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Abstract

The stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) and total mercury concentra-
tions (THg) of the three marine catfish species Aspistor luniscutis, Bagre bagre and Genidens
genidens were evaluated to understand their trophic relationship in northern Rio de Janeiro
state, south-eastern Brazil. The δ13C was similar among the three marine catfishes, whereas
δ15N was similar in A. luniscutis and B. bagre and lower in G. genidens. THg was higher in
G. genidens and lower in B. bagre. The greater assimilation of Sciaenidae fishes and squids
by A. luniscutis and B. bagre resulted in smaller isotopic niche areas and trophic diversity
but higher isotopic niche overlap, trophic redundancy and evenness. For G. genidens, the simi-
lar assimilation of all prey items resulted in the broadest isotopic niche among the marine cat-
fishes. The higher mercury content in G. genidens is consistent with an increased important
contribution of prey with a higher Hg burden. The bioaccumulation process was indicated by
significant correlations of δ15N and THg with total length and total mass. Additionally, a sig-
nificant correlation between THg and δ15N reflected the biomagnification process through the
food web.

Introduction

Food webs are models of trophic interactions among species, usually simplified into networks
of species and energy links between them (Thompson et al., 2012). The trophic dynamic the-
ory supports the understanding of food web structure and species interactions that ultimately
shape modern marine ecosystem ecology, conservation and management (Treblico et al.,
2013). Therefore, the analysis of diet to identify the role of each predator species on prey
resource sharing relationships within the fish community is of great value (Svanbäck et al.,
2015).

The coexistence of ecologically similar fishes in high abundance in an ecosystem is possible
because of the development of strategies that allow not only spatial and/or temporal separation
of the species (Azevedo et al., 1999) but also ecological variations in the use of available niches
and/or partitioning of the available resources (Herder & Freyhof, 2006; Sandlund et al., 2010).
On the other hand, the functional or morphological homology of sympatric species can poten-
tially increase competition (Wootton, 1990). If the food resources are limited, this competition
can result in exclusion of the less adapted species. Nevertheless, according to the principles of
competitive exclusion, interspecific competition also favours trophic niche diversification or
resource partitioning across species (Schluter, 1996; Svanbäck & Bolnick, 2008).

The isotopic niche concept proposed by Newsome et al. (2007), a refinement of
Hutchinson’s idea (Hutchinson, 1957, 1978), suggests the use of isotopic tools to assess the
ecological characteristics of organisms that ecologists aim to investigate, such as coexistence
and resource sharing. Stable isotopic signatures of carbon (C) and nitrogen (N) have been
widely used in this sense (Jackson et al., 2011; Yasue et al., 2014; Gallagher et al., 2017;
Jensen et al., 2017; Rader et al., 2017), as the values measured in the consumer’s tissues are
closely related to the values from its diet. Stable nitrogen isotope ratios in consumers are typ-
ically enriched in the heavier isotope (15N) by 2–4‰ per trophic level (Minagawa & Wada,
1984; Peterson & Fry, 1987), making δ15N values useful for the definition of trophic positions
of consumers (Post, 2002). In contrast, the fractionation of carbon isotopes (13C) is lower
(0–1‰) and is typically used to define energy sources (De Niro & Epstein, 1978).

The determination of total mercury (THg) in organisms is a complementary tool for iso-
topic analysis that is widely used in trophic ecology investigations (Eagles-Smith et al., 2008;
Fry & Chumchal, 2012; Pouilly et al., 2013). This tool has been used in ecological studies as a
good indicator of the trophic level of organisms (Fry & Chumchal, 2012), but it can also be
used to identify spatiotemporal patterns of fish bioaccumulation (Buckman et al., 2017; Liu
et al., 2017) and biomagnification processes (Cresson et al., 2015; Chouvelon et al., 2018).
Tropical estuaries are known as source of anthropogenic Hg for fish feeding in coastal areas
(Le Croizier et al., 2019). In estuarine and coastal environments, it is estimated that 90% of
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the river-derived Hg is buried in sediments on ocean margins
(Chester, 1990), highlighting the contribution of estuaries to the
transport of Hg to coastal marine waters and, consequently, to
the associated food webs.

In Brazil, the Ariidae family is represented by demersal marine
catfishes usually found in coastal and estuarine ecosystems
(Marceniuk & Menezes, 2007; Schmidt et al., 2008; Denadai
et al., 2012; Pereyra et al., 2016). Along the coast of São Paulo
and Rio de Janeiro, their spatial distribution in estuarine systems
is governed by salinity (Bizerril, 1999; Denadai et al., 2012). They
usually have wide trophic niches that, in general, overlap with
each other’s (Bruton, 1996; Denadai et al., 2012) as many other
sympatric fish species (Svanbäck et al., 2015; Cachera et al.,
2017), and have been classified as generalist opportunistic omniv-
orous predators, with crustaceans, fishes, molluscs, annelids,
detritus and algae commonly observed as the main groups of
food items (Chaves & Vendel, 1996; Denadai et al., 2012;
Pinheiro-Sousa et al., 2015; Tavares & Di Beneditto, 2017; Di
Beneditto et al., 2018; Di Beneditto & Tavares, 2019).

The amount of information generated by stomach assessments
by scientists all over Brazil report the high importance of fishes
and invertebrates (mainly crabs) as prey items of ariids (Chaves
& Vendel, 1996; Denadai et al., 2012; Tavares & Di Beneditto,
2017). To date, the trophic ecology of marine catfishes has been
intensively studied over the last two decades (Chaves & Vendel,
1996; Bizerril, 1999; Denadai et al., 2012; Pinheiro-Sousa et al.,
2015; Tavares & Di Beneditto, 2017; Di Beneditto et al., 2018;
Di Beneditto & Tavares, 2019). However, few studies off the
Brazilian coast have focused on isotopic tracers (Giarrizzo et al.,
2011; Claudino et al., 2015; Pereyra et al., 2016; Di Beneditto
et al., 2018), and no data are available regarding stable isotopes
coupled with Hg analyses in marine catfishes.

The present study used isotopic tracers of carbon (13C) and
nitrogen (15N) coupled with mercury (Hg) to understand the
trophic relationships among three marine catfishes Aspistor lunis-
cutis (Valenciennes, 1840), Bagre bagre (Linnaeus, 1766) and
Genidens genidens (Cuvier, 1829) in south-eastern Brazil, leading
to an improvement in the knowledge of their trophic dynamics in
Brazilian shallow waters. The questions to be answered are as fol-
lows: (1) Do the isotopic niches of these catfish species overlap?
(2) Are there any spatial and/or temporal patterns in habitat
usage among these sympatric marine catfishes? and (3) Do
these catfish species compete for the same resource items?

Materials and methods

Study site and sampling

Samples were collected off Manguinhos Beach (21°29′S 41°01′W),
District of São Francisco do Itabapoana, at ∼10 m depth
(Figure 1). This area is under the influence of the Itabapoana
(north) and Paraíba do Sul (south) rivers. The shelf is naturally
depleted of rock substratum or other hard substrates, and it is cov-
ered by extensive sandy beaches with variable amounts of mud
and calcareous nodules, such as rhodolites (Zalmon et al., 2002).

The marine catfishes Aspistor luniscutis, Bagre bagre and
Genidens genidens and their potential prey groups were collected
every three months between April 2010 and January 2011. The
captured ariid specimens were classified as adults from 180 mm
total length for both sexes of A. luniscutis (Froese & Pauly,
2019), from 159 and 212 mm total length for females and
males, respectively, of B. bagre (Véras & Almeida, 2016), and
from 55 and 85 mm total length for females and males, respect-
ively, of G. genidens (Mazzoni et al., 2000).

Fishes were sampled at 13 randomized sampling points with
bottom gillnets (n = 78), measuring 25 m in length and 3m in

height and mesh sizes of 20 mm (n = 18), 30 mm (n = 42) and
40 mm (n = 18), measured between adjacent nodes, submerged
for 24 h.

Potential food resources identified based on previous stomach
content studies of ariids (Chaves & Vendel, 1996; Denadai et al.,
2012; Tavares & Di Beneditto, 2017; Di Beneditto & Tavares,
2019) off the south-eastern Brazilian coast were also sampled in
their natural habitat in the same sampling area. Corers (15 cm
diameter, 20 cm height) were used to collect sediment and
invertebrates. Phytoplankton and zooplankton were captured by
surface trawl nets (30 cm mouth, 1.10 m length and of 20 and
70 μm mesh sizes, respectively) to sample local pelagic trophic
end members.

All megafauna (fishes and invertebrates) collected were identi-
fied to the lowest taxonomic level, counted, measured (total
length) and weighed (total body mass). Dorsal muscle tissues of
fish, mantles of cephalopods and pieces of soft tissues (avoiding
gastric tracts) of crustaceans as well as total organic matter in
the sediment (SOM) and phytoplankton and zooplankton were
dried and homogenized for stable isotope and THg analysis. All
laboratory analyses were performed at the Laboratório de
Ciências Ambientais from Universidade Estadual do Norte
Fluminense Darcy Ribeiro.

Stable isotope analysis – δ13C and δ15N

All samples were stored in clean transparent plastic bags in ice-
boxes and then transported to the laboratory where they were
kept frozen (−18°C) in dry sterile vials prior to analysis.
Freeze-dried samples were ground with a mortar and pestle to a
homogeneous fine powder. Approximately 0.5–1 mg of animal
and phytoplankton tissues and 10 mg of sediment were used in
the analysis.

For the elemental composition of carbon and nitrogen as well
for δ13C and δ15N of sediment, ∼10 mg was weighed in silver cap-
sules, followed by acidification through the addition of HCl (2 M)
to remove inorganic carbon (Kennedy et al., 2005; Brodie et al.,
2011).

The elemental and isotopic composition of all samples were
determined using a Flash 2000 Elemental Analyzer with a

Fig. 1. Study area and sampling location (●) off Manguinhos Beach, northern Rio de
Janeiro state, south-eastern Brazil.

134 Pedro V. Gatts et al.

https://doi.org/10.1017/S0025315419001164 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315419001164


CONFLO IV interface coupled to a Delta VAdvantage isotope ratio
mass spectrometer (Thermo Scientific, Germany) in Laboratório de
Ciências Ambientais. Samples were analysed using analytical blanks
and urea analytical standards (IVA Analysentechnik-330802174;
CH4N2O Mw= 60, C = 20%, N = 46%) using certified isotopic
compositions (δ13C =−39.89‰ and δ15N =−0.73‰). For biota
samples, analytical control was performed for every 10 samples
using certified isotopic standards (Elemental Microanalysis
Protein Standard OAS: 46.5 ± 0.78% for C; 13.32 ± 0.40% for N;
−26.98 ± 0.13‰ for δ13C; + 5.94 ± 0.08‰ for δ15N). The accuracy
of the sediment analysis verified using the Elemental
Microanalysis Low Organic Soil Standard (1.52 ± 0.02% for C;
0.13 ± 0.02% for N; −27.46 ± 0.11‰ for δ13C; + 6.70 ± 0.15‰
for δ15N).

Carbon and nitrogen contents were expressed as per cent ele-
ments (%) and the detection limits were 0.05% and 0.02%,
respectively. Carbon and nitrogen isotope ratios were expressed
in δ notation as ‰ relative to Pee Dee Belemnite (PDB) and
atmospheric nitrogen, respectively, and were calculated using
the following equation:

d = (Rsample/Rstandard)× 103

where δ = δ13C or δ15N and R = δ13C:δ12C or δ15N:δ14N.
Analytical reproducibility was based on triplicates for every 10
samples: ± 0.3‰ for δ15N and ± 0.2‰ for δ13C. There was no
prior lipid extraction from the fish muscle samples, but the C/N
ratios were lower than 3.5, indicating a low lipid level that did
not compromise the carbon isotope results and their interpret-
ation (Post et al., 2007).

Total mercury analysis – THg

Dry muscle samples were digested according to Bastos et al.
(1998). Briefly, the digestion of tissue samples was performed in
a digestion block (60°C, 4 h) with a mixture of 3 ml HNO3:
H2SO4 (1:1) and 1 ml of concentrated H2O2 and allowed to
stand overnight. The addition of 5 ml of 5% KnMnO4 and subse-
quent 30 min of heating were followed by titration with hydroxy-
lamine hydrochloride (NH3OHCl + NaCl 12%). THg was
determined with a QuickTrace M-7500 CETAC (CV-AAS). The
detection limit was 0.25 ng g−1. The analytical control of the
method was determined and monitored using replicate analysis,
blank solutions, and certified reference material from the
National Research Council-Canada (DORM-2 dogfish Squalus
acanthias muscle sample). The analytical coefficient of variation
between replicates was less than 10%, and the recovery of THg
was in agreement with certified values (higher than 90%). Our
results are expressed in ng g−1 dry weight (dw).

Data treatment and analysis

The differences between species regarding total length and δ15N
were assessed via one-way parametric ANOVA followed by
Tukey’s HSD post hoc test. For total mass, δ13C, C/N and THg,
normality (Shapiro–Wilk test) and homoscedasticity (Levene
test) were not achieved, and therefore non-parametric analysis
of variance (Kruskal–Wallis) was applied followed by Dunn’s
post hoc test. Linear regressions were performed to check for pos-
sible relationships between variables (total length and δ15N, total
mass and δ15N, total length and log10THg and total mass and
log10THg). Correlation between δ15N and log10THg was also
used with the organisms that compose the food web. Results
were considered significant at P < 0.05.

Isotopic niche breadth was quantified for each marine catfish
using the standard ellipse area corrected for small sample sizes
(SEAc), calculated with the Stable Isotope Bayesian Ellipses tool
in R (SIBER) (Jackson et al., 2011). To evaluate the relative con-
tribution of the different prey, Xiphopenaeus kroyeri (Heller,
1862), Callinectes sp., Doryteuthis sanpaulensis (Brakoniecki,
1984), Porichthys porosissimus (Cuvier, 1829) and Sciaenidae,
that represent a pool of species composed by Isopisthus parvipin-
nis (Cuvier, 1830), Paralonchurus brasiliensis (Steindachner,
1875) and Stellifer rastrifer (Jordan, 1889), were used in the
Bayesian stable isotope mixing model in the software package
SIAR (Stable Isotope Analysis in R) (Parnell & Jackson, 2013),
which allows the inclusion of isotopic signatures and fractionation
together with the uncertainty of these values within the model. To
reduce the uncertainty in the interpretation of the mixing model,
the potential prey were reduced/grouped to a total of five sources,
similarly to the previous study of Di Beneditto et al. (2018).

The trophic enrichment factors (TEFs) are key parameters in
isotopic mixing models, representing the isotopic differences
between consumers’ tissues and their prey items after they
reached equilibrium (Parnell et al., 2010). In the absence of
species-specific TEF values from controlled diet experiments,
these values can be obtained in meta-analyses for phylogenetically
related species, considering the same tissue (Newsome et al.,
2007). In this sense, we calculated TEF15N and TEF13C based
on equations from a meta-analysis of isotopic studies that consid-
ered muscle of fish species (Caut et al., 2009) (Δ15N = −0.281
δ15N + 5.879 and Δ13C =−0.248 δ13C−3.4770). The calculated
values for our data were + 1.8 ± 0.2‰ for TEF15N and + 0.5 ±
0.2‰ for TEF13C, similar to those of marine catfishes of the
same region (Di Beneditto et al., 2018).

The isotopic niche metrics that relate the characteristics of the
isotopic space filled by each marine catfish species in this study
were calculated and consisted of the following: NR (maximum
δ15N range – larger range suggests more trophic levels and greater
degree of trophic diversity); CR (maximum δ13C range – increased
range suggests higher diversity of basal sources); TA (total area of
isotopic niche – representing the total amount of niche space
occupied); SEAc (corrected standard ellipses area for small sample
size – isotopic niche width); CD (mean Euclidean distance from
the centroid – higher distances suggests high average degree of
trophic diversity within the food web); NND (mean Euclidean
distance to the nearest neighbour – similar trophic ecology will
exhibit small NND); and SDNND (standard deviation of NND
– low values suggests more even distribution of trophic niche)
(Layman et al., 2007).

One-way ANOVAs were also used to evaluate differences and
interactions between species considering CD and MNND,
because they involve comparisons of means. The statistic
SDNND, being a standard deviation, was compared between
groups by an F-ratio test. The P values were interpreted as
strengths of evidence towards null hypotheses rather than on
the dichotomic scale of significance testing (Hurlbert &
Lombardi, 2009).

All statistics and models were fitted using R version 3.5.2
(2018–12–20, ‘Eggshell Igloo’) for Linux in the RStudio software
(Version 1.1.436) (R Core Team, 2018).

Results

The potential basal sources and prey groups are presented in
Table 1. The lowest values of δ13C and δ15N were observed for
particulate organic matter in sediment (SOM) and phytoplank-
ton, respectively, while the highest values were found for
Sciaenidae and Doryteuthis sanpaulensis, respectively. THg
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concentrations were lowest for phytoplankton and highest for
Callinectes sp.

Overall, 65 muscle samples were analysed for δ13C, δ15N and
THg representing the three ariid species in the present study.
For Aspistor luniscutis, Bagre bagre and Genidens genidens similar
δ13C values (Kruskal–Wallis, χ2 = 4.545, P > 0.05) and C/N ratios
(Kruskal–Wallis, χ2 = 4.029, P > 0.05) were observed (Table 2).
The species A. luniscutis is the smallest (total length – ANOVA,
F = 26.962, P < 0.001) and lightest (mass – Kruskal–Wallis,
χ2 = 17.610, P < 0.001) catfish. Nitrogen isotope signatures
(δ15N) were similar for A. luniscutis and B. bagre, while a lower
value (δ15N – ANOVA, F = 18.089, P < 0.001) was found for G.
genidens. Total mercury (THg) was significantly different
(Kruskal–Wallis, χ2 = 21.892, P < 0.001) for all three species,
with the highest concentrations in G. genidens and lowest concen-
trations in B. bagre.

The δ13C and δ15N values of the invertebrates Doryteuthis san-
paulensis, Callinectes sp., Xiphopenaeus kroyeri and of the bony
fishes Porichthys porosissimus and Sciaenidae, all prey items for
marine catfishes, ranged from −18.00 ± 0.80‰ for P. porosissimus
to −15.77 ± 1.44‰ for Sciaenidae and 10.60 ± 0.60‰ for P. poro-
sissimus to 13.25 ± 0.55‰ for D. sanpaulensis, respectively. The
δ13C of organic matter (OM) basal sources (SOM and phyto-
plankton) and zooplankton ranged from −20.67 ± 0.93‰ for
SOM to −17.68 ± 0.75‰ for zooplankton while δ15N values ran-
ged from 7.05‰ for phytoplankton to 9.03 ± 2.66‰ for SOM
(Figure 2).

The δ15N was significantly correlated with total length and
total mass only for B. bagre (Figure 3A, B). THg also showed cor-
relations, but with total length, for both B. bagre and G. genidens,

Table 1. Potential basal sources and prey group size range (mm), mean ± standard deviation (SD) of δ13C (‰), δ15N (‰) and THg (ng g−1 dw) sampled in northern
Rio de Janeiro state, south-eastern Brazil

Basal sources/Prey group Size rangea δ13C δ15N THg

SOM – −20.67 ± 0.93 9.03 ± 2.66 –

Phytoplanktonb – −19.02 7.50 0.02

Zooplanktonb – −17.68 ± 0.74 8.44 ± 0.12 0.04

X. kroyeri 30.00–70.00 −17.19 ± 0.40 11.96 ± 0.21 3.06 ± 1.37

Callinectes sp. 88.00–162.00 −16.32 ± 1.44 11.91 ± 0.39 1087.20 ± 290.00

D. sanpaulensis – −17.33 ± 0.31 13.25 ± 0.55 2.48 ± 1.17

P. porosissimusc 180.00 −18.00 ± 0.80 10.60 ± 0.50 630.00

Sciaenidae 125.00–175.00 −15.77 ± 0.86 13.20 ± 0.32 171.60 ± 64.65

aFor fish species, the size range is standard length; for X. kroyeri, the size range is total length; for Callinectes sp., the size range is carapace width.
bComposite sample.
cOne single specimen.

Table 2. Number of individuals (n), mean ± standard deviation (SD) of total length (mm), total mass (kg), δ13C (‰), δ15N (‰), C/N (%) and THg (ng g−1 dw) of the
marine catfishes Aspistor luniscutis, Bagre bagre and Genidens genidens in northern Rio de Janeiro state, south-eastern Brazil

Aspistor luniscutis Bagre bagre Genidens genidens

n 25 21 19

Total length 269.85 ± 48.70a 354.74 ± 49.63b 353.35 ± 26.65b

Total length (min – max) 200–343 282–424 302–393

Total mass 0.229 ± 0.138a 0.313.83 ± 0.148b 0.454 ± 0.147c

Total mass (min – max) 0.070–0.550 0.127–0.550 0.132–0.700

δ13C −15.89 ± 0.71a −16.16 ± 0.40a −15.91 ± 0.45a

δ15N 14.62 ± 0.28a 14.62 ± 0.46a 13.84 ± 0.71b

C/N 3.18 ± 0.06a 3.20 ± 0.04a 3.17 ± 0.06a

THg 524.58 ± 191.58a 310.00 ± 175.50b 693.33 ± 269.07c

Letters indicate significant differences (P < 0.05).

Fig. 2. Relationship between δ13C and δ15N considering Aspistor luniscutis (Al), Bagre
bagre (Bb), Genidens genidens (Gg), Doryteuthis sanpaulensis (Ds), Xiphopenaeus kroyeri
(Xk), Callinectes sp. (Csp), Sciaenidae (Sc), Porichthys porosissimus (Pp), zooplankton
(Zoo), phytoplankton (phyto) and organic matter in sediment (SOM) in northern Rio
de Janeiro state, south-eastern Brazil. The range of isotopic ratios measured for the
potential SOM and phytoplankton (through zooplankton) sources is represented by
small hatched squares. Hatched zones represent the zone influencedby theOM sources.
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and with total mass, for B. bagre only (Figure 3C, D). No correla-
tions between variables were observed for A. luniscutis.

The relationship between δ15N and THg was highly significant.
The slope was 0.34, indicating biomagnification of Hg over the
increase in δ15N in this marine food web (Figure 4).

The isotopic niche area represented by SEAc revealed a broader
trophic niche for G. genidens (1.88‰2) than for A. luniscutis
(0.55‰2) and B. bagre (0.47‰2) (Figure 5). The greatest isotopic
niche overlap was observed for the ellipses of B. bagre on A. lunis-
cutis, followed by A. luniscutis overlapping the ellipse of B. bagre,
covering an area of 0.29‰2. The lowest SIBER ellipse overlaps
were observed for G. genidens on A. luniscutis and B. bagre, with
overlapping areas of 0.21 and 0.15‰2, respectively (Figure 5,
Table 3).

Table 4 presents the quantitative metrics to estimate the iso-
topic niche breadth for the three marine catfishes. The highest
values of food web length (NR), variability of food resources
(CR), total occupied niche area (TA) and small sample size cor-
rected standard ellipse area (SEAc) were observed for G. genidens.

Additionally, trophic diversity within the demersal food web
(CD – ANOVA, F = 7.515, P = 0.001), trophic redundancy
(MNND – ANOVA, F = 6.842, P = 0.001) and evenness
(SDNND – F-ratio test, P < 0.001) were higher for G. genidens
than for A. luniscutis and B. bagre. Similar to G. genidens, the spe-
cies A. luniscutis also presented elevated variability of food
resources compared with B. bagre.

The SIAR analysis revealed similar relative contributions of all
prey items in A. luniscutis and B. bagre, highlighting higher
assimilations of Sciaenidae fishes and D. sanpaulensis (73 and
70%, respectively) compared with G. genidens, which presented
no preference for any prey (Figure 6).

Discussion

This study revealed the extent of sharing and segregating food
resources of the three sympatric marine catfish species Aspistor
luniscutis, Bagre bagre and Genidens genidens based on compari-
sons of food assimilation using SIAR, SIBER, isotopic niche

Fig. 3. Relationships between: (A) δ15N (‰) and total length (mm), (B) δ15N (‰) and total mass (kg), (C) log-transformed total mercury (THg) and total length (mm)
and (D) log-transformed total mercury (THg) and total mass (kg) of the three marine catfishes Aspistor luniscutis (Al), Bagre bagre (Bb) and Genidens genidens (Gg)
in northern Rio de Janeiro state, south-eastern Brazil. The results from the linear models (lines + 95% confidence interval grey polygons) are plotted on observed
log-transformed data. The r and P-values of the Pearson correlation as well as the equations of the lines (derived from linear model output) are indicated. Bold
values indicate significant (P < 0.05) relationships.
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breadth metrics and THg concentrations. Diet overlaps observed
between the three marine catfish species were explained by propor-
tions in the assimilation of Sciaenidae fishes (Isopisthus parvipinnis,
Paralonchurus brasiliensis and Stellifer rastrifer), Doryteuthis san-
paulensis, Xiphopenaeus kroyeri and Callinectes sp.

The present study corroborated using a stable isotope
approach to classify marine catfish trophic guilds as omnivorous,
as previously determined by stomach contents and stable isotope
studies (Chaves & Vendel, 1996; Denadai et al., 2012; Tavares &
Di Beneditto, 2017; Di Beneditto et al., 2018; Di Beneditto &
Tavares, 2019). In south-eastern Brazil, Denadai et al. (2012) ana-
lysed stomach contents and intestine remains in juveniles, sub-
adults and adults, concluding that marine catfishes have wide
trophic plasticity during their lifetimes. Juveniles feed mainly on
soft and small food items, such as algae and molluscs; adults for-
age on harder and larger items, such as crustaceans, molluscs and
fishes; and sub-adults feed on both prey types.

The SIBER analysis revealed overlaps between the isotopic
niches of A. luniscutis, B. bagre and G. genidens. The greater
overlaps (>53%) between the isotopic niches of A. luniscutis
and B. bagre indicate that these two species rely on similar prey
proportions of assimilation, specifically on Sciaenidae and D. san-
paulensis, as observed by SIAR analysis. The species A. luniscutis
and B. bagre presented lower trophic diversity within the demersal
food web (CD) and higher trophic redundancy (MNND) and
evenness (SDNND) when compared with G. genidens, reinforcing
its more restricted assimilation of prey resources. Based on iso-
topic niche metrics, G. genidens showed the broadest niche
breadth among the catfishes, as evidenced by the highest isotopic
niche metrics observed (NR, CR, TA, SEAc, CD, MNND,
SDNND). Similar to what other authors found through stomach
content analysis (Denadai et al., 2012), the isotopic data suggest
that diet of G. genidens is the most diversified, based on the higher
proportion of assimilation of Porichthys porosissimus and
Callinectes sp. in the Paraíba do Sul river (PSR) estuary compared
with A. luniscutis and B. bagre.

The higher trophic plasticity of G. genidens and the similar iso-
topic niches of A. luniscutis and B. bagre may be a result of three
situations, individually or combined: (1) the high abundance of
shrimps, crabs and neritic squids in the study area; (2) different
spatial habitat usage by catfishes in the estuarine system; and
(3) foraging of other prey items to avoid competition.

Situation 1 can be sustained, as lolignid squids (Doryteuthis
plei and D. sanpaulensis) have a strong association with the sea
bottom and are considered abundant in the inner shelf from 10
to 50 m (Robin et al., 2014; Costa et al., 2015). A short distance
south (100 km), in the Cabo Frio upwelling region, Soares et al.
(2014) found similar δ15N values (higher than for other inverte-
brates of the present study) of loliginid species (D. plei – 12.5‰
and D. sanpaulensis – 11.0‰) compared with our results
(13.3‰). Shrimps (Xiphopenaeus kroyeri) and crabs (Callinectes
sp.) are considered to be as abundant as squids on the northern
coast off Rio de Janeiro (Di Beneditto et al., 2010; Santos &
Menegon, 2010; Fernandes et al., 2014). Thus, the local abun-
dance of prey is high to consumers. Nevertheless, the mean
δ15N values of decapods (Callinectes sp. and X. kroyeri) and

Fig. 4. Relationships between δ15N (‰) and log-transformed THg considering
Aspistor luniscutis (Al), Bagre bagre (Bb), Genidens genidens (Gg), Doryteuthis sanpau-
lensis (Ds), Xiphopenaeus kroyeri (Xk), Callinectes sp. (Csp), Sciaenidae (Sc), Porichthys
porosissimus (Pp) and zooplankton (Zoo) in northern Rio de Janeiro state, south-
eastern Brazil. The results from the linear model (lines + 95% confidence interval)
are plotted on observed log-transformed data. The r and P-values of the Pearson cor-
relation as well as the equation of the line (derived from linear model output) are
indicated. Bold values indicate significant (P < 0.05) relationships.

Fig. 5. The standard ellipse areas corrected for small sample size (SEAc) for the three
marine catfishes Aspistor luniscutis, Bagre bagre and Genidens genidens in northern
Rio de Janeiro state, south-eastern Brazil.

Table 3. Overlapping SEAc (%) between the three marine catfishes Aspistor
luniscutis, Bagre bagre and Genidens genidens in northern Rio de Janeiro
state, south-eastern Brazil

A. luniscutis B. bagre G. genidens

A. luniscutis – 63.0 10.9

B. bagre 53.3 – 7.7

G. genidens 37.2 31.3 –

Table 4. Isotopic niche metrics of the marine catfishes Aspistor luniscutis, Bagre bagre and Genidens genidens in northern Rio de Janeiro state, south-eastern Brazil

NR CR TA SEAc CD MNND SDNND

A. luniscutis 1.01 2.51 1.65 0.55 0.57a 0.14a 0.14a

B. bagre 1.59 1.52 1.48 0.47 0.49a 0.13a 0.11a

G. genidens 3.36 2.88 6.21 1.88 0.94b 0.32b 0.30b

Letters indicate significant differences (P < 0.05).
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D. sanpaulensis are higher than that of P. porosissimus (Table 2),
reflecting the nitrogen isotope values of the consumers. In this
sense, it is noteworthy that the δ15N values of the catfishes repre-
sented differences in their prey isotopic values rather than in their
trophic levels.

Denadai et al. (2012) observed a slight overlap between
A. luniscutis and G. genidens because of crustacean fragments
and fish scales in both diets and associated the small overlap
(37.6%) with differences in spatial usage of the estuary. However,
situation 2 may not be plausible. Pereyra et al. (2016) found that
G. genidens adults consumed freshwater-derived carbon sources,
and Bizerril (1999) also observed spatial differences governed by
salinity in the habitat usage of marine catfishes, allowing their
coexistence. The stable isotopes of the present study revealed no
variation in habitat usage. The δ13C results were similar among
the three ariids, suggesting not only the absence of distinctions
in basal OM assimilated sources but also similarity in habitat
usage (Bouillon et al., 2011). Nevertheless, our δ13C values are in
accordance with the previous study of Di Beneditto et al. (2018),
reinforcing that marine catfishes are characteristically widespread
in the coastal waters influenced by the PSR.

Although the focus of the present study was on trophic ecology
rather than habitat usage variations, the THg concentrations
observed in the present study coupled with previous knowledge
of ariids suggesting different spatial usage in estuaries (Azevedo
et al., 1999; Bizerril, 1999; Schmidt et al., 2008; Denadai et al.,
2012), can lead to misunderstandings about their spatial dynam-
ics in the estuarine habitat. Regarding THg, a decrease in its con-
centration in fishes along the river–ocean gradient is expected
(Liu et al., 2017). As adult catfishes usually live in adjacent coastal
waters influenced by estuaries (Mishima & Tanji, 1983; Denadai
et al., 2012) and only seek riverine waters during the spawning
period (Schmidt et al., 2008), the differences in THg concentra-
tions between marine catfishes observed in the present study
seem to be related to biological factors, not to spatial segregation.

Previous studies developed along this area support the Hg
assimilation related to predator–prey interactions (Carvalho
et al., 2008; Kehrig et al., 2009; Di Beneditto et al., 2012), suggest-
ing that the past practices of gold-mining and the use of mercurial
fungicides on sugarcane plantations in the PSR drainage basin are
the main input sources of Hg in this fluvial ecosystem, which is
largely exported to the adjacent marine areas, coupled with Hg
atmospheric deposition (Lacerda et al., 1993; Lacerda, 1996;
Araujo et al., 2017; Azevedo et al., 2018). Reinfelder et al.
(1998) indicated that the assimilation of dissolved Hg in the
water column is an important route for bioaccumulation by
aquatic organisms with small body sizes and greater surface
areas. The input of Hg in food webs through phytoplankton
and the successive increase in metal concentrations to the next
trophic levels (Pickhardt et al., 2002) were already observed in
coastal areas influenced by PSR in other fish species
(Di Beneditto et al., 2012; Kehrig et al., 2013).

The reasons for the elevated mean THg values observed in lar-
ger ariid individuals seem to be three-fold: first, it is related to the
bioaccumulation of THg during the catfish lifespan, evidenced by
the significant correlations (P < 0.05) between THg and total
length and mass. The accumulation might occur in ariids in the
adjacent marine waters of the PSR estuary in accordance with
the findings of other authors that suggest that larger and/or
older fish have higher THg concentrations due to longer exposure
and the difficulty of eliminating mercury, as THg has a very slow
excretion rate due to the metal’s high affinity for thiol groups that
constitute the protein fraction of the muscles (Nakao et al., 2007).
Second, the elevated assimilation of species closely related to the
bottom sediment, that provides higher Hg bioavailability than the
water column (Muto et al., 2014; Le Croizier et al., 2019), by G.
genidens (Callinectes sp. – highest THg in prey and P. porosissi-
mus – highest THg in prey fishes) and A. luniscutis (Sciaenidae
fish) resulted in the higher THg than in B. bagre. Finally, the sea-
sonality of the PSR discharge (input of Hg to the ocean) may also
be an influencing factor. As observed by Rocha et al. (2015), at
times of higher PSR discharge, G. genidens and A. luniscutis
were more abundant, thus contributing to higher mean THg
values for both species compared with B. bagre. At times of
lower PSR discharge, B. bagre is more abundant; thus as suggested
by authors worldwide and for the PSR estuary, during low river
discharge the main source of Hg is the direct deposition of the
contaminant from the atmosphere to surface waters, resulting in
higher concentrations of THg in fish due to the rapid methylation
and absorption by biota, thus becoming more bioavailable (Harris
et al., 2007; Mason et al., 2012; Araujo et al., 2017; Azevedo et al.,
2018).

Biomagnification was also indicated by the significant correla-
tions of THg and δ15N. Since diet is the main source of THg
assimilation in fishes (Hall et al., 1997), it might be occurring
in this food web, as already observed for other fish species influ-
enced by the PSR plume in the region (Bisi et al., 2012;

Fig. 6. Results of SIAR (Stable Isotope Analysis in R) showing 95% (dark grey), 75%
(intermediate grey) and 25% (light grey) credibility intervals of prey items contribu-
tions to the diet of the catfishes Aspistor luniscutis, Bagre bagre and Genidens geni-
dens. Xk, Xiphopenaeus kroyeri; Csp, Callinectes sp.; Ds, Doryteuthis sanpaulensis;
Pp, Porichthys porosissimus; and Sc, Sciaenidae. Numbers above credibility intervals
are the percentage of contribution of each prey to the respective predator.
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Di Beneditto et al., 2012; Kehrig et al., 2013) and worldwide
(Al-Reasi et al., 2007; Liu et al., 2017; Chouvelon et al., 2018).
In the present study, the slope of the linear regression between
THg and δ15N (0.34), used as measurement of biomagnification
across food webs (Kidd et al., 1995), was higher than those
observed by Al-Reasi et al. (2007) in Gulf of Oman (0.07),
Muto et al. (2014) in the Santos continental shelf (0.13), and
Di Beneditto et al. (2012) (0.25) and Kehrig et al. (2013) (0.21)
in the same region as our study. Although biomagnification stud-
ies in tropical marine ecosystems are limited, this range
(0.07–0.34), already observed by Lavoie et al. (2013) in tropical
marine food webs, reflects the different composition and vertical
position in the water column (higher Hg bioavailability in the bot-
tom sediment for benthic/demersal organisms) of the tropical
food webs and/or differences in the growth rate of organisms
(Muto et al., 2014; Le Croizier et al., 2019). It is already known
that the biomagnification of Hg can vary greatly between marine
ecosystems (Cossa et al., 2012), or even between environments of
the same ecosystem (Cresson et al., 2015).

Competitive exclusion (situation 3) seems not to regulate the
preference of Sciaenidae fishes and D. sanpaulensis by A. luniscutis
and B. bagre. As mentioned above, Rocha et al. (2015) observed
A. luniscutis and G. genidens in the region mainly during the
rainy season (higher discharge of PSR – October to April), while
B. bagre was observed during the dry season (lower discharge of
PSR – May to September). In this sense, the elevated level of par-
titioning of resources between A. luniscutis and B. bagre, reflected
by high isotopic niche overlaps, seems to exclude none of the spe-
cies. Thus, based on the high abundance of prey coupled with the
different seasonal abundances in the region of the catfishes, it
seems they are not competing for the same resources, at the
same time, in the same place, leading us to conclude that there is
low evidence of interspecific resource competition.

In conclusion, we found that G. genidens has a broader trophic
niche breadth, is considered generalist and is the most opportunis-
tic marine catfish, due to assimilation of organisms in similar pro-
portions and with lower δ15N. The prey preference for Sciaenidae
fishes and D. sanpaulensis was observed for A. luniscutis and B.
bagre, resulting in the highest isotopic niche overlap and δ15N sig-
natures, answering the first question of the present study. The coex-
istence of these three sympatric marine catfishes is probably
regulated by different temporal patterns in the coastal area influ-
enced by the PSR plume (question 2) and the high abundance of
prey items, leading to resource partitioning with no evidence of
competition among the species (question 3). The THg highlighted
the different proportions of assimilation of prey as well as the sea-
sonality in the habitat usage by the species. Bioaccumulation of Hg
was observed for B. bagre and G. genidens and Hg biomagnification
also occurred in their food web. The understanding of the trophic
dynamics of sympatric fishes enhances the knowledge of ecological
and environmental forces driving their coexistence. More studies
incorporating multiple tools are important for the advancement
of knowledge of the trophic dynamics, life cycles, habitat usage
and environmental role of marine catfishes in the continent–
ocean interface.
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