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The tight combination model improves the positioning accuracy of the Global Navigation Satel-
lite System (GNSS) in complex environments by increasing the redundancy of observation.
However, the ambiguity cannot be calculated directly because of the correlation between it
and the phase difference inter-system bias (DISB) in the model. This paper proposes a method
of DISB estimation based on the principle of maximum ratio. From the data analysis, for the
standard deviation of code DISB, the improvement of the method can up to 0·179 m with the
poor quality data. In addition, compared to the parameter combination method, the standard
deviation of all the phase DISB was deceased with the method in the paper. About the phase
DISB of GPS L1/Galileo E1, the standard deviation decreased from 0·014/0·022/0·009/0·051
cycles to 0·006/0·015/0·004/0·029 cycles of four baselines, which represents the improvement
of 57·14/31·82/55·56/43·14%. About the phase DISB of GPS L1/BDS B1, the standard devia-
tion decreased from 0·014/0·061/0·010/0·052 cycles to 0·002/0·005/0·009/0·004 cycles of four
baselines, which represents the improvement of 85·71/91·80/10·00/92·31%.
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1. INTRODUCTION. With the modernisation of GNSS and the rapid development of
satellite systems, more satellite and frequency data can be used for precise positioning.
The geometric strength of the observation satellite can be enhanced by the multi-system
data combination, and it is beneficial for improving positioning accuracy, reliability and
reducing initialisation time (Force and Miller, 2013; Odolinski et al., 2014; Tegedor et al.,
2014). Multi-system satellite data has great advantages over single-system data, especially
in the complex environment, and it is obviously reflected in relative positioning (Pan et al.,
2014; Teunissen et al., 2014; Liu et al., 2017).

There are mainly two models that were used for relative positioning. The first one is the
classic combination in which each system uses its reference satellite to form the double-
differenced (DD) model, and then combine the multi-system double-difference observation
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solution. Which also known as the loose combination model. The other is that all systems
select one reference satellite and form the DD model with it. Not only can the double-
difference observation equation be formed in a system, but also form the DD equation
between systems by the way. This combination is also called the tight combination model
(Julien et al., 2003). The tight combination model can add additional observation equations
to the loose combined model, and the positioning is more usable in complex environments
(Odijk et al., 2016).

The influence of DISB should be considered when applying tight combination model.
The code DISB can be estimated together with the coordinate, but the ambiguity will absorb
the phase DISB and affect the positioning result (Odijk and Teunissen, 2013a). In this case,
although the ambiguity of the DD observations in the system still keeps as an integer,
whereas the ambiguity of the double-difference observations between systems will not. In
fact, only the fractional part of the phase DISB parameter affects the fixation of the ambi-
guity, because the integer part of the phase DISB can be absorbed by the ambiguity without
affecting its integer characteristics. If the fractional part of the phase DISB parameter can
be accurately obtained in advance, it will not affect the ambiguity fixed.

For the tight combination model in overlapping frequency, such as the GPS L1 and the
Galileo E1, the phase DISB can be calculated by selecting the reference satellites in dif-
ferent satellite systems for parameter recombination, and the fractional part of the result
is selected as the phase DISB results finally (Odijk and Teunissen, 2013a, 2013b). For the
tight combination model of different frequencies, the phase DISB can also be calculated by
the parameter recombination method. However, the calculation results include the deviation
of the fractional part caused by the ambiguity transformation, the impact should be con-
sidered (Gao et al. 2017, 2018). However, the parameter recombination method requires
long-term observations to be accurately calculated. In addition, Paziewski and Wielgosz
(2015) proposed an approach that uses a priori value to calculate the phase DISB parameter
(Paziewski and Wielgosz, 2015), but the accuracy of the method depends on the accuracy of
the prior value. Tian et al. (2015) proposed to use the relationship between the phase DISB
and the ratio value, use the particle filter to calculate the phase DISB (Tian et al., 2015,
2017), but the method is computationally intensive. In summary, a simple and effective
phase DISB calculation method has a certain significance.

From the above analysis, a direct calculation method of phase DISB parameters is pro-
posed based on the correspondence between phase DISB and ratio values in this paper.
According to the ratio calculation formula, the method performs a spatial transformation
on the ambiguity floating value and directly calculates the phase DISB by using the geo-
metric relationship. Different from the particle filter, the result of the method just relies on
a value that can make the ratio maximum. Because a large number of particle calculations
are unnecessary, the computation amount is reduced obviously.

The rest of this paper is organised as follows: The second part introduces the calcu-
lation formula of DISB parameters, the third part introduces the calculation process of
this method in detail, and finally the data verification and summary discussion of the
method.

2. DISB PARAMETER CALCULATION METHOD.
2.1. Tight combination positioning model. The un-differenced (UD) model of GNSS

pseudorange and phase phase observations is expressed as (Teunissen and Kleusberg,
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1996):
⎧⎨
⎩

φs
j ,k = ρs

k + c(dtk − dts) − I s
j ,k + Ts

k + λj (N s
j ,k + δj ,k + δS

j ) + bs
k + εs

j ,k

Ps
j ,k = ρs

k + c(dtk − dts) + I s
j ,k + Ts

k + dj ,k + dS
j + bs

k + es
j ,k

(1)

where φ is phase observation and P is the pseudorange observation. s, j and k represent
the satellite s, frequency j and receiver k. ρ is the distance between satellite and receiver,
c is the light speed in vacuum, dtk and dts are the clock offsets for receiver and satellite.
I s
j ,k is the ionospheric delay, Ts

k is the tropospheric delay. λj is the wavelength under the
frequency j , N s

j ,k is the ambiguity, δj ,k and δS
j are the hardware delay for the receiver and

constellation Son phase observation, dj ,k and dS
j are the hardware delay for the receiver

and constellation S on pseudorange observation, εs
j ,k and es

j ,k are the measurement noise,
respectively.

During the calculation, the satellite clock is calculated by using the broadcast ephemeris,
and the errors such as the sagnac and the relativistic effect were corrected by the model.
Short baselines are mainly considered in this paper, the atmospheric error and multipath
error between stations can be ignored.

The data in GPS L1/Galileo E1/ BDS B1 were selected to form the tight combination
model as the example in this paper. The satellite with the highest altitude in the GPS was
selected as the reference satellite and named as 1g . The remaining satellites were numbered
as m. The form of the DD observation equation in the GPS is:

⎧⎨
⎩

φ
1g m
kl = ρ

1gm
kl + λL1N 1gm

kl + ε
1gm
kl

P1g m
kl = ρ

1g m
kl + e1g m

kl

(2)

It is assumed that satellites of other constellation S can be observed beside the GPS, the
frequency of data is j , and the satellite number is r. The system observation data is used to
establish a DD observation equation with the reference satellite 1 g. The equation is:

⎧⎨
⎩

φ
1gr
kl = ρ

1g r
kl + λj (N r

kl + δS
kl) − λL1 (N 1g

kl + δG
kl) + ε

1g r
kl

P1g r
kl = ρ

1g r
kl + dGS

kl + e1g r
kl

(3)

In the Equation 3, the single-difference ambiguity and the phase hardware delay are corre-
lated which makes the ambiguity and hardware delay parameter results cannot be calculated
directly. In response to this problem, the current method is to reorganise the parameters.
Assume that satellite 1r in the S system is selected as the reference satellite in the system
S. Recompose the above observation equations into the following form:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ
1g1S

kl = ρ
1g 1S

kl + λj (N 1S
kl + δS

kl) − λL1 (N 1g

kl + δG
kl) + ε

1g1S

kl

P1g 1S

kl = ρ
1g 1S

kl + dGS
kl + e1g1S

kl

φ
1gr
kl = ρ

1g r
kl + λj N r1S

kl + λj (N 1S
kl + δS

kl) − λL1 (N 1g

kl + δG
kl) + ε

1g r
kl

P1g r
kl = ρ

1gr
kl + dGS

kl + e1gr
kl

(4)
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1S is the reference satellite in system S and remain satellites in it are numbered as r. Other
parameters are the same as the Equation 1. The phase DISB between GPS and system S is:

λj δ
GS
kl = λj (N 1r

kl + δS
kl) − λL1 (N 1g

kl + δG
kl) (5)

The unknown parameter can be solved under the combination of the DD equation between
two constellations. The unknown parameter matrix is:

X = [x, y, z, dGS
kl , δGS

kl , N 1gm1

kl , . . . , N 1gmn−1

kl , N 1Sr1
kl , . . . , N 1Srm−1

kl ] (6)

It should be noted that the phase DISB result contains the reference satellite ambiguity,
so there is a deviation from the actual value. When the frequencies j and L1 coincide, the
deviation is only the phase hardware delay fractional part. When the frequencies j and L1
are different, the deviation includes hardware delay fractional part and fractional part of
(λL1 N 1g

kl )/λj. If the reference satellite of the GPS changes, the deviation value will change
accordingly, and the latter parameter can be stabilised by means of DD ambiguity transfer
(Gao et al., 2017). Therefore, the fractional part is taken as the phase DISB parameter in
general.

2.2. Estimation method of DISB based on the principle of maximum ratio. When
the number of observations in the system S is small, the results of the above calculation
methods may be unstable. In addition, the result obtained by only one method is not reliable
enough. To develop another method of the DISB calculating is meaningful.

In the tight combination model described above, the result of un-reorganised model is:

X = [x, y, z, dGS
kl , N 1g s1

kl , . . . , N 1g sn−1

kl , δ̄GS1
kl , . . . , δ̄GSq

kl ] (7)

Where δ̄
GSr
kl = (N r

kl + δS
kl) − (λL1/λj )(N 1g

kl + δG
kl), n is the number of observations in the GPS

system, q is the number of observations in the system S. The fractional part of the parameter
is consistent with the fractional part of δGS

kl . And code DISB dGS
kl can be calculated directly.

The ambiguity can be fixed by many methods according to the integer characteristic,
such as the LAMBDA (Teunissen, 1995). The fixed effect of ambiguity can be determined
by the ratio (Euler and Schaffrin, 1991), that defined as:

Ratio =

∥∥∥∥N̂ − �

N
′∥∥∥∥

2

QN̂N̂∥∥∥N̂ − �

N
∥∥∥

2

QN̂N̂

(8)

Where N̂ is the ambiguity floating solution,
�

N indicates the optimal candidate ambiguity

group,
�

N
′
is the suboptimal candidate ambiguity group, and QN̂N̂ is the variance-covariance

(VC) matrix of ambiguity floating solution. ‖•‖2
Q indicates the Mahalanobis distance that

calculated by (•)TQ−1(•).
When the ratio value is greater than a certain threshold, the result of the fixed ambiguity

is acceptable. If the ambiguity is fixed directly by the calculation result of the Equations
(2) and (3), the ratio of the solution result is small due to the influence of the phase DISB.
There is a relationship between the phase DISB and the ratio. If a value is subtracted from
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the inter-system ambiguity result, and then fix the ambiguity. When the value subtracted is
the DISB parameter and the ratio with the fixed ambiguity is the largest (Tian et al., 2015,
2017), the principle can be used to calculate the DISB.

Consider the ambiguity calculation result without parameter recombination:

N̂ = [N 1gs1

kl , . . . , N 1gsn−1

kl , δ̄GS1
kl , . . . , δ̄GSq

kl ], QN̂ N̂ (9)

Since the value range of the DISB is −0·5 to 0·5 cycles, the ambiguity floating solution is
located on the line segment containing the calculation result of the above formula. Here-
inafter, the line, which the line segment locates in, is referred to as a position line, and the
endpoints of the line segment are:

⎧⎨
⎩

Na = [N 1gs1

kl , . . . , N 1gsn−1

kl , δ̄GS1
kl − 0.5, . . . , δ̄GSq

kl − 0.5]

Nb = [N 1gs1

kl , . . . , N 1gsn−1

kl , δ̄GS1
kl + 0.5, . . . , δ̄GSq

kl + 0.5]
(10)

It can be represented by a parametric equation with the following equation:

N (t) = [N 1gs1

kl , . . . , N 1g sn−1

kl , δ̄GS1
kl + t, . . . , δ̄GSq

kl + t] t ∈ [−0 · 5, 0 · 5] (11)

The direction vector of position line is:

Ne = [0, . . . , 0, 1, . . . , 1] (12)

When the tchanges, the point moves on the line segment. If the point moves to a certain
position where the ambiguity is fixed to obtain the maximum ratio, and the t can be consid-
ered as the phase DISB. However, it is difficult to find the point with the largest ratio value
on the line directly.

2.2.1. The point with maximum ratio. The VC matrix of the ambiguity solution can be
decomposed by LTDL. The formula of ratio is:

Ratio =
(N̂ − �

N
′
)TQ−1

N̂ N̂
(N̂ − �

N
′
)

(N̂ − �

N )TQ−1
N̂ N̂

(N̂ − �

N )
=

(N̂ − �

N
′
)TL−1D−1L−T(N̂ − �

N
′
)

(N̂ − �

N )TL−1D−1L−T(N̂ − �

N )

=
(N̂ − �

N
′
)TL−1

√
D−1

√
D−1L−T(N̂ − �

N
′
)

(N̂ − �

N )TL−1
√

D−1
√

D−1L−T(N̂ − �

N )

=
(N̂ − �

N
′
)TM TM (N̂ − �

N
′
)

(N̂ − �

N )TM TM (N̂ − �

N )
(13)

where M =
√

D−1L−T. The formula shows that the Mahalanobis distance of ambiguity
floating solution to the alternative ambiguity group can be transformed into the Euclidean
distance in a space, whose base is the column vector of matrix M . Since the matrix M is
not an orthogonal matrix necessarily, the space could be tilted. The geometric meaning of
the ratio can be expressed as the ratio of the distance between the suboptimal ambiguity
candidate group and the optimal ambiguity candidate group in that spatial, and the above
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Figure 1. Position line in the inclined space and the grid point in the vicinity.

Figure 2. The relationship between the Ratio and the minimum variance and the sub-minimum variance.

conversion is a linear conversion. The direction vector of the position line in this space can
be expressed as MN e.

Consider the motion of the point when the t changes. At a certain node position, the
point is close to a grid node, and during the subsequent motion, the distance between the
motion point and the node gradually decreases. After the distance reaches the minimum
value, the motion point will gradually move away from the node until another grid node
becomes the nearest one, as shown in Figure 1. It is easy to know that when the point
moves to the closest position to the node, the ratio can obtain maximum value, as shown in
Figure 2.

According to the geometric principle, when the line connecting the moving point and
the grid point is perpendicular to the position line, the grid point is closest to it. At this time,
the ratio can be obtained as the optimal candidate ambiguity group. In this case, assume
that the optimal ambiguity candidate group in this case is

�

N , the ambiguity candidate group
needs to be spatially converted first, the candidate group coordinates are M

�

N in the new
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space. The formula for calculating the value of t is

t = (M
�

N − MN̂ ) · MNe = M (
�

N − N̂ ) · MNe (14)

Where · represents the inner product calculation.
2.2.2. Optimal ambiguity alternative group near the position line. As the position

changes during the movement of the motion point on the position line, the optimal ambigu-
ity candidate group will change. All optimal candidate ambiguity groups need to be found
and their corresponding tshould be calculated separately. Compare the calculation result
of the ratio in each case. When the ratio is maximum, the t corresponded is the phase
DISB, and the ambiguity fixed result can be treated as the optimal ambiguity result. Since
the ambiguity may lose the integer property after converting to another space, it is neces-
sary to find the possible optimal candidate ambiguity group in the original space. In fact,
we can use the LAMBDA to find the optimal candidate ambiguity group at any point on
the position line. Select some sample points on the position line, and use the LAMBDA
to calculate the optimal ambiguity group corresponding to these sample points. When the
sample points are dense enough, all possible ambiguity groups can be found. These ambi-
guity groups correspond to the space grid node. However, too many sample points will
result in a huge calculation. In this paper, the following method is used to select the sample
point position, to obtain all possible ambiguity groups with as few samples as possible.

In the original space, the range of the position line in each base vector direction is 1.
It is difficult to search for the possible ambiguity candidate group due to the influence of
correlation. The descending correlation matrix of the ambiguity floating solution variance
is Z . After the decorrelation, the direction vector of the position line is:

NZe = ZTNe (15)

After the position line transformed into the decorrelation space, the range of variation of the
direction in each base vector is NZe. For the point set on the position line. Obviously, after
the optimal ambiguity candidate group changes, the coordinates of the point on a certain
base vector will be different unit intervals. The sample point interval is determined by the
following formula:

	 =
1

max NZe
(16)

	 is the interval of sample points. After the decorrelation, the formula to calculate the t is
as follows:

t = M (ZT �

N − ZTN̂ ) · MZTNe (17)

In summary, the method of the phase DISB estimation under the maximum ratio value
principle can be divided into the following steps:

1. Calculate the ambiguity floating solution N and its VC-matrix QN̂N̂ , determine the
direction vector of the line where the ambiguity floating point solution is located;

2. Calculate the decorrelation matrix of the VC-matrix; obtain the interval and the posi-
tion of the sample points. Get the optimal ambiguity group on each sample point by
the LAMBDA;

3. Calculate the t under the optimal ambiguity by the formula;
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Table 1. Error handling strategy and calculation settings.

Options Settings

Ephemeris Broadcast ephemeris
Elevation cutoff angle 10◦
Observation weighting Elevation-dependent weighting[32]

Relative precision of code and phase observations: 100:1

Table 2. Baselines and the corresponding receiver types in the experiments.

No. Baseline Receiver Type 1 Receiver Type 2 Baseline Length/m Remark

1 CUT0-CUTB Trimble NetR9 Trimble NetR9 4·3 Same receiver types
2 CUT3-CUBB JAVAD JAVAD 4·3
3 CUT0-CUT3 Trimble NetR9 JAVAD 0 Different receiver types
4 CUTB-CUCC Trimble NetR9 JAVAD 6·1

4. The ambiguity floating solution containing the phase DISB is subtracted from each
offset value t and fixed by the LAMBDA to calculate the ratio. The t at the maximum
ratio is taken as the result of the final phase DISB.

In addition to the above observation equations and ambiguity fixed strategies, other errors
handling strategies and calculation settings in this paper are shown in Table 1. When the
ratio is bigger than 2 in the LAMBDA process, the ambiguity is considered to be fixed.

3. DATA ANALYSIS.
3.1. Data sources and processing methods. Equation 4 represents a tight combina-

tion model between the same frequencies and different frequencies. In order to verify the
computational performance of the method described in this paper, the data on the GPS
L1/Galileo E1, and the data on GPS L1/BDS B1 were analysed respectively. The parame-
ter recombination method and the new method proposed in this paper are used to estimate
the DISB. Finally, compared the results of the two methods. The calculated data used short
baseline data at Curtin University. The observation time is April 1, 2019, and the relative
positions of the stations are shown in Figure 3.

The different station data were combined to form a baseline combination with the same
receivers and different receivers. The baseline information used in the calculation is shown
in Table 2.

3.2. Analysis of calculation results of DISB between GPS L1 and Galileo E1. There
are two types of baselines used to do the data analysis, the first type is the baseline that
composed of the same type receivers. And the other is composed of different receivers.
In order to test the effect of the method in this paper in calculating the DISB between
the systems with the same frequency, we used it to calculate the DISB of the GPS L1
and Galileo E1 data in the above baselines. Then do a comparison with the result of the
parameter recombination method. The result series are displayed in the Figure 4. The red
point is the result of the parameter combination method and the blue point is the result of
the method in the paper in Figure 4. And the (a), (b), (c), (d) are the calculated result of
baseline 1, 2, 3, 4.
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Figure 3. The receivers position in Curtin University.

Overall, we can get a conclusion that DISB is stable, and if the baseline is composed of
the same receivers, it’s DISB is close to zero. Additionally, it can be found that code DISB
results of the different methods are coincident nearly, which illustrates that the new method
cannot influence the calculation of code DISB. Because the method in the paper is based
on the regulation in the ambiguity fixed, which just aims to the calculation of phase DISB.
However, there is a huge difference in the phase DISB result of two methods in the figure.
It can be found that the blue point that representing the new method is much more stable
than the red point which representing the parameter recombination method. Indicating that
in terms of phase DISB calculation, the results of the method described in this paper can
prove the stability of the phase DISB better and get a more reliable result.

There is a convergence process in the blue points in (b) and (c) of Figure 4. It is due
to the lack of Galileo data in some epochs. The new method requires several epochs to
initialise. In addition, it should be noted that there are some blank parts in (b) and (d) in
Figure 4, which is also caused by the lack of Galileo data.

In order to display the result of two methods intuitively, the mean and standard deviation
of two methods are calculated and showing in the Table 3.

Obviously, the mean of the DISB between GPS L1 and Galileo E1 is close to 0, which
means that DISB can be ignored in the tight combination model between the two frequen-
cies. In the standard deviation part of the code DISB, the new method has no significant
improvement effect on the stability. In contrast, the standard deviation of the phase DISB
indicates that the method in the paper can improve the stability of phase DISB visibly
than the parameter recombination method. The improvement of four baselines are 57·1%,
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(a) (b)

(c) (d)

Figure 4. The DISB results of two methods for 4 baselines. (a) CUT0-CUTB; (b) CUT3-CUBB; (c)
CUT0-CUT3; (d) CUTB-CUCC.

Table 3. DISB statistical of New Method and Parameter Recombination (PR) Method between GPS L1 and
Galileo L1

Standard Standard
The Mean of Deviation of The Mean of Deviation of The Successful
Code-DISB Code-DISB Phase-DISB Phase-DISB Rate of

Baselines Methods (m) (m) (cycles) (cycles) Ambiguity fixed

CUT0-CUTB New Method 0·062 0·319 0·000 0·006 99·93%(2811/2813)
PR Method 0·061 0·317 0·000 0·014 99·93%(2811/2813)

CUT3-CUBB New Method 0·065 0·457 0·002 0·015 100·00%(1355/1355)
PR Method 0·073 0·466 0·002 0·022 99·78%(1352/1355)

CUT0-CUT3 New Method −0·017 0·201 0·002 0·004 100·00%(2853/2853)
PR Method −0·019 0·190 0·002 0·009 100·00%(2853/2853)

CUTB-CUCC New Method 0·134 0·461 −0·008 0·029 74·27%(1495/2013)
PR Method 0·127 0·469 −0·003 0·051 60·36%(1215/2013)

31·8%, 55·6%, and 43·1%, respectively. Furthermore, as can be seen from the seventh col-
umn of Table 3, the method described in this paper can improve the fixed rate of ambiguity
to a certain extent. For example, the ambiguity fixed rate increased from 60·36% to 74·27%
in the CUTB-CUCC, the promotion is 23·05%. This is because the search domain of the
method described in this paper is larger than the parameter recombination method. When
phase DISB has a greater influence on the ambiguity fixing, the new method can better
overcome the influence of it.
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(a) (b)

(c) (d)

Figure 5. Phase DISB residual of two method for 4 baselines between GPS L1 and Galileo E1. (a)
CUT0-CUTB; (b) CUT3-CUBB; (c) CUT0-CUT3; (d) CUTB-CUCC.

Figure 5 is a histogram of the phase DISB calculation residuals of the two methods. As
can be seen from the figure, the residuals of the two methods are within 0·05 cycles. Com-
pared with the calculation residuals of the parameter recombination method, the residuals
of the new method are more concentrated, indicating that the calculation results are more
stable.

3.3. Analysis of calculation results of DISB between GPS L1 and BDS B1. Figure 6
shows the calculation results of the DISB parameters between GPS L1 and BDS B1 fre-
quencies by two methods. It is clear that the phase DISB is stable if regardless of the sudden
jump. From the original data analysis, the jumps are due to the data loss of several epochs
during observation. It can be inferred from Equation 5 that the result of the phase DISB
between different frequencies is related to the ambiguity of the GPS reference satellite in
the initial epoch. If there is any loss of observation data, the phase DISB will change as the
GPS reference satellite changes after recalculation.

From the (a) and (b) in Figure 6, code DISB is close to 0 when the baseline is composed
of the same receivers even between GPS L1 and BDS B1. But it is far away from 0 if the
baseline is composed of different receivers. The value of phase DISB is influenced by the
single-differenced ambiguity of the GPS reference satellite and is usually not clear to 0.

In a comparison of the stability part of the two methods’ results, the difference of code
DISB is small. However, there is a disparity in phase DISB of two methods. The result of
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(a) (b)

(c) (d)

Figure 6. The DISB results of two methods for 4 baselines. (a) CUT0-CUTB; (b) CUT3-CUBB; (c)
CUT0-CUT3; (d) CUTB-CUCC.

Table 4. DISB statistical of New Method and Parameter Recombination (PR) Method between GPS L1 and
BDS B1

Standard Standard The Successful
The Mean of Deviation of The Mean of Deviation of Rate of

Baselines Methods Code-DISB Code-DISB Phase-DISB Phase-DISB Ambiguity fixed

CUT0-CUTB New Method −0·296 0·341 – 0·002 99·68%(2801/2810)
PR Method −0·293 0·343 – 0·014 99·64%(2800/2810)

CUT3-CUBB New Method −0·202 0·334 −0·107 0·005 96·42%(2777/2880)
PR Method −0·224 0·354 −0·105 0·061 96·32%(2774/2880)

CUT0-CUT3 New Method −2·556 0·215 0·330 0·009 100·00%(2880/2880)
PR Method −2·580 0·220 0·330 0·010 100·00%(2880/2880)

CUTB-CUCC New Method 2·050 0·358 – 0·004 97·94%(2752/2810)
PR Method 2·144 0·537 – 0·052 97·83%(2749/2810)

the new method is significantly stable than the result of parameter recombination in phase
DISB. In addition, as can be seen from (b) and (d) of Figure 6, the new method is more
resistant to interference than the parameter recombination method obviously.

Table 4 is a statistical table on DISB between GPS L1 and BDS B1 with two methods.
In the CUT0-CUTB and CUTB-CUCC, there are some jumps in the phase DISB series, it
does not make sense of calculating the mean value all the time.

From the sixth column of the Table 4, the stability improvement of phase DISB is much
more obvious than Table 3. The standard deviation of CUT3-CUBB and CUTB-CUCC are
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(a) (b)

(c) (d)

Figure 7. Phase DISB residual of two method for 4 baselines between GPS L1 and BDS B1. (a) CUT0-CUTB;
(b) CUT3-CUBB; (c) CUT0-CUT3; (d) CUTB-CUCC.

reduced from 0·061 cycles and 0·052 cycles to 0·005 and 0·004 cycles, the rate of improve-
ment reach more than 90%. Because in the calculation of the above baselines, there are
some gross errors in the result of parameter recombination which make the standard devi-
ation grow. And the new method is more resistant to the errors and the standard deviation
of its result is much smaller. For the baseline CUT0-CUT3, the improvement effect of the
method described in this paper is not obvious. From the (c) of Figure 6, it can be seen that
this is because the calculation results of the two methods are superb.

Figure 7 shows the statistical residuals of the two methods. It can also be found that the
histogram of the new method is more concentrated, and it also shows that the stability of
the calculation results is stronger. In particular, the concentration of (c) in Figure 7 is not
obvious, because the phase DISB time series of CUT0-CUT3 showing a certain time walk
characteristics in (c) of Figure 6, so it will cause the concentration of statistical residual
influences.

4. SUMMARY. For the problem that the phase DISB cannot be calculated directly in
the tight combination model, a method for the DISB estimation based on the maximum
ratio principle was processed in this paper. The method bases that the ambiguity floating
solution minus the correct DISB parameter and then calculate by the LAMBDA, the ratio
can obtain the maximum value. The ratio calculation formula is used for spatial conversion,
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and the geometric principle calculation is used to obtain the minimum variance. Finally
selected the DISB which makes the ratio maximum as the final result. The observation
data in Curtin University were used to verify the method, the following conclusions can be
drawn:

From the results of the four sets of baseline calculations, the code DISB and the phase
DISB in the tight combination model are stable in one day. The standard deviation of the
DISB of the baseline is less than 0·5 m and 0·03 cycles in a day, which composed of the
same receivers. About the baselines composed of different receivers, the standard deviation
of the code DISB and the phase DISB is smaller than 0·4 m and 0·01 cycles. This result
indicates that the DISB can be fixed in advance.

According to the statistics of different baseline calculation results, the ambiguity-fixed
rate of the method in the paper is not lower than the parameter recombination method.
The promotion can up to 23·05% in some baselines. The reason of the effect is that the
ambiguity result of the parameter recombination method is located in the search domain of
the method described herein.

Comparing the DISB results between the new method and the parameter recombination.
In the code DISB part, the difference between the two methods is small. The improve-
ment of the new method is large only with the poor quality data, the largest promotion in
the standard deviation of the code DISB is 0·179 m in the experiment. In the phase DISB
part, there is an obvious improvement. All the standard deviation of the phase DISB was
decreased with the method in this paper. The maximum rate can up to 92·31% that the stan-
dard deviation decreased from 0·052 cycles to 0·004 cycles. This proves the improvement
effect in the stability part of phase DISB calculation in this paper.

However, the conclusions above were obtained base on the high-end receivers and short
baselines. The application of the method to the low-cost receivers or long baselines should
be studied furthermore.
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