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Complete boundedness of multiple
operator integrals

Clément Coine

Abstract. In this paper, we characterize the multiple operator integrals mappings that are bounded

on the Haagerup tensor product of spaces of compact operators. We show that such maps are

automatically completely bounded and prove that this is equivalent to a certain factorization property

of the symbol associated with the operator integral mapping. �is generalizes a result by Juschenko-

Todorov-Turowska on the boundedness of measurable multilinear Schur multipliers.

1 Introduction

A family m = (m i j)i , j∈N of complex numbers is called a Schur multiplier if for any
matrix [a i j] ∈ B(ℓ2), the Schur product Tm(a) = [m i ja i j] is thematrix of an element
of B(ℓ2). Schur multipliers are an important tool in analysis, and play for instance
a fundamental role in Perturbation �eory. See below for more information and
references.

�ere is a well-known characterization of Schur multipliers due to Grothendieck
in terms of factorization of the symbolm, see [18,�eorem 5.1]. It turns out, using the
theory of operator spaces, that bounded Schur multipliers are completely bounded
and in that case, the norm of Tm is equal to its complete norm. It is not yet known
whether this is true for Schur multipliers defined on the Schatten classes. We refer the
reader to [12] for recent developments regarding this question.

In this paper, we are interested in Schur multipliers in the multilinear setting.
Effros and Ruan [11] introduced a Schur product as a multilinear map T ∶Mn(C) ×
⋯×Mn(C)→ Mn(C) defined on the product of n copies of Mn(C) and charac-
terized the mappings T that extend to a complete contraction on the Haagerup

tensor product Mn(C) h
⊗⋯

h
⊗Mn(C). �is result was generalized by Juschenko,

Todorov and Turowska in [13] where they considered measurable multilinear Schur
multipliers. �ey are defined as follows: let n ∈ N and let (Ω1 , µ1), . . . , (Ωn , µn) be
σ-finite measure spaces. Let ϕ ∈ L∞(Ω1 ×⋯×Ωn). We will identify L2(Ω i ×Ω j)
with the space S2(L2(Ω i), L2(Ω j)) of Hilbert-Schmidt operators from L2(Ω i) into
L2(Ω j). If K i ∈ L

2(Ω i ×Ω i+1), 1 ≤ i ≤ n − 1, we let Λ(ϕ)(K1 , . . . ,Kn−1) to be the
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Hilbert-Schmidt operator with kernel

∫ ϕ(t1 , . . . , tn)K1(t1 , t2) . . .Kn−1(tn−1 , tn)dµ2(t2) . . . dµn−1(tn−1) ∈ L2(Ω1 ×Ωn),
which defines a multilinear mapping

Λ(ϕ)∶S2(L2(Ωn−1), L2(Ωn)) ×⋯× S2(L2(Ω1), L2(Ω2))→ S2(L2(Ω1), L2(Ωn)).
Using the notion of multilinear module mappings, the authors proved that if Λ(ϕ)
extends to a boundedmapon theHaagerup tensor productS∞(L2(Ωn−1), L2(Ωn)) h

⊗

⋯
h
⊗ S

∞(L2(Ω1), L2(Ω2)) into S
∞(L2(Ω1), L2(Ωn)), the extension is completely

bounded [13, Lemma 3.3]. Using this fact, they characterized the functions ϕ that
give rise to a (completely) bounded Λ(ϕ) in terms of the extended Haagerup tensor
product L∞(Ω1)⊗eh ⋯⊗eh L

∞(Ωn), see [13,�eorem 3.4] and the remark following
the theorem. We also refer the reader to [21] for more results on the case n = 2.

Let A1 , . . . ,An be normal operators and let λA1
, . . . , λAn

be scalar-valued spectral
measures associated with these operators, that is, λA i

is a finite measure on the Borel
subsets of σ(A i) such that λA i

and EA i , the spectral measure of A i , have the same
sets ofmeasure 0. For ϕ ∈ L∞(λA1

×⋯× λAn
) and X1 , . . . , Xn−1 ∈ S

2(H), we formally
define a multiple operator integral by

[ŴA1 , . . . ,An(ϕ)] (X1 , . . . , Xn−1)
= ∫

σ(A1)×⋯×σ(An)
ϕ(s1 , . . . , sn)dEA1(s1)X1 dE

A2(s2) . . . Xn−1 dE
An(sn).

�e theory of double operator integral (case n = 2) was developed by Birman and
Solomyak in a series of three papers [1, 2, 3] and was then generalized to the case of
multiple operator integrals [15, 22]. �ey play a prominent role in operator theory,
especially in perturbation theory where they are a fundamental tool in the study of
differentiability of operator functions. See [6, 7, 14, 16] where Fréchet and Gâteaux-
differentiability of the mapping f ↦ f (A) are studied in the Schatten norms.

�e definition of multiple operator integrals we will use in this paper is the one
given in [5] and which is based on the construction of Pavlov [15]. See [16, 19] for
other constructions of multiple operator integrals. �e advantage of this definition is
the property ofw∗-continuity of themapping ϕ ↦ Ŵ

A1 , . . . ,An(ϕ)which allows to prove
certain identities by simply checking them for functions with separated variables, see
[5, 6] and the proof of �eorem 4.1.

In this paper, we prove that a characterization similar to the one established
for measurable Schur multipliers in [13] holds in the setting of multiple operator
integrals. Namely, we prove that if a multiple operator integral Ŵ

A1 , . . . ,An extends to

a bounded mapping on the Haagerup tensor product S∞(H) h
⊗⋯

h
⊗ S

∞(H) then
the extension is completely bounded and that we have such extension if and only if
ϕ has the following factorization: there exist separable Hilbert spaces H1 , . . . ,Hn−1,
a1 ∈ L

∞(λA1
;H1), an ∈ L∞(λAn

;Hn−1) and a i ∈ L
∞
σ (λA i

;B(H i ,H i−1)), 2 ≤ i ≤ n − 1
such that

ϕ(t1 , . . . , tn) = ⟨a1(t1), [a2(t2) . . . an−1(tn−1)](an(tn))⟩ .
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476 C. Coine

Our proof rests on several properties of the Haagerup tensor product (Section 2.1)
and the connection between multiple operator integrals and measurable multilinear
Schur multipliers that we will present in Section 3.

2 Preliminaries

2.1 Operator spaces and the Haagerup tensor product

We refer to [17] and [20] for the theory of operator spaces. If E ⊂ B(H) and F ⊂ B(K)
are two operator spaces, we denote by CB(E , F) the Banach space of completely
bounded maps from E into F equipped with the c.b. norm. If H is a Hilbert space,
we will denote byHc = B(C,H) its column structure.

In [17, Chapter 5], Pisier defines the Haagerup tensor product E1

h
⊗⋯

h
⊗ EN of N

operator spaces E1 , . . . , EN . We will recall a few properties of the Haagerup tensor
product that we will use in Section 4. �e first one is the factorization of multilinear
maps. If E is an operator space, then by [20, Proposition 9.2.2], a multilinear mapping
v ∶ E1 ×⋯× En → E is completely bounded (in the sense of [20, Section 9.1], see also

[4]) if and only if v extends to a completely bounded map v ∶ E1

h
⊗⋯

h
⊗ EN → E. �e

following important theorem describes those maps.

�eorem 2.1 Let E1 , . . . , En be operator spaces and let H0 and Hn be Hilbert spaces.

A linear mapping u∶E1

h
⊗⋯

h
⊗ En → B(Hn ,H0) is completely bounded if and only if

there exist Hilbert spaces H1 , . . . ,Hn−1 and completely bounded mappings ϕ i ∶E i →
B(H i ,H i−1), 1 ≤ i ≤ n, such that

u(x1 ⊗⋯⊗ xn) = ϕ1(x1) . . . ϕn(xn).
In this case we can choose ϕ i , 1 ≤ i ≤ n, such that

∥u∥cb = ∥ϕ1∥cb⋯∥ϕn∥cb .
Remark 2.2 When H0 = Hn = C we can reformulate as follows: a linear functional

u∶E1

h
⊗⋯

h
⊗ En → C is bounded (and therefore completely bounded) if and

only if there exist Hilbert spaces H1 , . . . ,Hn−1, α1∶E1 → (Hc)∗ linear, α i ∶E i →
B(H i ,H i−1), 2 ≤ i ≤ n − 1 and αn ∶En → (Hn−1)c antilinear such that the α j are
completely bounded and

u(x1 , . . . , xn) = ⟨α1(x1), [α2(x2) . . . αn−1(xn−1)]αn(xn)⟩ .
Recall that a map s∶X → Y between two Banach spaces is called a quotient map

if the injective map ŝ∶X/ker(s)→ Y induced by s is a surjective isometry. If E1 ⊂ E2

are operator spaces, we equip E2/E1 with the quotient operator space structure (see
e.g. [17, Section 2.4]). When E and F are operator spaces, a quotient map u∶E → F is
said to be a complete metric surjection if the associated mapping û∶E/ker(u)→ F is a
completely isometric isomorphism.
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Proposition 2.3 Let E1 , E2 , F1 , F2 be operator spaces.

(i) If q i ∶ E i → Fi is completely bounded, then q1 ⊗ q2∶ E1 ⊗ E2 → F1
h⊗ F2 defined

by (q1 ⊗ q2)(e1 ⊗ e2) = q1(e1) ⊗ q2(e2) extends to a completely bounded
map

q1 ⊗ q2∶ E1

h⊗ E2 → F1
h⊗ F2 .

(ii) If E i ⊂ Fi completely isometrically, then E1

h⊗ E2 ⊂ F1
h⊗ F2 completely

isometrically.

(iii) If q i ∶ E i → Fi is a complete metric surjection, then q1 ⊗ q2∶ E1

h⊗ E2 → F1
h⊗ F2 .

(iv) If E i ⊂ Fi are subspaces, let p i ∶ Fi → Fi/E i be the canonical mappings. �en the

induced map p1 ⊗ p2∶ F1 h⊗ F2 → F1/E1

h⊗ F2/E2 satisfies

ker(p1 ⊗ p2) = E1 ⊗ F2 + F1 ⊗ E2 .

�e second property is called the injectivity and the third one the projectivity of the
Haagerup tensor product.

Proof We refer to [20, Proposition 9.2.5] for the proof of (i) and to [17, Corollary
5.7] for the proof of (ii) and (iii).

Let us prove (iv). Write N = E1 ⊗ F2 + F1 ⊗ E2. Note that the inclusion
N ⊂ ker(p1 ⊗ p2). is clear. �erefore, to show the result, it is enough to show that

N⊥ ⊂ ker(p1 ⊗ p2)⊥ .
Let σ ∶ F1

h
⊗ F2 → C be such that σ∣N = 0. By Remark 2.2, there exist a Hilbert space

H, α∶ F1 → (Hc)∗ linear and β∶ F2 → Hc antilinear, α and β completely bounded such
that

σ(x , y) = ⟨α(x), β(y)⟩ , x ∈ F1 , y ∈ F2 .
Let K = α(F1) and denote by PK the orthogonal projection onto K. �en we have, for
any x and y,

σ(x , y) = ⟨PKα(x), β(y)⟩ = ⟨PKα(x), PKβ(y)⟩ .
�us, by changing α into PKα and β into PKβ, we can assume that α has a dense

range. Similarly, setting L = β(F2) and considering PL , we may assume that β has a
dense range.

By assumption, for any e ∈ E2 and any x ∈ E1, we have

0 = σ(x , e) = ⟨α(x), β(e)⟩ .
�is implies that β∣E2

= 0. Similarly, we show that α∣E1
= 0. �us, we can consider

α̂∶ F1/E1 → H and β̂∶ F2/E2 → H
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478 C. Coine

such that α = α̂ ○ p1 and β = β̂ ○ p2 and where F1/E1 and F2/E2 are equipped with

their quotient structure. Now, define σ̂ ∶ F1/E1

h
⊗ F2/E2 → C by

σ̂(s, t) = ⟨α̂(s), β̂(t)⟩ .
�en σ = σ̂ ○ (p1 ⊗ p2), so that σ ∈ ker(p1 ⊗ p2)⊥. ∎

Finally, we recall the following [20, Proposition 9.3.3] which will be important in
the last section.

Proposition 2.4 Let E be an operator space and let H and K be Hilbert spaces. For
any T ∈ CB(E ,B(H,K)) we define a mapping σT ∶K

∗ ⊗ E ⊗H → C by setting

σT(k∗ ⊗ e ⊗ h) = ⟨T(e)h, k⟩ .
�en, the mapping T ↦ σT induces a complete isometry

CB(E ,B(H,K)) = ((Kc)∗ h
⊗ E

h
⊗Hc)∗ .

2.2 Schatten classes

Let H and K be separable Hilbert spaces. For any 1 ≤ p < +∞, let Sp(H,K) be the
space of compact operators T ∶H →K such that

∥T∥p ∶ = tr(∣T ∣p) 1
p < ∞.

�en∥ ⋅ ∥p is a norm on S
p(H,K) and (Sp(H,K), ∥ ⋅ ∥p) is called the Schatten class

of order p. When p =∞, the space S
∞(H,K) will denote the space of compact

operators equipped with the operator norm.

Recall that (S1(H,K))∗ = B(K,H) and that for 1 < p ≤ +∞, (Sp(H,K))∗ =
S
p′(K,H) where p′ is the conjugate exponent of p, for the duality pairing

⟨S , T⟩ = tr(ST), S ∈ Sp(H,K), T ∈ Sp′(K,H).
Using the Haagerup tensor product introduced in Subsection 2.1, we have, by [20,
Proposition 9.3.4], a complete isometry

(Hc)∗ h
⊗Kc = S

1(H,K).(2.1)

where S
1(H,K) is equipped with its operator space structure as the predual of

B(K,H).
Similarly, we have a complete isometry

Kc

h
⊗ (Hc)∗ = S∞(H,K).(2.2)

Finally, if (Ω1 , µ1) and (Ω2 , µ2) are two σ-finite measure spaces, we will identify
L2(Ω1 ×Ω2) with the space S

2(L2(Ω1), L2(Ω2)) of Hilbert-Schmidt operators as
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follows. If K ∈ L2(Ω1 ×Ω2), the operator
XK ∶ L

2(Ω1) Ð→ L2(Ω2)
f z→ ∫

Ω1

K(t, ⋅) f (t)dµ1(t)
(2.3)

is a Hilbert-Schmidt operator and ∥XK∥2 = ∥K∥L2 . Moreover, any element of
S
2(L2(Ω1), L2(Ω2)) has this form. Hence, the space L2(Ω1 ×Ω2) is isometrically

isomorphic to S2(L2(Ω1), L2(Ω2)) through the mapping K ↦ XK .

2.3 L
p
σ -spaces and Duality

Let (Ω, µ) be a σ-finite measure space and let F be a Banach space. For any 1 ≤ p ≤
+∞, we let Lp(Ω; F) denote the classical Bochner space of measurable functions
f ∶Ω → F.

Assume that E is a separable Banach space. A function f ∶Ω → E∗ is said to bew∗-
measurable if for all e ∈ E, the function t ∈ Ω ↦ ⟨ϕ(t), e⟩ ismeasurable.We denote by
L
p
σ(Ω; E∗) the space of all w∗-measurable f ∶Ω → E∗ such that ∥ f (⋅)∥ ∈ Lp(Ω), a�er

taking quotient by the functions which are equal to 0 almost everywhere. Equipped
with the norm

∥ f ∥p = ∥∥ f (.)∥∥Lp(Ω) ,

(Lp
σ(Ω; E∗), ∥.∥p) is a Banach space.
Let 1 ≤ p′ < +∞ be the conjugate exponent of p. �en we have an isometric

isomorphism

Lp(Ω; E)∗ = Lp′

σ (Ω; E∗)
through the duality pairing

⟨ f , g⟩∶= ∫
Ω
⟨ f (t), g(t)⟩dµ(t) .

See [5, Section 4] and the references therein for a proof of that result and more
information about L

p
σ -spaces.

Note that by [9, Chapter IV], the equality L
p
σ(Ω; E∗) = Lp(Ω; E∗) is equivalent to

E∗ having the Radon-Nikodym property. It is for instance the case for Hilbert spaces.
�e important identification we will need in this paper is the following. For any

f ∈ L∞σ (Ω; E∗), define
u f ∶ψ ∈ L

1(Ω) ↦ [e ∈ E ↦ ∫
Ω
⟨ f (t), e⟩ψ(t)dt] ∈ E∗ .(2.4)

�en f ↦ u f yields an isometric identification (see [10, �eorem 2.1.6])

L∞σ (Ω; E∗) = B(L1(Ω), E∗).(2.5)

In particular, for a Hilbert spaceH we have the equality

L∞(Ω;H) = B(L1(Ω),H).(2.6)
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480 C. Coine

3 Multiple Operator Integrals

3.1 Multiple Operator Integrals Associated with Operators

Let H be a separable Hilbert space and let A be a (possibly unbounded) normal
operator onH. We denote by σ(A) the spectrum ofA and by EA its spectral measure.
A scalar-valued spectral measure for A is a positive measure λA on the Borel subsets
of σ(A) such that λA and EA have the same sets of measure zero. Let e be a separating
vector of the von Neumann algebraW∗(A) generated by A (see [8, Corollary 14.6]).

�en, by [8, Proposition 15.3], the measure λA defined by

λA = ∥EA(.)e∥2
is a scalar-valued spectral measure for A. We refer the reader to [8, Section 15] and [5,
Section 2.1] for more details.

For any bounded Borel function f ∶ σ(A) → C, we define f (A) ∈ B(H) by
f (A) ∶= ∫

σ(A)
f (t) dEA(t),

and this operator only depends on the class of f in L∞(λA). According to [8,�eorem
15.10], we obtain a w∗-continuous ∗-representation

f ∈ L∞(λA) ↦ f (A) ∈ B(H).
Moreover, the space L∞(λA) does not depend on the choice of the scalar-valued

spectral measure.
Let n ∈ N, n ≥ 1 and let E1 , . . . , En , E be Banach spaces.We denote byBn(E1 ×⋯×

En , E) the space of n-linear continuous mappings from E1 ×⋯× En into E equipped
with the norm

∥T∥Bn(E1×⋯×En ,E) ∶= sup
∥e i∥≤1,1≤i≤n

∥T(e1 , . . . , en)∥.
When E1 = ⋯ = En = E, we will simply writeBn(E).

Let n ∈ N, n ≥ 2 and let A1 ,A2 , . . . ,An be normal operators in H with scalar-
valued spectral measures λA1

, . . . , λAn
. We let

Ŵ
A1 ,A2 , . . . ,An

∶ L∞(λA1
)⊗⋯⊗ L∞(λAn

) → Bn−1(S2(H))
be the unique linear map such that for any f i ∈ L

∞(λA i
), i = 1, . . . , n and for any

X1 , . . . , Xn−1 ∈ S
2(H),
[ŴA1 ,A2 , . . . ,An( f1 ⊗⋯⊗ fn)] (X1 , . . . , Xn−1)
= f1(A1)X1 f2(A2)⋯ fn−1(An−1)Xn−1 fn(An).

We have a natural inclusion L∞(λA1
)⊗⋯⊗ L∞(λAn

) ⊂ L∞ (∏n
i=1 λA i

) which is
w∗-dense. �e following shows that Ŵ

A1 ,A2 , . . . ,An extends to L∞ (∏n
i=1 λA i

). It was
proved in [5, �eorem 4 and Proposition 5].
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�eorem 3.1 Ŵ
A1 ,A2 , . . . ,An extends to a unique w∗-continuous isometry still denoted by

Ŵ
A1 ,A2 , . . . ,An

∶ L∞ ( n∏
i=1

λA i
) Ð→ Bn−1(S2(H)).

Definition 3.1 For ϕ ∈ L∞ (∏n
i=1 λA i

), the transformation Ŵ
A1 ,A2 , . . . ,An(ϕ) is called a

multiple operator integral associated with A1 ,A2 , . . . ,An and ϕ.

�e w∗-continuity of Ŵ
A1 ,A2 , . . . ,An means that if a net (ϕ i)i∈I in L∞ (∏n

i=1 λA i
) con-

verges to ϕ ∈ L∞ (∏n
i=1 λA i

) in the w∗-topology, then for any X1 , . . . , Xn−1 ∈ S
2(H),

the net

([ŴA1 ,A2 , . . . ,An(ϕ i)] (X1 , . . . , Xn−1))i∈I
converges to [ŴA1 ,A2 , . . . ,An(ϕ)] (X1 , . . . , Xn−1) weakly in S

2(H). We refer
the reader to [5, Section 3.1] for more details.

3.2 Measurable Multilinear Schur Multipliers

Let n ∈ N. Let (Ω1 , µ1), . . . , (Ωn , µn) be σ-finitemeasure spaces, and let ϕ ∈ L∞(Ω1 ×

⋯×Ωn). Let Ω = Ω2 ×⋯×Ωn−1. For any K i ∈ L
2(Ω i ×Ω i+1), 1 ≤ i ≤ n − 1, we let

Λ(ϕ)(K1 , . . . ,Kn−1) be the function
(t1 , tn) ↦ ∫

Ω
ϕ(t1 , . . . , tn)K1(t1 , t2) . . .Kn−1(tn−1 , tn)dµ2(t2) . . . dµn−1(tn−1)

By Cauchy-Schwarz inequality, Λ(ϕ)(K1 , . . . ,Kn−1) ∈ L2(Ω1 ×Ωn) and
∥Λ(ϕ)(K1 , . . . ,Kn−1)∥2 ≤ ∥ϕ∥∞∥K1∥2 . . . ∥Kn1

∥2 .(3.1)

�us, Λ(ϕ) defines a bounded (n − 1)-linear map

Λ(ϕ)∶ L2(Ω1 ×Ω2) × L2(Ω2 ×Ω3) ×⋯× L2(Ωn−1 ×Ωn) Ð→ L2(Ω1 ×Ωn),
or, equivalently, by (2.3) and the obvious equality L2(Ω i ×Ω j) = L2(Ω j ×Ω i), 1 ≤
i , j ≤ n, a bounded (n − 1)-linear map

Λ(ϕ)∶S2(L2(Ω2), L2(Ω1)) ×⋯× S2(L2(Ωn), L2(Ωn−1)) → S
2(L2(Ωn), L2(Ω1)).

For simplicity, write E i = L
2(Ω i), 1 ≤ i ≤ n. �en, the map Λ∶ ϕ ↦ Λ(ϕ) is a linear

isometry

Λ∶ L∞(Ω1 ×⋯×Ωn) Ð→ Bn−1(S2(E2 , E1) ×⋯× S2(En , En−1), S2(En , E1)).
�is follow, for example, from similar computations as those in the proof of [5,
Proposition 8] or from [13, �eorem 3.1].

LetH be a separable Hilbert space and let A1 , . . . ,An be normal operators onH.
For any 1 ≤ i ≤ n, let e i ∈H be such that

λA i
(⋅) = ∥EAi (⋅)e i∥2 .
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By [5, Subsection 4.2], the linear mappings ρ i ∶ L
2(σ(A i), λA i

) →H defined for any
measurable subset F ⊂ σ(A i) by

ρ i(χF) = EA i (F)e i
extends uniquely to an isometry ρ i ∶ L

2(σ(A i), λA i
) →H. Hence, denoting byHi the

range of ρ i , we get that ρ i ∶ L
2(σ(A i), λA i

) ≡Hi is a unitary.
In the next result, we will consider the map Λ introduced before and associ-

ated with the measure spaces (Ω i , µ i) = (σ(A i), λA i
). We see any operator T ∈

S
2(Hi ,H j) as an element of S2(H) by identifying T with the matrix (T 0

0 0
) ∈

S
2(Hi

2
⊕H

⊥
i ,H j

2
⊕H

⊥
j ). �e following makes the connection between the multiple

operator integrals associated with operators and the map Λ defined above. In partic-
ular, when one restricts the Hilbert spaceH to the subspacesHi , then the associated
multiple operator integral coincides with Λ. It is the analogue of [5, Proposition 9] for
n operators. �e proof is similar and we leave it to the reader.

Proposition 3.2 For any 1 ≤ i ≤ n − 1,K i ∈ S
2(L2(λA i+1

), L2(λA i
)) and set

K̃ i = ρ i ○ K i ○ ρ
−1
i+1 ∈ S

2(Hi+1 ,Hi).
For any ϕ ∈ L∞(λA1

×⋯× λAn
), Ŵ

A1 , . . . ,An(ϕ)(K̃1 , . . . , K̃n−1) belongs to S
2(Hn ,H1)

and

Λ(ϕ)(K1 , . . . ,Kn−1) = ρ−11 ○ Ŵ
A1 , . . . ,An(ϕ)(K̃1 , . . . , K̃n−1) ○ ρn .(3.2)

4 Characterization of the Complete Boundedness of Multiple
Operator Integrals

Let A1 , . . . ,An be n normal operators on a separable Hilbert space H associated
with scalar-valued spectral measures λA1

, . . . , λAn
. For ϕ ∈ L∞(λA1

×⋯× λAn
),

Ŵ
A1 , . . . ,An(ϕ) belongs to Bn−1(S2(H)), which is equivalent, by [5, Section 3.1], to

having a continuousmapping defined on the projective tensor product of n − 1 copies
S
2(H) and still denoted by

Ŵ
A1 , . . . ,An(ϕ)∶S2(H) ∧⊗⋯ ∧⊗ S

2(H) → S
2(H).

We will make this identification for the rest of the paper.
�e purpose of this section is to characterize the functions ϕ ∈ L∞(λA1

×⋯× λAn
)

such that ŴA1 , . . . ,An(ϕ) extends to a (completely) bounded map

Ŵ
A1 , . . . ,An(ϕ)∶S∞(H) h

⊗⋯

h
⊗ S

∞(H)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n−1 times

Ð→ S
∞(H).

We will also consider the measurable multilinear Schur multipliers Λ(ϕ). In [13],
the authors studied and characterized the boundedness of measurable multilinear
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Schur multipliers

S
∞(L2(λAn−1

), L2(λAn
)) h
⊗⋯

h
⊗ S

∞(L2(λA1
), L2(λA2

)) → S
∞(L2(λA1

), L2(λAn
)).

�ey proved that we have such extension if and only if ϕ has a certain factorization
that will be given in the theorem below. �ey also proved that the boundedness for
the Haagerup norm in this setting implies the complete boundedness.

�e proof of �eorem 4.1 below provides another proof of [13, �eorem 3.4]. We
show that for multiple operator integrals, boundedness and complete boundedness
are also equivalent and that the same characterization holds.

�eorem 4.1 Let n ∈ N, n ≥ 2, let A1 , . . . ,An be normal operators on a separable
Hilbert space H and let ϕ ∈ L∞(λA1

×⋯× λAn
). For any 1 ≤ i ≤ n, let E i = L

2(λA i
).

�e following are equivalent:

(i) Ŵ
A1 , . . . ,An(ϕ) extends to a bounded mapping

Ŵ
A1 , . . . ,An(ϕ)∶S∞(H) h⊗⋯ h

⊗ S
∞(H)→ S

∞(H).
(ii) Ŵ

A1 , . . . ,An(ϕ) extends to a completely bounded mapping

Ŵ
A1 , . . . ,An(ϕ)∶S∞(H) h

⊗⋯
h
⊗ S

∞(H)→ S
∞(H).

(iii) Λ(ϕ) extends to a completely bounded mapping

Λ(ϕ)∶S∞(E2 , E1) h
⊗⋯

h
⊗ S

∞(En , En−1)→ S
∞(En , E1).

(iv) �ere exist separable Hilbert spaces H1 , . . . ,Hn−1, a1 ∈ L
∞(λA1

;H1), an ∈
L∞(λAn

;Hn−1) and a i ∈ L
∞
σ (λA i

;B(H i ,H i−1)), 2 ≤ i ≤ n − 1, such that
ϕ(t1 , . . . , tn) = ⟨a1(t1), [a2(t2) . . . an−1(tn−1)](an(tn))⟩(4.1)

for a.-e. (t1 , . . . , tn) ∈ σ(A1) ×⋯× σ(An).
In this case,

∥ŴA1 , . . . ,An(ϕ)∥ = ∥ŴA1 , . . . ,An(ϕ)∥
cb

(4.2)

= ∥Λ(ϕ)∥cb = inf {∥a1∥∞⋯∥an∥∞ ∣ ϕ as in (4.1)} .

Remark 4.2 Using the normal Haagerup tensor product⊗σh of operator spaces, for
which we refer the reader to [4], one can prove, by simply considering the bi-adjoint
of ŴA1 , . . . ,An(ϕ), that the above four statements are also equivalent to:

(v) Ŵ
A1 , . . . ,An(ϕ) extends to a w∗-continuous and completely bounded mapping

Ŵ
A1 , . . . ,An(ϕ)∶B∞(H)⊗σh ⋯⊗σh B

∞(H)→ B
∞(H).

Proof Proof of (i) ⇔ (ii)

Clearly (ii)⇒ (i) so we only prove (i)⇒ (ii). We keep the notationŴ
A1 , . . . ,An(ϕ) for

the associated multilinear map defined on S
∞(H) ×⋯× S∞(H). LetD =W∗(A1)

′

and C =W∗(An)
′ be the commutant of W∗(A1) and W∗(An), respectively, where
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the von Neumann algebra W∗(A) was defined in Section 3.1. �en Ŵ
A1 , . . . ,An(ϕ) is a

multilinear (D,C)-module map, that is, for any d ∈D, c ∈ C, and any X1 , . . . , Xn−1 ∈
S
∞(H),

[ŴA1 , . . . ,An(ϕ)] (dX1 , . . . , Xn−1c) = d [ŴA1 , . . . ,An(ϕ)] (X1 , . . . , Xn−1)c.(4.3)

By density, it is sufficient to check this equality when X i ∈ S
2(H). But in this case, by

linearity and w∗-continuity of Ŵ
A1 , . . . ,An , we can further assume that ϕ is an elemen-

tary tensor ϕ = f1 ⊗⋯⊗ fn , where f i ∈ L
∞(λA i

). �en, since f1(A1) ∈W∗(A1) and
fn(An) ∈W∗(An) we have

[ŴA1 , . . . ,An(ϕ)] (dX1 , . . . , Xn−1c)
= f1(A1)dX1 f2(A2) . . . fn−1(An−1)Xn−1c fn(An)
= d f1(A1)X1 f2(A2) . . . fn−1(An−1)Xn−1 fn(An)c
= d [ŴA1 , . . . ,An(ϕ)] (X1 , . . . , Xn−1)c.

Note that W∗(A1) has a separating vector and hence, by [8, Proposition 14.3], this
vector is cyclic forD. Similarly, C has a cyclic vector. It remains to apply [13, Lemma
3.3] to obtain the complete boundedness ofŴA1 , . . . ,An(ϕ) and the equality of the norms.

Proof of (ii) ⇒ (iii)
We use the same notation as in Subsection 3.2 where we introduced the subspaces

Hi ofH, 1 ≤ i ≤ n, withHi ≡ L
2(σ(A i), λA i

). For any 1 ≤ i ≤ n − 1, S∞(Hi+1 ,Hi) is
a closed subspace of S∞(H) and by injectivity of the Haagerup tensor product (see
Proposition 2.3), we have a closed subspace

S
∞(H2 ,H1) h

⊗⋯

h
⊗ S

∞(Hn ,Hn−1) ⊂ S∞(H) h
⊗⋯

h
⊗ S

∞(H).
By Proposition 3.2, the restriction ofŴA1 , . . . ,An(ϕ) toS∞(H2 ,H1) h

⊗⋯

h
⊗ S

∞(Hn ,Hn−1)
is valued in S

∞(Hn ,H1). Moreover, this restriction is completely bounded and by
the same proposition, we obtain the inequality

∥Λ(ϕ)∥cb ≤ ∥ŴA1 , . . . ,An(ϕ)∥
cb
.

Proof of (iii) ⇒ (iv)

In this part, the L1
−spaces will be equipped with their maximal operator space

structure (Max) for which we refer the reader to [17, Chapter 3]. If (Ω, µ) is a measure
space, the mapping ( f , g) ∈ L2(Ω)2 ↦ f g ∈ L1(Ω) induces a quotient map

f ⊗ g ∈ L2(Ω) ∧⊗ L2(Ω) ↦ f g ∈ L1(Ω).
We can identify L2(Ω) with its conjugate space so that by (2.1) we get a quotient map

q∶S1(L2(Ω))→ L1(Ω)
which turns out to be a complete metric surjection.

Let q i ∶S
1(L2(λA i

))→ L1(λA i
), i = 1, . . . , n be defined as above. Recall the

notation E i = L
2(λA i

). Using Proposition 2.3 together with the associativity of the
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Haagerup tensor product, we get a complete metric surjection

Q = q1 ⊗⋯⊗ qn ∶S
1(E1) h

⊗⋯

h
⊗ S

1(En)→ L1(λA1
) h
⊗⋯

h
⊗ L1(λAn

).
Let N = kerQ and let, for 1 ≤ i ≤ n,N i = ker q i . For any 1 ≤ j ≤ n, let

F j = S
1(E1)⊗⋯⊗ S

1(E j−1)⊗ N j ⊗ S
1(E j)⊗⋯⊗ S

1(En).
By Proposition 2.3 (iv), we obtain that

N = F1 + F2 +⋯+ Fn .

Assume that Λ(ϕ) extends to a completely bounded mapping

Λ(ϕ)∶S∞(E2 , E1) h
⊗⋯

h
⊗ S

∞(En , En−1)→ S
∞(En , E1).

Let E = S∞(E2 , E1) h
⊗⋯

h
⊗ S

∞(En , En−1). By Proposition 2.4, we have a complete
isometry

CB(E ,B(En , E1)) = (((E1)c)∗ h
⊗ E

h
⊗ (En)c)∗ .

By (2.2) we have

E = (E1)c h
⊗ ((E2)c)∗ h

⊗ (E2)c h
⊗ ((E3)c)∗ h

⊗⋯

h
⊗ (En−1)c h

⊗ ((En)c)∗.
�us, using (2.1) and the associativity of the Haagerup tensor product, we get that

CB(E ,B(En , E1)) = (S1(E1) h
⊗⋯

h
⊗ S

1(En))∗ .
Let u∶S1(E1) h

⊗⋯

h
⊗ S

1(En)→ C induced by Λ(ϕ). For any x i ∈ S1(H i), 1 ≤ i ≤ n, we
have

u(x1 ⊗⋯⊗ xn)
= ∫

Ω1×⋯×Ωn

ϕ(t1 , . . . , tn)[q1(x1)](t1) . . . [qn(xn)](tn) dµ1(t1) . . . dµn(tn).
To see this, it is enough to check when the x i are rank one operators and in that case,
one can use the identifications above. In particular, the latter implies that u vanishes
on N = kerQ. Since Q is a complete metric surjection, we get a mapping

v∶ L1(λA1
) h
⊗⋯

h
⊗ L1(λAn

)→ C

such that u = v ○ Q. An application of �eorem 2.1 with suitable restrictions using
the separability of the spaces L1(λA i

) gives the existence of separable Hilbert spaces
H1 , . . . ,Hn−1 and completely bounded maps

α1∶ L
1(λA1

)→ B(H1 ,C) = (H1)∗c ,
α i ∶ L

1(λA i
)→ B(H i ,H i−1), 2 ≤ i ≤ n − 1,

αn ∶ L
1(λAn

)→ B(C,Hn−1) = (Hn−1)c
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such that for any f j ∈ L
1(λA j

), 1 ≤ j ≤ n,

v( f1 ⊗⋯⊗ fn) = ⟨α1( f1), [α2( f2) . . . αn−1( fn−1)](αn( fn))⟩ .
Since L1(Ω2) is equipped with the Max operator space structure, we have

CB(L1(λA i
),B(H i ,H i−1)) = B(L1(λA i

),B(H i ,H i−1)).
Moreover, by (2.5), we have

B(L1(λA i
),B(H i ,H i−1)) = L∞σ (λA i

;B(H i ,H i−1)).
�us, for any 2 ≤ i ≤ n − 1, we associatewith α i an element a i ∈ L

∞
σ (λA i

;B(H i ,H i−1)).
Similarly, we associate with α1 an element a1 ∈ L

∞(λA1
;H1) and with αn an element

an ∈ L
∞(λAn

;Hn−1). Using the identification (2.4), we obtain that

ϕ(t1 , . . . , tn) = ⟨a1(t1), [a2(t2) . . . an−1(tn−1)](an(tn))⟩
for a.-e. (t1 , . . . , tn) ∈ σ(A1) ×⋯× σ(An), and one can choose a1 , . . . , an such that
we have the equality

∥Λ(ϕ)∥cb = ∥a1∥∞⋯∥an∥∞.

Proof of (iv) ⇒ (ii)
Assume that there exist separableHilbert spaceH1 , . . . ,Hn−1, a1 ∈L

∞(λA1
;H1), a i ∈

L∞σ (λA i
;B(H i ,H i−1)), 2 ≤ i ≤ n − 1 and an ∈ L

∞(λAn
;Hn−1) such that

ϕ(t1 , . . . , tn) = ⟨a1(t1), [a2(t2) . . . an−1(tn−1)](an(tn))⟩
for a.-e. (t1 , . . . , tn) ∈ σ(A1) ×⋯× σ(An). For any 1 ≤ i ≤ n − 1, let (ε ik)k≥1 be a
Hilbertian basis of H i . for k, l ≥ 1, define

a1k = ⟨a1 , ε1k⟩ , a ik l = ⟨ε i−1k , a i ε
i
l ⟩ and anl = ⟨εn−1l , an⟩ .

�en a1k ∈ L
∞(λA1

), a ik l ∈ L∞(λA i
), 2 ≤ i ≤ n − 1, and anl ∈ L∞(λAn

). To see this, sim-
ply note that for 2 ≤ i ≤ n − 1,

a ik l = tr(a i(⋅) ○ (ε i−1k ⊗ ε il)).
ForN ≥ 1 and 1 ≤ i ≤ n − 1, let P i

N be the orthogonal projection onto Span(ε i1 , . . . , ε iN).
�en define

ϕN = ⟨P1
N(a(t1))), [a2(t2)P2

Na3(t3)P3
N . . . an−1(tn−1)Pn−1

N ](an(tn))⟩ .
It is clear that (ϕN)N≥1 is bounded in L∞(λA1

×⋯× λAn
) and that ϕN → ϕ pointwise

when N →∞. �erefore, by the Dominated Convergence �eorem, we have that
ϕN → ϕ for the w∗−topology. �is implies, by w∗− continuity of Ŵ

A1 , . . . ,An , that for
any X j in S

2(H), 1 ≤ j ≤ n − 1,

[ŴA1 , . . . ,An(ϕN)] (X1 ⊗⋯⊗ Xn−1)→ [ŴA1 , . . . ,An(ϕ)] (X1 ⊗⋯⊗ Xn−1)
weakly in S

2(H).
Assume that (ŴA1 , . . . ,An(ϕN))N is uniformly bounded in CB(S∞(H) h

⊗⋯

h
⊗

S
∞(H), S∞(H)). �en, the above approximation property together with the
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density of S2 into S
∞ imply that Ŵ

A1 , . . . ,An(ϕ) is completely bounded as well with∥ŴA1 , . . . ,An(ϕ)∥cb ≤ supN ∥ŴA1 , . . . ,An(ϕN)∥cb.
We will show now that for any N ≥ 1, ∥ŴA1 , . . . ,An(ϕN)∥cb ≤ ∥a1∥∞ . . . ∥an∥∞. For

any N ≥ 1 and a.-e. (t1 , . . . , tn) ∈ σ(A1) ×⋯× σ(An), we have
ϕN(t1 , . . . , tn) = N∑

k1 , . . . ,kn−1=1

a1k1(t1)a2k1k2(t2) . . . an−1kn−2kn−1
(tn−1)ankn(tn),

so that for any X1 , . . . , Xn−1 ∈ S
2(H),

[ŴA1 , . . . ,An(ϕN)] (X1 ⊗⋯⊗ Xn−1)
=

N∑
k1 , . . . ,kn−1=1

a1k1(A1)X1a
2
k1k2
(A2)X2 . . . Xn−2a

n−1
kn−2kn−1

(An−1)Xn−1a
n
kn
(An).

Note that the latter can be written as

[ŴA1 , . . . ,An(ϕN)] (X1 ⊗⋯⊗ Xn−1) = A1
N(X1 ⊗ IN)A2

N(X2 ⊗ IN)⋯(Xn−1 ⊗ IN)An
N ,

where

A1
N = [a11(A1) a12(A1) . . . a1N(A1)]∶ ℓN2 (H)→H,

Ai
N = [a ik l(A i)]1≤k≤N

1≤l≤N
∶ ℓ

N
2 (H)→ ℓ

N
2 (H), 2 ≤ i ≤ n − 1

and

An
N = [an1 (An) an2 (An) . . .An

N(An)]t ∶H → ℓ
N
2 (H).

�e notation X ⊗ IN stands for the element ofB(ℓN2 (H))whose matrix is the N × N
diagonal matrix diag(X , . . . , X).

For any N ≥ 1 and any 1 ≤ i ≤ n, let πN and π i be the ∗−representations defined by

πN ∶B(H)Ð→B(ℓN2 (H))
X z→ X ⊗ IN

and πA i
∶ L∞(λA i

)Ð→B(H)
f z→ f (A i)

.

By [17, Proposition 1.5], πN and πA i
are completely bounded with cb-norm less than 1.

Note that the element [a ik l ]1≤k , l≤N ∈ MN(L∞(λB)) has a norm less than ∥a i∥∞.�us,
the latter implies that Ai

N = [πA i
(a ik l)]1≤k , l≤N has an operator norm less than ∥a i∥∞.

Similarly (using column and row matrices), we show that A1
N and An

N have a norm
less than ∥a1∥∞ and ∥an∥∞, respectively. Finally, write

[ŴA1 , . . . ,An(ϕN)] (X1 ⊗⋯⊗ Xn−1) = σ 1
N(X1)σ 2

N(X2) . . . σ n−1
N (Xn−1),

where for any 1 ≤ i ≤ n − 2, σ i
N(X1) = Ai

NπN(X i) and σN
n−1(Xn−1) = An−1

N πN(Xn−1)An
N .

By the easy part of Wittstock theorem (see e.g. [17, �eorem 1.6]), σ i
N and σN

n−1 are
completely bounded with cb-norm less than ∥a i∥∞ and ∥an−1∥∞∥an∥∞, respectively.
Hence, by �eorem 2.1, we get that Ŵ

A1 , . . . ,An(ϕN) is completely bounded with cb-
norm less than ∥a1∥∞ . . . ∥an∥∞. ∎
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We now give an example of a class of functions for which the multiple operator
integrals will be completely bounded (in the sense of the paper) for any normal
operators. We will identify a bounded Borel function ψ ∶ Cn → C with the class of
the restriction ψ̃ = ψ∣σ(A1)×σ(A2)×⋯×σ(An) in L∞ (∏n

i=1 λA i
). �en we will denote by

Ŵ
A1 ,A2 , . . . ,An(ψ) the multiple operator integral ŴA1 ,A2 , . . . ,An(ψ̃).

Example 4.3 Let Cb be the space of bounded and continuous functions f ∶ C→
C. Let n ≥ 1 be an integer. We define the integral tensor product of Cb , denoted by
Cb ⊗̂i⋯⊗̂i Cb , as the space of functions ϕ ∶ C

n → C such that there exist a σ-finite
measure space (Σ, µ) and functions h i ∶ C × Σ → C, 1 ≤ i ≤ n, such that for a.e. w ∈
Σ, t ↦ h i(t,w) ∈ Cb ,

∫
Σ
∥h1(⋅,w)∥∞⋯∥hn(⋅,w)∥∞ dµ(w) < +∞(4.4)

and for every t1 , . . . , tn ∈ C,

ϕ(t1 , . . . , tn) = ∫
Σ
h1(t1 ,w)⋯hn(tn ,w) dµ(w).(4.5)

�e integral projective norm ∥ϕ∥i of ϕ is the infimum of the quantities (4.4) over all
representations of ϕ as above.

Let A1 , . . . ,An be normal operators on H and let ϕ ∈ Cb ⊗̂i⋯⊗̂i Cb . �en we

have a completely bounded multiple operator integral Ŵ
A1 , . . . ,An(ϕ)∶S∞(H) h

⊗⋯

h
⊗

S
∞(H)→ S

∞(H) with ∥ŴA1 , . . . ,An(ϕ)∥
cb
≤ ∥ϕ∥i .

Proof To show this, we will find another factorization of ϕ as in (4.5) that satisfies
of�eorem 4.1(iv). First, note that by changing Σ if necessary, we can assume that for
almost every w ∈ Σ, ∥h1(⋅,w)∥∞⋯∥hn(⋅,w)∥∞ > 0. We define g i ∶ C × Σ → C, 1 ≤ i ≤
n, for almost every (t i , σ) by

g1(t1 ,w) = h1(t1 ,w)√∥h1(⋅,w)∥∞
√∥h2(⋅,w)∥∞⋯∥hn(⋅,w)∥∞,

g i(t i ,w) = h i(t i ,w)∥h i(⋅,w)∥∞ if 2 ≤ i ≤ n − 1,

and

gn(tn ,w) = hn(tn ,w)√∥hn(⋅,w)∥∞
√∥h1(⋅,w)∥∞⋯∥hn−1(⋅,w)∥∞.

It is straightforward to check that for every t1 , tn ∈ C, g1(t1 , ⋅) and gn(tn , ⋅) belong to
L2(Σ, µ) and we have, setting α = ∫Σ ∥h1(⋅,w)∥∞⋯∥hn(⋅,w)∥∞ dµ(w),

∥g1(t1 , ⋅)∥L2(Σ,µ) ≤
√
α and ∥gn(tn , ⋅)∥L2(Σ,µ) ≤

√
α.

Moreover, the proof of [6, Proposition 5.4] shows that the associated mappings (a�er
taking their restriction to the spectrum of A1 and An) a1 ∶ t1 ∈ σ(A1)↦ g1(t1 , ⋅) ∈
L2(Σ, µ) and an ∶ tn ∈ σ(An)↦ gn(tn , ⋅) ∈ L2(Σ, µ) are continuous, hence measur-
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able, so that, a�er taking the classes of these functions in L∞, a1 ∈ L
∞(λA1

, L2(Σ, µ))
and an ∈ L

∞(λAn
, L2(Σ, µ)).

Now, notice that for all 2 ≤ i ≤ n − 1, g i is bounded on σ(A i) × Σ and for almost
every t i ∈ σ(A i), a i(t i) ∈ B(L2(Σ, µ)) be the multiplication map by g i(t i , ⋅). �is
defines a mapping a i ∶ σ(A i)→ B(L2(Σ, µ)) that is bounded by ∥g i∥∞ = 1. To prove
that this map is w∗-measurable, it is sufficient, by linearity and density, to show
that for any rank-one operator T ∈ S1(L2(Σ, µ)), t i ∈ σ(A i)↦ tr(a i(t i)T) is mea-
surable. Such an operator T can be written as T = b1 ⊗ b2 with b1 , b2 ∈ L

2(Σ, µ)
and T( f ) = ⟨ f , b1⟩ b2. Now, one easily checks that a i(t i)T = b1 ⊗ a i(t i)b2 = b1 ⊗
g i(t i , ⋅)b2. Hence,

tr(a i(t i)T) = ∫
Σ
b1(w)g i(t i ,w)b2(w)dw(4.6)

= ∫
Σ
g i(t i ,w)b(w)dw = ⟨g i(t i , ⋅), b⟩L∞ ,L1 ,

where b = b1b2 ∈ L
1(Σ, µ). Since g i ∈ L∞(λA i

× µ), we get that t i ↦ g(t i , ⋅) is a w∗-
measurable map from σ(A i) into L∞(µ). Together with equality (4.6), this implies
that a i is w

∗-measurable and hence a i ∈ L
∞
σ (λA i

,B(L2(Σ, µ))).
Finally, we check that

ϕ(t1 , . . . , tn) = ⟨a1(t1), [a2(t2) . . . an−1(tn−1)](an(tn))⟩
for a.-e. (t1 , . . . , tn) ∈ σ(A1) ×⋯× σ(An) and that ∥a1∥∞⋯∥an∥∞ ≤ α. Taking the
infimum over all representations of ϕ gives ∥ŴA1 , . . . ,An(ϕ)∥

cb
≤ ∥ϕ∥i . ∎

Example 4.4 For fixed normal operatorA1 , . . . ,An onH, one can define in a similar
way the space L∞(λA1

) ⊗̂i⋯⊗̂i L
∞(λAn

). �en, any ϕ in this space induces a com-

pletely bounded multiple operator integral Ŵ
A1 , . . . ,An(ϕ)∶S∞(H) h

⊗⋯

h
⊗ S

∞(H)→
S
∞(H). �is can be proved using the same ideas as in Example 4.3. We refer the

reader to [13] for another proof.
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