is, S±h (z, t) =
(x, y)| ±w(x, y, z, t)> wT . The phase velocity computed from the vertical velocity
moments is very similar to θ̇0 ' −0.30 ip−1. The critical radius rcr is where the
angular velocity v(rcr, z)/rcr = θ̇0. At the plane z = 0, this happens at rcr ' 1.2c0,
where v(rcr, 0) ' −0.3. The critical radius rcr(z) decreases with depth z, and is
included in figure 2(a).

The marginally stable vortex state is reached after an initial adjustment period of
approximately 60 ip during which the vortex experiences the process of axisymme-
trization towards a vertically tilted axial precession vortex. Vortex precession is
a known process in unsteady baroclinic geophysical vortices (e.g. Päschke et al.
2012). The time evolution of the angle φ(z, t) ≡ arctan(|r̂$ (z, t)|/z) that forms the
three-dimensional vortex axis vectors r̂$ (z, t) + z k with the vertical direction k
(declination or axial tilt, figure 6a) shows the initial adjustment period, the axial
precession with a mean declination 〈〈φ〉〉 ' 0.115 (measured in the QG stretched
space) and oscillations of 〈φ〉(t) around the mean 〈〈φ〉〉, which indicate nutation of the
rotation axis. Visual inspection of 〈φ〉(t) in figure 6(a) reveals two kinds of nutations,
namely a fast low-amplitude and a slow large-amplitude oscillation. The time spectrum
of 〈φ〉(t) (figure 6b) confirms the two nutation frequencies ϑn1' 0.023 cyc/ip (period
Tn1 ' 43.5 ip) and ϑn2 ' 0.013 cyc/ip (period Tn2 ' 76.9 ip), which are presumably
related to the inner negative PVA vortex and outer positive PVA vortex respectively.
It should be noted that both nutation periods Tni are larger than the precession period
Tp ' 20.6 ip.

The inner vortex also experiences revolution, which may be noticed in figure 4 as
a slight departure of the centre of the most interior vortex contour lines from the
geometrical centre of the domain. Vortex revolution may be measured from the vertical
average 〈r̂$ 〉(t). The rotary spectra of 〈r̂$ 〉(t) show that the revolution is anticyclonic
with an amplitude of approximately 0.1 and period TR ' 20.9 ip, which, considering
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FIGURE 6. (a) The angle φ(z, t) computed from vectors in the lower (z< 0, blue points)
and upper (z > 0, red points) part of the vortex. The black curve is the mean 〈φ〉(t),
having a time-mean 〈〈φ〉〉 ' 0.115. The grey dashed curve φ(t) ' 〈φ〉(t) is the angle of
the straight line resulting from the least-squares fit to the locations r̂$ (zi, t)+ zi k for zi in
the inner vortex. (b) The time spectrum of 〈φ〉(t), showing the two peaks at both nutation
frequencies.

sampling errors (three-dimensional numerical fields are saved every inertial period), is
indiscernible from the PVA vortex period T0 ' 20.6 ip computed earlier, so that the
vortex revolution and precession axis are in phase.

5. Concluding remarks

Long-term stability of isolated oceanic vortices has been a topic of fruitful research
in fluid dynamics and physical oceanography in recent decades. Here, we have seen
that, in some vortex configurations, sign reversal in the radial gradient of the PVA, as
implied by the isolation requirement, leads to vortex unsteadiness but does not break
the vortex coherence, and the vortex remains marginally stable even for high Rossby
numbers. The marginally stable vortices are some elements of the new isolated vortex
family $p,q characterized by a zero amount of PVA on every isopycnal. Confidence
in the numerical stability results is sustained by the reproduction of phenomena
occurring in the vortex evolution towards the marginally stable final state. Spiral
waves (apparently vortex Rossby waves) and axial symmetrization play an essential
part in this evolution. The marginally stable final state is characterized by an unsteady
vortex whose inner one-signed PV part experiences revolution, rotation, precession and
nutation. Curiously, in this sense, the inner vortex experiences the same four motions
as the solid Earth. Moreover, we do not discard flow instabilities that may break the
vortex at very long times, say at O(t) = 103 ip, since we have not investigated this
aspect with very long numerical integrations. However, at these very long time scales,
the amplitude of ocean vortices decays due to turbulent viscosity or temperature and
salinity diffusion, which are not considered in our PV conserving approach which is
strictly valid for inviscid adiabatic flows.

In this marginally stable state, the vertical velocity has a dipolar pattern with
maxima at z= 0. This dipolar pattern is related to the upward and downward motion
of almost plane isopycnals caused by the axial precession of a spheroidal vortex. This
dipolar pattern contrasts with the octopolar pattern of vertical velocity characteristic
of ellipsoidal PVA, not precessing, vortices, which is due to the motion of fluid
particles on ellipsoidal isopycnals at a speed faster than the vortex phase speed, and
is therefore zero at z= 0 where isopycnals are horizontal.
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The question of how well this mathematical vortex model fits oceanic vortices must
be evaluated only after experimental acquisition and careful analysis of high-resolution
density and velocity data, allowing detailed computation of the PVA along vortex
vertical radial sections. We note that, although the vortex unsteadiness may look
drastic in the PVA contours, the unsteady velocity perturbations are only of second
order relative to the vortex flow. In the particular case analysed here, the maximum
flow speed is of order |u| ≈ 1, while the corresponding speed perturbations are only
|1u| ≈ 0.1. Thus, experimental data analysis should be able to discriminate this
intrinsic vortex velocity perturbation from external perturbations due to inertia–gravity
waves, tides or wind stress induced currents.
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Appendix A. Base PVA distribution

The base PVA $̃b(r, z) is constructed from the one-dimensional function $B(~),
where the variable ~ = ~̃(r, z) ≡ r/r0(z) is the radial distance scaled by the vortex
radius r0(z) on isopycnal z. The function $B must satisfy boundary conditions

$B(0)= 1, $B(1)= 0 (A 1a,b)

and

di$B

d~ i
(0)= 0, i= 1, . . . , p,

dj$B

d~ j
(1)= 0, j= 1, . . . , q, (A 2a,b)

and the integral condition∫ 1

0
$B(~)~ d~ = 0 ⇒

∫ 1

0
$ ′B(~)~

2 d~ = 0. (A 3a,b)

For monopolar vortices with a single PVA core and one PVA annulus of opposite PVA
sign, the PVA $B on every isopycnal must have one zero and, subjected to the above
conditions, only one interior extremum. Thus, $B(~) has only one interior extremum,
say at ~ = ~e, and $ ′B(~) must be of the form

$ ′B(~)∝ ~
p(1− ~)q(~e − ~). (A 4)

The extremum ~e is found from the integral condition (A 3b), resulting in

~e =
re(z)

r0(z)
=

B(p+ 4, q+ 1)
B(p+ 3, q+ 1)

=
p+ 3

p+ q+ 4
, (A 5)

where B(p, q) is the Beta function. Integration of (A 4), with boundary conditions
(A 1a,b), leads to (2.5).
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Appendix B. Theoretical basis of the numerical algorithm

By combining the non-hydrostatic balance of linear momentum in a rotating frame
under the f -plane and Boussinesq approximations, the mass conservation equation and
the isochoric condition we obtain the rate of change of A=Ai+ B j+ C k≡ ω/f −
c2

0∇D,
dA
dt
=−f k×Ah + (1− c2

0)∇w+
ω

f
· ∇u+ c2

0∇u · ∇D. (B 1)

The horizontal component of (B 1), namely the rate of change of Ah = (A, B),
is numerically integrated using an explicit leapfrog scheme, together with a weak
Robert–Asselin time filter to avoid decoupling between even and odd time levels.
Spatial derivatives are carried out in the spectral space. A biharmonic hyperdiffusion
term, providing a small damping rate (e folding) per ip at the highest wavenumber
equal to ef = 50, is added to the horizontal component of (B 1). The third prognostic
equation is the explicit material conservation of PVA by contour advection on
isopycnals (d$/dt = 0), so that large PV gradients are not severely smoothed by
diffusion. The locations of the PV contours are numerically integrated in time using
a standard third-order three-time-level Adams–Bashforth scheme. The horizontal
potentials ϕh = (ϕ, ψ) are recovered from the inversion, in the spectral space, of
Ah = ∇

2ϕh, while the vertical potential φ is obtained from the inversion of the
PVA definition $ ≡ Π − 1 = (ω/f + k) · (k − ∇D) − 1 in terms of the potentials,
$ = $ϕ{ϕ, ψ, φ}. The main advantage of these prognostic equations is that they
allow us to use the potential vector ϕ, so that volume conservation is implicit, both
three-dimensional velocity and vertical displacement are obtained directly from ϕ,
and the inversion of the horizontal potentials is easy (symbolically, ϕh = ∇

−2Ah).
The disadvantage of this formulation is that the computation of the (horizontal
component) right-hand side of (B 1) and the inversion of the PVA (symbolically
φ =$−1

ϕ {ϕ, ψ, $ }) are numerically costly.
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