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Injective modules over the Jacobson
algebra K⟨X ,Y ∣ XY = 1⟩

Gene Abrams, Francesca Mantese, and Alberto Tonolo

Abstract. For a field K, let R denote the Jacobson algebra K⟨X , Y ∣ XY = 1⟩. We give an explicit

construction of the injective envelope of each of the (infinitely many) simple le� R-modules. Con-

sequently, we obtain an explicit description of a minimal injective cogenerator for R. Our approach

involves realizingR up to isomorphism as the Leavitt pathK-algebra of an appropriate graph T, which

thereby allows us to utilize important machinery developed for that class of algebras.

1 Introduction

Aunital ringA is called directly finite in case, for any x , y ∈ A, if xy = 1 then yx = 1. It is
not hard to show that rings which satisfy various natural conditions (commutativity,
somemild chain condition, and so on) are directly finite. On the other hand, examples
abound of rings containing elements x , y for which xy = 1 but yx ≠ 1. Perhaps the
most natural ‘concrete’ example is found in the endomorphism ring of a countably-
infinite-dimensional vector space V over a field. Here, if {e i ∣ i ∈ N} is a basis for
V, then the right shi� transformation y which takes e i to e i+1 and the le� shi�
transformation xwhich takes e1 to 0 and e i to e i−1 for i ≥ 2 satisfy xy = 1 but yx ≠ 1. A
moment’s reflection yields that there is an even more natural example of a ring which
fails to be directly finite, to wit:

R = K⟨X ,Y ∣ XY = 1⟩,

the free associative K-algebra on two (noncommuting) generators, modulo the single
relation XY = 1. A search of the literature suggests that this algebra was first explicitly
studied by Jacobson in the late 1940s in [13]. �roughout the article we will refer to
this algebra as the Jacobson algebra over K.1 While the displayed description of R is
quite straightforward, the structure of R is anything but.

Various ring-theoretic and module-theoretic properties of R have been analyzed
during the seven decades since Jacobson’s work, including in: Cohn [10] (1966);
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1Because of its close relationship to the well-studied Toeplitz C∗-algebra, the Jacobson K-algebra R

has also been called the “algebraic Toeplitz K-algebra” elsewhere in the literature, see e.g. [1]. We prefer

to call R the “Jacobson algebra” to further emphasize our focus on R as an algebra in and of itself, rather

than on its connection to graph C∗-algebras.
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Bergman [8] (1974); Gerritzen [11] (2000); Bavula [7] (2010); Ara and Rangaswamy
[6] (2014); Iovanov and Sistko [12] (2017); and Lu, Wang and Wang [15] (2019).

For the directed graph , the Jacobson algebraR is isomorphic to
the Leavitt path algebra LK(T) (see Proposition 2.1 below).�is interpretation guides
our investigation.We refer those readerswho are unfamiliarwith Leavitt path algebras
to [1, Chapter 1].

Following [6], there are three classes of Chen simple modules for Leavitt path
algebras LK(E) of a general (finite) graph E:

• simple modules associated to sinks;
• simple modules associated to infinite irrational paths, and
• simple modules associated to infinite rational paths and irreducible polynomials in
K[x] with constant term equal to −1.

By [6, Corollary 4.6] a complete list of nonisomorphic simple le� LK(T)-modules is
given by

• the Chen simple module LK(T)w associated to the sink w, and
• the Chen simple modules V f associated to the infinite rational path c∞ (where c is
the loop in T), and to irreducible polynomials f (x) in K[x] with f (0) = −1.
Among other things, results regarding the Ext1 groups of pairs of Chen simple

modules, the Bézout property, the construction of “Prüfer-like” modules for Chen
simple modules, and the construction of injective envelopes for some of these Chen
simples have been achieved in previous collaborative work of the three coauthors ([2],
[3], and [4]). In the current work we bundle some of the consequences of these results
together with a new type of construction in the specific case where E = T.

Our two main goals of the article are as follows. First, we explicitly construct the
injective envelope of each simple le� LK(T)-module. For modules of the form V f as
described above, this is achieved inCorollary 6.3. For themodule LK(T)w this is done
in Corollary 6.12. Second, we use the information achieved in the first goal to describe
a minimal injective cogenerator for the category LK(T)-Mod (�eorem 6.14). �is is
the the first time in the literature that an injective cogenerator for a non-Noetherian
Leavitt path algebra is completely described. In particular, the structure of all injective
LK(T)-modules, and hence of all representations of LK(T), is revealed.

2 Prerequisites

We set some notation. We denote by N the set of positive integers {1, 2, 3, . . . }, and
by Z+ the set N ∪ {0} = {0, 1, 2, . . . }.

�e word “module” will always mean “le� module”. For f (x) ∈ K[x] and n ∈ Nwe
denote ( f (x))n by f n(x).

For any polynomial g(x) = ∑m
i=0 k ix

i ∈ K[x], and the cycle c in T, we denote by
g(c) the element

g(c) ∶= k01LK(T) + k1c +⋯+ kmcm ∈ LK(T).
Rewritten, g(c) = k0v + k0w + k1c +⋯+ kmcm ∈ LK(T). �is notation is well suited
for our purposes, but we note that this definition of g(c) is different from that used for
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expressions of the form g(c) elsewhere in the literature. For g(x) = ∑m
i=0 k ix

i ∈ K[x]
we denote by g∣

v
(c) the element

g∣
v
(c) ∶= k0v + k1c +⋯+ kmcm ∈ LK(T).

So g(c) = k0w + g∣v(c) and g∣
v
(c) = vg(c).

We denote by P the set of polynomials

P ∶= {p(x) ∈ K[x] ∣ p(0) /= 0},
and by F ⊆ P the set of polynomials

F ∶= { f (x) ∈ K[x] ∣ f is irreducible in K[x], and f (0) = −1K}.
We note that the family F is a set of pairwise nonassociate representatives of the
irreducible elements in the ring of Laurent polynomials K[x , x−1].

Because the Leavitt path algebra LK(T) plays a central role in our investigations,
we give a detailed description of it here. For the directed graph

we consider the extended graph T̂ of T, pictured as:

�en LK(T) is defined to be the standard path algebra KT̂ of T̂ with coefficients in K,
modulo these relations:

c∗c = v; d∗d = w; c∗d = d∗c = 0; and cc∗ + dd∗ = v .

In particular, v +w = 1LK(T).

Proposition 2.1 [1, Proposition 1.3.7] Let K be any field, and let T be the graph

. �en R ≅ LK(T) as K-algebras.
Proof In LK(T) we have

(c∗ + d∗)(c + d) = v + 0 + 0 +w = 1LK(T) , and

(c + d)(c∗ + d∗) = cc∗ + 0 + 0 + dd∗ = v ≠ 1LK(T) .

With this as context, one can show that the map

φ ∶ R→ LK(T) given by the extension of φ(X) = c∗ + d∗ , φ(Y) = c + d
is an isomorphism of K-algebras. ∎

In particular, note that the element c of LK(T) corresponds to the element Y 2X of
R under this isomorphism.
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Corollary 2.2 �e Jacobson algebra is (le� and right) hereditary. Specifically, quotients
of injective le� R-modules are injective.

Proof By [1, �eorem 3.2.5], the Leavitt path algebra LK(E) for any finite graph
E is hereditary. But hereditary rings have the specified property by [14,
�eorem 3.22]. ∎

An application of [1, Corollary 1.5.12] yields the following useful description of a
K-basis of LK(T).
Lemma 2.3 �e following set forms a K-basis of LK(T):

v , w , d , d∗ , c i , c id , c i(c∗) j , (c∗) j , d∗(c∗) j
where i , j ≥ 1.

We conclude the Prerequisites section by giving some properties of the simple le�
LK(T)-modules of the form V f , where f (x) ∈ F. Some of these properties follow
from results which were established in [6]. We will develop here some additional
information about these simplemodules whichwill be needed in the sequel. Although
we will not actually utilize the following piece of information until the final section of
the article, we reiterate here that because there is a unique cycle inT, [6, Corollary 4.6]
applies. �is yields that, up to isomorphism, all but one of the simple modules over
LK(T) are of the form V f , where f (x) ∈ F. �e only other simple LK(T)-module is
LK(T)w.

We now make a detailed presentation of the construction of the modules V f .
Assume f (x) ∈ F has degree n. Denote by K′ the field K[x]/⟨ f (x)⟩ and by x the
element x + ⟨ f (x)⟩. Clearly {1, x , . . . , xn−1} is a K-basis of K′. �e class of infinite
paths tail equivalent to c∞ consists only of c∞ itself. Let V x be the one dimensional
K′-vector space generated by c∞. Setting

d ⋆ c∞ = d∗ ⋆ c∞ = w ⋆ c∞ = 0;

v ⋆ c∞ = c∞; c ⋆ c∞ = xc∞; and c∗ ⋆ c∞ = x−1c∞,

V x becomes a le� LK′(T)-module. Consider the linear maps

σ x ∶ V x
→ K′ , h ⋅ c∞ ↦ h, and

ρx ∶ K′ → V x , h ↦ h ⋅ c∞.

Clearly these maps are inverse isomorphisms of one-dimensional K′-vector
spaces.Restricting the scalars toK, the abelian groupV x also has a le� LK(T)-module
structure: we denote this le� LK(T)-module by V f .

�e set {c∞, xc∞, . . . , xn−1c∞} is aK-basis ofV f . Denote byG f theK-subspace of
LK(T) generated by {1, c, . . . , cn−1}.Wenote that any element inG f clearly commutes
with f (c). �e linear maps

σ f
∶ V f
→ G f , x i c∞ ↦ c i , and

ρ f
∶ G f
→ V f , c i ↦ x i c∞

https://doi.org/10.4153/S0008439520000478 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000478


Injective modules over the Jacobson algebra K⟨X ,Y ∣ XY = 1⟩ 327

(for 0 ≤ i ≤ n − 1) define inverse isomorphisms of n-dimensionalK-vector spaces.�e
map ρ f is the restriction to G f of the right multiplication map by c∞:

ρ ∶ LK(T)→ V f , r ↦ r ⋆ c∞.

Clearly one has

σ f (x i c∞) ⋆ c∞ = c i ⋆ c∞ = x i c∞ = ρ f (c i) = ρ(c i).
Lemma 2.4 [6, Lemma 3.3] Let f (x) ∈ F. �en the le� LK(T)-module V f is simple.

Proof Let U be a nonzero LK(T)-submodule of V f . Since {1, x , . . . , xn−1} is a K
basis for K′ and

x ⋅ u = c ⋆ u ∀u ∈ U ,

U is also a K′-space. Since V x is a one-dimensional K′-space, we have U = V x as
K′-spaces and hence U = V f as le� LK(T)-modules. ∎

�roughout the remainder of the article, we will o�en denote LK(T) simply by R.

3 The Division Algorithm

�e goal of this short section is to establish �e Division Algorithm, Proposition 3.4.
�is result will subsequently be used to construct the injective envelope of each simple
R-module of the form V f . We start by showing that each V f is finitely presented. We
also determine the annihilator of each V f .

Lemma 3.1 Let f (x) ∈ F. Denoting by ρ̂ f (c) ∶ R → R the right multiplication map by
f (c), we have the following short exact sequence of le� R-modules:

In particular:

(1) �e kernel of ρ ∶ R → V f is R f (c).
(2) R f (c) coincides with the two-sided ideal AnnR(V f ).
Proof We have already observed that ρ f is surjective, and thus ρ is surjective as
well.

For the injectivity of ρ̂ f (c), we note that any element f (x) ∈ F can be written as
f (x) = xg(x) − 1, and so f (c) = cg(c) − 1 ∈ R, for a suitable polynomial g(x) ∈ K[x].
Let r ∈ R such that ρ̂ f (c)(r) = 0. So r(cg(c) − 1) = 0, and thus rcg(c) = r, which
recursively implies r(cg(c)) j = r for any j ≥ 1. Now write r = ∑n

i=1 k iα iβ i
∗
, where

the α i and β i are in Path(T). We note that, for any β ∈ Path(T), there exists a
suitable mβ such that β∗(cg(c))mβ is either 0 or an element of KT. Now let N be
the maximum in the set {mβ1 ,mβ2 , . . . ,mβn

}. �en the above discussion shows that
r(cg(c))N is an element of R of the form ∑n

i=1 k iγ i , where γ i ∈ KT for 1 ≤ i ≤ n.
�at is, r(cg(c))N ∈ KT. But r(cg(c))N = r, so that r ∈ KT. However, the equation
r(cg(c)) = r (i.e., r f (c) = 0) has only the zero solution in KT by a degree argument.
So r = 0.
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(1) We now show Ker ρ = R f (c). Using [6, Lemma 3.2], we get that the annihi-
lator of V f is the two-sided ideal I = ⟨w , f ∣

v
(c)⟩. Notice that w = −w(cg(c) − 1) =

−w f (c). �erefore, in the notation used herein, we have I = ⟨ f (c)⟩. Clearly I is
contained in the kernel of ρ. Let r ∈ Ker ρ. To prove that r ∈ I we have to check
that r ⋆ x i c∞ = 0 for i = 0, . . . , n − 1; in other words, that le� multiplication by r
annihilates all the elements of a K-basis of V f . We consider the le� LK′(T)-module
V x . Since x i is a scalar in LK′(T), and r ⋆ c∞ = 0 we have the following equality in
V x :

r ⋆ x i c∞ = x ir ⋆ c∞ = 0.

Since V x = V f as abelian groups, the desired result follows.
(2) We prove now that R f (c) = ⟨ f (c)⟩. It is sufficient to check that the product

of f (c) on the right by each element of the K-basis of R highlighted in Lemma 2.3
belongs to R f (c). First of all observe that

w = −w f (c) ∈ R f (c), d = dw ∈ R f (c), d∗ = −d∗ f (c) ∈ R f (c).
�en clearly each of

f (c)v = v f (c), f (c)w , f (c)d , f (c)d∗ , f (c)c i = c i f (c), and f (c)c id
is in R f (c). Assume f (c) = −1 + k1c +⋯+ kncn . �en

f (c)c∗ = −c∗ + k1cc∗ +⋯+ kncnc∗
= −c∗ + k1(1 − dd∗) +⋯+ kncn−1(1 − dd∗)
= (−c∗ + k1 +⋯+ kncn−1) − (k1d +⋯+ kncn−1d)d∗
= c∗ f (c) + rd∗ ∈ R f (c).

�en, by induction, f (c)(c∗) j ∈ R f (c) for each j ≥ 0. Finally, f (c)c i(c∗) j =
c i f (c)(c∗) j ∈ R f (c) and f (c)d∗(c∗) j = d∗ f (c)(c∗) j ∈ R f (c) for each j ≥ 0. ∎

Remark 3.2 As mentioned in the Preliminaries section, for f (x) = −1 +∑n
i=1 k ix

i

in F, we define f (c) = −1R +∑n
i=1 k i c

i ∈ R. We established in Lemma 3.1(1) that right
multiplication by f (c) is injective. If one were to instead use the notation for f (c)
which appears elsewhere in the literature (namely, f (c) ∶= −v +∑n

i=1 k i c
i), then the

right multiplication map by f (c) would not be injective.

Lemma 3.3 For any f (x) ∈ F, the intersection of R f (c) with G f is 0.

Proof If ℓ belongs to R f (c) ∩G f , then ρ(ℓ) = 0 by Lemma 3.1(1), so that

0 = σ f (0) = σ f (ρ(ℓ)) = σ f (ρ f (ℓ)) = ℓ
(using ρ f (ℓ) = ρ(ℓ) since ℓ ∈ G f ). ∎

Proposition 3.4 (�e Division Algorithm) Let f (x) ∈ F. For any β ∈ R there exists
unique qβ ∈ R and rβ ∈ G

f such that

β = qβ f (c) + rβ .
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Proof Consider the element rβ ∶= σ
f (ρ(β)). Clearly rβ belongs to G f ⊆ R. Let us

prove that the difference β − rβ belongs to Ker ρ. By Lemma 2.3, it is sufficient to
prove that β − rβ belongs to Ker ρ for β ∈ {v ,w , d , c i , c id , c i(c∗) j , (c∗) j , d∗(c∗) j}.
Whenever ρ(β) = 0, then also rβ = 0 and hence β − rβ belongs to Ker ρ in these cases.
So the result immediately holds for β = w , d , c id , and d∗(c∗) j . For the others:

rv = σ
f (c∞) = 1K , rc i = σ f (x i c∞) = c i ,

rc i(c∗) j = σ
f (x i− jc∞) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
c i− j if i > j ≥ 0,

1K if i = j ≥ 0,

(c∗) j−i if 0 ≤ i < j,

and clearly v − 1K , c
i
− rc i (which is 0), and c i(c∗) j − c i− j for i > j, c i(c∗)i − 1K ,

c i(c∗) j − (c∗) j−i for i < j, belong to Ker ρ. By Lemma 3.1, Ker ρ = R f (c). �erefore
β − rβ = qβ f (c) for a suitable qβ ∈ R.

We now prove that qβ ∈ R and rβ ∈ G
f are uniquely determined. Assume

β = q1 f (c) + r1 = q2 f (c) + r2 .
�en we have r1 − r2 = (q2 − q1) f (c) ∈ R f (c) ∩G f , which is 0 by Lemma 3.3.�ere-
fore r1 = r2 and (q1 − q2) f (c) = r1 − r2 = 0. Since by Lemma 3.1 right multiplication
by f (c) is injective, we have q1 = q2. ∎

4 The Prüfer Modules U f

For any simple R-module V f there exists a uniserial R-module U f of infinite length,
all of whose composition factors are isomorphic to V f . We call U f the Prüfer module
associated to V f . �e construction of U f is a particular case of a method of building
injective modules over general Leavitt path algebras described in [4].

Lemma 4.1 For any f (x) ∈ F, the element f (c) ∈ R is neither a right zero divisor nor
le�-invertible.

Proof �e element f (c) ∈ R is not a right zero divisor, since the right multipli-
cation ρ̂ f (c) ∶ R → R is injective by Lemma 3.1. By that same Lemma we also have

f (c) ⋆ c∞ = 0 in V f , and so f (c) is not le� invertible in R. ∎

�eupshot of Lemma4.1 is thatwe can apply the construction of the Prüfermodule
described in [4, Section 2] with a = f (c). For each natural number n ≥ 1, set

• M
f
n ∶= R/R f n(c), the nonzero cyclic le� R-module generated by 1 + R f n(c).

• η
f
n ∶ R → M

f
n the canonical projection.

• θ
f
n ∶ R f (c)→ M

f
n , f (c)↦ 1 + R f n(c).

• ψ i ,ℓ ∶ M f
i → M

f
ℓ
, 1 + R f i(c)↦ f ℓ−i(c) + R f ℓ(c) for each i ≤ ℓ; the cokernel ofψ i ,ℓ

is isomorphic to M
f
ℓ−i .
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With this notation, the diagram

is a pushout diagram. By Lemma 2.4, M
f
1 ≅ V

f is a simple R-module.

We now establish the key property of the modules {M f
i ∣ i ∈ N} which will allow

us to further apply additional machinery built in [4].

Lemma 4.2 Let f (x) ∈ F.�en the equation f (c)X = 1 + R f n(c) has no solutions in
the le� R-module M

f
n .

Proof Letm + R f n(c) ∈ M f
n , withm ∈ R. By a repeated application of Proposition

3.4, we have

m = q1 f (c) + g1 , q1 = q2 f (c) + g2 , . . . qn−1 = qn f (c) + gn ,
where the elements g i ( 1 ≤ i ≤ n) belong to G f . �erefore

m − (g1 + g2 f (c) +⋯+ gn f n−1(c)) ∈ R f n(c).
In particular we can assume that the representative m of the coset m + R f n(c) is
equal to g1 + g2 f (c) +⋯+ gn f n−1(c). Assume f (c)m + R f n(c) = 1 + R f n(c). �en
f (c)m − 1 belongs to R f n(c). �erefore

f (c)(g1 + g2 f (c) +⋯+ gn f n−1(c)) − 1
belongs to R f n(c). Since as noted above f (c)g i = g i f (c) for each 1 ≤ i ≤ n, we get

−1 + g1 f (c) + g2 f 2(c) + ⋅ ⋅ ⋅ + gn f n(c) ∈ R f n(c).
�en −1 = r f (c) for a suitable r ∈ R and hence f (c) would be le� invertible in R,
which contradicts Lemma 4.1. ∎

With Lemma 4.2 established, we may apply [4, Proposition 2.2] to conclude that

each le� R-module M
f
n ( n ∈ N) is uniserial of length n. We define

U f
∶= lim
Ð→
{M f

i ,ψ i , j}
i≤ j

,

and, for each i ∈ N, the induced monomorphism

ψ i ∶ M
f
i → U f .

By [4, Proposition 2.4], U f is uniserial and artinian.
For each n ∈ N, the element

αn , f ∶= ψn(1 + R f n(c))
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is a generator of the submoduleψn(M f
n) ofU f . In the sequel, to simplify the notation,

we will denote by M
f
n the submodule ψn(M f

n) of U f , in fact identifying M
f
n with its

image in U f through the monomorphism ψn . Let rαn , f = r + R f n(c) be a generic

element ofU f . Applying the Division Algorithm (Proposition 3.4) n − 1 times, we get

rαn , f = r + R f n(c) = g f
0 + g

f
1 f (c) +⋯+ g f

n−1 f
n−1(c) + R f n(c)

= (g f
0 + g

f
1 f (c) +⋯+ g f

n−1 f
n−1(c))αn , f

for suitable g
f
0 , . . ., g

f
n−1 ∈ G

f .

Remark 4.3 As an immediate consequence of Lemma 4.2, we see that any R-module

of the formM
f
i is not injective, because themapψ ∶ R → M

f
i defined by settingψ(1) =

1 + R f i(c) does not factor through the monomorphism ρ̂ f (c) ∶ R → R. In particular,

the simple module M
f
1 ≅ V

f is not injective. However, in the next section, we will

show that each U f = lim
Ð→
{M f

i } is an injective le� R-module.

5 The Left Ideals in R = LK(T)

In order to test whether a module is injective by applying Baer’s criterion, we must
have available a complete description of the le� ideals in R.Wewill show that any ideal
of R is either a direct summand of a le� ideal of the form Rp(c) (where p(x) ∈ K[x]
has p(0) = 1), or a direct summand of Soc(R). We recall that P denotes the set of
polynomials p(x) ∈ K[x] with p(0) /= 0.
Remark 5.1 We collect up in this remark some properties of J ∶= Soc(R), the socle
of R. It is well known (or see [1, �eorem 2.6.14]) that J = ⟨w⟩ as a two-sided ideal.
Further, as le� R-ideals,

J = Rw ⊕ (⊕i∈Z+Rc
idd∗(c∗)i) = Rw ⊕ (⊕i∈Z+Rd

∗(c∗)i).
Moreover, each summand of the form Rc idd∗(c∗)i is isomorphic to the simple
module Rw.

It has been noted elsewhere in the literature (see e.g. [16, Example 4.5]) that R/J ≅
K[x , x−1] as K-algebras. �is isomorphism is also as le� R-modules (and le� R/J-
modules), which is not hard to see directly. Indeed, the standard monomials in R
end (on the right) with a term having one of the forms v ,w , d , d∗ , c i , c id , c i(c∗) j ,(c∗) j , or d∗(c∗) j . Moreover, we have

w ≡ d ≡ d∗ ≡ c id ≡ d∗(c∗) j ≡ 0 mod J , while v ≡ cc∗ ≡ c∗c ≡ 1 mod J .

So the only terms which survive mod J are powers of c (positive or negative).
�e standard bijective correspondence between le� ideals of R which contain J

and submodules of R/J, together with the well-known principal ideal structure of
K[x , x−1], yields that every le� ideal of R which properly contains J is of the form
Rp∣

v
(c) for some p(x) ∈ P. But w ∈ J and J ⊆ Rp∣

v
(c) together yield that Rp∣

v
(c) =

Rp(c). �e upshot is that every le� ideal of Rwhich properly contains J is of the form
Rp(c) for some p(x) ∈ P. ∎
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Proposition 5.2 Let f (x) ∈ F.�en HomR(J ,U f ) = {0}.
Proof For any f (x) ∈ F we have HomR(Rw ,V f ) ≅ wV f = {0}, because V f is
generated as a K-space by elements of the form x i c∞ ( 0 ≤ i ≤ deg( f ) − 1), and
wx i c∞ = x iwc∞ = 0.

By [4, Proposition 2.2], the composition factors of the finitely generated submod-
ules of U f are isomorphic to V f . �is together with the previous paragraph implies
HomR(Rw ,U f ) = {0}.

As noted in Remark 5.1, J = Rw ⊕ (⊕i∈Z+Rc
idd∗(c∗)i) ≅ ⊕i∈Z+Rw . �en HomR(J ,U f ) ≅ HomR(⊕i∈Z+Rw ,U

f ) ≅∏i∈Z+ HomR(Rw ,U f ) =∏i∈Z+{0} = {0}. ∎

Proposition 5.3 Let I be a le� ideal of R.�en either:

1) �ere exists p(x) ∈ P for which I is a direct summand of Rp(c), or
2) I is a direct summand of J = Soc(R).
Proof Case 1. J is properly contained in I. By Remark 5.1, we have I = Rp(c) for
some p(x) ∈ P, and so we are done in this case.

Case 2. Suppose I is not contained in J, and I does not contain J. Consider the le�
ideal A = I + J. �en A properly contains J, so we may apply the Case 1 analysis to
A, so that A = Rq(c) for some q(x) ∈ P. Since the socle J is a direct sum of simple
le� R-modules, we have J = (I ∩ J)⊕ B for some le� ideal B of R contained in J. It is
straightforward to show that this implies A = I ⊕ B. But then I has been shown to be
a direct summand of A = Rq(c), as desired.

Case 3. Suppose I is contained in J. �en the semisimplicity of J immediately
implies that I is a direct summand of J. ∎

Remark 5.4 We note that Gerritzen in [11, Proposition 3.4] established that all one-
sided ideals of the Jacobson algebra R are either principal, or contained in the socle
of R. Similarly, Iovanov and Sistko in [12, �eorem 2 and Corollary 1] establish the
same type of result inR, in terms of polynomials in the element x ofR. By a previous
observation, the element c of R corresponds to the element Y 2X of R. �e point to
be made here is that while these two results from [11] and [12] are clearly related to
the conclusion of Proposition 5.3, Proposition 5.3 yields a more explicit description
of these le� ideals, in a form which will be quite useful for us in the sequel.

Corollary 5.5 In order to apply the Baer criterion to determine the injectivity of a le�
R-module, we need only check injectivity with respect to J, and with respect to le� ideals
of the form Rp(c) for p(x) ∈ P.

6 A (Minimal) Injective Cogenerator for R = LK(T)

In this final section we use the machinery developed above to achieve the main goal
of this article; namely, to identify a minimal injective cogenerator for R. In the first
portion of the section we show that the injective envelope of each of the simple
modulesV f is the PrüfermoduleU f .We then proceed to construct, using completely
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different methods, the injective envelope of the simple module Rw. We finish the
section by appropriately combining these two types of injective modules.

In previous work by the three authors [4], modules of the form U x−1 over general
Leavitt path algebras LK(E) were shown to be injective, in case the corresponding
cycle c is maximal. Establishing injectivity of such U x−1 over the Leavitt path algebra
LK(E) of an arbitrary finite graph E required an analysis of the structure of U x−1

viewed as a right module over its endomorphism ring. In the present setting, we need
not invoke this right module structure, the reason being that in the particular case
R = LK(T)we have a complete description of the le� R-ideals, and therefore we are in
position to productively use Baer’s criterion to establish injectivity of le� R-modules.

6.1 The injective envelope of V f

We start by establishing that U f is injective for any f (x) ∈ F. By Proposition 5.2 we
have HomR(J ,U f ) = 0. By Corollary 5.5, in order to check the injectivity of U f it is
enough to check the Baer criterion with respect to le� ideals of the form Rp(c) for
p(x) ∈ P.
Lemma 6.1 Let f (x) ∈ F, and let g(x) ∈ K[x] which is not divisible by f (x). �en
there exists a polynomial β(x) ∈ K[x] such that β(c)g(c) ∈ 1 + R f n(c). In particular,

g(c) + R f n(c) is a generator of the uniserial module M
f
n .

Proof Since f (x) is irreducible, nondivisibility implies gcd( f n(x), g(x)) = 1.
�en there exist polynomials α(x), β(x) ∈ K[x] such that 1 = α(x) f n(x) +
β(x)g(x). �erefore β(c)g(c) = 1 − α(c) f n(c) and hence β(c)g(c) ∈ 1 + R f n(c). ∎
Proposition 6.2 Let f (x) ∈ F.�en the uniserial le� R-module U f is injective.

Proof ByProposition 5.2 andCorollary 5.5, it suffices to show, for any p(x) ∈ P and
φ ∶ Rp(c)→ U f , that φ extends to amap φ ∶ R → U f . Clearly the zeromap extends to

R. So suppose φ /= 0. Let n ∈ N be minimal such that Imφ ⊆ M
f
n , and write φ(p(c)) =

m + R f n(c) for some m ∈ R. As noted in the proof of Lemma 4.2, we can choose

m = g1 + g2 f (c) +⋯+ gn f n−1(c),
where g i ∈ G

f ( 1 ≤ i ≤ n). In particular,m commutes with all polynomials in c.
By the construction of the direct limit U f , for each i ≥ 0 we have

φ(p(c)) = m + R f n(c) = mf i(c) + R f n+i(c) = f i(c)m + R f n+i(c).
Let p(x) = f ℓ(x)p0(x) with ℓ ≥ 0 and f (x) ∤ p0(x). By Lemma 6.1 there exists
β0(x) ∈ K[x] such that β0(c)p0(c) = p0(c)β0(c) belongs to 1 + R f n+ℓ(c).�erefore

p(c)(β0(c)m + R f n+ℓ(c)) = f ℓ(c)p0(c)β0(c)m + R f n+ℓ(c)
= f ℓ(c)m + R f n+ℓ(c) = φ(p(c)).

�us the morphism φ ∶ R → U f defined by setting φ(1) = β0(c)m + R f n+ℓ(c)
extends φ. ∎
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Corollary 6.3 Let f (x) ∈ F.�en U f is the injective envelope of V f .

Proof �e simple module V f is essential inU f , sinceU f is uniserial.�e injective
envelope of any module is an injective module in which the given module sits as an
essential submodule. ∎

In general the direct sumof infinitelymany injectivemodules need not be injective.
(Over an arbitrary ring S, any infinite direct sum of injectives is injective if and only if
S is Noetherian; and clearly R = LK(T) is non-Noetherian, because, for example, J is
a non-finitely-generated le� ideal of R.) �is observation notwithstanding, we close
this subsection with the following.

Proposition 6.4 LetU = ⊕λ∈ΛIλ where, for each λ ∈ Λ, there exists f (x) ∈ F such that
Iλ is an injective module isomorphic to U f .�en U is injective.

Proof We again invoke Corollary 5.5, and so we need only establish two steps.
Step 1: Consider the ideal J and let φ ∶ J → U . We show that φ = 0. Suppose

otherwise. �e image of φ is a semisimple module, isomorphic to a direct sum of
copies of Rw. But each U f has essential socle isomorphic to V f and so the socle of U
is isomorphic to the direct sum of copies of the V f s. Since Rw /≅ V f for any f, we get
a contradiction.

Step 2: Let p(x) be a polynomial in P. If φ ∶ Rp(c)→ U then the image of φ is
finitely generated, and so is contained in Û ≅ ⊕n

i=1U
f i for some appropriate f is. But

Û is injective because each U f i is (and the sum is finite), and so f extends. ∎

6.2 The injective envelope of Rw

Having identified the injective envelope of each of the simplemodulesV f ( f (x) ∈ F),
we now turn our attention to identifying the injective envelope of the simple module
Rw.

Lemma 6.5 �e set {w , d , cd , c2d , . . . , c id , . . . } is a K-basis of the simple module
Rw. �at is, any element of Rw can be written uniquely as kw +∑n

i=0 k i c
id = kw +(∑n

i=0 k i c
i)d, with k, k i ∈ K.

Proof It is easily shown that Rw = Rd∗d = Rd. By Lemma 2.3, the elements

v ,w , d , d∗ , c i , c id , c i(c∗) j , (c∗) j , d∗(c∗) j i , j ≥ 1

form a K-basis of R. Since

0 = wd = dd = c idd = c i(c∗) jd = (c∗) jd = d∗(c∗) jd ∀i , j ≥ 1

we conclude that a basis of Rw = Rd is formed bymultiplying the remaining elements
of the K-basis for R on the right by d, namely

vd = d , d∗d = w , and c id (i ≥ 1),
which gives the result. ∎
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In the following sense, the simple module Rw behaves similarly to the simple
modules V f (see Remark 4.3).

Proposition 6.6 �e le� R-module Rw is not injective. In particular, the map χ = ρd ∶
R → Rw (via 1↦ d) does not factor through the monomorphism ρ̂ f (c) ∶ R → R for any
f (x) ∈ F.
Proof Write f (c) = −1 + h1c +⋯+ hmcm with hm /= 0 ( m ≥ 1). �e existence of a
map ξ ∶ R → Rw such that ξ ○ ρ̂ f (c) = χ is equivalent to the solvability of the equation
f (c)x = d in Rw. We show that no such x ∈ Rw exists. Assume to the contrary that
there is such a solution, so necessarily x ≠ 0. By Lemma 6.5 we may write x = kw +

∑n
i=0 k i c

id for some (unique) k, k0 , . . . , kn ∈ K, where not all of these are 0. �en
f (c)x = d implies

f (c)(kw + n∑
i=0

k i c
id) = d .

Multiplying both sides of this equation on the le� by w we get −kw = 0, so k = 0.�is
yields that there are nonzero terms among the elements k0 , k1 , . . . , kn .Wemay assume
kn ≠ 0. Now we have

f (c)( n∑
i=0

k i c
id) = d .

But this is impossible, as the following shows. Expanding f (c)(∑n
i=0 k i c

id), we see
the coefficient on the cm+nd term is hmkn . But the equation f (c)(∑n

i=0 k i c
id) = d

implies that the coefficient on the cm+nd term is 0. So we get 0 = hmkn which, as
hm ≠ 0, gives kn = 0, a contradiction. ∎

We seek to describe the injective envelope of Rw. With Proposition 6.6 in hand,
this process will require us to build a module which is strictly larger than Rw.

Definition 6.1 Let Ŵ denote the K-space whose elements are “formal series” of the
form

Ŵ ∶= {k−1w + k0d + k1cd +⋯+ k i c id +⋯ ∣ k i ∈ K}.
�e K-space Ŵ has a natural structure as a le� R-module, where for y = k−1w +

k0d + k1cd +⋯+ k i c
id +⋯ one defines

c ⋅ y = k0cd + k1c
2d +⋯+ k i c

i+1d +⋯; c∗ ⋅ y = k1d +⋯+ k i c
i−1d +⋯;

d ⋅ y = k−1d; d∗ ⋅ y = k0w; and v ⋅ y = k1cd +⋯+ k i c
id +⋯, w ⋅ y = k−1w .

By Lemma 6.5, Rw is theR-submodule of Ŵ consisting of those elements for which
k i = 0 for all i > N for some N ∈ N, i.e., Rw consists of the “standard polynomials”
in Ŵ .

Lemma 6.7 Let y = k−1w + k0d + k1cd +⋯+ k i c
id +⋯ ∈ Ŵ.

1) wy = k−1w.
2) d∗(c∗) j y = k jw for all j ≥ 0.
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Proof (1) is obvious, and (2) follows directly from the observation that
d∗(c∗) jc id = w if i = j, and is 0 otherwise. ∎

Lemma 6.8 �e simple module Rw is essential in Ŵ. In particular, Rw = Soc(Ŵ).
Proof Consider an element 0 /= y = k−1w + k0d + k1cd +⋯+ k i c id +⋯ ∈ Ŵ .
�ere exists ℓ ∈ Z+ ∪ {−1} such that kℓ /= 0. If k−1 ≠ 0, then by Lemma 6.7(1)
wy = k−1w ≠ 0 is in Rw. If kℓ ≠ 0 for ℓ ≥ 0, then by Lemma 6.7(2) d∗(c∗)ℓy = kℓw ≠ 0
is in Rw. ∎

Lemma 6.9 Any R-homomorphism from J = Rw ⊕ Rd∗ ⊕ Rd∗c∗ ⊕ Rd∗(c∗)2 ⊕⋯
to Ŵ extends to an R-homomorphism from R to Ŵ.

Proof Let φ ∶ J → Ŵ be a homomorphism of le� R-modules. For each i ≥ 0 let k i
denote the K-coefficient of w in the formal power series expression for φ(d∗(c∗)i),
and let k−1 be the K-coefficient of w in φ(w). Since φ(w) = φ(w2) = wφ(w) and
φ(d∗(c∗)i) = φ(wd∗(c∗)i) = wφ(d∗(c∗)i), Lemma 6.7 implies that φ(w) = k−1w
and φ(d∗(c∗)i) = k iw for all i ≥ 0.

Now consider the R-homomorphism Φ ∶ R → Ŵ obtained by setting

Φ(1) ∶= k−1w + k0d + k1cd + k2c2d +⋯ .

Since Φ(w) = wΦ(1) = k−1w and Φ(d∗(c∗)i) = d∗(c∗)iΦ(1) = k iw for each i ≥ 0
(again by Lemma 6.7), Φ extends φ. ∎

It is well known that the invertible elements in the ring of formal power series
K[[x]] are precisely those formal power series γ(x) = ∑∞i=0 k ix i for which k0 ≠ 0,
i.e., for which γ(0) ≠ 0.
Lemma 6.10 Let p(x) = p0 + p1x +⋯+ pnxn ∈ P. Any R-homomorphism from
Rp(c) to Ŵ extends to an R-homomorphism from R to Ŵ.

Proof Letψ ∶ Rp(c)→ Ŵ be a homomorphismof le�R-modules. Letψ(p(c)) = y,
where y = k−1w + k0d + k1cd +⋯+ k i c

id +⋯.Weneed to find anR-homomorphism
Ψ ∶ R → Ŵ such that

Ψ(p(c)) = p(c)Ψ(1) = y.
Because p0 ≠ 0, viewing p(x) ∈ K[[x]] there exists α(x) ∈ K[[x]] for which

p(x)α(x) = 1 in K[[x]]. Write α(x) = a0 + a1x + a2x2 +⋯. Set p(x) = ∑∞i=0 p ix i ,
with p i = 0∀i > n; then

p0a0 = 1, and
N∑
j=0

p jaN− j = 0 for all N ≥ 1 . (⋆)
Now define the following elements of K:

z−1 ∶= a0k−1 , and, for each M ≥ 0, zM ∶=
M∑
i=0

a ikM−i .
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We construct z ∈ Ŵ by setting

z ∶= z−1w + z0d + z1cd + z2c
2d +⋯,

so that p(c)z = (p01R + p1c + p2c2 +⋯+ pncn)(z−1w + z0d + z1cd + z2c2d +⋯).
We already know that p0a0 = 1, so that p0z−1 = p0a0k−1 = k−1. Moreover, by standard
computations and using the previous relations (⋆), one can show that for any i ≥ 0,
the coefficient of the term c id in p(c)z equals the coefficient of the term c id in y.
�is implies that p(c)z = y in Ŵ . (Intuitively, the idea here is to “define informally”
the expression α(c) = a01R + a1c + a2c2 +⋯, and subsequently the element z ∈ Ŵ as
z = α(c)y, so that p(c)α(c)y = 1 ⋅ y = y.)

Finally, consider the R-homomorphism Ψ ∶ R → Ŵ obtained by setting

Ψ(1) = z.
�en Ψ(p(c)) = p(c)Ψ(1) = p(c)z = y, as desired. ∎

Proposition 6.11 �e le� R-module Ŵ is injective.

Proof We use Corollary 5.5 again, which yields that we only need to test the
injectivity of Ŵ with respect to the two indicated types of le� R-ideals. But this is
precisely what has been achieved in Lemmas 6.9 and 6.10. ∎

Corollary 6.12 Ŵ is the injective envelope of Rw.

Proof Asnoted inCorollary 6.3, the injective envelope of anymodule is an injective
module inwhich the givenmodule sits as an essential submodule. So the result follows
from Lemma 6.8 and Proposition 6.11. ∎

We now describe the quotient Ŵ/Rw as an extension of a direct summand of a
product of copies of the U f s by the simple module Rw.

Proposition 6.13 �e module Ŵ/Rw is a direct summand of a product of copies of the
U f s.

Proof Consider the short exact sequence 0→ Rw → Ŵ → Ŵ/Rw → 0. First notice
that Hom(Rw , Ŵ/Rw) = 0, as follows. To the contrary, suppose there exists 0 ≠ f ∶
Rw → Ŵ/Rw. �en by the simplicity of Rw, the map f must be a monomorphism.
Further, since Rw is projective, there then exists f̃ ∶ Rw → Ŵ such that π ○ f̃ = f . In
particular Im f̃ ∩ Rw = 0. But this is a contradiction since Rw is the essential socle
of Ŵ .

Now let 0 ≠ x ∈ Ŵ/Rw, and consider the cyclic module Rx ≅ R/Ann(x). LetM be
a maximal le� ideal of R containing Ann(x), so that Rx → R/M → 0. If R/M ≅ Rw,
since Rw is projective we would get that Rw is a summand of Rx, in particular is a
submodule of Rx and thereby also of Ŵ/Rw, contrary to the result of the previous
paragraph. So R/M is a simple module of type V f , and hence it embeds in U f . In
such a way, for any 0 ≠ x ∈ Ŵ/Rw, there is a suitable f (x) ∈ F and a morphism φx ∶

Rx → U f , such that φx(x) ≠ 0. Since U f is injective, φx extends to a morphism φ̃x ∶

Ŵ/Rw → U f . So we get that Ŵ/Rw embeds in a product of copies of theU f ( f (x) ∈

https://doi.org/10.4153/S0008439520000478 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000478


338 G. Abrams, F. Mantese, and A. Tonolo

F). But Ŵ is injective, and so Ŵ/Rw is also injective by Corollary 2.2. �us Ŵ/Rw is
indeed a direct summand of the product of copies of the U f s. ∎

6.3 Consequences of Subsections 6.1 and 6.2

Every ring has (up to isomorphism) a unique minimal injective cogenerator (see
e.g. [5, Section 18] for a full description of this concept). Since any representation
of the ring embeds in a product of copies of a cogenerator, we can describe the
entire category of modules over the ring once we know such a cogenerator. Using
the previous results, we are able to determine a minimal injective cogenerator for the
algebra R =LK(T).
�eorem 6.14 �e le� R-module

C = Ŵ ⊕ (⊕ f (x)∈FU
f )

is a minimal injective cogenerator for R.

Proof By combining Proposition 6.4 with Proposition 6.12, we directly obtain that
C is injective. Because there is a unique cycle in T, [6, Corollary 4.6] applies, and
yields that (up to isomorphism) the set of all the simple modules over R consists of
Rw together with the pairwise nonisomorphic modules of the form {V f ∣ f (x) ∈ F}.
�usC contains a copy of every simple le� R-module, and so it is a cogenerator for the
module category [5, Proposition 18.15]. Since any injective cogenerator has to contain
a copy of the injective envelope of any simple module, we get that C is a minimal
injective cogenerator for R. ∎

When S is any Noetherian ring, then theminimal injective cogenerator is precisely
the direct sum of the injective envelopes of the simple modules. We have reached the
same conclusion for the non-Noetherian ring R =LK(T) in �eorem 6.14. Moreover,
we have described each of these injective envelopes explicitly.

With �eorem 6.14 in hand, we achieve a description of all the injective le� R-
modules.

Corollary 6.15 Let C denote Ŵ ⊕ (⊕ f (x)∈FU
f ).�en a le� R-module M is injective

if and only if M is isomorphic to a direct summand of a direct product of copies of C.

Proof �is follows immediately from the definition of a cogenerator, together with
the facts that direct products and direct summands of injective modules are injective,
and an injective submodule of a module is necessarily a direct summand. ∎

Acknowledgment �e authors are quite grateful to the referee for an extremely
careful reading of the original version of thismanuscript. Part of this workwas carried
out during a visit of the first author to the University of Padova, Department of
Statistical Sciences. �e first author is pleased to take this opportunity to express his
thanks to the host institution and its faculty for their warm hospitality and travel
support by the project of excellence “Statistical methods and models for complex

https://doi.org/10.4153/S0008439520000478 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000478


Injective modules over the Jacobson algebra K⟨X ,Y ∣ XY = 1⟩ 339

data” (Department of Statistical Sciences) and the grant “Iniziative di cooperazione
universitaria Anno 2019” (University of Padova).

References

[1] G. Abrams, P. Ara, and M. Siles Molina, Leavitt path algebras. Lecture Notes in Mathematics, 2191,
Springer-Verlag, London, 2017. https://doi.org/10.1007/978-1-4471-7344-1

[2] G. Abrams, F. Mantese, and A. Tonolo, Extensions of simple modules over Leavitt path algebras.
J. Algebra 431(2015), 78–106. https://doi.org/10.1016/j.jalgebra.2015.01.034

[3] G. Abrams, F. Mantese, and A. Tonolo, Leavitt path algebras are Bézout. Israel J. Math. 228(2018),
53–78. https://doi.org/10.1007/s11856-018-1773-2

[4] G. Abrams, F. Mantese, and A. Tonolo, Prüfer modules over Leavitt path algebras. J. Algebra Appl.
18(2019), 1950154. https://doi.org/10.1142/s0219498819501548

[5] F. Anderson and K. Fuller, Rings and categories of modules. 2nd ed., Graduate Texts in
Mathematics, 13, Springer-Verlag, New York, 1992.
https://doi.org/10.1007/978-1-4684-9913-1

[6] P. Ara and K. Rangaswamy, Finitely presented simple modules over Leavitt path algebras. J. Algebra
417(2014), 333–352. https://doi.org/10.1016/j.jalgebra.2014.06.032

[7] V. V. Bavula,�e algebra of one-sided inverses of a polynomial algebra. J. Pure Appl. Algebra
214(2010), 1874–1897. https://doi.org/10.1016/j.jpaa.2009.12.033

[8] G. Bergman, Coproducts and some universal ring constructions. Trans. Amer. Math. Soc. 200(1974),
33–88. https://doi.org/10.1090/s0002-9947-1974-0357503-7

[9] X. W. Chen, Irreducible representations of Leavitt path algebras. ForumMath. 27(1)(2015),
549–574. https://doi.org/10.1515/forum-2012-0020

[10] P. M. Cohn, Some remarks on the Invariant Basis property. Topology 5(1966), 215–228.
https://doi.org/10.1016/0040-9383(66)90006-1

[11] L. Gerritzen,Modules over the algebra of the noncommutative equation yx = 1. Arch. Math.
75(2000), 98–112. https://doi.org/10.1007/pl00000437

[12] M. Iovanov and A. Sistko, On the Toeplitz-Jacobson algebra and direct finiteness. In: Groups, rings,
group rings, and Hopf algebras, Contemporary Math, 668, Amer. Math. Soc., Providence, RI, 2017,
pp. 113–124. https://doi.org/10.1090/conm/688/13830

[13] N. Jacobson, Some remarks on one-sided inverses. Proc. Amer. Math. Soc. 1(1950), 352–355.
https://doi.org/10.1007/978-1-4612-3694-8_6

[14] T. Y. Lam, Lectures on modules and rings. Graduate Texts in Mathematics, 189, Springer-Verlag,
Berlin Heidelberg, 1999. https://doi.org/10.1007/978-1-4612-0525-8

[15] Z. Lu, L. Wang, and X. Wang, Nonsplit module extensions over the one-sided inverse ofk [x]. Involve
12(8)(2019), 1369–1377. https://doi.org/10.2140/involve.2019.12.1369

[16] K. M. Rangaswamy, On simple modules over Leavitt path algebras. J. Algebra 423(2015),
239–258. https://doi.org/10.1016/j.jalgebra.2014.10.008

Department of Mathematics, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs, CO

80918, USA

e-mail: abrams@math.uccs.edu

Dipartimento di Informatica, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy

e-mail: francesca.mantese@univr.it

Dipartimento di Scienze Statistiche, Università degli Studi di Padova, via Cesare Battisti 241, 35121 Padova,

Italy

e-mail: alberto.tonolo@unipd.it

https://doi.org/10.4153/S0008439520000478 Published online by Cambridge University Press

https://doi.org/10.1007/978-1-4471-7344-1
https://doi.org/10.1016/j.jalgebra.2015.01.034
https://doi.org/10.1007/s11856-018-1773-2
https://doi.org/10.1142/s0219498819501548
https://doi.org/10.1007/978-1-4684-9913-1
https://doi.org/10.1016/j.jalgebra.2014.06.032
https://doi.org/10.1016/j.jpaa.2009.12.033
https://doi.org/10.1090/s0002-9947-1974-0357503-7
https://doi.org/10.1515/forum-2012-0020
https://doi.org/10.1016/0040-9383(66)90006-1
https://doi.org/10.1007/pl00000437
https://doi.org/10.1090/conm/688/13830
https://doi.org/10.1007/978-1-4612-3694-8_6
https://doi.org/10.1007/978-1-4612-0525-8
https://doi.org/10.2140/involve.2019.12.1369
https://doi.org/10.1016/j.jalgebra.2014.10.008
mailto:abrams@math.uccs.edu
mailto:francesca.mantese@univr.it
mailto:alberto.tonolo@unipd.it
https://doi.org/10.4153/S0008439520000478

	1 Introduction
	2 Prerequisites
	3 The Division Algorithm
	4 The Prüfer Modules Uf
	5 The Left Ideals in R=LK(T)
	6 A (Minimal) Injective Cogenerator for R=LK(T)
	6.1 The injective envelope of Vf
	6.2 The injective envelope of Rw
	6.3 Consequences of Subsections sec76.1 and sec86.2


